(完整版)《数学分析》考试知识点.

合集下载

数学分析知识点最全

数学分析知识点最全

数学分析知识点最全数学分析是数学的一个重要分支,它主要研究实数空间上的函数与序列的性质、极限、连续性、可微性等。

以下是数学分析的一些重要知识点:1.实数与复数的性质:包括实数和复数的定义、有理数和无理数的性质、实数的完备性、复数的代数和几何性质等。

2.数列的极限与收敛性:数列极限的定义、极限存在的判定、序列的比较、夹逼定理等。

3.函数的极限与连续性:函数极限的定义、函数极限存在的判定、函数的连续性与间断点、无穷点的连续性等。

4.导数与微分:导数的定义、导数存在的判定、导函数的计算法则、高阶导数与泰勒展开、凸凹性与拐点等。

5.不定积分与定积分:不定积分的定义与计算、变量替换法、分部积分法、定积分的定义与计算、定积分的应用(面积、弧长、体积等)等。

6.级数与幂级数:级数的定义与性质、级数的收敛性判定、常见级数的收敛性、幂级数的收敛半径与求和等。

7.解析几何与曲线的性质:平面曲线的方程、曲线的切线与法线、曲线的弧长与曲率等。

8.参数方程与极坐标系:参数方程与平面曲线的参数方程表示、平面曲线的切线与法线等。

9.函数项级数与傅立叶级数:函数项级数的收敛性判定、幂级数与傅立叶级数的展开等。

10.偏导数与多元函数的微分:偏导数的定义与计算、高阶偏导数、多元函数的全微分与偏微分、隐函数与显函数等。

11.多重积分与曲面积分:二重积分的定义与计算、三重积分的定义与计算、曲面积分的定义与计算等。

12.向量值函数与向量场:向量值函数的极限与连续性、向量场的散度与旋度等。

以上只是数学分析的一部分重要知识点,数学分析还包括很多其他内容,如场论、数学分析在物理学和工程中的应用等。

对于数学分析的学习,需要掌握一定的数学基础和逻辑思维能力,并进行大量的练习与实际应用。

《数学分析》知识点整理.pdf

《数学分析》知识点整理.pdf

《数学分析(3)》复习资料第十三章 函数列与函数项级数(5%)1.(1)函数列收敛域为(),1,2,nn f x x n == (1,1]-,极限函数为0,1,()1, 1.x f x x ⎧<⎪=⎨=⎪⎩.(2)函数列sin (),1,2,n nxf x n n == 收敛域为(,)-∞+∞,极限函数为()0f x =. 2.(1)函数列在(02(),1,2,nx n f x nxe n -== ,)+∞上不.一致收敛. (2)函数列()1,2,n f x n == 在(1,1)-上一致收敛. (3)函数列22(),1,2,1n xf x n n x ==+ 在(,上一致收敛.)-∞+∞(4)函数列(),1,2,n xf x n n== 在[0上不.一致收敛. ,)+∞(5)函数列()sin,1,2,n xf x n n== 在上不.一致收敛. (,-∞+∞)3.(1)函数项级数nn x∞=∑在(1上不.一致收敛. ,1)-(2)函数项级数2sin nx n ∑,2cos nxn ∑在上一致收敛.(,-∞+∞)(3)函数项级数(1)!nx n -∑在上一致收敛. [,]r r -(4)函数项级数122(1)(1)n nx x --+∑在(,上一致收敛. )-∞+∞(5)函数项级数n n x ∑在11r x r r ∙>⎧⎪>⎨=⎪⎩上一致收敛上不一致收敛.(6)函数项级数2nx n ∑在上一致收敛.[0,1](7)函数项级数12(1)n x n --+∑在上一致收敛.(,-∞+∞)(8)函数项级数221(1)n x x -+∑在(,上不.一致收敛. )-∞+∞第十四章 幂级数(10%)1.对于幂级数,若0n n n a x ∞=∑lim n ρ=(1limn n na a ρ+→∞=) 则(i )当0ρ=时,收敛半径R =+∞,收敛域为(,)-∞+∞;(ii )当ρ=+∞时,收敛半径,仅在0R =0x =处收敛; (iii )当0ρ<=+∞时,收敛半径1R ρ=,收敛域为(,)R R -,还要进一步讨论区间端点x R =±处的敛散性.2.幂级数展开式: (1)()2(0)(0)(0)()(0)1!2!!n nf f f f x f x x x n '''=+++++(2)011nn x x ∞==-∑,01(1)1n n n x x ∞==-+∑ (1x )<. (3)2(1)(1)(1))12!!m n m m m m m n x mx x x n ---++=+++++ (11)x -<<111],.1110101m m m ≤--⎧⎪-<<-⎨⎪>-⎩时,收敛域为(,)时,收敛域为(,]时,收敛域为[,(1(4)1110(1)(1)ln(1)(11)1n n n n n n x x x x n n -∞∞+==--+==-<≤+∑∑,1ln(1)nn x x n∞=--=∑ (11)x -≤<. (5)210(1)sin (21)!n n n x x n ∞+=-=+∑,20(1)cos (sin )(2)!n nn x x n ∞=-'==∑ ()x -∞<<+∞.(6)10(1)arctan (11)21n n n x x n ∞+=-=-≤+∑≤(7)0)!nxn x n ∞==-∞<<+∞∑e x3.幂级数的和函数(1)1)(0,1,2,k 1knn kx x x x ∞==<-)∑ = . (2)()(1)1)1knnn kx x x x ∞=--=<+)∑ . (0,1,2,k = (3)1ln(1)nn x x n∞==--∑ .(11)x -≤<(4)121111()1(1)n nn n n n x nxx x x x ∞∞∞-===''⎛⎫⎛⎫'==== ⎪ ⎪--⎝⎭⎝⎭∑∑∑ (1x )<. (5)223)21111(1)()1(1)(1n n n n n n x n n x x x x x x ∞∞∞-==='''''⎛⎫⎛⎫⎛⎫''-===== ⎪ ⎪ ⎪---⎝⎭⎝⎭⎝⎭∑∑∑ (1x <). 第十五章 傅里叶级数(10%)()f x 是以2π为周期且在[,]ππ-上可积的函数: 1.01()(cos sin )2n n n a f x a nx b nx ∞==++∑,01()a f x πππ-=⎰dx ,1()cos n a f x nx πππ-=⎰dx ,1()sin nbf x nx πππ-=⎰dx 1,2,n ,= .2.01()cos sin 2n n n a n x n x f x a b l l ππ∞=⎛⎫=++ ⎪⎝⎭∑,01()ll a f x l -=⎰dx , 1()cos l n l n x a f x dx πl l -=⎰,1()sin l n l n xb f x dx πl l-=⎰,1,2,n = .3.(1)偶函数的傅里叶级数:01()cos2n n a n x f x a l π∞==+∑,012()cos ()cos l l n l n x n xa f x dx f x dx πl l l l π-==⎰⎰,. 1,2,n = 01()cos 2n n a f x a nx ∞==+∑,012()cos ()cos n a f x nxdx f x nxd πππππ-==⎰⎰x ,1,2,n = .(2)奇函数的傅里叶级数:1()sinn n n x f x b lπ∞==∑,012()sin ()sin l l n l n x n xf x dx f x dx l l l l πb π-==⎰⎰1,2,,n = .1()sin n n f x b ∞==∑nx ,012()sin ()sin n b ,f x nxdx f x nxdx πππππ-==⎰⎰1,2,n = .第十六章 多元函数的极限与连续(5%)1.若累次极限00lim lim (,)x x y y f x y →→,00lim lim (,)y y x x f x y →→和重极限00(,)(,)lim (,)x y x y f x y →都存在,则三者相等.2.若累次极限00lim lim (,)x x y y f x y →→与00lim lim (,)y y x x f x y →→存在但不相等,则重极限00(,)(,)lim (,)x y x y f x y →必不存在.3.2222(,)(0,0)lim 0x y x y x y →=+,2222(,)(0,0)1lim x y x y x y →++=+∞+,22(,)lim 2x y →=,22(,)(0,0)1lim ()sin 0x y x y x y →+=+,2222(,)(0,0)sin()lim 1x y x y x y →+=+. 第十七章 多元函数微分学(20%)1.全微分:z zdz dx dy x y ∂∂=+∂∂. 2.zzz x y x yx x y yt t∂∂s t s sts∂∂∂∂∂∂∂∂∂∂z z x z y s y t∂∂∂∂∂=+s x s y z z x z t x t y ∂∂∂∂∂∂∂∂∂∂=+∂∂∂∂∂. 3.若函数f 在点可微,则0P f 在点沿任一方向的方向导数都存在,且0P 000(,,)l x y z 0000()()cos ()cos ()cos l x y z f P f P f P f P αβγ=++,其中cos α,cos β,cos γ为方向l x 的方向余弦,000(,,)y z即cos α=cos β=,cos γ=4.若(,,)f x y z 在点存在对所有自变量的偏导数,则称向量0000(,,)P x y z 000((),(),())x y z f P f P f P 为函数f 在点的梯度,记作0P 000(),()ad )z ((),x y gr f P f =P f P f .向量grad f 的长度(或模)为gra d f =.5.设,(,z f x y xy =+)f 有二阶连续偏导数,则有1211z 212()z f yf z x x y y y ∂⎛⎫∂ ⎪''∂+∂∂⎝⎭==∂∂∂∂2f f y f yf x∂'''=⋅+⋅=+∂',11122212221112221(1)()f f x f y f f x f f x y f xyf ''''''''''''''''=⋅+⋅++⋅+⋅=++++.6.设,令00()()0x y f P f P ==0()xx f P A =,0()xy f P B =,0()yy f P C =,则(i )当,时,20AC B ->0A >f 在点取得极小值; 0P (ii )当,20AC B ->0A <时,f 在点取得极大值; 0P (iii )当时,20AC B -<f 在点不能取得极值; 0P (iv )当时,不能肯定20AC B -=f 在点是否取得极值.0P 第十八章 隐函数定理及其应用(10%)1.隐函数,则有(,)0F x y =x yF dydx F =-. 2.隐函数,则有(,,)0F x y z =x z F zx F ∂=-∂,y zF z y F ∂=-∂(,,,)0(,,,)0F x y u v G x y u v . =⎧⎨3.隐函数方程组:=⎩,有x yu v xyuv F F F F F F F F x y u v G G G G GG G G x yuv ∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂⎛⎫ ⎪⎛⎫ ⎪= ⎪ ⎪⎝⎭ ⎪⎝⎭, 则uv uv uv F F J G G =,xv xv xv F F J G G =,uxux u x F F J G G =,y v yv y v F F J G G =,uyuy uyF F JG G =, xv uv J u x J ∂=-∂ ,ux uv J vx J ∂=-∂,yv uv J u y J ∂=-∂,uy uvJ v y J ∂=-∂. 4.平面曲线在点的切线..方程为(,)0F x y =000(,)P x y 000000(,)()(,)()0x y F x y x x F x y y y -+-=, 法线..方程为000000(,)()(,)()0y x F x y x x F x y y y -+-=. 5.空间曲线:在点处的L (,,)0(,,)0F x y z G x y z =⎧⎨=⎩0000(,,)P x y z切线..方程为00z x yz x y z x y z x y 0x x y y z z F F F F F F G G G G G G ---==⎛⎫⎛⎫⎛ ⎪ ⎪ ⎝⎭⎝⎭⎝⎫⎪⎭00000()()()0x y z F x x F y y F z z , 法线..方程为. 00()()()yz xy zx yz xy zx F F F F F F x x y y z z G G G G G G ⎛⎫⎛⎫⎛⎫-+-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭6.曲面在点处的切平面...方程为(,,)0F x y z =0000(,,)P x y z -+-+-=, 法线..方程为00x y 0zx x y y z z F F F ---==. 7.条件极值例题:求函数在约束条件22u x y z =++222z x y =+与4x y z ++=下的最大值和最小值.解:令,22222(,,,,)()(4)L x y z x y z z x y x y z λμλμ=+++--+++-则由,得稳定点22220222040x yz L x x L y y L z L z x y L x y z λμλμλμλμ=-+=⎧⎪=-+=⎪⎪=++=⎨⎪=--=⎪=++-=⎪⎩00112x y z =⎧⎪=⎨⎪=⎩及228x y z =-⎧⎪=-⎨⎪=⎩,故当1x y ==,时函数在约束条件下取得最小值, 2z =22u x y z =++28z =26当,时函数在约束条件下取得最大值.2x y ==-22u x y z =++72第十九章 含参量积分(5%)1.,;10()s xs x e +∞--Γ=⎰dx 0s >(1)(s s )s Γ+=Γ;1(2Γ=;1()2n Γ+=,1()2n Γ-=. 2.1110(,)(1)p q p q x x ---⎰)dx (0,0p q >>B =;(,)(,)p q q p B =B ;1(,)(,1)1q p q p q p q -B =B -+- ;(0,1p q >>)1(,)(1,)1p p q p q -p q B =B -+-) ;(1,0p q >>(1)(1)(,)(1,1)(1)(2)p q p q p q p q p q --B =B --+-+- .(1,1p q >>)3.()()(,)()p q p q p q ΓΓB =Γ+ .(0,0p q >>)第二十章 曲线积分(5%)1.设有光滑曲线:L (),(),x t y t ϕψ=⎧⎨=⎩t [,]αβ∈,函数(,)f x y 为定义在L 上的连续函数,则(,)((),(Lf x y ds f t t βαϕψ=⎰⎰;当曲线由方程L ()y x ψ=,[,]x a b ∈表示时,(,)(,(bLaf x y ds f x x ψ=⎰⎰.2.设平面曲线:L (),(),x t y t ϕψ=⎧⎨=⎩t [,]αβ∈,其中()t ϕ,在[,]αβ上具有一阶连续导函数,且((),())A ϕαψα,((),())B ϕβψβ. 又设与为上的连续函数,则沿L 从A 到(,)P x y (,)Q x y L B 的第二型曲线积分(,)(,)[((),())()((),())()]LP x y dx Q x y dy P t t t Q t t t dt βαϕψϕϕψψ''+=+⎰⎰.第二十一章 重积分(20%)1.若(,)f x y 在平面点集}{12(,)()(),D x y y x y y x a x b =≤≤≤≤(x 型区域)上连续,其中1()y x ,2()y x 在[,上连续,则]a b 21()()(,)(,)b y x ay x Df x y d dx f x y dy σ=⎰⎰⎰⎰,即二重积分可化为先对y ,后对x 的累次积分.若}{12(,)()(),D x y x y x x y c y d =≤≤≤≤,其中1()x y ,2()x y 在]上连续,则二重积分可化为先对[,c d x ,后对y 的累次积分21()()(,)(,dx y cx y D)f x y d dy f x y σ=⎰⎰⎰⎰dx .在二重积分中,每次积分的上、下限一定要遵循“上限大,下限小”的原则,且一般来说,第一次(先)积分的上、下限一般为第二次(后)积分的积分变量的函数或常数,而第二次(后)积分的上、下限均为常数. 2.格林公式:若函数,在闭区域上连续,且有一阶偏导数,则有(,)P x y (,)Q x y D ()L DQ Pd Pdx Qdy x yσ∂∂-=+∂∂⎰⎰⎰ (或L Dx y d Pdx Q +dy P Qσ∂∂∂∂=⎰⎰⎰ D ),这里为区域的边界曲线,并取正方向. L 3.设是单连通闭区域.若函数,在内连续,且具有一阶连续偏导数,则以下四个条件等价:D (,)P x y (,)Q x y D (i )沿内任一按段光滑封闭曲线,有D L 0LPdx Qdy +=⎰;(ii )对中任一按段光滑曲线,曲线积分与路线无关,只与的起点及终点有关;D L LPdx Qdy +⎰L (iii )是内某一函数的全微分,即在内有Pdx Qdy +D (,)u x y D du Pdx Qdy =+;(iv )在内处处成立D P Qy x∂∂=∂∂. (,)4.设f x y 在极坐标变换cos ,:sin ,x r T y r θθ=⎧⎨=⎩0r ≤<+∞,02θπ≤≤下,xy 平面上有界闭区域与D r θ平面上区域∆对应,则成立(,D)(cos ,sin )f x y dxdy f r r rdrd θθθ∆=⎰⎰⎰⎰.通常积分区域为圆形、扇形、环形或为其一部分,或积分区域的边界线用极坐标方程表示较简单,且被积函数为22()f x y +,(y f x ,(xf y,()f x y +等形式时常选用在极坐标系下计算二重积分.。

