2019年广东省广州市白云区中考数学二模试卷及答案解析
(完整word版)2019广东省广州市二模数学理科word精校版
2019年广州市普通高中毕业班综合测试(二)数学(理科)试卷 第Ⅰ卷(选择题共60分)一、选择题:本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的.在答题卷上相应题目的答题区域内作答.1.已知复数)2()3(i i m z +-+=在复平面内对应的点在第三象限,则实数m 的取值范围是( )A .)1,(-∞B .)32,(-∞C .)1,32(D .),1()32,(+∞-∞2.己知集合}0181|{<--=x x A ,则=A C R ( ) A .2|{<x x 或}6≥xB .2|{≤x x 或}6≥xC .2|{<x x 或}10≥xD .2|{≤x x 或}10≥x3.某公司生产C B A ,,三种不同型号的轿车,产量之比依次为4:3:2,为检验该公司的产品质量,用分层抽样的方法抽取一个容量为n 的样本,若样本中A 种型号的轿车比B 种型号的轿车少8辆,则=n ( )A .96B .72C .48D .364.执行如图所示的程序框图,则输出z 的值是( )A .21B .22C .23D .245.己知点A 与点)2,1(B 关于直线03=++y x 对称,则点A 的坐标为( )A .)4,3(B .)5,4(C .)3,4(--D .)4,5(--6.从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动.设所选3人中女生人数为ξ,则数学期望=ξE ( )A .54 B .1 C .57 D .27.已知51cos sin =+αα,其中),2(ππα∈,则( ) A .724-B .34-C .247 D .724 8.过双曲线)0,0(12222>>=-b a b y a x 的左焦点F 作圆9222a y x =+的切线,切点为E ,延长FE 交双曲线右交于点P ,若FE PF 2=,则双曲线的离心率为( )A .317 B .617 C .510 D .210 9.若曲线2223+-=x x y 在点A 处的切线方程为64-=x y ,且点A 在直线01=-+ny mx (其中0,0>>n m )上,则nm 21+的最小值为( ) A .24B .223+C .246+D .2810.函数)||,0)(sin(2)(πϕωϕω<>+=x x f 的部分图像如图所示,先把函数)(x f y =图像上各点的横坐标缩短到原来的21倍,纵坐标不变,再把得到的图像向右平移4π个单位长度,得到函数)(x g y =的图像,则函数)(x g y =的图像的一条对称轴为( )A .43π=x B .4π=x C .4π-=x D .43π-=x 11.已知点P 在直线012=-+y x 上,点Q 在直线032=++y x 上,PQ 的中点为),(00y x M ,且7100≤-≤x y ,则x y 的取值范围为( ) A .]512,2[B .]0,52[-C .]41,165[-D .]52,2[-12.若点)0,(t A 与曲线x e y =上点P 的距离的最小值为32,则实数t 的值为( )A .32ln 4-B .22ln 4-C .33ln 3+D .23ln 3+第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.在答题卷上的相应题目的答题区域内作答. 13.若21,x e 是夹角为︒60的两个单位向量,向量212e e a +=,则=||a.14.若5)1(-ax 的展开式中3x 的系数是80,则实数a 的值是.15.秦九韶是我国南宋著名数学家,在他的著作《数书九章》中有己知三边求三角形面积的方法:“以小斜幂并大斜幂减中斜幂,余半之,自乘于上,以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方得积.”如果把以上这段文字写成公式就是])2([41222222b c a c a S -+-=,其中c b a ,,是ABC ∆的内角C B A ,,的对边.若B A C cos sin 2sin =,且22,1,c b 成等差数列,则ABC ∆面积S 的最大值为.16.有一个底面半径为R ,轴截面为正三角形的圆锥纸盒,在该纸盒内放一个棱长均为a 的四面体,并且四面体在纸盒内可以任意转动,则a 的最大值为____.三、解答题:共70分.解答题应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:60分.17.己知}{n a 是递增的等比数列,432=+a a ,341=a a . (1)求数列}{n a 的通项公式;(2)令n n na b =,求数列}{n b 的前n 项和n S .18.科研人员在对人体脂肪含量和年龄之间关系的研究中,获得了一些年龄和脂肪含量的简单随机样本数据,如下表:根据上表的数据得到如下的散点图.(1)根据上表中的样本数据及其散点图: (i )求x ;(ii )计算样本相关系数(精确到0.01),并刻画它们的相关程度.(2)若y 关于x 的线性回归方程为x b yˆ56.1ˆ+=,求b ˆ的值(精确到0。
2019年广东省中考数学二模试卷及答案
2019年广东省中考数学二模试卷及答案1.下列图案中,不是中心对称图形的是()A.B.C.D.2.初步核算并经国家统计局核定,2017年广东全省实现地区生产总值约90000亿元,比上年增长7.5%.将90000亿元用科学记数法表示应为()元.A.9×1011B.9×104C.9×1012D.9×10103.下列说法正确的是()A.2的相反数是2B.2的绝对值是2C.2的倒数是2D.2的平方根是24.下列运算正确的是( )A.a 2+a 3=a 5B.(a 2)3=a 5C.a 3÷a 2=aD.(a −b )2=a 2−b 25.下列不等式组的解集中,能用如图所示的数轴表示的是( )A.{x <−2x >1 B.{x ⩾−2x <1 C.{x >−2x <1D.{x >−2x ⩽16.如图,已知矩形纸片的一条边经过一个含30°角的直角三角尺的直角顶点,若矩形纸片的一组对边分别与直角三角尺的两边相交,∠2=115°,则∠1的度数是( )A.75°B.85°C.60°D.65°7.如图,在⊙O中,OC∥AB,∠A=20°,则∠1等于()A.40°B.45°C.50°D.60°8.有三张正面分别写有数字﹣1,﹣2,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面数字作为a的值,然后再从剩余的两张卡片随机抽一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率为()A.16B.13C.12D.23,则t的值为()9.点A(t,2)在第二象限,OA与x轴所夹的锐角为α,tanα=32A.−43B.﹣2C.2D.310.如图,矩形纸片ABCD中,AB=5,BC=3,点E在AD上,且AE=1,点P是线段AB 上一动点,折叠纸片,使点P与点E重合,展开纸片得折痕MN,过点P作PQ⊥AB,交MN所在的直线于点Q.设x=AP,y=PQ,则y关于x的函数图象大致为()A.B.C.D.11.方程x2=x的解是__________.12.因式分解:3x2+6x+3=__________.13.把抛物线y=2x2−1向上平移一个单位长度后,所得的函数解析式为__________.14.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,AC=14cm,BD=8cm,AD=6cm,则△OBC的周长是__________.15.在△ABC中BC=2,AB=2√3,AC=b,且关于x的方程x2−4x+b=0有两个相等的实数根,则AC边上的中线长为__________.16.如图,在平面直角坐标系xOy中,Rt△OA1C1,Rt△OA2C2,Rt△OA3C3,…的斜边都在坐标轴上,∠A1OC1=∠A2OC2=∠A3OC3=∠A4OC4=⋯=30∘.若点A1的坐标为(3,的值为__________.0),O A1=OC2,O A2=OC3,OA3=OC4,…则依此规律,O A2018OA201617.计算:√48−|−3|+(12018)−1−4cos30∘18.先化简,后求值:(x −4−x x−1)÷x 2−4x+4x−1,其中x =2+√3.19.