接地设计规范
电力系统接地设计规范
电力系统接地设计规范引言:电力系统是现代社会中不可或缺的基础设施之一,其接地设计对于确保电力系统的安全运行和人身安全至关重要。
接地设计规范的制定和执行对于预防触电事故、保障电力设备运行稳定具有重要意义。
本文将围绕电力系统接地设计规范展开论述,分为以下几个小节进行探讨。
一、接地设计的目的和意义电力系统接地设计的目的是保护人身安全、保证电力系统设备正常运行、维护电力系统的稳定性。
接地设计规范的制定及实施,可以减少电流通过人体,防止触电事故的发生,降低设备故障的风险,提高电力系统的可靠性和稳定性。
二、接地设计的原则1. 安全性原则:接地系统应符合相关安全标准和法规,确保人体触电风险在可接受范围内。
2. 经济性原则:接地系统设计应尽可能减少成本,提高效益。
3. 可操作性原则:接地系统应易于安装、维护和管理,便于操作人员进行监测和维修。
三、接地电阻的计算方法接地电阻是评估接地系统性能的重要指标,其合理计算与设计关系到电力系统的安全性能。
根据不同的场景和设备要求,接地电阻的计算方法可以采用下列几种常用方式:1. 等效接地电阻法:通过将系统接地电阻等效为单一电阻进行计算,简化设计计算。
2. 有限元分析法:通过借助电磁场有限元分析软件,对整个接地系统进行模拟分析,计算接地电阻。
3. 地埋电极法:根据地埋电极的地电阻特性,计算接地电阻。
4. 试验测量法:通过实际测量接地电阻,得到接地系统的性能参数。
四、接地系统的构成和布置接地系统的构成包括接地网、接地极、接地回路等,其合理布置能够有效地降低接地电阻,并提高接地性能。
在设计接地系统时,应注意以下几个方面:1. 接地网的布置应符合合理的网格结构,每个接地电极的间距应均匀,减小接地电阻的差异性。
2. 接地极的选择应充分考虑土壤电阻率、环境湿度、电流负载等因素。
3. 接地回路的布置应尽量缩短导电回路长度,减小接地电阻。
五、接地系统的维护和检测接地系统的维护和检测对于保持接地系统良好运行状态和发现潜在问题具有重要意义。
【免费】接地设计规范和指南
目录第一章概述 (1)1.1 “地”的定义 (3)1.2 “接地”的分类及目的 (4)1.2.1 接“系统基准地” (4)1.2.2 接“静电防护与屏蔽地” (4)1.2.3 接“大地” (4)1.3 接地设计的基本原则 (4)1.4 各种地相连的六种情况 (5)1.5 静电防护与屏蔽地 (5)1.5.1功能单板静电防护与屏蔽地的设计 (5)1.5.2后背板静电防护与屏蔽地的设计 (6)第二章设备的接地设计 (7)2.1 立式大机架设备的接地设计 (7)2.1.1 多层机框的接地 (7)2.1.2 设备接大地 (7)2.2 台式设备的接地设计 (8)2.3 射频设备的接地设计 (10)2.3.1 接地要求 (10)2.3.2 射频设备的接地设计 (10)2.3.3 射频设备天馈系统的接地设计 (10)2.4 监控设备的接地设计 (10)2.4.1 监控设备的特殊性及其接地要求 (10)2.4.2 模拟量输入电路 (11)2.4.3 开关量输入电路 (12)2.4.4 开关量输出电路 (12)2.4.5 视(音)频模拟电路 (13)2.4.6 监控设备接大地 (13)2.5 浮地设备的接地设计 (13)2.5.1 浮地的基本概念 (13)2.5.2 浮地设备的特殊问题 (14)2.5.3 浮地设备的接地设计 (14)2.5.4设计案例 (15)2.5.4.1 问题描述和原因分析 (15)2.5.4.2 设计改进和实验结果 (15)第三章PCB的接地设计 (16)3.1 共模干扰、信号串扰和辐射 (16)3.1.1 共模干扰 (16)3.1.2 串扰 (16)3.1.3 辐射与干扰 (17)3.2 PCB接地设计原则 (17)3.2.1 确定高di/dt电路 (17)3.2.2 确定敏感电路 (17)3.2.3 最小化地电感和信号回路 (18)3.2.4 地层分割和地层不分割的合理应用 (18)3.2.5 接口地保持“干净”,使噪声无法通过耦合出入系统 (18)3.2.6 电路合理分区,控制不同模块之间的共模电流 (18)3.2.7贯彻系统的接地方案 (18)3.3 双面板的接地设计 (18)3.3.1 梳形电源、地结构 (18)3.3.2 栅格形地结构 (19)3.4 多层板的接地设计 (20)3.4.1 多层板的好处 (20)3.4.2 信号回路 (20)3.4.2.1 信号回流路径 (20)3.4.2.2 回流分布 (20)3.4.2.3 信号回路的构成 (21)3.4.3 参考平面被分割的影响 (22)3.4.3.1 参考平面分割或开槽 (22)3.4.3.2 时钟信号走在地平面上 (22)3.4.3.3 参考平面上通孔的隔离盘尺寸过大 (22)3.4.4 参考平面的设计 (23)3.4.4.1 数字电路与模拟电路之间没有信号联系 (24)3.4.4.2 数字电路与模拟电路之间联系的信号线较少且集中 (24)3.4.4.3 数字电路与模拟电路之间联系的信号线较多且难以集中在一块 (26)3.4.5 后背板的接地设计 (27)3.4.6 PCB的叠层设计 (27)3.4.6.1 PCB的叠层设计的原则 (27)3.4.6.2 PCB的叠层设计举例 (28)3.4.7 地平面的处理 (29)3.5 有金属外壳接插件的印制板的接地设计 (31)3.6 PCB的布局设计 (31)3.6.1 混合电路的分区 (31)3.6.2 数字电路的分区 (32)3.6.3 高频高速电路和敏感电路的布局 (32)3.6.4 保护器件的布局 (32)3.6.5 去耦电容的放置 (32)3.6.6 与后背板相连的插座上地线插针的设计 (33)3.7 PCB的布线设计 (33)3.7.1 3W原则 (33)3.7.2 保护线 (34)3.7.3 高频高速信号走线 (34)3.7.4 敏感信号信号走线 (34)3.7.5 I/O信号走线 (34)3.7.6 金属壳体的高频高速器件 (34)3.8 设计案例 (35)3.8.1 问题描述 (35)3.8.2 原因分析 (35)3.8.3 改进措施 (35)3.8.4 试验结果 (35)第四章元器件的接地设计 (36)4.1 机壳上的元器件的接地设计 (36)4.2 功能单板上元器件的接地设计 (37)4.3 后背板上元器件的接地设计 (37)4.4 金属部件和解插件的接地设计 (37)第五章线缆的接地设计 (38)5.1 信号电缆的类型 (38)5.1.1 双绞线 (38)5.1.2 同轴电缆 (38)5.1.3 带状电缆 (38)5.2 信号电缆线的接地设计 (38)5.2.1 屏蔽双绞线的接地 (38)5.2.2 同轴电缆的接地 (38)5.2.3 带状电缆的接地 (39)第六章搭接 (39)6.1 搭接及其目的 (39)6.2 搭接的方式与方法 (39)6.2.1 搭接的方式 (39)6.2.2 搭接的方法 (40)6.2.2.1 直接搭接的方法 (40)6.2.2.2 间接搭接的方法 (40)6.3 搭接的要求和处理 (40)第一章概述1.1 “地”的定义大地——地球工作地——信号回路的电位基准点(直流电源的负极或零伏点),在单板上可分为数字地GNDD与模拟地GNDA。