数学分析的知识点

数学分析的知识点

数学分析的知识点数学分析是数学的一个重要分支,涵盖了许多基本概念和定理。

本文将介绍数学分析的一些核心知识点,包括极限、导数、积分和级数等。

一、极限极限是数学分析的基础概念之一,它描述了函数在某一点附近的行为。

对于一个函数f(x),当x无限接近某一点a时,如果存在一个实数L,使得对于任意给定的正数ε,都存在一个正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε成立,那么我们称L是f(x)在x趋于a时的极限,记作lim(x→a)f(x)=L。

极限有许多重要的性质和定理,如极限的唯一性、四则运算法则、夹逼定理等,这些性质和定理在数学分析的推导和证明中起到了重要的作用。

二、导数导数是描述函数变化率的概念,它在数学和物理等领域中有广泛的应用。

对于一个函数f(x),如果在某一点x处,当x趋于x0时,存在一个常数A,使得lim(x→x0) [f(x)-f(x0)]/(x-x0) = A,那么我们称A为f(x)在x0处的导数,记作f'(x0)或df(x)/dx|x=x0。

导数具有许多重要的性质和定理,如导数的四则运算法则、链式法则、高阶导数等,这些性质和定理在求解函数的极值、函数的图像绘制等问题中起到了关键的作用。

三、积分积分是对函数的求和过程,它是导数的逆运算。

对于一个函数f(x),如果存在一个函数F(x),使得对于任意给定的区间[a,b],有∫(a→b) f(x) dx = F(b) - F(a),那么我们称F(x)为f(x)的一个原函数,而积分∫(a→b) f(x) dx表示函数f(x)在区间[a,b]上的积分。

积分也具有许多重要的性质和定理,如积分的线性性质、换元积分法、分部积分法等,这些性质和定理在求解曲线下的面积、求解定积分等问题中起到了重要的作用。

四、级数级数是数学分析中的一个重要概念,它是无穷多项的和。

对于一个数列{a_n},我们可以将其前n项的和表示为S_n=a_1+a_2+...+a_n,如果数列{S_n}的极限存在,那么我们称级数∑(n=1→∞) a_n收敛,极限值为该级数的和。

数学分析重点知识点总结

数学分析重点知识点总结

数学分析重点知识点总结•相关推荐数学分析重点知识点总结在日复一日的学习中,大家都没少背知识点吧?知识点就是掌握某个问题/知识的学习要点。

想要一份整理好的知识点吗?下面是小编为大家收集的数学分析重点知识点总结,欢迎阅读与收藏。

数学分析重点知识点总结1一、高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节主要是考函数和导数,因为这是整个高中阶段中最核心的部分,这部分里还重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,但是这个分布重点还包含两个分析。

二、平面向量和三角函数对于这部分知识重点考察三个方面:是划减与求值,第一,重点掌握公式和五组基本公式;第二,掌握三角函数的图像和性质,这里重点掌握正弦函数和余弦函数的性质;第三,正弦定理和余弦定理来解三角形,这方面难度并不大。

三、数列数列这个板块,重点考两个方面:一个通项;一个是求和。

四、空间向量和立体几何在里面重点考察两个方面:一个是证明;一个是计算。

五、概率和统计概率和统计主要属于数学应用问题的范畴,需要掌握几个方面:……等可能的概率;……事件;独立事件和独立重复事件发生的概率。

六、解析几何这部分内容说起来容易做起来难,需要掌握几类问题,第一类直线和曲线的位置关系,要掌握它的通法;第二类动点问题;第三类是弦长问题;第四类是对称问题;第五类重点问题,这类题往往觉得有思路却没有一个清晰的答案,但需要要掌握比较好的算法,来提高做题的准确度。

七、压轴题同学们在最后的备考复习中,还应该把重点放在不等式计算的方法中,难度虽然很大,但是也切忌在试卷中留空白,平时多做些压轴题真题,争取能解题就解题,能思考就思考。

数学分析重点知识点总结21、正数和负数的有关概念(1)正数:比0大的数叫做正数;负数:比0小的数叫做负数;0既不是正数,也不是负数。

(2)正数和负数表示相反意义的量。

(完整版)数学分析知识点总结

(完整版)数学分析知识点总结

(完整版)数学分析知识点总结数学分析知识点总结导数与微分- 导数的定义:导数是一个函数在某一点的斜率,表示函数的增减速度。

- 常见函数的导数公式:- 幂函数:$(x^n)' = nx^{n-1}$- 指数函数:$(a^x)' = a^x\ln(a)$- 对数函数:$(\log_a(x))' = \frac{1}{x\ln(a)}$- 微分的定义:微分是切线在某一点处的线性近似,表示函数在该点的局部变化情况。

积分与不定积分- 不定积分的定义:不定积分是对函数的原函数的求解,表示函数从某一点到变量的积分结果。

- 常见函数的基本积分公式:- 幂函数:$\int x^n dx = \frac{1}{n+1}x^{n+1}+C$- 正弦函数:$\int \sin(x) dx = -\cos(x) + C$- 余弦函数:$\int \cos(x) dx = \sin(x) + C$一元函数极限- 极限的定义:函数在某一点处的极限是函数在这一点附近的取值逐渐趋于某个固定值的情况。

- 常见函数的极限计算方法:- 算术运算法则:常数的极限是常数本身;极限的和等于极限的和;极限的乘积等于极限的乘积。

- 复合函数法则:对于复合函数,可以先求内层函数的极限,再求外层函数的极限。

泰勒级数- 泰勒级数的定义:泰勒级数是一个函数在某一点附近的展开式,由函数在该点的导数决定。

- 常见函数的泰勒级数展开:- 幂函数:$f(x) = f(a) + f'(a)(x-a) + \frac{f''(a)}{2!}(x-a)^2 +\frac{f'''(a)}{3!}(x-a)^3 + \dots$以上是数学分析的一些基本知识点总结,希望对您有所帮助。

数学分析知识点总结

数学分析知识点总结

估值不等式、积分第一、第二中值定理。
5、定积分与不定积分旳联络
(1)变上限积分旳导数公式;
d
x
f (t )dt f ( x),
dx a
d
b( x)
f (t)dt
f b( x)b( x)
f a( x)a( x)
dx a( x)
(2)牛-莱公式。
(3)可积函数不一定有原函数,有原函 数旳函数不一定可积。
n 但其极限是无理数 e.
即数列旳单调有界定理在有理数域不成立。
3. 区间套定理
若{[ an,bn ]}是一种区间套,则在实数系中存在唯一旳点
,使 [an ,bn ],n 1,2,
反例:取单调递增有理数列{an },使an 2, 取单调递减有理数列{bn },使bn 2,
则 有理数域内构成闭区间 套 [an ,bn ]Q, 其在实数系内唯一的公 共点为 2 Q.
1)恒等变形(加一项减一项、乘一项除一项、 三角恒等变形);
2)线性运算;
3)换元法: 第一类(凑分法)——不需要变换式可逆; 第二类——变换式必须可逆;
4)分部积分法——常可用于两个不同类型函数乘积 旳积分; “对反幂三指,前者设为u”
5)三种特殊类型函数 “程序化”旳积分法。
注:检验积分成果正确是否旳基本措施。
(6) cos xdx sin x C
(12) e xdx e x C
(13)
a xdx
ax C ln a
(20)
a2
1
x 2 dx
1 a
arctan
x a
C
(21)
x2
1
a 2 dx
1 2a
ln

数学分析总结复习提纲

数学分析总结复习提纲

数学分析(3)总结复习提纲用词说明: 本提纲中冠以“掌握、理解、熟悉”等词的内容为较高要求内容, 冠以“会、了解、知道”等词的内容为较低要求内容。

第十二章各种积分之间的联系§1 各种积分之间的联系公式理解格林公式与高斯公式, 了解斯托克斯公式;掌握利用格林公式计算平面曲线积分和利用高斯公式计算曲面积分的方法;会用斯托克斯公式计算空间闭曲线上的曲线积分, 会用平面曲线积分计算平面图形的面积, 会用曲面积分计算立体的体积。