已知等腰△ABC 的顶角∠A =36°(如图).(1)请用尺规作图法作底角∠ABC 的平分线BD ,交AC 于点D (保留作图痕迹,不要求写作法);(2)证明:△ABC ∽△BDC .20.在国务院办公厅发布《中国足球发展改革总体方案》之后,某校为了调查本校学生对足球知识的了解程度,随机抽取了部分学生进行一次问卷调查,并根据调查结果绘制了如图的统计图,请根据图中所给的信息,解答下列问题:(1)本次接受问卷调查的学生总人数是__________;(2)补全折线统计图.(3)扇形统计图中,“了解”所对应扇形的圆心角的度数为__________,m的值为__________;(4)若该校共有学生3000名,请根据上述调查结果估算该校学生对足球的了解程度为“不了解”的人数.21.某项工程,甲队单独完成所需时间比乙队单独完成所需时间多5个月,并且两队单独完成所需时间的乘积恰好等于两队单独完成所需时间之和的6倍.(1)求甲、乙两队单独完成这项工程各需几个月?(2)若甲队每月的施工费为100万元,乙队每月的施工费比甲队多50万元.在保证工程质量的前提下,为了缩短工期,拟安排甲、乙两队分工合作完成这项工程.在完成这项工程中,甲队施工时间是乙队施工时间的2倍,那么,甲队最多施工几个月才能使工程款不超过1500万元?(甲、乙两队的施工时间按月取整数)22.如图,在正方形ABCD中,边长AB=3,点E(与B,C不重合)是BC边上任意一点,把EA绕点E顺时针方向旋转90°到EF,连接CF.(1)求证:CF是正方形ABCD的外角平分线;(2)当∠BAE=30°时,求CF的长.23.如图,在平面直角坐标系中,直线AB:y=kx+b(b为常数)与反比例函数y=12(x>0)交于点B,与x轴交于点A,与y轴交于点C,且OB=AB.x(1)如图①,若点A的坐标为(6,0)时,求点B的坐标及直线AB的解析式;(2)如图①,若∠OBA=90°,求点A的坐标;(3)在(2)的条件下中,如图②,△PA1A是等腰直角三角形,点P在反比例函数y=12(x>0)的图象上,斜边A1A都在x轴上,求点A1的坐标.x24.如图,在菱形ABCD中,∠A=60°,以点D为圆心的⊙D与边AB相切于点E.(1)求证:BC是⊙D的切线;(2)设⊙D与BD相交于点H,与边CD相交于点F,连接HF,若AB=2√3,求图中阴影部分的面积;(3)假设圆的半径为r,⊙D上一动点M从点F出发,按逆时针方向运动,且∠FDM<90°,连接DM,MF,当S四边形DFHM:S四边形ABCD=3:4时,求动点M经过的弧长.25.如图①,已知抛物线y=αx2+2√3x+c(a≠0)与x轴交于A,B两点(点A在点B的3左侧),与y轴交于点C,点A坐标为(﹣1,0),点C坐标为(0,√3),点D是点C关于抛物线对称轴的对称点,连接CD,过点D作DH⊥x轴于点H,过点A作AE⊥AC交DH的延长线于点E.(1)求a,c的值;(2)求线段DE的长度;(3)如图②,试在线段AE上找一点F,在线段DE上找一点P,且点M为直线PF上方抛物线上的一点,求当△CPF的周长最小时,△MPF面积的最大值是多少?1.【能力值】无【知识点】(1)略【详解】(1)【考点】R5:中心对称图形【分析】根据中心对称图形的定义和各图特点即可解答.【解答】解:只有选项C连接相应各点后是正三角形,绕中心旋转180度后所得的图形与原图形不会重合.故选:C.【点评】本题考查中心对称图形的定义:绕对称中心旋转180度后所得的图形与原图形完全重合,和正奇边形有关的一定不是中心对称图形.【答案】(1)C2.【能力值】无【知识点】(1)略【详解】(1)【考点】1I:科学记数法—表示较大的数【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:90000亿=9×1012,故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【答案】(1)C3.【能力值】无【知识点】(1)略【详解】(1)【考点】14:相反数;15:绝对值;17:倒数;21:平方根;28:实数的性质【分析】根据有理数的绝对值、平方根、倒数和相反数解答即可.【解答】解:A、2的相反数是﹣2,错误;B、2的绝对值是2,正确;,错误;C、2的倒数是12D、2的平方根是±√2,错误;故选:B.【点评】此题考查了实数的性质,关键是根据有理数的绝对值、平方根、倒数和相反数解答.【答案】(1)B4.【能力值】无【知识点】(1)略【详解】(1)【考点】35:合并同类项;47:幂的乘方与积的乘方;48:同底数幂的除法;4C:完全平方公式【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式不能合并,不符合题意;B、原式=a6,不符合题意;C、原式=a,符合题意;D、原式=a2−2ab+b2,不符合题意,故选:C.【点评】此题考查了同底数幂的除法,合并同类项,幂的乘方与积的乘方,以及完全平方公式,熟练掌握公式及法则是解本题的关键.【答案】(1)C5.【能力值】无【知识点】(1)略【详解】(1)【考点】C4:在数轴上表示不等式的解集【分析】先求出每个不等式的解集,再求出不等式组的解集,再根据数轴判断即可.【解答】解:由数轴可得:﹣2<x≤1,故选:D.【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.【答案】(1)D6.【能力值】无【知识点】(1)略【详解】(1)【考点】JA:平行线的性质【分析】先根据平行线的性质,得出∠3的度数,再根据三角形外角性质进行计算即可.【解答】解:如图所示,∵DE∥BC,∴∠2=∠3=115°,又∵∠3是△ABC的外角,∴∠1=∠3﹣∠A=115°﹣30°=85°,故选:B.【点评】本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.【答案】(1)B7.【能力值】无【知识点】(1)略【详解】(1)【考点】JA:平行线的性质;K8:三角形的外角性质;M5:圆周角定理【分析】利用平行线的性质即可求得∠C的度数,根据圆周角定理:同弧所对的圆周角等于圆心角的一半求得∠O的度数,再利用三角形的外角的性质即可求解.【解答】解:∵OC∥AB,∴∠C=∠A=20°,又∵∠O=2∠A=40°,∴∠1=∠O+∠C=20°+40°=60°.故选:D.【点评】本题考查了圆周角定理与平行线的性质定理,正确利用圆周角定理求得∠O 的度数是关键.【答案】(1)D8.【能力值】无【知识点】(1)略【详解】(1)【考点】D1:点的坐标;X6:列表法与树状图法【分析】画树状图得出所有等可能结果,再从中找到符合条件的结果数,继而利用概率公式可得答案.【解答】解:画树状图如下:由树状图知,共有6种等可能结果,其中点(a,b)在第二象限的有2种结果,所以点(a,b)在第二象限的概率为26=13,故选:B.【点评】本题主要考查列表法与树状图法,列举法(树形图法)求概率的关键在于列举出所有可能的结果,列表法是一种,但当一个事件涉及三个或更多元素时,为不重不漏地列出所有可能的结果,通常采用树形图.【答案】(1)B9.【能力值】无【知识点】(1)略【详解】(1)【考点】D5:坐标与图形性质;T7:解直角三角形【分析】如图,作AE⊥x轴于E.根据tan∠AOE=AEEO =32,构建方程即可解决问题.【解答】解:如图,作AE⊥x轴于E.由题意:tan∠AOE=AEEO =32,∵A(t,2),∴AE=2,OE=﹣t,∴2−t=32∴t=−4 3故选:A.【点评】本题考查解直角三角形的应用,坐标与图形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【答案】(1)A10.【能力值】无【知识点】(1)略【详解】(1)【考点】E7:动点问题的函数图象【分析】过点E作EF⊥QP,垂足为F,连接EQ.由翻折的性质可知QE=QP,从而可表示出QF、EF、EQ的长度,然后在△EFQ中利用勾股定理可得到函数的关系式.【解答】解:如图所示,过点E作EF⊥QP,垂足为F,连接EQ.由翻折的性质可知:EQ=QP=y.∵∠EAP=∠APF=∠PFE=90°,∴四边形EAPF是矩形.∴EF=AP=x,PF=EA=1.∴QF=QP﹣PF=y﹣1.在Rt△EFQ中,由勾股定理可知:E Q2=QF2+EF2,即y2=(y−1)2+x2.整理得:y=12x2+12.故选:D.