交流电气装置接地设计规范
交流电气装置接地设计规范电气装置接地设计规范是确保电气装置运行安全可靠的重要环节。
接地是指将电气设备的金属构件通过导体与地面相连,使设备处于相同或近似于地电位,旨在保护人身安全、设备正常运行以及防止电气故障。
为了确保接地设计的有效性,必须遵循以下几个方面的规范:1.地电位测量和分析:在设计电气设备的接地系统之前,需要利用专业工具测量地电位,并分析地面的电阻和电位分布情况。
这有助于确定合适的接地方式,以确保设备接地的有效性。
2.接地网设计:电气设备接地主要通过接地网实现。
在设计接地网时,需要考虑系统的复杂性和规模、设备类型、系统电容和电感等因素。
接地网应该具有足够的导电性和抗腐蚀性,以保证电气设备接地的可靠性。
3.设备接地:电气设备的金属构件应通过专用的接地导线与接地网相连。
接地导线的选择应考虑导电性、抗腐蚀性和可靠性等因素。
接地导线应采用合适的截面积和材料,以确保设备的有效接地。
4.漏电保护:电气设备的接地还应包括漏电保护。
漏电保护装置能及时检测到设备漏电现象,并切断电源,以减少人身伤害和设备损坏的风险。
5.接地可靠性:接地装置应具备良好的可靠性,以确保长时间的运行。
接地装置应定期检测和维护,以防止因腐蚀、老化或松动等原因导致接地失效。
6.波形和电位地电位控制:在电气设备的接地设计中,还需要注意波形和地电位控制。
波形地是指将电气设备的中性点通过专用的接地电阻与地相连,以控制电流的回路。
电位地是指将电气设备的金属构件通过接地导线与地相连,以防止电气设备上产生高的地电位。
总之,电气装置接地设计规范是确保电气设备安全运行的重要保障。
通过合理的接地设计和实施,可以减少人身伤害和设备损坏的风险,提高电气设备的可靠性和稳定性。
因此,设计者需要遵循相关的规范和标准,以确保接地系统的有效性和合规性。
接地设计规范
接地设计规范接地设计规范是指在建筑物、设备设施以及相关工程中,对接地系统设计、布线、材料和工艺等方面的一系列规范和要求。
接地是指将电气设备的金属部分或设备外壳与大地连接,以便将电荷排除或减少对人体或设备的危害。
以下是关于接地设计规范的一些内容:一、接地设计原则:1. 安全性原则:接地系统应能保证人身安全,防止触电事故的发生。
2. 连续性原则:接地系统的导体应具有良好的导电性能,确保导电路径的连续性。
3. 可靠性原则:接地系统应具有足够的可靠性,确保在任何情况下都能起到良好的接地效果。
4. 经济性原则:接地系统的设计、施工和维护应尽量满足经济合理性的要求。
二、接地设备的选择:1. 接地电极材料的选择:常用的接地电极材料有铜杆、镀锌钢杆等,应根据土壤电阻率、环境腐蚀程度等因素选择合适的材料。
2. 接地导线材料的选择:常用的接地导线材料有铜导线、镀锌钢线等,应根据电流大小、长度等因素选择合适的材料。
3. 接地装置的选择:应选择符合国家标准并具有良好性能的接地装置,如接地网、接地圈等。
三、接地系统的设计:1. 保护接地系统的设计:保护接地系统是为了保护设备和人身安全而设置的,应考虑设备的特殊要求,如电雷击等。
2. 信号接地系统的设计:信号接地系统用于保证设备间的信号传输和保护系统的防雷性能。
信号接地系统应独立于保护接地系统,并采用单独的导线进行接地。
3. 过流接地系统的设计:过流接地系统用于接地电流的排除,应根据接地电流大小和频率确定导线尺寸和电极材料。
四、接地系统的布线:1. 接地电极的布置:接地电极应远离电源线、通信线和其他导线,且不得经过易燃、易爆区域。
2. 接地导线的布线:接地导线应采用直线布线,尽量减少其他电气设备和金属结构与其交叉,避免出现大环流。
五、接地系统的施工和维护:1. 接地电极的埋设:接地电极应埋设在湿润的土壤中,埋深应符合国家标准要求。
2. 接地导线的施工:接地导线的连接应牢固可靠,接头处应接触良好,无锈蚀、氧化等现象。
建筑设计中的建筑接地规范要求
建筑设计中的建筑接地规范要求建筑接地是指将建筑物与地面形成良好的接触导通,使地面上的电流能够顺利地流到地下,从而确保建筑物内的安全。
建筑接地规范的要求十分重要,不仅涉及到建筑物本身的使用安全,还与人身安全密切相关。
本文将介绍建筑设计中的建筑接地规范要求,以及其重要性和实施方法。
一、建筑接地规范要求的重要性1. 保证人身安全建筑接地规范要求的主要目的是确保建筑物内部的电气设备和电路能够正常工作,同时避免电气设备损坏或引发火灾等事故。
通过正确实施建筑接地规范要求,可以有效地防止触电事故的发生,保障人身安全。
2. 保护电气设备良好的建筑接地可以降低电流的阻抗,提供一个低阻抗的回路,保护电气设备免受过大的电压冲击。
同时,通过与地面形成接触,建筑物内的电气设备能够及时地释放静电,避免静电积累引发设备损坏。
3. 减少电磁辐射建筑接地规范要求中还包括了减少电磁辐射的相关要求。
在符合规范要求的建筑接地下,可以有效地屏蔽和吸收电源设备产生的电磁辐射,降低对周围环境和身体健康的影响。
二、建筑接地规范要求的实施方法1. 接地电阻要求建筑接地规范要求中一般会对接地电阻值进行明确规定。
一般来说,住宅建筑的接地电阻要求应在4Ω以下,工业建筑的接地电阻要求应在1Ω以下。
实现低接地电阻的关键在于优化接地系统的设计,选择适当的接地电极材料和布置方式。
2. 导体材料和截面积要求建筑接地规范要求中通常会规定导体材料的选择和截面积的要求,以确保接地系统的有效性和耐久性。
铜和铝是常用的导体材料,具有较好的导电性能和耐腐蚀性。
导体的截面积应根据建筑物的用途、电流负荷和接地系统的要求进行合理选择。
3. 接地装置设置要求建筑接地规范要求中还会明确接地装置的设置要求。