§2曲线积分与路径的无关性理解平面曲线积分与路径无关的四个等价条件, 了解空间曲线积分与路径无关的四个等价条件;掌握利用平面曲线积分与路径无关的条件计算平面曲线积分、以及求二元函数全微分的原函数的方法。

§3 场论初步理解场的概念;了解梯度场、散度场、及旋度场的物理意义, 会求梯度、散度与旋度。

第十三章极限与实数理论§1 各种极限的精确定义理解各种极限定义的本质, 掌握利用极限定义证明极限的基本方法;会叙述极限不等于某常数的定义, 知道数列极限存在的充要条件与归结原则。

§2关于实数的基本定理理解确界、闭区间套、有限覆盖及聚点等概念, 熟悉关于实数完备性的六个等价定理的条件和结论;会用实数完备性定理证明一些简单命题。

§3 闭区间上连续函数性质的证明理解有界性定理、最值定理、零点定理、介值定理的条件和结论, 理解一致连续的定义和一致连续性定理;会用一致连续的定义证明函数的一致连续性, 会用闭区间上连续函数的性质定理证明相关命题。

第十四章隐函数定理与重积分的换元法§1隐函数存在定理理解隐函数(组)存在惟一性定理的条件和结论;了解反函数组与坐标变换的概念和反函数组定理的条件与结论;掌握坐标变换的雅可比行列式的计算。

§2 重积分的换元法理解二重积分的坐标变换公式, 掌握用换元法计算二重积分的基本方法;了解三重积分的坐标变换公式, 会用球面坐标计算三重积分。

数学分析总结复习提纲

数学分析总结复习提纲

数学分析总结复习提纲数学分析(一)总结复习提纲用词说明:本提纲中冠以“掌握、理解、熟悉”等词的内容为较高要求内容,冠以“会、了解、知道”等词的内容为较低要求内容。

一、内容概述第一章函数、极限与连续§1函数1. 实数集的性质,2. 区间与邻域的概念及其表示,3. 函数的概念与几个特殊函数,4. 函数的奇偶性、周期性、单调性和有界性,4. 复合函数的概念与运算,5. 反函数的定义与性质,6. 初等函数的概念与基本初等函数的性质。

§2 数列极限1. 数列极限的定义以及用定义证明极限,2. 收敛数列的性质,3. 子列的概念以及收敛数列与其子列之间的关系。

§3 函数极限1. ∞x时函数的极限,2. 0x→x→时函数的极限,3. 函数极限的性质,4. 函数极限与数列极限的关系。

§4 无穷小与无穷大1. 无穷小的概念以及函数极限与无穷小的性质,2. 无穷大的概念以及无穷小与无穷大的关系。

§5 极限运算法则1. 无穷小的性质,2. 极限四则运算法则,3. 复合函数的极限运算法则,4. 加逼准则。

§6 单调有界原理与两个重要极限1. 单调有界原理,2. 几个常见不等式,3. 两个重要极限公式。

§7 无穷小的比较1. 无穷小量阶的比较概念,2. 等价无穷小的性质。

§8 函数的连续性与间断点1.函数的连续性概念,2. 函数的间断点及其分类。

§9 连续函数的运算与初等函数的连续性1. 连续函数的四则运算,2. 反函数的连续性,3. 复合函数的连续性,4. 初等函数的连续性。

§10 闭区间上连续函数的性质1. 有界性与最大值最小值定理,2. 零点定理与介值定理。

第二章导数与微分§1 导数的概念1.导数概念的引进,2. 导数的定义,3. 导数的几何意义,4. 函数的连续性与可导性的关系。

§2 函数的求导法则1.导数的四则运算法则,2. 反函数的求导公式,3. 复合函数的求导法则,4. 基本求导公式与求导法则。

数学分析知识点总结

数学分析知识点总结

第一篇 分析基础 1.1收敛序列(收敛序列的定义)定义:设}{n x 是实数序列,a 是实数,如果对任意0>ε都存在自然数N ,使得只要N n >,就有ε<-a x n那么}{n x 收敛,且以a 为极限,称为序列}{n x 收敛收敛于a ,记为a x n =lim 或者)(+∞→→n a x n定理1:如果序列}{n x 有极限,那么它的极限是唯一的。

定理2(夹逼原理):设}{n x ,}{n y 和}{n z 都是实数序列,满足条件N n z y x n n n ∈∀≤≤,如果a z x n n ==lim lim ,那么}{n y 也是收敛序列,且有a y n =lim定理3:设}{n x 是实数序列,a 是实数,则以下三陈述等价(1) 序列}{n x 以a 为极限; (2) {}n x a -是无穷小序列; (3) 存在无穷小序列{}n a 使得,1,2,.n n x a a n =+=(收敛序列性质)定理4:收敛序列}{n x 是有界的。

定理5:(1)设a x n =lim ,则a x n =lim 。

(2)设a x n =lim ,b y n =lim ,则b a y x n n ±=±)lim (。

(3)设a x n =lim ,b y n =lim ,则ab y x n n =)lim(。

(4)设0≠n x ,0lim ≠=a x n ,则ax n 11lim=。

(5)设0≠n x ,0lim ≠=a x n ,b y n =lim ,则lim limlim n n n n y y b x x a==。

(收敛序列与不等式)定理6:如果lim lim n n x y <,那么存在0N N ∈,使得0n N >时有n n x y <定理7:如果}{n x 和{}n y 都是收敛序列,且满足0,,n n x y n N ≤∀>那么lim lim n n x y ≤1.2 收敛原理(单调序列定义)定义:(1)若实数序列}{n x 满足1,,n n x x n N +≤∀∈则称}{n x 是递增的或者单调上升的,记为{}.n x ↑(2)若实数序列{}n y 满足1,,n n y y n N +≥∀∈则称{}n y 是递减的或者单调下降的,记为{}n y ↓(3)单调上升的序列和单调下降的序列统称为单调序列。

(完整版)最新数学分析知识点最全汇总(可编辑修改word版)

(完整版)最新数学分析知识点最全汇总(可编辑修改word版)