【点评】本题主要考查的是翻折的性质、矩形的性质和判定、勾股定理的应用,表示出QF、EF、EQ的长度,在△EFQ中利用勾股定理列出函数关系式是解题的关键.【答案】(1)D11.【能力值】无【知识点】(1)略【详解】(1)【考点】A8:解一元二次方程﹣因式分解法【分析】将方程化为一般形式,提取公因式分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程,求出一次方程的解即可得到原方程的解.【解答】解:x2=x,移项得:x2−x=0,分解因式得:x(x﹣1)=0,可得x=0或x﹣1=0,解得:x1=0,x2=1.故答案为:x1=0,x2=1【点评】此题考查了解一元二次方程﹣因式分解法,利用此方法解方程时,首先将方程右边化为0,左边化为积的形式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【答案】(1)x1=0,x2=112.【能力值】无【知识点】(1)略【详解】(1)【考点】55:提公因式法与公式法的综合运用【分析】原式提取3,再利用完全平方公式分解即可.【解答】解:原式=3(x2+2x+1)=3(x+1)2,故答案为:3(x+1)2【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.【答案】(1)3(x+1)213.【能力值】无【知识点】(1)略【详解】(1)【考点】H6:二次函数图象与几何变换【分析】直接运用平移规律“左加右减,上加下减”,在原式上加1即可得新函数解析式y=2x2.【解答】解:∵抛物线y=2x2−1向上平移一个单位长度,∴新抛物线为y=2x2.故答案为y=2x2.【点评】此题比较容易,主要考查了函数图象的平移,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.【答案】(1)y=2x214.【能力值】无【知识点】(1)略【详解】(1)【考点】L5:平行四边形的性质【分析】根据平行四边形的对边相等以及对角线互相平分进而求出即可.【解答】解:∵在平行四边形ABCD中,AC=14cm,BD=8cm,AD=6cm,∴CO=12AC=7cm,BO=12BD=4cm,BC=AD=6cm,∴△OBC的周长=BC+BO+CO=6+7+4=17(cm).故答案为:17cm.【点评】此题主要考查了平行四边形的性质,熟练根据平行四边形的性质得出BO,BC,CO的长是解题关键.【答案】(1)17cm15.【能力值】无【知识点】(1)略【详解】(1)【考点】AA:根的判别式;KP:直角三角形斜边上的中线;KS:勾股定理的逆定理【分析】由根的判别式求出AC=b=4,由勾股定理的逆定理证出△ABC是直角三角形,再由直角三角形斜边上的中线性质即可得出结论.【解答】解:∵关于x的方程x2−4x+b=0有两个相等的实数根,∴Δ=16−4b=0∴AC=b=4∵BC=2,AB=2√3∴B C2+AB2=AC2∴△ABC是直角三角形,AC是斜边,∴AC 边上的中线长=12AC =2; 故答案为:2.【点评】本题考查了根的判别式,勾股定理的逆定理,直角三角形斜边上的中线性质;证明△ABC 是直角三角形是解决问题的关键. 【答案】(1)2 16.【能力值】无 【知识点】(1)略【详解】(1)【考点】D5:坐标与图形性质【分析】根据含30度的直角三角形三边的关系得O A 2=OC 2cos 30∘=3cos 30∘=3√32=3×2√33;O A 3=OC 3cos 30∘=OA2cos 30∘=3×(2√33)2;O A 4=OC 4cos 30∘=OA3cos 30∘=3×(2√33)3,…,于是可得到O A 2016=3×(2√33)2015,OA 2018=3×(2√33)2017,代入O A 2018OA 2016,化简即可. 【解答】解:∵∠A 2OC 2=30∘,OA 1=OC 2=3,∴O A 2=0C 2cos 30∘=3cos 30∘=√3=3×2√33 O A 3=0C 3cos 30∘=0A 2cos 30∘=3×(2√33)2O A4=0C 4cos 30∘=0A 3cos 30∘=3×(2√33)3…,∴O A 2016=3×(2√33)2015,OA 2018=3×(2√33)2017, ∴0A 2018OA 2016=3×(2√33)20173×(2√33)2015=(2√33)2=43.故答案为43.【点评】本题考查了规律型,点的坐标,坐标与图形性质,通过从一些特殊的点的坐标发现不变的因素或按规律变化的因素,然后推广到一般情况.也考查了含30度的直角三角形三边的关系及三角函数.【答案】(1)4317.【能力值】无【知识点】(1)略【详解】(1)【考点】2C:实数的运算;6F:负整数指数幂;T5:特殊角的三角函数值【分析】直接利用负指数幂的性质以及特殊角的三角函数值、绝对值的性质分别化简得出答案.【点评】此题主要考查了实数运算,正确化简各数是解题关键.【答案】(1)解:原式=4√3−3+2018−4×√32=4√3−3+2018−2√3=2015+2√318.【能力值】无【知识点】(1)略【详解】(1)【考点】6D:分式的化简求值【分析】先计算括号内减法、同时将除法转化为乘法,再约分即可化简,最后代入求值即可.【点评】本题主要考查分式的化简求值能力,熟练掌握分式的混合运算顺序是解题的关键.【答案】(1)解:原式=x2−x−4+xx−1×x−1(x−2)2=(x+2)(x−2)x−1×x−1(x−2)2=x+2x−2,当x=2+ 时,原式=√3+22+√3−2=4+√3√3=4√3+3.19.【能力值】无【知识点】(1)略(2)略【详解】(1)【考点】KH:等腰三角形的性质;N2:作图—基本作图;S8:相似三角形的判定【分析】(1)利用角平分线的作法作出线段BD即可;(2)先根据等腰三角形的性质得出∠ABC=∠C=72°,再由角平分线的性质得出∠ABD 的度数,故可得出∠A=∠CBD=36°,∠C=∠C,据此可得出结论.【点评】本题考查的是作图﹣基本作图,熟知角平分线的作法是解答此题的关键.【答案】(1)如图,线段BD为所求出;(2)∵∠A=36°,AB=AC,(180°﹣36°)=72°.∴∠ABC=∠C=12∵BD平分∠ABC,∴∠ABD=∠DBC=72°÷2=36°.∵∠A=∠CBD=36°,∠C=∠C,∴△ABD∽△BDC.20.【能力值】无【知识点】(1)略(2)略(3)略(4)略【详解】(1)【考点】V5:用样本估计总体;VB:扇形统计图;VD:折线统计图【分析】(1)根据了解很少的人数以及百分比,求出总人数即可.(2)(2)求出不了解的人数,画出折线图即可.(3)(3)根据圆心角=360°×百分比计算即可.(4)利用样本估计总体的思想解决问题即可.【点评】本题考查折线统计图,样本估计总体,扇形统计图等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.【答案】(1)解:(1)总人数=60÷50%=120(人).(2)不了解的人数=120﹣60﹣30﹣10=20(人),折线图如图所示:(3)了解的圆心角=10120×360∘=30∘,基本了解的百分比=30120=25%,∴m=25.故答案为:30,25.(4)3000×20120=500(人),答:估算该校学生对足球的了解程度为“不了解”的人数为500人.21.【能力值】无【知识点】(1)略(2)略【详解】(1)【考点】AD:一元二次方程的应用;C9:一元一次不等式的应用【分析】设甲队单独完成需要x个月,则乙队单独完成需要x﹣5个月,根据题意列出关系式,求出x的值即可;(2)设甲队施工y个月,则乙队施工12y个月,根据工程款不超过1500万元,列出一元一次不等式,解不等式求最大值即可.【点评】本题考查了一元二次方程的应用和一元一次不等式的应用,难度一般,解本题的关键是根据题意设出未知数列出方程及不等式求解.【答案】(1)解:设甲队单独完成需要x个月,则乙队单独完成需要(x﹣5)个月,由题意得,x(x﹣5)=6(x+x﹣5),解得x1=15,x2=2(不合题意,舍去),则x﹣5=10.答:甲队单独完成这项工程需要15个月,则乙队单独完成这项工程需要10个月;(2)设甲队施工y个月,则乙队施工12y个月,由题意得,100y+(100+50)y2⩽1500,解不等式得y≤8.57,∵施工时间按月取整数,∴y≤8,答:完成这项工程,甲队最多施工8个月才能使工程款不超过1500万元.22.