一般来说,接地装置应尽量布设在离建筑物主体近、有利于导电的地方。
建筑物的接地装置必须与主接地系统相连,并经过专业人员验收合格后方可使用。
4. 接地系统的防护建筑接地规范要求中还包括对接地系统的防护要求。
接地设计规范
接地设计规范工业与民用电力装置的接地设计规范GBJ65-831工业与民用电力装置的接地设计规范GBJ65-83第一章总则第1.0.1条电力装置接地设计必须认真执行国家的技术经济政策,并应做到:保障人身与设备安全、供电可靠、技术先进和经济合理。
第1.0.2条电力装置接地设计应根据工程特点、规模、发展规划和地质特点,合理地确定设计方案。
第1.0.3条电力装置接地设计应节约有色金属,节约用铜。
第1.0.4条本规范适用于工业、交通、电力、邮电、财贸、文教等各行业交流、直流电力设备接地设计。
第1.0.5条电力装置接地设计尚应符合现行的有关国家标准和规范的规定。
第二章一般规定第2.0.1条为保证人身和设备的安全,电力装置宜接地或接零。
交流电力设备应充分利用自然接地体接地,但应校验自然接地体的热稳定。
能对地构成电流闭合回路的直流电力回路中,不得利用自然接地体作为电流回路的零线、接地线、接地体。
直流电力回路专用的中性线、接地体以及接地线不得与自然接地体有金属连接;如无绝缘隔离装置,相互间的距离不应小于1米。
三线制直流回路的中性线,宜直接接地。
第2.0.2条变电所内,不同用途和不同电压的电气设备,除另有规定者外,应使用一个总的接地体,接地电阻应符合其中最小值的要求。
注:本规范中接地电阻系指工频接地电阻。
第2.0.3条如因条件限制,按本规范的要求接地有困难时,允许设置操作和维护电力设备用的绝缘台。
绝缘台的周围,应尽量使操作人员不致偶然触及外物。
第2.0.4条中性点直接接地的电力网,应装设能迅速自动切除接地短路故障的保护装置。
中性点非直接接地的电力网,应装设能迅速反应接地故障的信号装置,必要时,也可装设延时自动切除故障的装置。
第2.0.5条低压电力网的中性点可直接接地或不接地。
当安全条件要求较高,且装有能迅速而可靠地自动切除接地故障的装置时,电力网宜采用中性点不接地的方式。
第2.0.6条在中性点直接接地的低压电力网中,电力设备的外壳宜采用低压接零保护,即接零。
电力装置的接地设计规范
电力装置的接地设计规范1. 引言电力装置的接地设计是电力系统中非常重要的一部分,它与人身安全、设备保护以及系统的可靠运行有着密切的关系。
接地设计规范的制定是为了确保接地系统的合理性、可靠性和安全性,本文将介绍一些常见的电力装置的接地设计规范。
2. 接地设计原则电力装置的接地设计应遵循以下原则:2.1 安全性原则接地系统应能有效地排除或减小接地电流对人体的伤害。
在设计中需考虑到人身安全,包括正常情况下的操作安全和异常情况下的安全。
2.2 可靠性原则接地系统应能保证在各种工作条件下的可靠接地,确保电力装置的正常运行,并提高设备的可靠性。
2.3 经济性原则接地系统的设计应尽可能节约用地、材料和人工成本,提高接地系统的经济效益。
3. 接地设计的基本要求电力装置的接地设计应满足以下基本要求:3.1 接地电阻接地电阻是衡量接地效果的重要指标之一,通常要求接地电阻不超过一定的限值,以确保接地系统能够正常运行和可靠保护设备。
接地电阻的测量应按照相关的标准进行。
3.2 接地方式和接地网结构接地方式可以是单点接地或多点接地,应根据具体情况选择。
接地网结构可以是单极接地、两极接地或多极接地,要根据电力装置的额定电压、工作条件和系统要求进行设计。
3.3 接地导体的选择和布置接地导体应选择合适的材料和规格,布置合理,以确保接地电阻的要求。
接地导体的材料可以是铜、铜包铝、镀铜钢等,其截面积和长度应根据计算和实际情况确定。
3.4 接地体的选择和布置接地体用于与土壤接触,起到将故障电流分散到土壤中的作用。
接地体的选择可以是接地棒、接地网或接地网+水平接地体等,具体选择要考虑接地电阻、土壤电阻率和设备的具体要求。
3.5 土壤特性和处理土壤的电阻率、湿度和温度等因素会影响接地电阻的大小,应对土壤进行测试和分析,采取适当的土壤处理措施。
4. 接地设计的测试和验证接地设计完成后,应进行接地测试和验证,以确保接地系统符合设计要求。
常用的测试手段包括接地电阻测量、接地体电位测量、接地网等效电路检测等。
防雷接地设计规范
防雷接地设计规范防雷接地设计规范是为了确保建筑物或设备安全可靠运行,防止由于雷击引起的损失或事故。
下面是一些常见的防雷接地设计规范:1. 接地系统的设计一般采用三种主要的接地系统:土壤接地系统、金属接地网和接地剂接地系统。
设计时要考虑到建筑物的特点和用途,选择适当的接地系统。
2. 接地系统的布置接地系统的布置应符合以下原则:- 接地系统的导体应尽可能短,减小电阻。
- 导体要有良好的联接,不能有松动或腐蚀。
- 接地系统要与可燃物保持一定距离,以防止火灾。
- 防止接地系统与其他设备或导体发生干扰。
3. 接地系统的材料接地系统的导体应采用优良的导电材料,如铜或铝等。
导体的截面积要足够大,以确保接地系统的导通性。
4. 接地系统的阻抗值接地系统的阻抗值应符合国家或地区的规定。
一般要求接地系统的阻抗值小于10欧姆,以确保雷击时能够及时将雷流引入地下。
5. 接地系统的维护定期对接地系统进行检查和维护,保持导体的良好导电性和联接可靠性。
特别是在雷雨季节或经常遭受雷击的地区,要加强维护工作。
6. 接地系统的测试按照规定的周期对接地系统进行测试,确保其阻抗值符合要求。
如果发现阻抗值较大,应及时排查和修理。
7. 防雷保护设备的设置除了接地系统外,还需要根据建筑物或设备的特点,设置合适的防雷保护装置,如避雷针、避雷网等,以进一步提高防雷能力。
总之,防雷接地设计规范是为了保障建筑物或设备的安全运行,减少雷击带来的损失。
合理的接地系统设计和维护是防雷工程的核心,需要严格按照相关规范进行操作,并定期检测和维护。
同时,还需要根据实际情况设置适当的防雷保护设备,提高整体的防雷能力。
SH T3081-2003石油化工仪表接地设计规范
三、接地方法
➢ 3.5.4 仪表电缆保护管、仪表电缆铠装金属层应在需要进行防雷接地处, 与电气专业的防雷电感应的接地排相连。 ➢ 3.5.5 现场仪表的雷电浪涌保护器应与电气专业的现场防雷电感应的接 地排相连。 ➢ 3.5.6 在雷击区室外架空敷设的不带屏蔽层的多芯电缆,备用芯应接入 屏蔽接地;对屏蔽层已接地的屏蔽电缆或穿钢管敷设或在金属电缆槽中敷设 的电缆,备用芯可不接地。