第一章实数集与函数§1实数授课章节:第一章实数集与函数——§1 实数教学目的:使学生掌握实数的基本性质.教学重点:(1)理解并熟练运用实数的有序性、稠密性和封闭性;(2)牢记并熟练运用实数绝对值的有关性质以及几个常见的不等式.(它们是分析论证的重要工具)教学难点:实数集的概念及其应用.教学方法:讲授.(部分内容自学)教学程序:引言上节课中,我们与大家共同探讨了《数学分析》这门课程的研究对象、主要内容等话题.从本节课开始,我们就基本按照教材顺序给大家介绍这门课程的主要内容.首先,从大家都较为熟悉的实数和函数开始.[问题]为什么从“实数”开始.答:《数学分析》研究的基本对象是函数,但这里的“函数”是定义在“实数集”上的(后继课《复变函数》研究的是定义在复数集上的函数).为此,我们要先了解一下实数的有关性质.一、实数及其性质⎪1、实数⎧有理数: 任何有理数都可以用分数形式 q ( p , q 为整数且q ≠ 0) 表示,⎪p ⎨也可以用有限十进小数或无限十进小数来表示. ⎪⎩ 无理数: 用无限十进不循环小数表示.R = {x | x 一 一 一 }- - 一 一 一 一 一 一 一 .[问题]有理数与无理数的表示不统一,这对统一讨论实数是不利 的.为以下讨论的需要,我们把“有限小数”(包括整数)也表示为“无限小数”.为此作如下规定:例:2.001 → 2.0009999 ; 3 → 2.9999 ; -2.001 → -2.009999 -3 → -2.9999利用上述规定,任何实数都可用一个确定的无限小数来表示.在此规定下,如何比较实数的大小?2、两实数大小的比较1) 定义 1 给定两个非负实数x = a 0 .a 1 a n , y = b 0 .b 1 b n . 其中对于正有限小数x = a 0 .a 1a 2 a n , 其中0 ≤ a i ≤ 9, i = 1, 2, , n , a n ≠ 0, a 0为非负整数,记x = a 0 .a 1 a n -1 (a n -1)9999 ;对于正整数x = a 0 , 则记x = (a 0 -1).9999 ;对于负有限小数(包括负整数) y ,则先将- y 表示为无限小数,现在所得的小数之前加负号.0 表示为 0= 0.0000a 0 ,b 0 为非负整数, a k , b k (k = 1, 2, ) 为整数, 0 ≤ a k ≤ 9, 0 ≤ b k ≤ 9 . 若有a k = b k , k = 0,1, 2, ,则称 x 与 y 相等,记为 x = y ;若a 0 > b 0 或存在非负整数l ,使得a k = b k , k = 0,1, 2, , l ,而a l +1 > b l +1 ,则称x 大于 y 或 y 小于x , 分别记为 x > y 或 y < x . 对于负实数 x 、 y , 若按上述规定分别有-x = - y 或-x > - y ,则分别称为x = y 与x < y (或 y > x ).规定:任何非负实数大于任何负实数.2)实数比较大小的等价条件(通过有限小数来比较).定义 2(不足近似与过剩近似): x = a 0 .a 1 a n 为非负实数,称 有理数 x = a .a a 为实数 x 的n 位不足近似; x = x + 1称为实数 xn0 1nn n10n的n 位过剩近似, n = 0,1, 2, .对于负实数 x = -a .a a,其n 位不足近似 x = -a .a a - 1; 0 1 nn 位过剩近似x n = -a 0 .a 1 a n .n 0 1 n10n注:实数 x 的不足近似 x n 当n 增大时不减,即有 x 0 ≤ x 1 ≤ x 2 ≤ ; 过剩近似 x n 当 n 增大时不增,即有x 0 ≥ x 1 ≥ x 2 ≥ .命题:记 x = a 0 .a 1 a n , y = b 0 .b 1 b n 为两个实数,则 x > y 的等 价条件是:存在非负整数 n ,使x n > y n (其中x n 为x 的n 位不足近似,y n 为 y 的n 位过剩近似).命题应用例 1.设x , y 为实数, x < y ,证明存在有理数r ,满足x < r < y . 证明:由 x < y ,知:存在非负整数 n ,使得x < y .令r =1(x+ y ),nn则 r 为有理数,且x ≤ x n < r < y n ≤ y .即x < r < y .2nn⎩3、实数常用性质(详见附录Ⅱ. P 289 - P 302 ).1) 封闭性(实数集R 对+, -,⨯, ÷ )四则运算是封闭的.即任意两个实数的和、差、积、商(除数不为 0)仍是实数.2) 有序性: ∀a , b ∈ R ,关系a < b , a > b , a = b ,三者必居其一,也只居其一.3) 传递性: ∀a ,b ,c ∈ R , 若a > b , b > c ,则a > c .4) 阿基米德性: ∀a , b ∈ R , b > a > 0 ⇒ ∃n ∈ N 使得na > b .5) 稠密性:两个不等的实数之间总有另一个实数.6) 一一对应关系:实数集R 与数轴上的点有着一一对应关系.例 2.设∀a , b ∈ R ,证明:若对任何正数,有a < b +,则a ≤ b .(提示:反证法.利用“有序性”,取= a - b )二、绝对值与不等式1、绝对值的定义实数a 的绝对值的定义为| a |= ⎧ a ,a ≥ 0 .⎨-a a < 02、几何意义从数轴看,数a 的绝对值| a | 就是点a 到原点的距离.| x - a | 表示就是数轴上点x 与a 之间的距离.3、性质1)| a |=| -a |≥ 0;| a |= 0 ⇔ a = 0 (非负性);2) - | a |≤ a ≤| a | ;3)| a |< h ⇔ -h < a < h ,| a |≤ h ⇔ -h ≤ a ≤ h .(h > 0) ;abn (1 + x )n n 4)对任何a , b ∈ R 有| a | - | b |≤| a ± b |≤| a | + | b |(三角不等式);5)| ab |=| a | ⋅ | b |;6)= | a |( b ≠ 0 ).| b |三、几个重要不等式1、a 2 + b 2 ≥ 2 ab ,sin x ≤ 1. sin x ≤ x .2、均值不等式:对∀a 1, a 2 , , a n ∈ R + , 记M (a ) =a 1 + a 2 + + a n =1∑na ,(算术平均值)in n i i =11 ⎛ n ⎫ nG (a i ) = = ∏ a i ⎪ , (几何平均值)H (a ) =⎝ i =1 ⎭n = 1= n .(调和平均值) i1 + 1 + + 1 1 ∑n 1 ∑ 1 a 1 a2 a n n i =1 a i i =1 a i有平均值不等式: H (a i ) ≤ G (a i ) ≤ M (a i ), 即:n ≤≤ a 1 + a 2 + + a n1 + 1 + + 1 na 1 a 2 a n等号当且仅当a 1 = a 2 = = a n 时成立.3、Bernoulli 不等式:(在中学已用数学归纳法证明过)∀x > -1, 有不等式(1+ x )n ≥ 1+ nx ,n ∈ N .当x > -1且 x ≠ 0 , n ∈ N 且n ≥ 2 时,有严格不等式(1 + x )n > 1 + nx .证:由1 + x > 0 且1 + x ≠ 0, ⇒ (1 + x )n + n - 1 = (1 + x )n + 1 + 1 + + 1 >> n = n (1 + x ). ⇒ (1 + x )n > 1 + nx .4、利用二项展开式得到的不等式:对∀h > 0, 由二项展开式n a 1a 2 a n⎨二 绝对值与不等式 (1 + h )n = 1 + nh +n (n -1) h 2 +n (n -1)(n - 2)h 3 + + h n ,2!3!有(1 + h )n > 上式右端任何一项.[练习]P4.5 [课堂小结]:实数: ⎧一 实数及其性质.⎩[作业]P4.1.(1),2.(2)、(3),3§2 数集和确界原理授课章节:第一章实数集与函数——§2 数集和确界原理 教学目的:使学生掌握确界原理,建立起实数确界的清晰概念. 教学要求:(1) 掌握邻域的概念;(2) 理解实数确界的定义及确界原理,并在有关命题的证明中正确地加以运用.教学重点:确界的概念及其有关性质(确界原理). 教学难点:确界的定义及其应用. 教学方法:讲授为主.教学程序:先通过练习形式复习上节课的内容,以检验学习效果,此后导入新课.引 言上节课中我们对数学分析研究的关键问题作了简要讨论;此后又让大家自学了第一章§1 实数的相关内容.下面,我们先来检验一下自学的效果如何!1 、证明:对任何x ∈R 有: (1)| x -1| + | x -2 |≥ 1 ; (2)| x -1| + | x - 2 | + | x - 3 |≥ 2 .((1) x-1=1+(x-2)≥1-x-2,∴x-1+x-2≥1)((2)x -1 +x - 2 ≥1, x - 2 +x - 3 ≥1, x - 2 +x - 3 ≥ 2.三式相加化简即可)2、证明:| x | - | y | ≤| x -y |.3、设a,b∈R,证明:若对任何正数有a+b<,则a≤b.4、设x, y ∈R, x >y ,证明:存在有理数r 满足y <r <x .[引申]:①由题 1 可联想到什么样的结论呢?这样思考是做科研时的经常的思路之一.而不要做完就完了!而要多想想,能否具体问题引出一般的结论:一般的方法?②由上述几个小题可以体会出“大学数学”习题与中学的不同;理论性强,概念性强,推理有理有据,而非凭空想象;③课后未布置作业的习题要尽可能多做,以加深理解,语言应用.提请注意这种差别,尽快掌握本门课程的术语和工具.本节主要内容:1、先定义实数集 R 中的两类主要的数集——区间与邻域;2、讨论有界集与无界集;3、由有界集的界引出确界定义及确界存在性定理(确界原理).一、区间与邻域1、区间(用来表示变量的变化范围)⎧有限区间设a, b ∈R 且a <b .区间⎨,其中⎩无限区间⎨⎪ ⎨ ⎪ + +⎧ ⎪ ⎪ ⎪有限区间⎪⎪ ⎪ 开区间: {x ∈ R | a < x < b } = (a , b ) 闭区间: {x ∈ R | a ≤ x ≤ b } = [a , b ]⎧⎪闭开区间: {x ∈ R | a ≤ x < b } = [a , b ) ⎪半开半闭区间⎨⎩⎪⎪⎩开闭区间: {x ∈ R | a < x ≤ b } = (a , b ]⎧ {x ∈ R | x ≥ a } = [a , +∞).⎪{x ∈ R | x ≤ a } = (-∞, a ]. 无限区间⎪{x ∈ R | x > a } = (a , +∞).⎪{x ∈ R | x < a } = (-∞, a ). ⎪⎩{x ∈ R | -∞ < x < +∞} = R .2、邻域联想:“邻居”.字面意思:“邻近的区域”.与a 邻近的“区域”很多,到底哪一类是我们所要讲的“邻域”呢?就是“关于a 的对称区间”;如何用数学语言来表达呢?(1) a 的邻域:设a ∈ R ,> 0 ,满足不等式| x - a |< 的全体实数x的集合称为点a 的邻域,记作U (a ;) ,或简记为U (a ) ,即U (a ;) = {x | x - a |< } = (a -, a +) .其中a 称为该邻域的中心,称为该邻域的半径. (2) 点a 的空心邻域U o (a ;) = {x 0 <| x - a |< } = (a -, a ) ⋃ (a , a +) U o (a ) .(3) a 的右邻域和点a 的空心右邻域U + (a ;) = [a , a +) U + (a ) = {x a ≤ x < a +};U 0 (a ;) = (a , a +) U 0 (a ) = {x a < x < a +}. (4) 点a 的左邻域和点a 的空心左邻域U - (a ;) = (a -, a ] U - (a ) = {x a -< x ≤ a }; U(a ;) = (a -, a ) U 0 (a ) = {x a -< x < a }.-+⎨ ⎬ (5) ∞ 邻域, + ∞ 邻域, -∞ 邻域U (∞) = {x | x |> M }, (其中 M 为充分大的正数); U (+∞) = {x x > M }, U (-∞) = {x x < -M }二 、有界集与无界集1、定义 1(上、下界):设S 为R 中的一个数集.若存在数M (L ) ,使得一切 x ∈ S 都有x ≤ M (x ≥ L ) ,则称 S 为有上(下)界的数集.数M (L ) 称为 S 的上界(下界);若数集 S 既有上界,又有下界,则称 S 为有界集.闭区间[a , b ] 、开区间(a , b ) (a , b 为有限数)、邻域等都是有界数集,集合 E = {yy = sin x , x ∈( - ∞ , + ∞ )}也是有界数集.若数集 S 不是有界集,则称 S 为无界集.( - ∞ , + ∞ ) , ( - ∞ , 0 ) , ( 0 , + ∞ ) 等都是无界数集,集合 E = ⎧ y ⎩ y = 1 , x x ∈ ( 0 ,1 )⎫也是无界数集.⎭注:1)上(下)界若存在,不唯一;2)上(下)界与 S 的关系如何?看下例:例 1 讨论数集N + = {n | n 为正整数} 的有界性. 解:任取n 0 ∈ N + ,显然有n 0 ≥ 1 ,所以 N + 有下界 1;但 N + 无上界.因为假设 N + 有上界 M,则 M>0,按定义,对任意n 0 ∈ N + , 都 有 n 0 ≤ M , 这 是 不 可 能 的 , 如 取n 0 = [M ] +(1 符号[M ]表示不超过M 的最大整数) 则n 0 ∈ N + ,且n 0 > M .综上所述知:N+是有下界无上界的数集,因而是无界集.例 2 证明:(1)任何有限区间都是有界集;(2)无限区间都是无界集;(3)由有限个数组成的数集是有界集.[问题]:若数集S 有上界,上界是唯一的吗?对下界呢?(答:不唯一,有无穷多个).三、确界与确界原理1、定义定义 2(上确界)设S 是R 中的一个数集,若数满足:(1) 对一切x∈S,有x≤(即是S 的上界); (2) 对任何<,存在x0∈S ,使得x0>(即是S 的上界中最小的一个),则称数为数集S 的上确界,记作= sup S.从定义中可以得出:上确界就是上界中的最小者.命题 1 M = sup E 充要条件1)∀x ∈E, x ≤M ;2)∀>o, ∃x0∈S, 使得x>M -.证明:必要性,用反证法 .设 2)不成立,则∃0>0,使得∀x∈E,均有x≤M-o,与M是上界中最小的一个矛盾.充分性(用反证法),设M不是E的上确界,即∃M是上界,但M>M0.令=M-M>0,由 2),∃x∈E,使得x>M-=M,与M是E 的上界矛盾.定义 3(下确界)设S 是R 中的一个数集,若数满足:(1)对一切x∈S,有x≥(即是S 的下界);(2)对任何>,存在x0∈S ,使得x0<(即是S 的下界中最大的一个),则称数为数集 S 的下确界,记作=inf S.从定义中可以得出:下确界就是下界中的最大者.