【能力值】无【知识点】(1)略(2)略【详解】(1)【考点】KD:全等三角形的判定与性质;LE:正方形的性质;T7:解直角三角形【分析】过点F作FG⊥BC于点G,易证△ABE≌△EGF,所以可得到AB=EG,BE=FG,由此可得到∠FCG=∠45°,即CF平分∠DCG,所以CF是正方形ABCD外角的平分线;(2)首先可求出BE的长,即FG的长,再在Rt△CFG中,利用cos45°即可求出CF的长.【点评】主要考查了正方形的性质,以及全等三角形的判定和性质、特殊角的三角函数值的运用,题目的综合性较强,难度中等.【答案】(1)证明:过点F作FG⊥BC于点G.∵∠AEF=∠B=∠90°,∴∠1=∠2.在△ABE和△EGF中,{∠1=∠2∠B=∠FGE=90∘AE=EF∴△ABE≌△EGF(AAS).∴AB=EG,BE=FG.又∵AB=BC,∴BE=CG,∴FG=CG,∴∠FCG=∠45°,即CF平分∠DCG,∴CF是正方形ABCD外角的平分线.(2)∵AB=3,∠BAE=30°,tan30∘=BEAB =√33,BE=AB⋅tan30∘=3×√33,即CG=√3.在Rt△CFG中,cos45∘=CGCF,∴CF=√6.23.【能力值】无【知识点】(1)略(2)略(3)略【详解】(1)【考点】GB:反比例函数综合题【分析】如图①,作辅助线,根据等腰三角形三线合一得:OC=AC=12OA,所以OC=AC=3,根据点B在反比例函数y=12x(x>0)的图象上,代入解析式可得B的坐标,再利用待定系数法可得直线AB的解析式;(2)如图①,根据△AOB是等腰直角三角形,得OC=AC=12OA,设点B(a,a)(a>0),列方程可得a的值,从而得A的坐标;(3)如图②,作辅助线,根据△PA1A是等腰直角三角形,得PD=AD,设AD=m(m>0),则点P的坐标为(4√3+m,m),列方程可得结论.【点评】此题是反比例函数与一次函数的综合题,难度适中,解题的关键是:(1)求出点B的坐标;(2)根据点B在反比例函数图象上列方程;(3)设AD=m,表示P 的坐标并列方程.解决该题型题目时,找出点的坐标,再利用反比例函数解析式列方程是关键.【答案】(1)解:如图①,过B作BC⊥x轴于C,∵OB=AB,BC⊥x轴,∴OC=AC=12OA,∵点A的坐标为(6,0),∴OA=6,∴OC=AC=3,∵点B在反比例函数y=12(x>0)的图象上,∴y=123=4,∴B(3,4),∵点A(6,0),点B(3,4)在y=kx+b的图象上,∴{6k+b=03k+b=4,解得:{k=−43b=8,∴直线AB的解析式为:y=−43x+8;(2)如图①,∵∠OBA=90°,OB=AB,∴△AOB是等腰直角三角形,OA,∴BC=OC=12设点B(a,a)(a>0),(x>0)的图象上,∵顶点B在反比例函数y=12x,解得:a=±2√3(负值舍),∴a=12a∴OC=2√3∴OA=2OC=4√3∴A(4√3,0)(3)如图②,过P作PD⊥x轴于点D,∵△PA1A是等腰直角三角形,∴PD=AD,设AD=m(m>0),则点P的坐标为(4√3+m,m)∴m(4√3+m)=12解得:x1=2√6−2√3,m2=−2√6−2√3(负值舍去),∴A1A=2m=4√6−4√3∴O A1=OA+AA1=4√6∴点A1的坐标是(4√6,0).24.【能力值】无【知识点】(1)略(2)略(3)略【详解】(1)【考点】MR:圆的综合题【分析】(1)过D作DQ⊥BC于Q',连接DE.证明DE=DQ,即BC是⊙D的切线;(2)过F作FN⊥DH于N.先证明△ABD为等边三角形,所以∠DAB=60°,AD=BD=AB,再证明△DHF为等边三角形,在Rt△DFN中,FN⊥DH,∠BDC=60°,sin∠BDC=sin60°=FNDF =FN3=√32,FN=3√32,S阴影=S扇形FDH−SΔFDH;(3)假设点M运动到某个位置时,符合题意,连接DM、DF,过M作NZ⊥DF于Z,当M 运动到离弧最近时,DE=DH=DF=DM=r,证明∠MDC=60°,此时,动点M经过的弧长为13πr.【点评】本题考查了圆综合知识,熟练掌握圆的相关知识与菱形的性质以及特殊三角函数值是解题的关键.【答案】(1)解:证明:过D作DQ⊥BC于Q',连接DE.∵⊙D且AB于E,∴DE⊥AB,∵四边形ABCD是菱形,∴BD平分∠ABC,∴DE=DQ,∴BC是⊙D的切线;(2)过F作FN⊥DH于N.∵四边形ABCD是菱形,AB=2√3,∴AD=AB=2√3,DC∥AB,∵在Rt△ADE中,DE⊥AB,∠A=60°,∴sinA=sin60∘=DEAD =2√3=√32,∴DE=3,DH=DF=DE=3∵AD=AB=2√3,∠A=60°,∴△ABD为等边三角形,∴∠DAB=60°,AD=BD=AB,∵DC∥AB,∴∠BDC=∠DBA=60°,∵DH=DF=3,∴△DHF为等边三角形,在Rt△DFN中,FN⊥DH,∠BDC=60°,∴sin∠BDC=sin60∘=FNDF =FN3=√32,∴FN=3√32,∴S阴影=S扇形FDH−SΔFDH=60π×32360−12×3×3√32=3π2−9√34;(3)假设点M运动到某个位置时,符合题意,连接DM、DF,过M作NZ⊥DF于Z,当M运动到离弧最近时,DE=DH=DF=DM=r,由(2)在Rt△DFN中,sin∠BDC=sin60∘=FNDF =FNr=√32,∴FN=√32r,S△HDF=12×r×√32r=√34r2,在Rt△ADE中,sinA=sin60∘=DEAD=rAD=√32∴AD=2√3 3rAB=AD=2√33r,∴S菱形ABCD =AB⋅DE=2√33r⋅r=2√33r2,∵当S四边形DFHM:S四边形ABCD=3:4,∴S四边形DFHM =√32r2,∴S△DFM=S四边形DFHM−SΔHDF=√32r2=12DF⋅MZ=12rMZ,∴MZ=√32r在Rt△DMF中,MF⊥CD,sin∠MDC=MZMD=√32rr=√32∴∠MDC=60∘此时,动点M经过的弧长为13πr.25.【能力值】无【知识点】(1)略(2)略(3)略【详解】(1)【考点】HF:二次函数综合题【分析】(1):(1)将A(−1,0),C(0,√3)代入抛物线y=αx2+2√33x+c(a≠0),求出a、c的值;(2)由(1)得抛物线解析式:y=−√33x2+2√33+√3,点D是点C关于抛物线对称轴的对称点,C(0,√3),所以D(2,√3),DH=√3,再证明△ACO∽△EAH,于是OCAH =OAEH即=√33=1EH,解得:EH=2√3,则DE=2√3;(3)找点C关于DE的对称点N(4,√3),找点C关于AE的对称点G(−2,−√3),连接GN,交AE于点F,交DE于点P,即G、F、P、N四点共线时,△CPF周长=CF+PF+CP=GF+PF+PN最小,根据SΔMFP=√33m2+√33m+4√33=√33(m−12)2+1712√3,m=12时,△MPF面积有最大值1712√3.【点评】本题考查了二次函数,熟练运用相似三角形的性质与二次函数图象的性质是解题的关键.【答案】(1)解:(1)将A(−1,0),C(0,√3)代入抛物线y=a x2+2√33x+c(a≠0),{a−2√33+c=0 c=√3∴a=−√33,c=√3(2)由(1)得抛物线解析式:y=√33x2+2√33+√3∵点D是点C关于抛物线对称轴的对称点,C(0,√3)∴D(2,√3)∴DH=√3令y=0,即−√33x2+2√33x+√3=0,得x1=−1,x2=3,∴A(﹣1,0),B(3,0),∵AE ⊥AC ,EH ⊥AH ,∴△ACO ∽△EAH ,∴OC AH =OA EH =即=√33=1EH, 解得:EH =2√3,则DE =2√3;(3)找点C 关于DE 的对称点N(4,√3),找点C 关于AE 的对称点G(−2,−√3), 连接GN ,交AE 于点F ,交DE 于点P ,即G 、F 、P 、N 四点共线时,△CPF 周长=CF+PF+CP =GF+PF+PN 最小,∴直线GN 的解析式:y =√33x −√33, 由(2)得E(2,−√3),A(−1,0)∴直线AE 的解析式:y =−√33x −√33, 联立{y =√33x −√33y =√33x −√33 解得{x =0y =√33∴F (0,−√33),∵DH ⊥x 轴,∴将x =2代入直线AE 的解析式:y =−√33x −√33,∴P (2,√32) ∴F (0,−√33)与P (2,√32)的水平距离为2 过点M 作y 轴的平行线交FH 于点Q , 设点M (m,−√33m 2+2√33m +√3), 则Q (m,√33m −√33)(1−√172<m <1+√172); ∴S ΔMFP =S ΔMQF +S ΔMQP =12MQ ×2=MQ =(−√33m 2+2√33m +√3)−(√33m −√33) S ΔMFP =√33m 2+√33m +4√33=√33(m −12)2+1712√3 ∵对称轴为:直线m =12, ∵开口向下,1−√172<m 1+√172, ∴m =12时,△MPF 面积有最大值为1712√3..。