一、范 围
➢ 本规范适用于石油化工企业新建及扩建项目的仪表及自动控 制系统工程的仪表、分散型控制系统(DCS)、可编程序控制系统 (PLC)、工业控制计算机系统(IPC )、安全仪表系统(SIS)、火灾及 可燃气体和有毒气体检测系统(FGS)、过程控制计算机系统 (PCCS)等的接地系统设计。改造设计可参照执行。 ➢ 执行本规范时,尚应符合国家现行有关强制性标准规范的要 求。
➢ 虽然工作接地和保护接地最终是连接到一起的,但这两类接地应分别连接汇总 不应混接。
三、接地方法
➢ 3.2.4 信号屏蔽电缆的屏蔽层接地应为单点接地,应根据信号源和接收 仪表的不同情况采用不同接法。当信号源接地时,信号屏蔽电缆的屏蔽层 应在信号源端接地,否则,信号屏蔽电缆的屏蔽层应在信号接收仪表一侧 接地。
三、接地方法
三、接地方法
➢ 3.4 防静电接地
➢ 3.4.1 控制系统防静电接地应与保护接地共用接地系统。
➢ 静电放电的特点是高电压、小电流、时间短。抑制或消除静电放电应采取多种 措施,除尽量避免产生静电外,及时泄放静电是有效手段之一。仪表及控制系统的 防静电接地比较简单,静电导体对地的泄放电阻通常是10000欧姆 -1000000欧 姆数量级的,所以,很多相应的规范、资料规定用于防静电接地的电阻为100欧。 并且,防静电接地应与其它接地系统共用接地装置。
工业企业接地设计规范
工业企业接地设计规范在现代工业生产中,各种电气设备的使用成为了生产的重要组成部分,而其完善的接地系统是电气设备稳定运行的重要前提。
因此,制定工业企业接地设计规范是保障电气设备稳定运行和生产安全的重要手段。
接地系统是电力供应和使用的基础,因其具有电阻、电感和电容等特性,可以使电流从电气设备引出并返回,以保证设备的正常运行。
在接地系统中,通过接地体、接地网和接地极的组合实现地埋式接地或地面式接地,其中接地体是保证设备接地的主要构件,接地网则是提供接地体的通用极,而接地极则是通过裸露在地面或深度埋在地下的金属棒实现接地目的。
工业企业接地设计规范主要从以下几个方面展开:接地体的选型与安装,接地网的设计与施工,接地极的制造与使用等。
首先,接地体的选型和安装应选择适合企业的使用要求和环境条件的材料和类型,以便能够更好地应对大气电压、雷击、电磁干扰等外在因素的干扰。
在安装时,必须保证接地体的有效部分裸露在土壤中,以确保接地电阻在一定范围内稳定。
其次,接地网的设计和施工应符合国家有关电力设备和接地系统的规范要求。
在设计上,应根据电气设备数量和用电负荷等因素,合理配置数量和尺寸,并从干扰源等因素出发,采用防干扰措施减小电阻。
而在施工上,则要注意施工质量,以确保接地网的稳定性、可靠性和安全性。
最后,接地极的制造和使用应严格按照规范要求进行。
接地极应选用抗腐蚀材料制作,从而保证其长期无需更换。
在使用中,应定期检查接地极的电阻和外观状态,并保证接地极接头的可靠性,以预防因接地极磨损或接头松动等原因造成的安全事故。
总之,工业企业接地设计规范是电气设备和生产安全的保障,只有在合理、稳定、可靠和安全的接地条件下,电气设备才能长时间稳定运行,企业才能获得可持续发展。
工业与民用电力装置的接地设计规范
工业与民用电力装置的接地设计规范
工业与民用电力装置的接地设计规范是为了保证人身安全和设备正常
运行而制定的一系列规定和要求。
接地是电力系统中非常重要的一部分,
它可以保证人和设备免受电击和电磁干扰的影响,同时还能够提供供电设
备操作所需的正确电位参考和相对稳定的电压。
根据国际电工委员会(IEC)和国家标准化管理委员会(ISO)的相关
规范,以下是一些常见的工业与民用电力装置接地设计规范:
1.设计目标:接地系统的主要目标是降低电压危险,提供设备和人的
安全保护,减少电击风险。
2.接地电流:根据系统容量和电流值,设备的接地电阻应满足一定的
要求。
一般来说,接地电阻的值应小于等于规定的限制值。
3.接地电阻测量:定期对接地电阻进行测试和测量,以确保其满足要求。
测量方法可以使用土壤电阻测试仪或绝缘电阻仪等专用设备。
4.接地系统分类:根据不同的要求,接地系统可以分为保护接地、供
电接地和仪器接地等。
5.接地材料:接地系统一般采用低电阻材料,例如铜或镀铜钢。
接地
材料要经过防腐处理,以保证其导电性和使用寿命。
6.接地线路布置:接地线路要尽可能短且直接,以减少接地电阻的值。
同时,还需要注意与其他设备的互干扰。
7.接地电流分配:对于大型工业设备,为了避免过载,应根据接地电
流进行合理分配和划分,以确保各设备的安全运行。
8.维护和检修:接地系统需要定期检查和维护,包括清洁接地材料、紧固接线、修复损坏的部分等,以确保接地系统的正常运行。
建筑物接地系统规范
建筑物接地系统规范建筑物接地系统是重要的电气设施之一,用于保护建筑物及其内部设备免受电击和静电干扰。
为了确保建筑物接地系统的安全可靠性,需要按照相关的规范进行设计、安装和维护。
本文将按照建筑物接地系统规范的要求,分析其设计原则、安装要求和维护措施。
一、接地系统设计原则1.地网设计地网是建筑物接地系统的核心组成部分,其设计应根据建筑物的用途、地质条件和电气负荷等因素进行综合考虑。
一般而言,地网应采用星形或网状结构,确保接地电阻符合规范要求。
2.接地电极材料选择接地电极的材料应具有良好的导电性能和抗腐蚀性能,常见的选择包括铜、铜镀锌等。
在选择材料时,还需考虑周围环境的腐蚀情况,以确保接地电极的长期使用寿命。
3.接地导体截面积确定接地导体的截面积应根据建筑物的总用电负荷和接地系统的特定要求进行计算。
一般而言,导体的截面积应足够大,以确保低阻抗和良好的电流分布。
4.接地系统布置接地系统中的接地装置应根据规范要求进行合理布置,以确保各个接地点之间的等电位连接。
在布置时,应避免与其他设备或管道交叉,并保证接地装置的可靠接地连接。
二、接地系统安装要求1.施工材料在接地系统的安装过程中,应使用符合规范要求的施工材料。
这包括接地导体、接地电极、接地剂等。
使用合格的材料可以有效提高接地系统的安全性和可靠性。
2.施工工艺接地系统的施工应遵循相关的工艺要求。
在进行安装前,需对施工现场进行勘察,确保地质条件和施工环境符合规范要求。
施工过程中,还需注意接地电极的埋深、接地体的焊接质量以及导线的连接等细节。
3.接地系统测试安装完成后,应进行接地系统的测试和检测。
主要包括接地电阻测试、接地导体的连续性测试等。