⎝ ⎭ ⎝ ⎭命题 2 = inf S 的充要条件:1) ∀x ∈ E , x ≥ ;2) ∀>0, x 0 ∈ S ,有x 0 <+.上确界与下确界统称为确界.⎧ (-1 )n ⎫例 3(1) S = ⎨1 +⎩⎬, 则sup S = 1 ; inf S = 0 . n ⎭ ( 2) E = {y y = sin x , x ∈ (0,)}. 则sup S =1; inf S =0 .注:非空有界数集的上(或下)确界是唯一的.命题 3:设数集 A 有上(下)确界,则这上(下)确界必是唯一的.证明:设= sup A ,' = sup A 且≠' ,则不妨设<'= sup A ⇒ ∀x ∈ A 有x ≤' = sup A ⇒ 对<' , ∃ x 0 ∈ A 使< x 0 ,矛盾.例: sup R - = 0 , sup ⎛n ⎫= 1, inf ⎛n ⎫ = 1n ∈Z + n +1 ⎪ n ∈Z + n +1 ⎪ 2E = {-5, 0, 3, 9,11} 则有inf E = -5 .开区间(a , b ) 与闭区间[a , b ]有相同的上确界b 与下确界a例 4 设S 和 A 是非空数集,且有S ⊃ A . 则有sup S ≥ sup A , inf S ≤ inf A ..例 5 设 A 和 B 是非空数集.若对 ∀x ∈ A 和 ∀y ∈ B , 都有 x ≤ y , 则有sup A ≤ inf B .证明: ∀y ∈ B , y 是 A 的上界, ⇒ sup A ≤ y . ⇒ sup A 是 B 的下界,⇒ sup A ≤ inf B.例 6 A 和B 为非空数集, S =A B. 试证明: inf S = min{inf A , inf B }.证明:∀x ∈S, 有x ∈A 或x ∈B, 由inf A 和inf B 分别是A 和B 的下界,有x ≥ inf A 或x ≥ inf B. ⇒x ≥ min{inf A , inf B }.即min{inf A , inf B }是数集S 的下界,⇒ inf S ≥ min{inf A , inf B }.又S ⊃A, ⇒ S 的下界就是 A 的下界,inf S 是S 的下界, ⇒ inf S 是 A 的下界, ⇒ inf S ≤ inf A; 同理有inf S ≤ inf B.于是有inf S ≤ min{inf A , inf B }.综上,有inf S = min{inf A , inf B }.1.数集与确界的关系:确界不一定属于原集合.以例3⑵为例做解释.2.确界与最值的关系:设 E 为数集.(1)E 的最值必属于E ,但确界未必,确界是一种临界点.(2)非空有界数集必有确界(见下面的确界原理),但未必有最值.(3)若max E 存在,必有max E = sup E. 对下确界有类似的结论.4.确界原理:T h1.1(确界原理).设S 非空的数集.若S 有上界,则S 必有上确界;若S 有下界,则S 必有下确界.这里我们给一个可以接受的说明 E ⊂R, E 非空,∃x ∈E ,我们可以找到一个整数p ,使得p 不是E 上界,而p +1是E 的上界.然后我们遍查p.1 , p.2 , , p.9 和p + 1 ,我们可以找到一个q0 ,0 ≤q0 ≤ 9 ,使得p.q0 不是E 上界,p.(q0 + 1) 是E 上界,如果再找第二位小数q1 , , 如此下10k去,最后得到 p .q 0 q 1q 2 ,它是一个实数,即为E 的上确界.证明:(书上对上确界的情况给出证明,下面讲对下确界的证明) 不妨设S 中的元素都为非负数,则存在非负整数n ,使得1) ∀x ∈ S ,有x > n ;2) 存在x 1 ∈ S ,有x ≤ n + 1 ; 把区间(n , n + 1] 10 等分,分点为 n.1,n.2,..,n.9, 存在n 1 ,使得 1) ∀ ∈ S ,有; x > n .n 1 ;2)存在x ∈ S ,使得x 2 ≤ n .n 1 + 1 .210再对开区间(n .n , n .n + 1] 10 等分,同理存在n ,使得111021) 对任何x ∈ S ,有x > n .n 1n 2 ;2) 存在 x 2 ,使x 2 ≤ n .n 1n 2 + 1102继续重复此步骤,知对任何k = 1,2, ,存在n k 使得1) 对任何 x ∈ S , x > n .n 1n 2 n k - 1; 2) 存在x k ∈ S , x k ≤ n .n 1n 2 n k .因此得到= n .n 1n 2 n k .以下证明= inf S .(ⅰ)对任意x ∈ S , x >;(ⅱ)对任何>,存在x ' ∈ S 使> x ' .[作业]:P9 1(1),(2); 2; 4(2)、(4);7§3 函数概念授课章节:第一章实数集与函数——§3 函数概念 教学目的:使学生深刻理解函数概念. 教学要求:(1)深刻理解函数的定义以及复合函数、反函数和初等函数的定义,熟悉函数的各种表示法;(2)牢记基本初等函数的定义、性质及其图象.会求初等函数的存在域,会分析初等函数的复合关系.教学重点:函数的概念.教学难点:初等函数复合关系的分析.教学方法:课堂讲授,辅以提问、练习、部分内容可自学.教学程序:引言关于函数概念,在中学数学中已有了初步的了解.为便于今后的学习,本节将对此作进一步讨论.一、函数的定义1.定义1设D, M ⊂R ,如果存在对应法则f ,使对∀x ∈D ,存在唯一的一个数y ∈M 与之对应,则称 f 是定义在数集D 上的函数,记作f : D →Mx |→y .数集D 称为函数 f 的定义域,x 所对应的y ,称为f 在点x 的函数值,记为 f (x) .全体函数值的集合称为函数 f 的值域,记作 f (D) .即 f (D) ={y | y =f (x), x ∈D}.2.几点说明(1)函数定义的记号中“ f : D →M ”表示按法则 f 建立D 到M 的函数关系,x |→y 表示这两个数集中元素之间的对应关系,也记作x |→f (x) .习惯上称x 自变量,y 为因变量.(2)函数有三个要素,即定义域、对应法则和值域.当对应法则和定义域确定后,值域便自然确定下来.因此,函数的基本要素为两个:定义域和对应法则.所以函数也常表示为:y =f (x), x ∈D .由此,我们说两个函数相同,是指它们有相同的定义域和对应法则.例如:1)f (x) =1, x ∈R,g(x) = 1, x ∈R \ {0}. (不相同,对应法则相同,定义域不同)2)(x) =| x |, x ∈R , (x) = x2 , x ∈R.(相同,只是对应法则的表达形式不同).(3)函数用公式法(解析法)表示时,函数的定义域常取使该运算式子有意义的自变量的全体,通常称为存在域(自然定义域).此时,函数的记号中的定义域可省略不写,而只用对应法则 f 来表示一个函数.即“函数y =f (x) ”或“函数 f ”.(4)“映射”的观点来看,函数f 本质上是映射,对于a ∈D ,f (a)称为映射 f 下a 的象. a 称为 f (a) 的原象.(5)函数定义中,∀x ∈D ,只能有唯一的一个y 值与它对应,这样定义的函数称为“单值函数”,若对同一个x值,可以对应多于一个y 值,则称这种函数为多值函数.本书中只讨论单值函数(简称函数).二、函数的表示方法1主要方法:解析法(公式法)、列表法(表格法)和图象法(图示法).2可用“特殊方法”来表示的函数.1)分段函数:在定义域的不同部分用不同的公式来表示.⎨ ⎩⎨0,当x 为无理数, ⎨ F (x ) = f (x ) + g (x ), x ∈ D ; G (x ) = f (x ) - g (x ), x ∈ D ;H (x ) = f (x )g (x ), x ∈ D .⎧ 1, x > 0 例如sgn x = ⎪0, x = 0 ,(符号函数)⎪-1, x < 0(借助于 sgnx 可表示 f (x ) =| x |, 即 f (x ) =| x |= x sgn x ).2) 用语言叙述的函数.(注意;以下函数不是分段函数)例 1) y = [x ] (取整函数)比如: [3.5]=3, [3]=3, [-3.5]=-4.常有 [x ] ≤ x < [x ] +1 , 即0 ≤ x -[x ] < 1.与此有关一个的函数 y = x -[x ] {x } (非负小数函数)图形是一条大锯,画出图看一看.2)狄利克雷(Dirichlet )函数D (x ) = ⎧1,当x 为有理数, ⎩这是一个病态函数,很有用处,却无法画出它的图形.它是周期函数,但却没有最小周期,事实上任一有理数都是它的周期.3)黎曼(Riemman )函数⎧ 1,当x = p ( p , q ∈ N , p为既约分数) ,R (x ) = ⎪ q q+ q ⎪⎩0,当x = 0,1和(0,1)内的无理数. 三 函数的四则运算给定两个函数 f , x ∈ D 1 , g , x ∈ D 2 ,记D = D 1 D 2 ,并设D ≠ ,定义 f 与 g 在D 上的和、差、积运算如下:若在 D 中除去使 g (x ) = 0 的值,即令 D = D \ {x g (x ) ≠ 0, x ∈ D 2 } ≠ ,⎬ 可在D 上定义 f 与 g 的商运算如下; L (x ) =f (x ), x ∈ D . g (x )注:1)若D = D 1 D 2 =,则 f 与 g 不能进行四则运算.2)为叙述方便,函数 f 与 g 的和、差、积、商常分别写为:f +g , f - g , fg ,f .g四、复合运算1.引言在有些实际问题中函数的自变量与因变量通过另外一些变量才建立起它们之间的对应关系.例:质量为 m 的物体自由下落,速度为 v ,则功率E 为E = 1 mv 2 ⎫12 v = gt ⎪ ⇒ E = ⎪⎭mg 2t 2 . 2抽去该问题的实际意义,我们得到两个函数 f (v ) = 1mv 2 , v = gt ,把2v (t ) 代入 f ,即得f (v (t )) = 1mg 2t 2 .2这样得到函数的过程称为“函数复合”,所得到的函数称为“复合函数”.[问题] 任给两个函数都可以复合吗?考虑下例;y = f (u ) = arcsin u , u ∈ D = [-1,1], u = g (x ) = 2 + x 2 , x ∈ E = R .就不能复合,结合上例可见,复合的前提条件是“内函数”的值域与“外函数”的定义域的交集不空(从而引出下面定义).2.定义(复合函数) 设有两个函数 y = f (u ), u ∈ D , u = g (x ), x ∈ E ,⎛ 1 ⎫ 2 x E = {x f (x ) ∈ D } E ,若 E ≠ ,则对每一个 x ∈ E ,通过 g 对应 D 内唯一一个值u ,而u 又通过 f 对应唯一一个值 y ,这就确定了一个定义在E 上的函数,它以 x 为自变量, y 因变量,记作 y = f (g (x )), x ∈ E 或y = ( f g )(x ), x ∈ E .简记为 f g .称为函数 f 和 g 的复合函数,并称 f 为外函数, g 为内函数, u 为中间变量.3.例子 例y = f (u ) = u , u = g (x ) = 1 - x 2 . 求( f g )(x ) = f [g (x ).]并求定义域. 例⑴f (1 - x ) = x 2 + x + 1,f (x ) =.⑵f x + = x + 1. 则⎪⎝ ⎭f (x ) = ()A . x 2 ,B . x 2 + 1,C . x 2 - 2,D .x 2 + 2.例 讨论函数 y = f (u ) = u , u ∈[0, +∞) 与函数u = g (x ) = 1- x 2 , x ∈ R 能否进行复合,求复合函数.4 说明1)复合函数可由多个函数相继复合而成.每次复合,都要验证能否进行?在哪个数集上进行?复合函数的最终定义域是什么? 例 如 : y = sin u , u = v , v = 1- x 2 , 复 合 成 :y = sin 1- x 2 , x ∈[-1,1] .2)不仅要会复合,更要会分解.把一个函数分解成若干个简单函x 2a 数,在分解时也要注意定义域的变化.①y = log a 1- x 2 , x ∈(0,1) → y = log u ,u = z , z = 1- x 2.② y = arcsin → y = arcsin u , u = v , v = x 2 +1.③ y = 2sin 2x → y = 2u , u = v 2 , v = sin x .五、反函数1.引言在函数 y = f (x ) 中把 x 叫做自变量, y 叫做因变量.但需要指出的是,自变量与因变量的地位并不是绝对的,而是相对的,例如:f (u ) = u , u = t 2 +1,那么u 对于 f 来讲是自变量,但对t 来讲, u 是因变量.习惯上说函数 y = f (x ) 中x 是自变量, y 是因变量,是基于 y 随x 的变化现时变化.但有时我们不仅要研究 y 随x 的变化状况,也要研究x随 y 的变化的状况.对此,我们引入反函数的概念. 2.反函数概念定义设 f : X → R 是一函数, 如果∀ x 1 , x 2 ∈ X , 由x 1 ≠ x 2 ⇒ f (x 1 ) ≠ f (x 2 )(或由 f (x 1 ) = f (x 2 ) ⇒ x 1 = x 2 ),则称 f 在 X 上是 1-1 的.若 f : X → Y ,Y = f ( X ) ,称 f 为满的.若 f : X → Y 是满的 1-1 的,则称 f 为 1-1 对应.f : X → R 是1-1 的意味着 y = f (x ) 对固定 y 至多有一个解x , f : X → Y 是 1-1 的意味着对 y ∈Y , y = 仅有一个解x .f (x ) 有且 x 2 +1y 2 +1 ⎨定义 设 f : X → Y 是1-1 对应. ∀y ∈Y , 由 y = f (x ) 唯 一确定一个 x ∈ X , 由这种对应法则所确定的函数称为y = f (x ) 的反函数,记为x = f -1( y ) .反函数的定义域和值域恰为原函数的值域和定义域f : X → Yf -1 : Y → X显然有f -1 f= I : X → X(恒等变换)f f -1 = I : Y → Y (恒等变换)( f -1 )-1 = f : X → Y .从方程角度看,函数和反函数没什么区别,作为函数,习惯上我们还是把反函数记为 y = f -1(x ) , 这样它的图形 与 y = f (x ) 的图形是关于对角线 y = x 对称的. 严格单调函数是 1-1 但 1-1 例子 f (x ) =⎧ x ,0 ≤ x < 1 ⎩3 - x ,1 ≤ x ≤ 2它的反函数即为它自己.实际求反函数问题可分为二步进行:1. 确定 f : X → Y 的定义域 X 和值域Y ,考虑 1-1 对应条件.固定 y ∈Y ,解方程 f (x ) = y 得出 x = f -1( y ) .2. 按习惯,自变量x 、因变量 y 互换,得y = f -1(x ) . 例 求 y = sh (x ) = e x - e - x2:R → R 的反函数.