广东省广州市2019-2020学年中考数学二模考试卷含解析
广东省广州市2019-2020学年中考数学二模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.若点(x 1,y 1),(x 2,y 2),(x 3,y 3)都是反比例函数y =﹣1x图象上的点,并且y 1<0<y 2<y 3,则下列各式中正确的是( ) A .x 1<x 2<x 3B .x 1<x 3<x 2C .x 2<x 1<x 3D .x 2<x 3<x 12.已知抛物线y =x 2+(2a+1)x+a 2﹣a ,则抛物线的顶点不可能在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示: 成绩/m 1.501.601.651.701.751.80人数232341则这些运动员成绩的中位数、众数分别为( ) A .1.65、1.70B .1.65、1.75C .1.70、1.75D .1.70、1.704.下列计算中,正确的是( ) A .a•3a=4a 2 B .2a+3a=5a 2 C .(ab )3=a 3b 3D .7a 3÷14a 2=2a5.函数228y x x m =--+的图象上有两点()11,A x y ,()22,B x y ,若122x x <<-,则( ) A .12y y <B .12y y >C .12 y y =D .1y 、2y 的大小不确定6.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .40716 ) A .±4B .4C .2D .±28.如图,在Rt △ABC 中,∠B=90°,∠A=30°,以点A 为圆心,BC 长为半径画弧交AB 于点D ,分别以点A 、D 为圆心,AB 长为半径画弧,两弧交于点E ,连接AE ,DE ,则∠EAD 的余弦值是( )A .3 B .3 C .3 D .3 9.某工厂计划生产210个零件,由于采用新技术,实际每天生产零件的数量是原计划的1.5倍,因此提前5天完成任务.设原计划每天生产零件x 个,依题意列方程为( )A .21021051.5x x -= B .21021051.5x x -=- C .21021051.5x x-=+ D .2102101.55x=+ 10.下列二次根式中,2的同类二次根式是( ) A .4B .2xC .29D .1211.如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( )A .x >﹣2B .x >0C .x >1D .x <112.PM2.5是指大气中直径小于或等于2.5μm (1μm=0.000001m )的颗粒物,也称为可入肺颗粒物,它们含有大量的有毒、有害物质,对人体健康和大气环境质量有很大危害.2.5μm 用科学记数法可表示为( ) A .52.510m -⨯B .70.2510m -⨯C .62.510m -⨯D .52510m -⨯二、填空题:(本大题共6个小题,每小题4分,共24分.)13.科技改变生活,手机导航极大方便了人们的出行.如图,小明一家自驾到古镇C 游玩,到达A 地后,导航显示车辆应沿北偏西60°方向行驶6千米至B 地,再沿北偏东45°方向行驶一段距离到达古镇C .小明发现古镇C 恰好在A 地的正北方向,则B 、C 两地的距离是_____千米.14.写出一个经过点(1,2)的函数表达式_____.15.如图,直角△ABC 中,AC=3,BC=4,AB=5,则内部五个小直角三角形的周长为_____.16.已知实数x ,y 满足2(x 5)y 70-+-=,则以x ,y 的值为两边长的等腰三角形的周长是______. 17.如图,校园内有一棵与地面垂直的树,数学兴趣小组两次测量它在地面上的影子,第一次是阳光与地面成60°角时,第二次是阳光与地面成30°角时,两次测量的影长相差8米,则树高_____________米(结果保留根号).18.使得关于x 的分式方程111x k kx x +-=+-的解为负整数,且使得关于x 的不等式组322144x x x k+≥-⎧⎨-≤⎩有且仅有5个整数解的所有k 的和为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在正方形ABCD 中,E 为对角线AC 上一点,CE=CD ,连接EB 、ED ,延长BE 交AD 于点F .求证:DF 2=EF•BF .20.(6分)如今,旅游度假成为了中国人庆祝传统春节的一项的“新年俗”,山西省旅发委发布的《2018年“春节”假日旅游市场总结分析报告》中称:山西春节旅游供需两旺,实现了“旅游接待”与“经济效益”的双丰收,请根据图表信息解决问题:(1)如图1所示,山西近五年春节假日接待海内外游客的数量逐年增加,2018年首次突破了“千万”大关,达到 万人次,比2017年春节假日增加 万人次.(2)2018年2月15日﹣20日期间,山西省35个重点景区每日接待游客数量如下:日期2月15日(除夕)2月16日(初一)2月17日(初二) 2月18日(初三)2月19日(初四)2月20日(初五)日接待游客数量(万人次)7.5682.83119.5184.38103.2151.55这组数据的中位数是 万人次.(3)根据图2中的信息预估:2019年春节假日山西旅游总收入比2018年同期增长的百分率约为,理由是.(4)春节期间,小明在“青龙古镇第一届新春庙会”上购买了A,B,C,D四枚书签(除图案外完全相同).正面分别印有“剪纸艺术”、“国粹京剧”、“陶瓷艺术”、“皮影戏”的图案(如图3),他将书签背面朝上放在桌面上,从中随机挑选两枚送给好朋友,求送给好朋友的两枚书签中恰好有“剪纸艺术”的概率.21.(6分)如图,直线y=﹣x+4与x轴交于点A,与y轴交于点B.抛物线y=﹣12x2+bx+c经过A,B两点,与x轴的另外一个交点为C填空:b=,c=,点C的坐标为.如图1,若点P是第一象限抛物线上的点,连接OP交直线AB于点Q,设点P的横坐标为m.PQ与OQ的比值为y,求y 与m的数学关系式,并求出PQ与OQ的比值的最大值.如图2,若点P是第四象限的抛物线上的一点.连接PB与AP,当∠PBA+∠CBO=45°时.求△PBA的面积.22.(8分)2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景线.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海地隧道,西人工岛上的A点和东人工岛上的B点间的距离约为5.6千米,点C是与西人工岛相连的大桥上的一点,A,B,C在一条直线上.如图,一艘观光船沿与大桥AC段垂直的方向航行,到达P点时观测两个人工岛,分别测得PA,PB与观光船航向PD 的夹角18DPA ∠=︒,53DPB ∠=︒,求此时观光船到大桥AC 段的距离PD 的长(参考数据:180.31sin ︒≈,180.95cos ︒≈,180.33tan ︒≈,530.80sin ︒≈,530.60cos ︒≈,53 1.33tan ︒≈).23.(8分)如图,AB 是⊙O 的直径,点C 是⊙O 上一点,AD 与过点C 的切线垂直,垂足为点D ,直线DC 与AB 的延长线相交于点P ,弦CE 平分∠ACB ,交AB 点F ,连接BE . (1)求证:AC 平分∠DAB ; (2)求证:PC =PF ; (3)若tan ∠ABC =43,AB =14,求线段PC 的长.24.(10分)在传箴言活动中,某班团支部对该班全体团员在一个月内所发箴言条数的情况进行统计,并绘制成了如图所示的两幅统计图(1)将条形统计图补充完整;(2)该班团员在这一个月内所发箴言的平均条数是________;(3)如果发了3条箴言的同学中有两位男同学,发了4条箴言的同学中有三位女同学,现要从发了3条箴言和4条箴言的同学中分别选出一位参加总结会,请你用列表或树状图的方法求出所选两位同学恰好是。
2019届广州二模文科数学试题答案原版
AO .