通过测试,可以验证接地系统的安装质量,并及时发现和排除潜在问题。
三、接地系统维护措施1.定期巡检建议对接地系统进行定期的巡检,以确保接地装置的正常运行和连接可靠。
巡检内容包括检查接地电极和导体的腐蚀情况、检测接地电阻等。
2.设备保护建筑物接地系统应与其他设备进行良好的连接,确保其免受过电压和雷击等电力故障的影响。
电力系统接地设计与施工规范
电力系统接地设计与施工规范一、引言电力系统的接地设计与施工规范是确保电力系统工作的稳定性和安全性的重要措施。
正确的接地设计和施工可以有效地减轻电力系统的电磁干扰、防止感应电压的产生以及保护人身安全。
本文将详细介绍电力系统接地设计与施工规范。
二、接地设计原则1. 接地方式选择根据电力系统的特点和需求,可以选择不同的接地方式,包括单点接地、多点接地和中性点接地。
在选择接地方式时,要充分考虑系统的电流、电压和频率等参数,确保选择的接地方式能够满足系统的需求。
2. 接地电阻要求根据国家相关标准和规范,电力系统的接地电阻应该控制在一定的范围内,以确保接地系统的可靠性和安全性。
一般来说,低电阻接地系统可以减少地电位差,提高系统的抗干扰能力。
3. 接地网设计接地网是电力系统接地的重要组成部分,其设计应根据系统的负荷和地形条件,合理布置接地电极和地线等。
三、接地施工要求1. 地下接地电极施工地下接地电极的施工应符合以下要求:- 接地电极应埋设在稳定的土壤中,避免存在泥浆、冰层或易冲刷的土壤;- 接地电极的深度应根据设计要求确定,一般来说,深度应达到足够的湿度层;- 接地电极的长度应根据系统的需要合理确定,一般来说,长度应大于等于2倍的电极直径。
2. 地线敷设地线的敷设应符合以下要求:- 地线应按照设计要求敷设在地下,与电力设备可靠连接;- 地线的敷设路径应尽量避开其他电气设备,以减少电磁干扰。
3. 现场施工环境要求电力系统接地施工的现场环境要求应包括以下方面:- 施工现场应保持干燥、整洁,避免有易燃易爆物品存在;- 施工人员应穿戴符合安全要求的工作服和防护用具,确保人身安全;- 施工现场应设置明显的安全警示标识,保障工作人员的安全。
四、接地测试与检查接地设计与施工完成后,应进行接地测试与检查,以确保接地系统的质量和性能。
测试与检查的内容主要包括接地电阻、接地电位和接地系统的归一化测试。
五、结论电力系统接地设计与施工规范直接关系到电力系统的安全性和稳定性。
防雷接地设计规范
防雷接地设计规范防雷接地设计规范是指按照行业标准要求进行防雷接地工程设计所需遵循的具体要求和规范。
防雷接地设计规范的制定,旨在确保防雷接地工程的可靠性和安全性,为人们的生命财产提供有效保护。
以下是一些常见的防雷接地设计规范:1.地阻测试要求:在进行防雷接地装置的施工和验收之前,应该进行地阻测试,测试结果应符合规范要求。
一般来说,地表层阻抗不应大于10欧姆。
2.接地电流的处理:在规划和设计防雷接地工程时,需要对可能出现的高频电流进行合理预估。
一般来说,对于电信设备,接地电流不应大于10安培。
对于其他常见设备,接地电流不应大于50安培。
3.各类设备的接地方案:根据不同的设备类型,采用相应的接地方案。
例如,对于电力电缆和设备,应采用串联接地方案;对于电信设备,应采用并联接地方案。
4.接地装置的选用:根据不同的场所和设备,选择合适的接地装置。
要确保接地装置具有良好的导电性能和耐腐蚀性能,并与地表层有良好的接触。
5.地网的规划和设计:根据不同的防雷要求,规划和设计合适的地网。
地网应具有良好的导电性能和结构稳定性,且与接地装置相互连接。
6.接地装置的布置:接地装置应布置在易导电性好的地方,并且远离与其它设备和金属结构,以防止电气干扰。
7.屏幕与接地的连接:对于需要屏幕的设备,其屏蔽层与接地的连接应符合规范要求。
连接应牢固可靠,电阻小于1欧姆,并进行定期检测,确保良好的接地效果。
8.接地装置的防腐蚀措施:接地装置应采取防腐蚀措施,以延长其使用寿命。
例如,使用耐腐蚀性能好的材料,并进行镀锌或涂层处理。
9.接地系统的维护和测试:防雷接地系统应定期进行维护和测试,以确保其正常运行。
例如,定期检查接地装置的连接情况、测试地阻、清理接地装置周围的杂物等。
以上是防雷接地设计规范的一些常见要求,根据实际情况和相关行业标准的要求,设计人员可以结合具体情况进行合理调整和设计。
防雷接地工程设计的合理性和可靠性,对于保障人们的生命财产安全起着重要作用。
接地标准国家规范
接地标准国家规范作为电气工程中的重要安全措施,接地是一个必不可少的环节。
在国内,接地的标准和规范由国家质量监督检验检疫总局、国家标准化管理委员会以及其他相关部门共同制定。
以下是我对接地标准国家规范的基本介绍。
一、接地的分类1. 保护接地:主要用于保护人身安全以及电气设备的安全使用。
如带电设备的防雪、降雷、接地等等。
2. 功能接地:主要用于保证电气设备的正常运行,如电源接地、信号接地等等。
二、接地的方法1. 直接接地:将设备或设施接地导线直接埋入土壤内,使其能够将电荷直接流到地面中去。
2. 间接接地:在电气设备周围放置金属网格、金属板等共用接地体,既可耗散电荷,也能更好地防止雷击。
三、接地电阻接地电阻是衡量接地效果的一个重要指标,其大小应符合国家规范要求。
具体来说,保护接地电阻应该小于4Ω;而功能接地电阻可以稍大,一般不超过10Ω。
四、接地系统设计1. 接地系统的设计应该根据具体工程的特点来合理配置,充分考虑其土地类型、地下水位、通风条件以及地形等因素。
2. 接地体的数量、布局和配置应该符合国家和行业的相关规范,以保证其稳定性和可靠性。
3. 接地体的选材应该符合国家标准,比如常用的铜、镀锌铁、铝合金等等。
五、接地系统维护接地系统的维护对于保证其长期稳定运行至关重要,包括:1. 定期检查接地系统,并对存在问题进行修复。
2. 清理接地体周围的杂草、垃圾等,以保证其通风良好。
3. 接地体铜排、接线等的牢固性,应经常检查,必要时及时更换。
总之,接地在电气工程中扮演着重要的角色,其标准和规范也是工程安全和电气设备正常运行的基石。
在实际工作中,我们应该遵守相关规定,合理设计和维护接地系统,以确保其有效性和稳定性。
接地设计规范
接地设计规范接地设计规范是一项涉及到电气安全的重要规范,它对于建筑物、设备和电气系统的正常运行和人身安全都具有重要的作用。
下面将介绍接地设计规范的相关内容。
首先,接地设计应符合国家标准和行业规范的要求。