解 固定 y ,为解 e x - e - x ,令2e x = z ,方程变为 2zy = z 2 -1 z 2 - 2zy -1 = 0 z = y ±( 舍去 y - )得x = ln( y + y 2 +1) ,即 y = ln(x + x 2 +1) = sh -1(x ) ,称为反双曲正弦. 定理 给定函数 y = f (x ) ,其定义域和值域分别记为 X 和Y , 若在Y 上存在函数g ( y ) ,使得 g ( f (x )) = x , 则有g ( y ) = f -1( y ) .y 2 +1y =分析:要证两层结论:一是y =f (x) 的反函数存在,我们只要证它是 1-1 对应就行了;二是要证g( y) = f -1( y) .证要证y =f (x) 的反函数存在,只要证 f (x) 是X 到Y 的 1-1 对应.∀x1,x2∈X ,若f (x1) = g( f (x1)) =x1f (x2 ) ,则由定理条件,我们有g( f (x2 )) =x2⇒x1 =x2,即 f : X →Y是 1-1 对应.再证g( y) = f -1 ( y) .∀y ∈Y ,∃x ∈X ,使得y = f (x) .由反函数定义x =f -1( y) ,再由定理条件g( y) =g( f (x)) =x . ⇒g( y) = f -1( y)例 f : R →R ,若f ( f (x)) 存在唯一(∃| )不动点,则f (x) 也∃|不动点.证存在性,设x * = f [ f (x *)],f (x *) = f f [ f (x * )],即f (x * ) 是f f 的不动点,由唯一性 f (x * ) =x *,即存在f (x) 的不动点x *.唯一性:设x = f (x) ,x = f (x) = f ( f (x)) ,说明x 是 f f 的不动点,由唯一性,x = x *.从映射的观点看函数.设函数y =f (x), x ∈D .满足:对于值域 f (D) 中的每一个值y ,D中有且只有一个值x ,使得f (x) =y ,则按此对应法则得到一个定义在 f (D) 上的函数,称这个函数为 f 的反函数,记作f -1 : f (D) →D,( y |→x) 或x =f -1( y), y ∈f (D) .3、注释a)并不是任何函数都有反函数,从映射的观点看,函数 f 有反函数,意味着 f 是D与 f (D) 之间的一个一一映射,称 f -1为映射 f 的逆映射,它把 f (D) →D ;b) 函数 f 与f -1 互为反函数,并有: f -1( f (x)) ≡x, x ∈D, f ( f -1(x)) ≡y, y ∈f (D).c)在反函数的表示x =f -1( y), y ∈f (D) 中,是以y 为自变量,x 为因变量.若按习惯做法用x 做为自变量的记号,y 作为因变量的记号,则函数 f 的反函数 f -1可以改写为y =f -1(x), x ∈f (D).应该注意,尽管这样做了,但它们的表示同一个函数,因为其定义域和对应法则相同,仅是所用变量的记号不同而已.但它们的图形在同一坐标系中画出时有所差别.六、初等函数1.基本初等函数(6类)常量函数y=C(C为常数);幂函数y =x(∈R) ;指数函数y =a x(a > 0, a ≠ 1) ;对数函数y = logx(a > 0, a ≠ 1) ;a三角函数y = sin x, y = cos x, y =tgx, y = c tgx ;反三角函数y = arcsin x, y = arccos x, y =arctgx, y =arcctgx .注:幂函数y =x(∈R) 和指数函数y =a x(a > 0, a ≠ 1) 都涉及乘幂,而在中学数学课程中只给了有理指数乘幂的定义.下面我们借助于确界来定义无理指数幂,便它与有理指数幂一起构成实指数乘幂,并保持有理批数幂的基本性质.定义2.给定实数a > 0, a ≠ 1 ,设x 为无理数,我们规定:⎨ ⎩ { } sin( ), y a ⎧ a x = ⎪sup {a r | r 为有理数},当a > 1时, r < x ⎪i nf a r | r 为有理数 ,当0 < a < 1时. r <x这样解决了中学数学仅对有理数x定义a x 的缺陷.[问题]:这样的定义有意义否?更明确一点相应的“确界是否存在呢?”2.初等函数定义3.由基本初等函数经过在有限次四则运算与复合运算所得到的函数,统称为初等函数如: y = 2 sin x + cos 2 x , y = 1 = l o g x + x e sinx -1 x 2, y =| x | . 不是初等函数的函数,称为非初等函数.如 Dirichlet 函数、Riemann 函数、取整函数等都是非初等函数.注:初等函数是本课程研究的主要对象.为此,除对基本初等函数的图象与性质应熟练掌握外,还应常握确定初等函数的定义域.确定定义域时应注意两点.例2.求下列函数的定义域.(1) y =(2) y = ln | sin x | . 3. 初等函数的几个特例: 设函数 f (x ) 和 g (x ) 都是初等函数, 则(1) f (x ) 是初等函数, 因为 f (x ) = ( f (x ))2 .(2) Φ(x ) = max {f (x ) , g (x )} 和 (x ) = min {f (x ) , g (x )}都是初等函数, 因为 Φ(x ) = max {f (x ) , g (x )} =1 [f (x ) + g (x ) +2 f (x ) - g (x ) ] , (x ) = min {f (x ) , g (x )} = 1 [f (x ) + g (x ) - 2f (x ) -g (x ) ] . x x -1(3)幂指函数(f(x))g ( x)(f (x) > 0)是初等函数,因为(f(x))g(x)=e ln(f ( x) )g(x)=e g ( x) ln f ( x) .[作业]P:3;4:(2)、(3);5:(2);7:(3);11 15§4具有某些特性的函数授课章节:第一章实数集与函数——§4 具有某些特性的函数教学目的:熟悉与初等函数性态有关的一些常见术语.教学目的:深刻理解有界函数、单调函数的定义;理解奇偶函数、周期函数的定义;会求一些简单周期函数的周期.教学重点:函数的有界性、单调性.教学难点:周期函数周期的计算、验证.教学方法:有界函数讲授,其余的列出自学题纲,供学生自学完成. 教学程序:引言在本节中,我们将介绍以后常用的几类具有某些特性的函数,如有界函数、单调函数、奇偶函数与周期函数.其中,有些概念在中学里已经叙述过,因此,这里只是简单地提一下.与“有界集”的定义类似,先谈谈有上界函数和有下界函数.一、有界函数1、有上界函数、有下界函数的定义定义 1 设f 为定义在 D 上的函数,若存在数M (L) ,使得对每一个x ∈D 有f (x) ≤M ( f (x) ≥L) ,则称f 为D 上的有上(下)界函数,M (L) 称为f 在D 上的一个上(下)界.注:(1)f 在D 上有上(下)界,意味着值域f (D) 是一个有上(下)界的数集;(2又)若M(L)为f在D 上的一个(上下)界则,任何大于(M小于L)的数也是 f 在D 上的上(下)界.所以,函数的上(下)界若存在,则不是唯一的,例如:y=sin x,1 是其一个上界,下界为-1,则易见任何小于-1 的数都可作为其下界;任何大于 1 的数都可作为其上界;(3)任给一个函数,不一定有上(下)界;6 5 x 5 2 6(4) 由(1)及“有界集”定义,可类比给出“有界函数” 定义:f 在 D 上有界⇔ f (D ) 是一个有界集⇔ f 在 D 上既有上界又有下 界⇔ f 在 D 上的有上界函数,也为 D 上的有下界函数.2、有界函数定义定义 2 设 f 为定义在 D 上的函数.若存在正数M,使得对每一个 x ∈ D 有| f (x ) |≤ M ,则称 f 为 D 上的有界函数.注:(1)几何意义: f 为 D 上的有界函数,则 f 的图象完全落在 y = M 和 y = -M 之间;(2) f 在 D 上有界⇔ f 在 D 上既有上界又有下界;例子: y = sin x , y = cos x ;(3)关于函数 f 在 D 上无上界、无下界或无界的定义.3、 例题例 1 证明 f : X → R 有界的充要条件为: ∃ M , m ,使得对∀x ∈ X , m ≤ f (x ) ≤ M . 证明 如果 f : X → R 有界,按定义∃ M >0,∀x ∈ X 有f (x ) ≤ M ,即 -M ≤ f (x ) ≤ M ,取m = -M ,M = M 即可. 反之如果∃ M , m 使得∀x ∈ X , m ≤ f (x ) ≤ M ,令M 0 = max { M +1, m },则 f (x ) ≤ M 0 ,即∃ M 0 > 0 ,使得对∀x ∈ X 有界.f (x ) ≤ M 0 ,即 f : X → R 有 例 2.证明 例 3. 设 f (x ) = 1 为(0,1] 上的无上界函数. x f ,g 为 D 上 的 有 界 函 数 . 证 明 : ( 1)inf f (x ) + inf g (x ) ≤ inf { f (x ) + g (x )} ;x ∈D x ∈D x ∈D(2) s up { f (x ) + g (x )} ≤ sup f (x ) + sup g (x ) .x ∈D x ∈D x ∈D例 4 验证函数 f (x ) = 5x 2x 2+ 3在R 内有界. 解法一 由2x 2 + 3 = ( 2x )2 + ( 3)2 ≥ 2 2x ⋅ = 2 x , 当x ≠ 0 时,有f (x ) = = 2x 2 + 3 ≤ = ≤ 3. f (0) ∴ 对 = 0 ≤ 3 ,∀x ∈ R , 总有 f (x ) ≤ 3,即 f (x ) 在R 内有界.解法二 令实数根.y =5x , ⇒ 2x 2 + 3 关于x 的二次方程 2 yx 2 - 5x + 3y = 0 有 3 5x 2x 2 + 3 5 x 2 6 x5 3 tgt 3 2 tg 2t + 1 5 sin t 16 cos t sec 2 t 5 2 6 2 2 ∴ ∆ = 52 - 24 y 2 ≥ 0, ⇒ y 2 ≤ 25 ≤ 4, ⇒ 24 y ≤ 2. 解法三 令 x = 3tgt , t ∈ ⎛- ⎫ 对应x ∈ ( - ∞ , + ∞ ). 于是f (x ) = 2 5x = 2x 2 + 3 ⎛ 3 , ⎪ ⎝ ⎭= = = ⎫2 2 tgt ⎪ + 3⎝ 2 ⎭= sin 2t , ⇒ f (x ) = sin 2t ≤ 5 . 2 6二、单调函数定义 3 设 f 为定义在 D 上的函数, ∀x 1 , x 2 ∈ D , x 1 < x 2 , ( 1) 若 f (x 1 ) ≤ f (x 2 ) ,则称 f 为 D 上的增函数;若 f (x 1 ) < f (x 2 ) ,则称 f 为 D 上 的严格增函数.( 2) 若 f (x 1 ) ≥ f (x 2 ) , 则称 f 为 D 上的减函数; 若 f (x 1 ) > f (x 2 ) ,则称 f 为 D 上的严格减函数.例 5.证明: y = x 3 在(-∞, +∞) 上是严格增函数.证明:设x < x , x 3 - x 3 = (x - x )(x 2 + x x + x 2 ) 1 2 1 2 1 2 1 1 2 2如x x < 0 ,则x > 0 > x ⇒ x 3 < x 3 1 2 2 1 1 2如x x > 0 ,则x 2 + x x + x 2 > 0, ⇒ x 3 < x 3 1 2 1 1 2 2 1 2故x 3 - x 3 < 0 即得证. 1 2例 6.讨论函数 y = [x ] 在R 上的单调性.∀x 1, x 2 ∈ R ,当x 1 < x 2 时,有[x 1] ≤ [x 2 ] ,但此函数在R 上的不是严格 增函数.注:1)单调性与所讨论的区间有关.在定义域的某些部分, f 可能单调,也可能不单调.所以要会求出给定函数的单调区间;2)严格单调函数的几何意义:其图象无自交点或无平行于x 轴的部分.更准确地讲:严格单调函数的图象与任一平行于 x 轴的直线至多有一个交点.这一特征保证了它必有反函数.总结得下面的结论:定理 1.设 y = f (x ), x ∈ D 为严格增(减)函数,则 f 必有反函数 f -1 , 且 f -1 在其定义域 f (D ) 上也是严格增(减)函数. 证明:设 f 在D 上严格增函数.对∀y ∈ f (D ), 一x ∈ D , 一f (x ) = y .下面 证明这样的 x 只有一个.事实上,对于D 内任一 x 1 ≠ x , 由于 f 在D 上严格增函数,当 x 1 < x 时 f (x 1 ) < y ,当 x 1 > x 时 f (x 1 ) > y ,总之 f (x 1 ) ≠ y .即 5 3tgt 2 5 2 6⎨ ∀y ∈ f (D ), 一 一 一 一 一一 一 一x ∈ D , 一一 f (x ) = y ,从而例 7 讨论函数 y = x 2 在(-∞, +∞) 上反函数的存在性;如果 y = x 2 在 (-∞, +∞) 上不存在反函数,在(-∞, +∞) 的子区间上存在反函数否?结论:函数的反函数与讨论的自变量的变化范围有关.例8 证明: y = a x 当a > 1 时在R上严格增,当0 < a < 1时在R 上严格递减.三、奇函数和偶函数定义 4. 设 D 为对称于原点的数集, f 为定义在 D 上的函数.若 对每一个 x ∈ D 有(1) f (-x ) = - f (x ) ,则称 f 为 D 上的奇函数;(2) f (-x ) = f (x ) ,则称 f 为 D 上的偶函数.注:(1)从函数图形上看,奇函数的图象关于原点对称(中心 对称),偶函数的图象关于 y 轴对称;(2)奇偶性的前提是定义域对称,因此 f (x ) = x , x ∈[0,1] 没有必要讨论奇偶性.⎧ ⎪ (3) 从奇偶性角度对函数分类: ⎪ 奇函数: y=si nx 偶函数: y=sgnx ;⎪非奇非偶函数: y=si nx+cosx⎩⎪ 既奇又偶函数: y ≡ 0(4) 由于奇偶函数对称性的特点,研究奇偶函数性质时,只须讨论原点的左边或右边即可四、周期函数1、定义设 f 为定义在数集 D 上的函数,若存在> 0 ,使得对一切x ∈ D 有 f (x ±) = f (x ) ,则称 f 为周期函数,称为 f 的一个周期.2、几点说明:(1) 若是 f 的周期,则n (n ∈ N + ) 也是 f 的周期,所以周期若存在,则不唯一.如 y = sin x ,= 2, 4, .因此有如下“基本周期”的说法,即若在周期函数 f 的所有周期中有一个最小的周期,则称此最小周期为 f 的“基本周期”,简称“周期”.如 y = sin x ,周期为2;(2) 任给一个函数不一定存在周期,既使存在周期也不一定有基本周期,如:1) y = x +1,不是周期函数;2) y = C (C为常数),任何正数都是它的周期.第二章数列极限引 言为了掌握变量的变化规律,往往需要从它的变化过程来判断它的。