在△ BOP 和△ BOA 中,因为 PO = AO ,P=B A=D AB ,BO = BO ,所以△ BOP ≅ △ BOA .
数学(文科)答案 A 第 2 页 共 12 页
所以 ∠BOP = ∠BOA = 90A .所以 OP ⊥ OB .】 由(1)有 PO ⊥ AD ,且 AD BO = O , AD ⊂ 平面 ABCD , BO ⊂ 平面 ABCD , 所以 PO ⊥ 平面 ABCD .…………………………………………………………………………………8 分 在△ PBC 中,由(1)证得 AD ⊥ PB ,且 BC / / AD ,所以 BC ⊥ PB .
因为 PO2 + BO2 = PB2 ,所以 PO ⊥ BO .…………………………………………………………10 分
【9-10 分段另证:在△ APD 中, ∠APD = 90A , O 为 AD 的中点,所以= PO
1= AD 2
AO .
在△ BOP 和△ BOA 中,因为 PO = AO ,P=B A=D AB ,BO = BO ,所以△ BOP ≅ △ BOA .
化简得 2(sin Acos B + cos Asin B) = sin A + sin B .………………………………………………2 分
即 2sin ( A + B)= sin A + sin B .………………………………………………………………………3 分
因在 ∆ABC 中, A + B + C =π ,则 sin ( A + B=) sin (π − C=) sin C .……………………………4 分
P
由(1)证得 AD ⊥ 平面 POB ,且 AD / / BC ,
2019年广东中考二模 数学
中考第二次模拟考试数 学校区____ _____ 姓名_____________ 原就读学校_____________ 成绩_____________说明:1.全卷共10页,满分为120分,考试用时为100分钟。
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在试卷上填写自己的校区、姓名、原就读学校。
3.选择题每小题选出答案后,用黑色字迹的签字笔或钢笔在试卷上对应题目选项写上答案,如需改动,先划掉原来的答案,然后再写上新的答案;4.非选择题必须用黑色字迹钢笔或签字笔作答、答案必须写在试卷各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持卷面的整洁。
考试结束时,将试卷交回。
一、 选择题(每小题3分,共30分)1.如果a 与-2互为倒数,那么a 是( ) A .-2 B .-21 C .21D .2 2.据统计,2012“中国好声音”短信投票的总票数约327 000 000张,将这个数写成科学记数法是( ) A .63.2710⨯ B .73.2710⨯ C .83.2710⨯ D .93.2710⨯ 3.不等式组⎩⎨⎧>->-03,042x x 的解集为( )A .x >2B .x <3C .x >2或x <-3D .2<x <34.若反比例函数y x=-1的图象经过点A (2,m ),则m 的值是( ) A .-2 B .2 C .-12 D .215.一个袋中装有1个红球,2个白球,3个黄球,它们除颜色外完全相同.小明从袋中任意摸出1个球, 摸出的是 白球的概率是( )A .61B .31C .21 D .16.已知a 为等边三角形的一个内角,则cos a 等于( )A . 21B .22C .23D .337.下列美丽的图案,既是轴对称图形又是中心对称图形的个数是( ).A .1个 B .2个 C .3个 D .4个8.教练组对运动员正式比赛前的5次训练成绩进行分析,判断谁的成绩更加稳定,一般需要考察这5次成绩的 ()A .平均数或中位数B .众数或频率C .方差或极差D .频数或众数9.如图所示,把一个正方形三次对折后沿虚线剪下,则所得的图形是( )10.某学习小组在讨论“变化的鱼”时,知道右图中的大鱼与小鱼是位似图形, 若小鱼上的点P (a ,b )对应大鱼上的点Q ,则点Q 的坐标为( )A .(-2a ,-2b )B .(-a ,-2b )C .(-2b ,-2a )D .(-2a ,-b )二、填空题(每小题4分,共24分)11.比较大小:(选填“>”、“<”或“=”). 12.用字母表示图中阴影部分的面积为 .13.某商店销售一批服装,每件售价150元,打8折后,仍可获利20%, 设这种服装的成本价为x 元,则x 满足的方程是 .14矩形、菱形、正方形);②矩形(不包括正方形);③正方形;④等边三角形;⑤等腰直 角三角形,其中一定能拼成的图形是 .(只填序号)15.某班有49位学生,其中有21位女生. 在一次活动中,班上每一位学生的名字都各自写在一张小纸条上,放入一盒中搅匀. 如果老师闭上眼睛从盒中随机抽出一张纸条,那么抽到写有女生名字纸条的概率是 .(第10题)(第14题)16.计算0|3|(1tan 45--的结果是 .三、解答题(一)(每小题5分,共15分)17.先化简,再求值:x -y x ÷⎝ ⎛⎭⎪⎫x -2xy -y 2x ,其中x =2,y =-1.18.日本福岛出现核电站事故后,我国国家海洋局高度关注事态发展,紧急调集海上巡逻的海检船,在相关海域进行现场监测与海水采样,针对核泄漏在极端情况下对海洋环境的影响及时开展分析评估.如图,上午9时,海检船位于A 处,观测到某港口城市P 位于海检船的北偏西67.5°方向,海检船以21海里/时的速度向正北方向行驶,下午2时海检船到达B 处,这时观察到城市P 位于海检船的南偏西36.9°方向,求此时海检船所在B 处与城市P 的距离?⎝⎛参考数据:sin 36.90≈35,tan 36.90≈34,⎭⎪⎫sin 67.50≈1213,tan 67.50≈12519. 如图,在由边长为1的小正方形组成的方格纸中,有两个全等的三角形, 即111A B C △和222A B C △.请你指出在方格纸内如何运用平移、旋转变换,将111A B C △重合到222A B C △上.四、解答题(二)(每小题8分,共24分)20.如图,将一张矩形纸片ABCD 折叠,使AB 落在AD 边上,然后打开,折痕为AE ,顶点B 的落点为F .你认为四边形ABEF 是什么特殊四边形?请说出你的理由.21. 如图,把一个木制正方体的表面涂上颜色,然后将正方体分割成64个大小相同的小正 方体.从这些小正方体中任意取出一个,求取出的小正方体: (1)三面涂有颜色的概率; (2)两面涂有颜色的概率; (3)各个面都没有颜色的概率.22.对于任何实数,我们规定符号⎪⎪⎪ a c⎪⎪⎪b d 的意义是⎪⎪⎪ a c⎪⎪⎪b d =ad -bc . (1)按照这个规定请你计算⎪⎪⎪ 57⎪⎪⎪68的值; (2)按照这个规定请你计算:当x 2-3x +1=0时,⎪⎪⎪⎪⎪⎪x +1x -23xx -1的值.D DD五、解答题(三)(每小题9分,共27分)23.如图,已知反比例函数y =kx的图象经过第二象限内的点A (-1,m ),AB ⊥x 轴于点B ,△AOB 的面积为2.若直线y =ax +b 经过点A ,并且经过反比例函数y =k x的图象上另一点C (n ,-2). (1)求直线y =ax +b 的解析式;(2)设直线y =ax +b 与x 轴交于点M ,求AM 的长.24. 如图,Rt△ABC 的内切圆⊙O 与AB 、BC 、CA 分别相切于点D 、E 、F ,且∠ACB=90°,AB =5,BC =3。
2019年白云区初中毕业班数学2模试卷及答案
2019年白云区初中毕业班综合测试(二)数学试题本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分.考试时间120分钟,不能..使用计算器. 注意事项:1.答卷前,考生务必在答题卡第1页上用黑色字迹的钢笔或签字笔填写自己的学校、班级、姓名、试室号、座位号、准考证号,再用2B 铅笔把准考证号对应的号码标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需要改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.计算20所得结果是( * ). (A )0(B )1(C )2(D )122.下列运算正确的是( * ). (A )()222a b a b -=-(B )()222a b a b +=+(C )()422a bab =(D )()236aa =3.下列调查方式,合适的是( * ).(A )要了解一批灯泡的使用寿命,采用普查方式(B )要了解广州电视台“今日报道”栏目的收视率,采用普查方式 (C )要了解我国15岁少年身高情况,采用普查方式(D )要选出某校短跑最快的学生参加全市比赛,采用普查方式4.若分式211x x --的值为0,则实数x 的值为( * ).(A )-1 (B )1± (C )0(D )15.