例如,在中国,接地设计应符合《电气安装工程施工及验收规范》(GB 50254)等标准。
这些标准和规范对于接地系统的建设、布置、接地电阻等方面都有详细的规定。
其次,接地设计应根据实际情况进行合理的选择。
建筑物、设备和电气系统的不同特点和要求会对接地设计产生影响,因此需要根据实际情况进行选择。
例如,对于大型电力设施,需要考虑接地系统的可靠性和稳定性;而对于普通的住宅建筑,主要考虑防雷和人身安全。
接地设计应符合以下几个基本原则:安全性原则、可靠性原则、经济性原则和优化性原则。
安全性原则是指接地系统应具备一定的安全防护功能,确保人身安全;可靠性原则是指接地系统应具备良好的接地效果,保证电气系统的正常运行;经济性原则是指接地设计应在保证安全性和可靠性的前提下,尽量降低工程成本;优化性原则是指根据实际情况,选择合适的接地方案和技术,使得接地效果最优。
接地设计中的关键参数主要包括接地电阻、接地回路电阻、接地极的尺寸和材料等。
接地电阻是指接地系统与地球之间的电阻值,它影响着接地效果的好坏;接地回路电阻是指接地系统电流通过的回路电阻,它影响着接地系统的可靠性;接地极的尺寸和材料对于接地电阻和接地回路电阻都有影响,需要进行合理的设计和选择。
最后,在接地设计过程中需要进行合理的验收和检测。
接地系统的建设完成后,需要进行适当的验收和检测,确保接地系统符合规范要求,并且能够满足设计要求。
常用的接地检测方法包括接地电阻测试、接地回路电阻测试等。
总之,接地设计规范是确保电气系统安全运行和人身安全的重要规范。
在接地设计过程中,需要根据国家标准和行业规范的要求,结合实际情况进行合理的选择和设计。
同时,需要符合安全性、可靠性、经济性和优化性原则,并进行合理的验收和检测。
国标接地规范
国标接地规范随着社会的发展和电气化的进程,电力工程的建设和维护变得越来越重要。
在这个过程中,接地作为电力系统中的重要组成部分,也越来越受到人们的关注。
国家标准《电气装置用供电系统的接地技术要求》(GB 50169-2018)是国内电力系统中最重要的接地标准之一,它为电力行业的发展提供了有力的技术支持。
国标接地规范的重要性国标接地规范是电气工程领域中的重要法规之一。
它对电力系统的安全稳定运行起着至关重要的作用。
国标接地规范是对接地操作进行标准化和规范化,目的是保障电气设备的安全、可靠、高效运行,防范事故的发生。
国标接地规范中详细说明了接地的定义、分类、设计原则、测量方法、制图规范以及其他关键性能指标,这样就可以为电力工程的建设和优化提供坚实的技术支持和保障。
国标接地规范的分类国标接地规范主要分为线路接地、发电机组接地和供电系统接地三类。
线路接地就是指电力系统中导线所接地的方式。
线路接地主要用于保护设备和人员,以及降低系统的电磁干扰和电感电压。
发电机组接地是指直接将发电机组接地,其目的是确保发电机组正常运行,同时降低对设备和人员带来的危害。
供电系统接地是指供电系统的各个部分之间按照一定的规范进行接地。
国标接地规范的设计原则国标接地规范在设计时有一些原则需要遵守。
首先是安全原则,保证设备的安全并且不会对人员造成伤害;其次是可靠性原则,保证设备能够长期稳定运行;还有就是经济性原则,通过规范化设计,降低工程成本。
在接地的设计中,还应该注意定期检测和维护,保证接地系统的有效性和长期稳定性。
国标接地规范的测量方法在电力工程中,常常需要对接地的有效性进行测量和检验,以确保接地的正确性和长期稳定性。
国标接地规范中详细说明了接地的测量方法,包括电阻测量、电位差测量和地电压测量等。
通过这些测量方法,可以对接地进行全面的检测和评估,准确提供判断依据,保证接地的有效性和稳定性。
国标接地规范的制图规范为了确保电气工程的顺利完成,渲染技术图形也是非常关键的。
接地体规范
接地体规范接地体规范(Grounding Body Regulations)第一章:总则第一条为规范接地体的设计、施工和维护管理,确保人身和设备安全,根据相关法规,制定本规范。
第二条接地体是指用专用的导体材料与地面连通的装置,用于把电气设备及其周围空间有效地接地。
第三条接地体的设计、施工和维护管理应符合国家相关规范和标准,并参考本规范执行。
第四条接地体的设计、施工和维护管理应有相关人员负责,并进行备案登记。
第二章:接地体的设计第五条接地体的设计应满足以下要求:(一)具备良好的电气导通性能,保障接地效果。
(二)材料应选取耐腐蚀、耐久性强的导体材料,如铜、钢等。
(三)设计应满足电气设备的接地要求,并考虑到设计设备的功率、电流等参数。
第六条接地体的设计应满足以下安全要求:(一)设备周围不得有易燃、易爆等危险物品。
(二)设计应考虑到设备的周围环境和地形,确保施工和维护的便利性。
(三)设计应避免与其他建筑物或设备的干扰,保证接地体的独立性。
第三章:接地体的施工第七条接地体的施工应满足以下要求:(一)施工前应进行必要的场地勘察,确保施工条件符合设计要求。
(二)按照设计方案进行施工,保证接地体的质量和可靠性。
(三)施工过程中应遵守安全操作规程,保证施工人员的人身安全。
第八条接地体的施工应满足以下安全要求:(一)施工现场应进行防护措施,确保周围人员的安全。
(二)施工设备应符合安全要求,操作人员应具备相关证书。
(三)施工现场应设有安全警示标志,提醒周围人员注意安全。
第四章:接地体的维护管理第九条接地体的维护管理应满足以下要求:(一)定期检查接地体的使用情况,发现问题及时修复。
(二)定期清理接地体周围的杂物,保持接地体的通畅。
(三)制定接地体维护计划,确保维护工作的及时性和有效性。
第十条接地体的维护管理应满足以下安全要求:(一)维护人员应具备相关知识和技能,定期进行培训。
(二)维护过程中应遵守操作规程,保证维护人员的人身安全。
静电接地设计规范
静电接地设计规范静电接地设计规范是指为了避免静电危险和确保工作场所和设备安全的指南和要求。
以下是静电接地设计规范的一般内容:1. 静电危险评估:在设计静电接地系统之前,必须进行静电危险评估。
评估应包括危险源的确定、静电积累和放电的可能性、防护措施的现状评估等内容。
2. 静电接地系统的设计:静电接地系统应包括接地导线、接地装置和接地电阻等组成部分。
设计时应考虑以下要素:a. 接地导线的选择和安装:接地导线应选用足够导电能力的铜导线,其截面积和长度应根据具体情况计算确定。
导线的安装应符合国家和地方规定,并采用安全可靠的连接方式。
b. 接地装置的选择和安装:接地装置可采用接地极、接地网或接地棒等形式。