(完整版)《数学分析》考试知识点.

(完整版)《数学分析》考试知识点.

《数学分析》考试知识点题目类型及所占比例:填空题(20分)、解答题(60分)、证明题(70分)考试范围:一、极限和函数的连续性考试内容:1映射与函数的概念及表示法,函数的四则运算、复合函数与反函数的求法,函数的有界性、奇偶性、单调性与周期性;2数列与函数极限的定义与性质,函数的左右极限,无穷小量与无穷大量的概念及关系、无穷小量与无穷大量的阶,极限的计算;3函数的连续性和一致连续性;4实数系的连续性;5连续函数的各种性质。

考试要求:1理解映射与函数的概念,掌握函数的表示法;会函数的四则运算、复合运算;知道反函数及隐函数存在的条件及求法;了解初等函数的概念,会求初等函数的定义域;2理解函数与数列极限(包括左右)的概念,会用极限的概念证明有关极限的命题;熟练掌握极限的四则运算及性质;会问题及简单的求函数熟练掌握数列极限与函数极限的概念;理解无穷小量的概念及基本性质。

掌握极限的性质及四则运算性质,能够熟练运用两面夹原理和两个特殊极限。

掌握实数系的基本定理。

熟练掌握函数连续性的概念及相关的不连续点类型。

熟练掌握闭区间上连续函数的性质。

二、一元函数微分学考试主要内容:微分的概念、导数的概念、微分和导数的意义;求导运算;微分运算;微分中值定理;洛必达法则、泰勒展式;导数的应用。

考试要求:理解导数和微分的概念。

熟练掌握函数导数与微分的运算法则,包括高阶导数的运算法则、复合函数求导法则,会求分段函数的导数。

熟练掌握Rolle中值定理,Lagrange中值定理和Cauchy中值定理以及Taylor展式。

能用导数研究函数的单调性、极值,最值和凸凹性。

掌握用洛必达法则求不定式极限的方法。

三、一元函数积分学考试主要内容:定积分的概念、性质和微积分基本定理;不定积分和定积分的计算;定积分的应用;广义积分的概念和广义积分收敛的判别法。

考试要求:理解不定积分的概念。

掌握不定积分的基本公式,换元积分法和分部积分法,会求初等函数、有理函数和三角有理函数的积分。

数学分析知识点总结

数学分析知识点总结

数学分析知识点总结考点一:集合与简易规律集合局部一般以选择题消失,属简单题。

重点考察集合间关系的理解和熟悉。

近年的试题加强了对集合计算化简力量的考察,并向无限集进展,考察抽象思维力量。

在解决这些问题时,要留意利用几何的直观性,并注意集合表示方法的转换与化简。

简易规律考察有两种形式:一是在选择题和填空题中直接考察命题及其关系、规律联结词、“充要关系”、命题真伪的推断、全称命题和特称命题的否认等,二是在解答题中深层次考察常用规律用语表达数学解题过程和规律推理。

考点二:函数与导数函数是高考的重点内容,以选择题和填空题的为载体针对性考察函数的定义域与值域、函数的性质、函数与方程、根本初等函数(一次和二次函数、指数、对数、幂函数)的应用等,分值约为10分,解答题与导数交汇在一起考察函数的性质。

导数局部一方面考察导数的运算与导数的几何意义,另一方面考察导数的简洁应用,如求函数的单调区间、极值与最值等,通常以客观题的形式消失,属于简单题和中档题,三是导数的综合应用,主要是和函数、不等式、方程等联系在一起以解答题的形式消失,如一些不等式恒成立问题、参数的取值范围问题、方程根的个数问题、不等式的证明等问题。

考点三:三角函数与平面对量一般是2道小题,1道综合解答题。

小题一道考察平面对量有关概念及运算等,另一道对三角学问点的补充。

大题中假如没有涉及正弦定理、余弦定理的应用,可能就是一道和解答题相互补充的三角函数的图像、性质或三角恒等变换的题目,也可能是考察平面对量为主的试题,要留意数形结合思想在解题中的应用。

向量重点考察平面对量数量积的概念及应用,向量与直线、圆锥曲线、数列、不等式、三角函数等结合,解决角度、垂直、共线等问题是“新热点”题型。

考点四:数列与不等式不等式主要考察一元二次不等式的解法、一元二次不等式组和简洁线性规划问题、根本不等式的应用等,通常会在小题中设置1到2道题。

对不等式的工具性穿插在数列、解析几何、函数导数等解答题中进展考察。

(完整版)数学分析复习资料及公式大全

(完整版)数学分析复习资料及公式大全

导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-Cax a x a x dx x a Ca x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin2cos 2sin sin 2cos2sin2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

完整版)数学分析复习资料及公式大全

完整版)数学分析复习资料及公式大全

完整版)数学分析复习资料及公式大全导数公式:求导是微积分的重要内容之一,掌握导数公式对于解题至关重要。

常见的导数公式如下:tan(x)的导数为sec^2(x)cot(x)的导数为-csc^2(x)sec(x)的导数为sec(x)·tan(x)csc(x)的导数为-csc(x)·cot(x)ax的导数为ax·ln(a)log_a(x)的导数为1/(x·ln(a))基本积分表:积分是微积分的重要内容之一,掌握基本积分表对于解题至关重要。

常见的基本积分表如下:arcsin(x)的导数为1/(sqrt(1-x^2))arccos(x)的导数为-1/(sqrt(1-x^2))arctan(x)的导数为1/(1+x^2)arcctan(x)的导数为-1/(1+x^2)tan(x)dx=-ln|cos(x)|+Ccot(x)dx=ln|sin(x)|+Csec(x)dx=ln|sec(x)+tan(x)|+Ccsc(x)dx=ln|csc(x)-cot(x)|+Cdx/x=ln|x|+Csin(x)dx=-cos(x)+Ccos(x)dx=sin(x)+Cdx/(x^2+a^2)=1/a·arctan(x/a)+Cdx/(a^2-x^2)=1/(2a)·ln|(a+x)/(a-x)|+C dx/(a^2+x^2)=1/a·ln|(a+x)/x|+Cdx/(x^2-a^2)=1/(2a)·ln|(x+a)/(x-a)|+C e^x dx=e^x+Csin^2(x)dx=1/2·(x-sin(x)cos(x))+C cos^2(x)dx=1/2·(x+sin(x)cos(x))+Csec(x)·tan(x)dx=sec(x)+Ccsc(x)·cot(x)dx=-csc(x)+Ca^x dx=a^x/ln(a)+Csinh(x)dx=cosh(x)+Ccosh(x)dx=sinh(x)+Cdx/(x^2-a^2)=1/(2a)·ln|(x+a)/(x-a)|+Cπ/2+πn (n为整数)lim(1+x)→∞=e=2.xxxxxxxxxxxxxxx。

数学分析知识点总结

数学分析知识点总结

数学分析知识点总结数学分析是数学专业的重要基础课程,它为后续的许多数学课程提供了必要的理论基础和方法。

以下是对数学分析中的一些重要知识点的总结。

一、函数函数是数学分析中的核心概念之一。

函数可以理解为一种对应关系,对于给定的自变量的值,通过某种规则确定唯一的因变量的值。

1、函数的定义设 X 和 Y 是两个非空数集,如果对于 X 中的每一个数 x,按照某种确定的对应关系 f,在 Y 中都有唯一确定的数 y 与之对应,那么就称f 是定义在 X 上的函数,记作 y = f(x),x ∈ X。

2、函数的性质(1)单调性:如果对于定义域内某个区间 D 上的任意两个自变量的值 x₁、x₂,当 x₁< x₂时,都有 f(x₁) < f(x₂)(或 f(x₁) >f(x₂)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。

(2)奇偶性:如果对于函数 f(x)的定义域内任意一个 x,都有 f(x)= f(x),那么函数 f(x)就叫做奇函数;如果都有 f(x) = f(x),那么函数f(x)就叫做偶函数。

(3)周期性:对于函数 y = f(x),如果存在一个不为零的常数 T,使得当 x 取定义域内的每一个值时,f(x + T) = f(x)都成立,那么就把函数 y = f(x)叫做周期函数,周期为 T。

3、反函数设函数 y = f(x),其定义域为 D,值域为 R。

如果对于 R 中的每一个 y 值,在 D 中都有唯一确定的 x 值与之对应,那么就可以得到一个新的函数 x =φ(y),称其为函数 y = f(x)的反函数。

二、极限极限是数学分析中用于描述函数在某个过程中的变化趋势的重要概念。

1、数列的极限对于数列{an},如果存在一个常数 A,对于任意给定的正数ε(无论它多么小),总存在正整数 N,使得当 n > N 时,不等式|an A|<ε 都成立,那么就称常数 A 是数列{an} 的极限,记作lim(n→∞)an = A。

数学分析第二章知识点总结

数学分析第二章知识点总结

数学分析第二章知识点总结数学分析第二章知识点总结在我们平凡无奇的学生时代,大家都背过不少知识点,肯定对知识点非常熟悉吧!知识点就是一些常考的内容,或者考试经常出题的地方。

哪些才是我们真正需要的知识点呢?下面是小编为大家整理的数学分析第二章知识点总结,仅供参考,大家一起来看看吧。

数学分析第二章知识点总结11.无理数⑴无理数:无限不循环小数⑵两个无理数的和还是无理数2.平方根⑴算术平方根、平方根一个正数有两个平方根,0只有一个平方根,它是0本身;负数没有平方根。

⑵开平方:求一个数的平方根的运算叫开平方被开方数3.立方根⑴立方根,如果一个数x的立方等于a,即,那么这个数x就叫a 的立方根.⑵正数的立方根是正数,负数的立方根是负数,0的立方根是0.⑶开立方、被开方数4.公园有多宽求根式、估算根式、根据面积求边长5.实数的运算运算法则(加、减、乘、除、乘方、开方)运算定律(五个-加法[乘法]交换律、结合律;[乘法对加法的]分配律) 运算顺序:A.高级运算到低级运算;B.(同级运算)从"左"到"右"(如5÷×5);C.(有括号时)由"小"到"中"到"大"。