解方程51123x x --+=时,去分母后得到的方程是( * ). (A )()()35211x x -+-=(B )()35211x x -+-=(C )()()35216x x -+-=(D )()35216x x -+-=6.下列函数中,当x >0时, y 随x 的增大而增大的是( * ). (A )21y x =-+(B )2y x=(C )221y x =-+ (D )2y x =7.如图,将矩形ABCD 折叠,使点C 与点E 重合,折痕为线段DF ,已知矩形ABCD 的面积为6,四边形CDEF 的面积为4,则AC =( * ). (A(B(C(D8.如图,在梯形ABCD 中,AB CD ∥,过点C 作∥CE BD ,交AB 延长线于点E ,对角线AC BD 、相交于点O ,下列结论中,错误的是( * ).(A )△AOB ∽△COD (B )=AOB ACB ∠∠ (C )四边形BDCE 是平行四边形(D )AODBOC SS =△△9.在正方体表面上画有如图中所示的粗线,那么它的展开图可以是( * ).(A )(B )(C )(D )(第9题图)(第8题图)FEDCBA(第7题图)10.0k ≠,函数y kx k =-与ky x=在同一平面直角坐标系中的大致图象可能是( * ).第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,共18分) 11.计算:263ab ab ÷12.不等式组1235-x x ⎧<⎪⎨⎪+⎩13.如图,如果AE BD ∥,CD =20,CE =36,AC =27,那么BC = * .14.某样本数据分成5组,第1组和第2组的频率之和为0.3,第3组的频率是0.14,第4组和第5组的频率相等,那么第5组的频率是 * .15.一张试卷只有25道选择题,答对一题得4分,答错倒扣1分,某学生解答了全部试题共得70分,他答对了 * 道题.16.如图,在四边形ABCD 中,对角线AC 垂直平分BD ,∠BAD =120°,AB =4,点E 是AB 的中点,点F 是AC 上一动点,则EF +BF 的最小值是 *.三、解答题(本大题共9小题,共102分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分)计算: 2sin30°-11--2⎛⎫⎪⎝⎭(第13题图)E DCB A (第16题图)FEDCBAxxxx18.(本小题满分9分)如图,在 ABCD 中,点E 、F 分别在BC 、DA 上,且FD =EB .求证:四边形AECF 是平行四边形.19.(本小题满分10分)已知a 、b (a b >)是方程2540x x -+=的两个不相等的实数根,求22a b a b a b---的值. 20.(本小题满分10分)现需了解2019年各月份中5至14日广州市每天最低气温的情况:图①是3月份的折线统计图.(数据来源于114天气网)3月份 3月份 5月份图①图②图③(1)图②是3月份的频数分布直方图,根据图①提供的信息,补全图②中的频数分布直方图; (2)3月13日与10日这两天的最低气温之差是 * ℃;(3)图③是5月份的折线统计图.用25S 表示5月份的方差;用23S 表示3月份的方差,比较大小:23S * 25S ;比较3月份与5月份, * 月份的更稳定.21.(本小题满分12分)某商场销售产品A ,第一批产品A 上市40天内全部售完.该商场对第一批产品A 上市后的销售情况进行了跟踪调查,调查结果如图所示:图①中的折线表示日销售量w 与上市时间t的关系;图②中的折线表示每件产品A 的销售利润y 与上市时间t 的关系.(1) 观察图①,试写出第一批产品A 的日销售量w 与上市时间t 的关系;(2) 第一批产品A 上市后,哪一天这家商店日销售利润Q 最大?日销售利润Q 最大是多少元?(日销售利润=每件产品A 的销售利润×日销售量)(第20题图)(第18题图)最低气温(℃)(第22题图)花园人工湖C B AD北上市时间t (天)O 204060每件产品A 的销售利润y (元/件)日销售量w (件)上市时间t (天)604030O图① 图②22.(本小题满分12分)某校初三(1)班综合实践小组去某地测量人工湖的长,如图A 、D 是人工湖边的两座雕塑,AB 、BC 是小路,小东同学进行如下测量:D 点在A 点的正北方向,B 点在A 点的北偏东60º方向,C 点在B 点的北偏东45º方向,C 点在D 点正东方向,且测得AB =20米,BC =40米,求AD 的长. (结果保留根号)23.(本小题满分12分)如图,⊙O 的半径为5,点A 在⊙O 上,过点A 的直线l 与⊙O 相交于点B ,AB =6,以直线l 为图象的一次函数解析式为y = kx -8k (k 为常数且k ≠0). (1) 求直线l 与x 轴交点的坐标;(2) 求点O 到直线AB 的距离; (3) 求直线AB 与y 轴交点的坐标.第23题图l5yxBA O(第21题图)24.(本小题满分14分)如图①,△ABC 表示一块含有60°角的直角三角板,60°所对的边BC 的长为6,以斜边AB 所在直线为x 轴,AB 边上的高所在直线为y 轴,建立平面直角坐标系.等腰直角△DEF 的直角顶点F 初始位置落在y 轴的负半轴,斜边DE 始终在x 轴上移动,且DE=6.抛物线y =ax 2+ bx + c 经过A 、B 、C 三点.(1)求a 、b 、c ;(2)△DEF 经过怎样的平移后,点E 与点B 重合?求出点E 与点B 重合时,点F 的坐标; (3)△DEF 经过怎样的平移后,⊙E 与直线AC 和BC 均相切?(参考数据:2)图①图② (备用图)25.(本小题满分14分)已知:如图①,四边形ABCD 是正方形,在CD 的延长线上任取一点E ,以CE 为边作正方形CEFG ,使正方形ABCD 与正方形CEFG 分居在CD 的两侧,连接AF ,取AF 的中点M ,连接EM 、DM ,DM 的延长线交EF 于点N . (1)求证:△ADM ≌△FNM ; (2)判断△DEM 的形状,并加以证明; (3)如图②,将正方形CEFG 绕点C 按逆时针方向旋转n °(30< n <45)后,其他条件不变,(2)中的结论还成立吗?如果成立,请加以证明;如果不成立,请说明理由.图①图②(第25题图)BB(第24题图)2019年白云区初中毕业班综合测试(二)数学参考答案及评分标准三、解答题17.(本小题满分9分)解:原式=2×21-(-2)-6…………………………………………………………………………4分 =1+2-6………………………………………………………………………………………8分 =-3…………………………………………………………………………………………9分18.(本小题满分9分)证明:在 ABCD 中,∵AD = BC , ………………………………………………………………………………………2分 FD=EB ,∴AD -FD = BC -EB .……………………………………………………………………………4分 即AF = EC .………………………………………………………………………………………5分 在 ABCD 中,∵AD ∥BC , 即AF ∥EC .……………………………………………………………………7分 ∴四边形AECF 是平行四边形. …………………………………………………………………9分(第18题图)解:22a b a b a b--- =22a b a b--…………………………………………………………………………………………………2分 =()()+a b a b a b-- ………………………………………………………………………………………4分=+a b . …………………………………………………………………………………………………6分 方法一:2540x x -+=.()()410x x --=.…………………………………………………………………………7分解得1=4x 或2=1x .……………………………………………………………………………………8分∵a 、b (a b >)是方程2540x x -+=的两个不相等的实数根,∴ a =4,b =1.…………………………………………………………………………………9分 ∴原式=+=4+1=5a b . ………………………………………………………………………………10分 方法二:∵a 、b (a b >)是方程2540x x -+=的两个不相等的实数根,∴ a + b = 5,…………………………………………………………………………………8分 ∴原式=5. …………………………………………………………………………………10分20.(本小题满分10分) 答:…………………………………………………………………………4分(2)这两天最低气温之差是 3 ℃; …………………………………………………………6分 (3)23S < 25S ,………………………………………………………………………………8分2019年 3 月份的更稳定. ………………………………………………………………10分解:(1) 由图①可得,当0≤t ≤30时,可设日销售量w =k t . ∵ 点(30,60)在图象上,∴ 60=30k .