选择和安装应根据具体情况进行设计,确保能有效地将静电放电到地面。
c. 接地电阻的计算和控制:接地电阻应控制在一定范围内,以确保接地系统的有效性。
测量接地电阻应使用合适的测试方法和仪器,并定期检查和维护接地系统的正常运行。
3. 静电接地系统的连接和维护:静电接地系统应与其他设备和结构的接地系统连接起来,以确保电位一致性和安全性。
接地系统应定期检查和维护,包括检查接地导线和接地装置的连接状态、清除接地系统周围的积尘等。
4. 静电危险防护措施:除了静电接地系统之外,还应采取其他防护措施,以避免静电危险。
这些措施包括:a. 使用静电导电材料和防静电设备:在适当的场所使用导电材料和防静电设备,以减少静电的积累和放电。
b. 控制和监测静电积累:控制和监测静电积累,在必要时采取放电措施,以避免静电火花引发火灾或爆炸。
c. 培训和宣传教育:对工作人员开展静电危险的培训和宣传教育,增强他们的安全意识和防范意识。
静电接地设计规范的实施可以减少静电危险和提高工作场所和设备的安全性。
设计规范的内容应根据具体情况和国家或地方的法规进行确定和调整。
同时,设计规范还需要与相关的行业标准和规范相结合,以确保设计和实施的可行性和合规性。
防雷接地规范标准
防雷接地规范标准
我所了解的防雷接地规范标准是《GB 50057-2010 建筑物防雷设计规范》。
这个标准是中国国家标准,针对建筑物的防雷接地设计提出了具体要求和建议。
根据这个标准,建筑物的防雷接地系统应该能够有效地将雷击电流引导到大地,并确保足够的接地电阻,以保护建筑物和使用者的安全。
具体的规范包括以下几个方面:
1. 接地电阻:建筑物的防雷接地电阻一般应小于10欧姆。
特定场合下的建筑物,如医院、计算机室等,要求的接地电阻可能更低。
2. 接地体埋设深度:建筑物的主要接地装置(如接地体)应埋设在非淹水区域,埋深一般应达到接地装置身材高度的1.2倍。
特殊条件下,比如土壤电阻率较大的地区,埋设深度会有具体要求。
3. 接地装置的选择:建筑物的接地装置可以采用接地网、接地棒等形式,根据实际情况进行选择。
接地装置的数量和布置位置应满足规范要求。
4. 联结和引下装置的选择:建筑物的防雷接地系统应考虑到与其它金属结构的联接问题,需要使用适当的联结装置和引下装置。
5. 检测和维护:建筑物的防雷接地系统应定期进行检测和维护,确保其正常运行。
对于敷设在建筑物外部的接地引下线,需要定期检查其连接情况。
以上是我了解的关于防雷接地规范标准的一些内容,具体规定还需要参考相关的标准文件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石油化工仪表接地设计规范关键词:石油化工仪表接地设计规范1范围本规范规定了仪表接地分类、接地方法、接地系统、接地连接方法、接地系统接线、接地电阻等内容。
本规范规定的仪表及控制系统接地种类有:保护接地、工作接地、本质安全系统接地(以下简称:本安系统接地)、防静电接地和防雷接地。
本规范适用于石油化工企业新建及扩建项目的仪表及自动控制系统工程的仪表、分散型控制系统(DCS)、可编程序控制系统(PLC)、工业控制计算机系统(IPC)、安全仪表系统(SIS)、火灾及可燃气体和有毒气体检测系统(FGS)、过程控制计算机系统(PCCS)等的接地系统设计。
改造设计可参照执行。
2接地分类2.1保护接地2.1.1 保护接地(也称为安全接地)是为人身安全和电气设备安全而设置的接地。
仪表及控制系统的外露导电部分,正常时不带电,在故障、损坏或非正常情况时可能带危险电压,对这样的设备,均应实施保护接地。
2.1.2 低于36V供电的现场仪表,可不做保护接地,但有可能与高于36V电压设备接触的除外。
2.1.3 当安装在金属仪表盘、箱、柜、框架上的仪表,与已接地的金属仪表盘、箱、柜、框架电气接触良好时,可不做保护接地。
2.2 工作接地2.2.1 仪表及控制系统工作接地包括:仪表信号回路接地和屏蔽接地。
本规定中的工作接地,均指仪表及控制系统工作接地。
2.2.2 隔离信号可以不接地。
这里的“隔离”是指每一输入信号(或输出信号)的电路与其它输入信号(或输出信号)的电路是绝缘的、对地是绝缘的,其电源是独立的、相互隔离的。
2.2.3 非隔离信号通常以直流电源负极为参考点,并接地。
信号分配均以此为参考点。
2.2.4 仪表工作接地的原则为单点接地,信号回路中应避免产生接地回路,如果一条线路上的信号源和接收仪表都不可避免接地,则应采用隔离器将两点接地隔离开。
2.3本安系统接地2.3.1 采用隔离式安全栅的本质安全系统,不需要专门接地。
2.3.2 采用齐纳式安全栅的本质安全系统则应设置接地连接系统。
2.3.3 齐纳式安全栅的本安系统接地与仪表信号回路接地不应分开。
2.4防静电接地2.4.1 安装DCS、PLC、SIS等设备的控制室、机柜室、过程控制计算机的机房,应考虑防静电接地。
这些室内的导静电地面、活动地板、工作台等应进行防静电接地。
2.4.2 已经做了保护接地和工作接地的仪表和设备,不必要另做防静电接地。
2.5防雷接地2.5.1 当仪表及控制系统的信号线路从室外进入室内后,需要设置防雷接地连接的场合,应实施防雷接地连接。
2.5.2 仪表及控制系统防雷接地应与电气专业防雷接地系统共用,但不得与独立避雷装置共用接地装置。
3接地方法3.1保护接地3.1.1 仪表及控制系统的保护接地应按电气专业的有关标准规范和方法进行,并应接入电气专业的低压配电系统接地网。
3.1.2 控制室用电应采用TN-S系统。
整个系统中,保护线PE与中线N是分开的。
3.1.3 仪表电缆槽、电缆保护金属管应做保护接地,可直接焊接或用接地线连接在附近已接地的金属构件或金属管道上,并应保证接地的连续和可靠,但不得接至输送可燃物质的金属管道。
仪表电缆槽、电缆保护金属管的连接处,应进行可靠的导电连接。
3.1.4 仪表及控制系统的保护接地系统应实施等电位连接。
3.1.5 仪表信号用的铠装电缆应使用铠装屏蔽电缆,其铠装保护金属层,应至少在两端接至保护接地。
3.2工作接地3.2.1 需要进行接地的仪表信号回路,应实施工作接地连接。
3.2.2 工作接地在工作接地汇总板之前不应与保护接地混接。
3.2.3 工作接地的连线,包括各接地线、接地干线、接地汇流排等,在接至总接线板之前,除正常的连接点外,都应当是绝缘的。
工作接地最终与接地体或接地网的连接应从总接地板单独接线。