6.实数的概念是每年中考的必考知识点,尤其是相反数、倒数和绝对值都是高频考点。

我们不仅需要会求一个数的相反数,求一个数的倒数,求一个数的绝对值;还要注意0是没有倒数的,倒数等于它本身的有±1,相反数等于它本身的只有0。

7.科学记数法可以说是是每年中考的必考题,在解决具体问题时,需要记清楚相关概念;另外注意单位换算。

对于近似数和精确度需要注意的是带计算单位的数的精确度,需要统一为以“个”为计算单位的数,再来确定。

8.科学记数法可以说是是每年中考的必考题,在解决具体问题时,需要记清楚相关概念;另外注意单位换算。

对于近似数和精确度需要注意的是带计算单位的数的精确度,需要统一为以“个”为计算单位的数,再来确定。

(完整版)数学分析复习资料及公式大全

(完整版)数学分析复习资料及公式大全

(完整版)数学分析复习资料及公式大全-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN导数公式:基本积分表:三角函数的有理式积分:222212211cos 12sin u dudx x tg u u u x u u x +==+-=+=, , , ax x a a a ctgx x x tgx x x x ctgx x tgx a x x ln 1)(log ln )(csc )(csc sec )(sec csc )(sec )(22='='⋅-='⋅='-='='222211)(11)(11)(arccos 11)(arcsin x arcctgx x arctgx x x x x +-='+='--='-='⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰+±+=±+=+=+=+-=⋅+=⋅+-==+==Ca x x a x dx C shx chxdx C chx shxdx Ca a dx a Cx ctgxdx x C x dx tgx x Cctgx xdx x dx C tgx xdx x dx xx)ln(ln csc csc sec sec csc sin sec cos 22222222C axx a dx C x a xa a x a dx C a x ax a a x dx C a xarctg a x a dx Cctgx x xdx C tgx x xdx Cx ctgxdx C x tgxdx +=-+-+=-++-=-+=++-=++=+=+-=⎰⎰⎰⎰⎰⎰⎰⎰arcsin ln 21ln 211csc ln csc sec ln sec sin ln cos ln 22222222⎰⎰⎰⎰⎰++-=-+-+--=-+++++=+-===-C ax a x a x dx x a C a x x a a x x dx a x Ca x x a a x x dx a x I nn xdx xdx I n n nn arcsin 22ln 22)ln(221cos sin 2222222222222222222222ππ一些初等函数: 两个重要极限:三角函数公式: ·诱导公式:·和差角公式: ·和差化积公式:2sin2sin 2cos cos 2cos2cos 2cos cos 2sin 2cos 2sin sin 2cos2sin 2sin sin βαβαβαβαβαβαβαβαβαβαβαβα-+=--+=+-+=--+=+αββαβαβαβαβαβαβαβαβαβαβαctg ctg ctg ctg ctg tg tg tg tg tg ±⋅=±⋅±=±=±±=±1)(1)(sin sin cos cos )cos(sin cos cos sin )sin( xxarthx x x archx x x arshx e e e e chx shx thx e e chx e e shx x x xx xx xx -+=-+±=++=+-==+=-=----11ln21)1ln(1ln(:2:2:22)双曲正切双曲余弦双曲正弦...590457182818284.2)11(lim 1sin lim0==+=∞→→e xxxx x x·倍角公式:·半角公式:ααααααααααααααααααcos 1sin sin cos 1cos 1cos 12cos 1sin sin cos 1cos 1cos 122cos 12cos 2cos 12sin -=+=-+±=+=-=+-±=+±=-±=ctg tg·正弦定理:R CcB b A a 2sin sin sin === ·余弦定理:C ab b a c cos 2222-+=·反三角函数性质:arcctgx arctgx x x -=-=2arccos 2arcsin ππ高阶导数公式——莱布尼兹(Leibniz )公式:)()()()2()1()(0)()()(!)1()1(!2)1()(n k k n n n n nk k k n k n n uv v u k k n n n v u n n v nu v u v u C uv +++--++''-+'+==---=-∑中值定理与导数应用:拉格朗日中值定理。

数学分析复习重点

数学分析复习重点

数学分析复习重点
数学分析复习重点:
1、高等数学的基本定理,包括微分学、积分学、泰勒公式以及其它一些重要定理,这是复习数学分析的基础。

2、极限:极限是讨论函数在某一点上的行为时必不可少的概念,因此要掌握求极限的方法,包括对无界积分的极限、指数函数的极限等。

3、微分学:了解函数极值的求法以及不同函数的性质,如多项式函数、指数函数等的性质,以及各种常见的微分形式的应用。

4、积分学:要掌握各种积分形式、换元法,以及常见积分的求解方法,如定积分、不定积分等。

5、函数的分析性质:要掌握微分方程的解法,对于曲线的分析,要能掌握曲线的极限,满足特定条件的曲线的求法,以及曲线的切线、切曲线的求法等。

数学分析复习提纲(全部版)

数学分析复习提纲(全部版)

数学分析(4)复习提纲第一部分 实数理论§1 实数的完备性公理一、实数的定义在集合R 内定义加法运算和乘法运算,并定义顺序关系,满足下面三条公理,则称R 为实数域或实数空间。

(1)域公理: (2)全序公理:(3)连续性公理(Dedekind 分割原理):设R 的两个子集A ,A '满足: 1°ΦA ΦA ≠'≠, 2°R A A ='⋃3°x x A x A x '<⇒'∈'∀∈∀,则或A 中有最大元而A '中无最小元,或A 中无最大元而A '中有最小元。

评注 域公理和全序公理都是我们熟悉的,连续性公理也称完备性公理有许多等价形式(比如确界原理),它是区别于有理数域的根本标志,它对实数的描述没有借助其它概念而非常易于接受,故大多数教科把它作为实数理论起步的公理。

二、实数的连续性(完备性)公理实数的连续性(完备性公理)有许多等价形式,它们在使用起来方便程度不同,这些公理是本章学习的重点。

主要有如下几个公理: 确界原理: 单调有界定理: 区间套定理:有限覆盖定理:(Heine-Borel )聚点定理:(Weierstrass)致密性定理:(Bolzano-Weierstrass) 柯西收敛准则:(Cauchy)习题1 证明Dedekind 分割原理与确界原理的等价性。

习题2 用区间套定理证明有限覆盖定理。

习题3 用有限覆盖定理证明聚点定理。

评注 以上定理哪些能够推广到欧氏空间n R ?如何叙述?§2 闭区间上连续函数的性质有界性定理:上册P168;下册P102,Th16.8;下册P312,Th23.4 最值定理:上册P169;下册下册P102,Th16.8介值定理与零点存在定理:上册P169;下册P103,Th16.10一致连续性定理(Cantor 定理):上册P171;下册P103,Th16.9;下册P312,Th23.7 习题4 用有限覆盖定理证明有界性定理 习题5 用致密性定理证明一致连续性定理§3 数列的上(下)极限三种等价定义:(1)确界定义;(2)聚点定义;(3)N -ε定义 评注 确界定义易于理解;聚点定义易于计算;N -ε定义易于理论证明 习题6 用区间套定理证明有界数列最大(小)聚点的存在性。

数学分析的知识点总结

数学分析的知识点总结

数学分析的知识点总结•相关推荐数学分析的知识点总结上学的时候,看到知识点,都是先收藏再说吧!知识点有时候特指教科书上或考试的知识。

相信很多人都在为知识点发愁,以下是小编为大家整理的数学分析的知识点总结,欢迎大家借鉴与参考,希望对大家有所帮助。

数学分析的知识点总结1圆的方程1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。

2、圆的方程(1)标准方程,圆心,半径为r;(2)一般方程当时,方程表示圆,此时圆心为,半径为当时,表示一个点;当时,方程不表示任何图形。

(3)求圆方程的方法:一般都采用待定系数法:先设后求。

确定一个圆需要三个独立条件,若利用圆的标准方程,需求出a,b,r;若利用一般方程,需要求出D,E,F;另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。

高中数学必修二知识点总结:直线与圆的位置关系:直线与圆的位置关系有相离,相切,相交三种情况:(1)设直线,圆,圆心到l的距离为,则有;;(2)过圆外一点的切线:①k不存在,验证是否成立②k存在,设点斜式方程,用圆心到该直线距离=半径,求解k,得到方程【一定两解】(3)过圆上一点的切线方程:圆(x—a)2+(y—b)2=r2,圆上一点为(x0,y0),则过此点的切线方程为(x0—a)(x—a)+(y0—b)(y—b)=r24、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

设圆,两圆的位置关系常通过两圆半径的和(差),与圆心距(d)之间的大小比较来确定。

当时两圆外离,此时有公切线四条;当时两圆外切,连心线过切点,有外公切线两条,内公切线一条;当时两圆相交,连心线垂直平分公共弦,有两条外公切线;当时,两圆内切,连心线经过切点,只有一条公切线;当时,两圆内含;当时,为同心圆。

注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线4、空间点、直线、平面的位置关系公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数学分析》考试知识点
题目类型及所占比例:
填空题(20分)、解答题(60分)、证明题(70分)
考试范围:
一、极限和函数的连续性
考试内容:
1映射与函数的概念及表示法,函数的四则运算、复合函数与反函数的求法,函数的有界性、奇偶性、单调性与周期性;
2数列与函数极限的定义与性质,函数的左右极限,无穷小量与无穷大量的概念及关系、无穷小量与无穷大量的阶,极限的计算;
3函数的连续性和一致连续性;
4实数系的连续性;
5连续函数的各种性质。

考试要求:
1理解映射与函数的概念,掌握函数的表示法;会函数的四则运算、复合运算;知道反函数及隐函数存在的条件及求法;了解初等函数的概念,会求初等函数的定义域;
2理解函数与数列极限(包括左右)的概念,会用极限的概念证明有关极限的命题;熟练掌握极限的四则运算及性质;会问题及简单的求函数熟练掌握数列极限与函数极限的概念;理解无穷小量的概念及基本性质。

掌握极限的性质及四则运算性质,能够熟练运用两面夹原理和两个特殊极限。

掌握实数系的基本定理。

熟练掌握函数连续性的概念及相关的不连续点类型。

熟练掌握闭区间上连续函数的性质。

二、一元函数微分学
考试主要内容:微分的概念、导数的概念、微分和导数的意义;求导运算;微分运算;微分中值定理;洛必达法则、泰勒展式;导数的应用。

考试要求:理解导数和微分的概念。

熟练掌握函数导数与微分的运算法则,包括高阶导数的运算法则、复合函数求导法则,会求分段函数的导数。

熟练掌握Rolle中值定理,Lagrange中值定理和Cauchy中值定理以及Taylor展式。

能用导数研究函数的单调性、极值,最值和凸凹性。

掌握用洛必达法则求不定式极限的方法。

三、一元函数积分学
考试主要内容:定积分的概念、性质和微积分基本定理;不定积分和定积分的计算;定积分的应用;广义积分的概念和广义积分收敛的判别法。

考试要求:理解不定积分的概念。

掌握不定积分的基本公式,换元积分法和分部积分法,会求初等函数、有理函数和三角有理函数的积分。

掌握定积分的概念,包括可积性条件。

掌握定积分的性质,熟练掌握微积分基本定理,定积分的换元积分法和分部积分法以及积分中值定理。

能用定积分表达和计算如下几何量与物理量。

理解广义积分的概念。

熟练掌握判断广义积分收敛的比较判别法,Abel判别法和Dirichlet判别法;其中包括积分第二中值定理。

四、无穷级数
考试主要内容:数项级数的概念、数项级数敛散的判别法;级数的绝对收敛和条件收敛;函数项级数的收敛和一致收敛及其性质、收敛性的判别;幂级数及其性质、泰勒级数和泰勒展开。

考试要求:理解数项级数敛散性的概念,掌握数项级数的基本性质。

熟练掌握正项级数敛散的必要条件,比较判别法,Cauchy判别法,D‘Alembert判别法与积分判别法。

熟练掌握任意项级数绝对收敛与条件收敛的概念及其相互关系。

熟练掌握交错级数的Leibnitz判别法。

掌握绝对收敛级数的性质。

熟练掌握函数项级数一致收敛性的概念以及判断一致收敛性的Weierstrass判别法。

Abel 判别法、Cauchy判别法和Dirichlet判别法。

掌握幂级数及其收敛半径的概念,
熟练掌握幂级数的性质。

能够将函数展开为幂级数。

了解Fourier级数的概念与性质。

五、多元函数微分学与积分学
考试主要内容:多元函数的极限与连续、全微分和偏导数的概念、重积分的概念及其性质、重积分的计算;曲线积分和曲面积分;反常积分的定义和判别。

考试要求:理解多元函数极限与连续性,偏导数和全微分的概念,会求多元函数的偏导数与全微分。

掌握隐函数存在定理。

会求多元函数极值和无条件极值,了解偏导数的几何应用。

掌握重积分、曲线积分和曲面积分的概念与计算。

熟练掌握Gauss公式、Green公式和Stoks公式及其应用。

六、含参变量积分
考试主要内容:含参变量积分的概念、性质。

考试要求:了解含参变量常义积分的概念与性质。

熟练掌握变上限积分。

参考书目:
《数学分析》,华东师大数学系编,高教出版社,2001年6月(三版)《数学分析》,陈传璋等编,高教出版社。

相关文档
最新文档