3.2.4 信号屏蔽电缆的屏蔽层接地应为单点接地,应根据信号源和接收仪表的不同情况采用不同接法。
当信号源接地时,信号屏蔽电缆的屏蔽层应在信号源端接地,否则,信号屏蔽电缆的屏蔽层应在信号接收仪表一侧接地。
3.2.5 现场仪表接线箱两侧的电缆屏蔽层应在箱内用端子连接在一起。
3.3本安系统接地3.3.1 齐纳式安全栅的本安系统接地连接示意(见图1)。
3.3.2 齐纳式安全栅的接地汇流排或接地导轨(以下统接地汇流排)必须与直流电源的负极相连接。
3.3.3 齐纳式安全栅的接地汇流排通过接地导线及总接地板最终应与交流电源的中线起始端相连接。
3.3.4 齐纳式安全栅的接地连接导线宜两根。
3.4防静电接地3.4.1 控制系统的防静电接地应与保护接地共用接地系统3.4.2 电气保护接地线可用作静电接地线。
3.4.3 不得使用电气供电系统中的中线作防静电接地。
3.5防雷接地3.5.1 仪表电缆槽、仪表电缆保护管应在进入控制室处,与电气专业的防雷电感应的接地排相连。
3.5.2 控制室内的仪表信号雷电浪涌保护器的接地线应接到工作接地汇总板,雷电浪涌保护器的接地汇流排应接到工作接地汇总板或总接地板。
3.5.3 控制室内仪表供电的雷电浪涌保护器应与配电柜的保护接地汇总板或电气专业的防雷电感应的接地排相连。
3.5.4 仪表电缆保护管、仪表电缆铠装金属层应在需要进行防雷接地处,与电气专业防雷电感应的接地排相连。
3.5.5 现场仪表的雷电浪涌保护器应与电气专业的现场防雷电感应的接地排相连。
3.5.6 在雷击区室外架空敷设的不带屏蔽层的多芯电缆,备用芯应接入屏蔽接地;对屏蔽层已接地的屏蔽电缆或穿钢管敷设或在金属电缆槽中敷设的电缆,备用芯可不接地。
4接地系统4.1 接地装置由接地极(接地体)、接地总干线(接地总线)、总接地板(总接地端子、接地母排)组成系统简单的情况下,保护接地汇总板可与总接地板合用。
4.2 接地系统由接地装置、工作接地汇总板、保护接地汇总板、接地干线、各类接地汇流排组成。
4.3 仪表及控制系统的工作接地、保护接地、防雷接地应与电气的低压配电系统合用接地装置。
4.4 接地装置的设计应按电气的有关标准规范和方法进行。
5接地连接方法5.1保护接地5.1.1 仪表及控制系统保护接地的各接地干线应汇接到保护接地汇总板,再由保护接地汇总板经接地干线接到总接地板上。
5.1.2 当保护接地汇总板和总接地板合用时,保护接地的各接地干线直接接到总接地板上。
5.1.3 仪表及控制系统交流供电中线的起始端应经保护接地干线接到总接地板上。
5.1.4 总接地板经接地总干线接到接地极。
5.2工作接地5.2.1 仪表及控制系统工作接地的各接地干线应分别接到工作接地汇总板,再由工作接地汇总板经两根单独的工作接地干线接到总接线板。
5.2.2 当有多个仪表需工作接地时,宜先将各仪表的工作接地分别接到工作接地汇流排或接地连接端子排,再经工作接地干线接到工作接地汇总板。
5.2.3 仪表信号公共点接地、DCS、PLC、SIS等的非隔离输入的接地,均应分别单独接到接地连接端子排或工作接地汇流排上,然后通过接地干线接到工作接地汇总板。
5.2.4 当有多根信号屏蔽电缆的屏蔽层接地时,宜先将各信号屏蔽电缆的屏蔽层汇接到工作接地汇流排,再经工作接地干线接到工作汇总板。
5.2.5 直流电源的负端必须接到本机柜的工作接地汇流排,不设工作接地汇流排的情况应经工作接地干线接到工作接地汇总板。
5.2.6 根据需要,工作接地汇流排可有多个。
5.3本安系统接地5.3.1 齐纳式安全栅的各接地汇流排可直接接到本机柜的工作接地汇流排,再经工作接地干线接到工作接地汇总板。
每个汇流排的接地线宜使用两根单独的导线。
5.3.2 齐纳式安全栅的各接地汇流排也可分别经工作接地干线接到工作接地汇总板。
每个汇流排的工作接地宜使用两根单独的导线。
5.3.3 齐纳式安全栅的各接地汇流排也可由工作接地干线串接,两端应分别经工作接地干线接到工作接地汇总板。
5.3.4 在有齐纳式安全栅的本安系统中,直流电源的负端必须接到本机柜的工作接地汇流排或安全栅汇流排上。
5.4仪表及控制系统接地连接原理图5.4.1 仪表及控制系统接地连接原理示意(一)(见图2)5.4.2 仪表及控制系统接地连接原理示意(二)(见图3)6接地系统接线6.1 接地系统的导线应采用多股绞合铜芯绝缘电线或电缆。
6.2 接地系统的各接地汇流排可采用截面为25mm×6mm的铜条制作。
6.3 接地系统的各接地汇总板应采用铜板制作,厚度不小于6mm,长、宽、尺寸按需要确定。
6.4 机柜内的保护接地汇流排应与机柜进行可靠的电气连接。
6.5 工作接地汇流排、工作接地汇总板应采用绝缘支架固定。
6.6 接地系统的各种连接应牢固、可靠,并应保证良好的导电性。
接地线、接地干线、接地总干线与接地汇流排、接地汇总板的连接应采用铜接线片和镀锌钢质螺栓,并应有防松件,或采用焊接。
6.7 各类接地连线中,严禁接入开关或熔断器。
6.8 接地线的截面可根据连接仪表的数量和接地线的长度按下列数值选用:a) 接地线:1mm2~2.5mm2 b) 接地干线:4mm2~16mm2 c) 连接总接地板的接地干线:10mm2~25mm2 d) 接地总干线:16mm2~50mm2 e) 雷电浪涌保护器接地线:2.5mm2~4mm26.9 雷电浪涌保护器接地线应尽可能短,并且避免弯曲敷设。
6.10 接地系统的标识颜色为绿色或绿、黄两色。
7、接地电阻7.1 从仪表或设备的接地端子到接地极之间的导线与连接点的电阻总和,称为接地连接电阻。
7.2 接地极对地电阻与接地连接电阻之和称为接地电阻。
7.3 仪表及控制系统的接地电阻为工频接地电阻,不应大于4Ω。
7.4 仪表及控制系统的接地连接电阻不应大于1Ω。
用词说明对本规范条文中要求执行严格程度不同的同词,说明如下:(一)表示要求很严格、非这样做不可并具有法定责任时,用词为“必须”(must)(二)表示要准确地符合规范而应严格遵守时,同词为:正面词采用“应”(shall)反面词采用“不应”或“不得”(shall not)(三)表示在几种可能性中推荐特别合适的一种,不提及也不排除其他可能性,或表示是首选的但未必是所要求的,或表示不赞成但也不禁止某种可能性,用词为:正面词采用“宜”(should)反面词采用“不宜”(should not)(四)表示在规范的界限内所允许的行动步骤时,用词为正面词采用“可”(may)反面词采用“不可”(need not)。