∴ k =2.即w =2 t .………………………………………………………………3分 当30<t ≤40时,可设日销售量w =k 1t +b . ∵点(30,60)和(40,0)在图象上,∴ ⎩⎨⎧+=+=bk b k 114003060解得 k 1=-6,b =240.…………………………………………………………………………6分 ∴w =-6t +240.综上所述,日销售量03020260043t t t w t ⎧=⎨-+≤≤<≤⎩)4(()(当0≤t ≤30时,日销售量w =2t ;当30 < t ≤40时,日销售量w =-6t +240.) …7分 (2)由图①知,当t =30(天)时,日销售量w 达到最大,最大值60w =max (件);……8分 又由图②知,当t =30(天)时,产品A 的日销售利润y 达到最大,最大值60y =max (元/件).…………………………………………………………………………9分∴当t =30(天)时,日销售量利润Q 最大,…………………………………………………10分最大日销售利润60603600Q w y =∙=⨯=max max max (元).答:第一批产品A 上市后30天,这家商店日销售利润Q 最大,日销售利润Q 最大是3600元. …………………………………………………………………………………………………………12分 22.(本小题满分12分)解:过点B 作BF ⊥AD 、BE ⊥CD ,垂足分别为E 、F ……………………………………………2分在Rt △ABF 中,∵∠F AB =60º,………………………………………………………………………………3分∴AF =AB co s ∠F AB =20×12 =10. ………………5分在Rt △BCE 中,∵∠EBC =45º,BC =40. ………………6分∴BE =BC co s ∠EBC =40×22=20 2 . …8分 在矩形BEDF 中,FD = BE =20 2 ,∴AD = AF +FD =10+20 2 .…………………11分 答:AD 的长约为(10+20 2 )米. ……………12分F E花园人工湖CBAD北23.(本小题满分12分)解:(1) 令y =0,得kx -8k=0,∵k ≠0,解得x =8,2分∴直线l 与x 轴的交点N 的坐标为(8,0) .4分(2)连结OB ,过点O 作OD ⊥AB ,垂足为D . ∴点O 到直线AB 的距离为线段 OD 的长度.∵⊙O 的半径为5,∴OB = 5.又∵AB = 6, ∴BD =116322AB =⨯=. ………………………………………………………………6分 在Rt △OBD 中,∵∠ODB =90°,∴OD =OB 2-BD 2 = 52-32 =4 .答:点O 到直线AB 的距离为4.…………………………………………………………………8分(3) 由(1)得N 的坐标为(8,0),∴ON = 8.由(2)得OD = 4.方法一:∴在Rt △ODN 中,DN =ON 2-OD 2 ==82-42 = 4 3 .……………………………10分又∵∠OMD + ∠MOD =90°,∠NOD + ∠MOD =90°, ∴∠OMD =∠NOD .∴Rt △OMD ∽Rt △NOD , ∴ OM NO = ODND.∴OM =OD ND ·NO = 443 ×8 =8 33 .………………11分 ∴直线AB 与y 轴的交点为(0,8 33). ………………………………………12分 方法二:∴在Rt △OND 中,41sin 82OD OND ON ∠===. ………………………………………9分 ∴∠OND =30°. …………………………………………………………………………10分 ∵在Rt △OMN 中,tan OM ON OND =∠, ∴838tan 30=3OM =.…………………………………………………………………11分 ∴直线AB 与y 轴的交点为(0,8 33). ………………………………………12分24.(本小题满分14分) 解:(1)在Rt △ABC 中,∵∠CAB = 60°,∠ACB = 90°, ∴∠ABC = 30°. 又∵BC =6,∴OC =BC sin ∠ABC =6sin30°=3. ∴C 点的坐标为(0,3). 在Rt △COB 中,∴OB =OC cot ∠CBO =3×cot30°=33. ∴B (33,0). 在Rt △AOC 中,∴AO =OC cot ∠CAO =3×cot60°. ∴A (3-,0).∵抛物线y = ax 2+ bx + c 经过点C (0,3),∴c =3.………………………………………………………………………………………………1分 ∵抛物线y = ax 2+ bx + c 经过A 、B 两点,∴330,2730.a a ⎧+=⎪⎨++=⎪⎩解得1,33a b ⎧=-⎪⎪⎨⎪=⎪⎩………………………………………………3分综上所述,1, 3.3a b c =-== (2)当等腰Rt △DEF 的直角顶点F 在y 轴负半轴时,∵DE =6,∴OE =OF =362121=⨯=DE .……………………………………………………………4分 ∴F 点起始位置的坐标为(0,-3),E 点起始位置的坐标为(3,0),………………………5分 ∵B (33,0),∴BE =OB -OE =333-.……………………………………………………………………6分 ∴△DEF 沿x 轴正方向(向右)平移(333-)个单位长度,可使点E 与点B 重合.当点E 与点B 重合时,点F 的坐标为(333-,-3).……………………………………………………7分 (3)设⊙P 的半径为r ,⊙P 与直线AC 和BC 都相切,有两种情况:①圆心P 1在直线AC 的右侧时,过点P 1作P 1Q 1⊥AC ,垂足为Q 1,作P 1R 1⊥BC ,垂足为R 1. ∵∠ACB = 90°,∴四边形Q 1CR 1P 1是矩形.∵⊙P 1与AC 、BC 相切于点Q 1、R 1, ∴R 1P 1=P 1Q 1,∴矩形Q 1CR 1P 1是正方形.…………………………………………………………………8分 设 Q 1C =CR 1=R 1P 1=P 1Q 1= r 1,∴在Rt △P 1R 1B 中,BR 1=R 1P 1cot ∠CBA = r 1cot 30°=3 r 1, ∴BC =CR 1+BR 1= r 1 +3 r 1=()13+ r 1,又∵BC = 6, ∴()13+ r 1 = 6,∴()()3313321361361-=-=-=+=r ………………………………………9∴P 1B = 2R 1P 1=2r 1 =()236, ∴OP 1= OB -BP 1=()33663633-=--, ∴P 1的坐标为(336-,0). ∵OE =3,∴(1136 3.EP OE OP =-=--=∴把△DEF 沿x 轴负方向(向左)平移()3个单位长度,可使⊙E 与直线AC 和BC 均相切.………………………………………………………………………………………10分②当圆心P 2在直线AC 的左侧时,过点P 2作P 2Q 2⊥AC ,垂足为Q 2,作P 2R 2⊥BC ,垂足为R 2. ∵∠ACB = 90°, ∴∠R 2CQ 2 = 90°,∵⊙P 2与AC 、BC 相切于点Q 2、R 2,∴矩形Q 2CR 2P 2是正方形.…………………………………………………………………11分 设 Q 2C =CR 2=R 2P 2=P 2Q 2= r 2,∴在Rt △P 2R 2B 中,BR 2=R 2P 2cot ∠CBA = r 2cot 30°=3 r 2, ∴BC =BR 2-CR 2 =3 r 2 - r 2 =()13- r 2,又∵BC = 6, ∴()13- r 2 = 6,∴()()33313321361362+=+=+=-=r ,……………………………………12分∴P 2B = 2R 2P 2=2r 2 =()6363332+=+,∴OP 2= BP 2 - OB =33633636+=-+, ∴P 2的坐标为(6--,0). ∵OE =3,2OP =∴(22+3+EP OE OP ===∴把△DEF 沿x 轴负方向(向左)平移(个单位长度,可使⊙E 与直线AC 和BC 均相切.……………………………………………………………………………………………13分⊙E与直线AC 和BC 均相切.……………………………………………………………………………14分A BF G25.(本小题满分14分)(1)证明:∵四边形ABCD 和四边形CGFE 是正方形,∴CE =FE ,AD =DC ,∠CEF =90°,AD ∥EF .∴∠1=∠2.在△AMD 和△FMN 中,∵ 1234MA MF ⎧⎪⎨⎪∠∠∠∠⎩=,=,=,∴△AMD ≌△FMN .……………………3分(2)答:△DEM 是等腰直角三角形. 证明:由(1)得△AMD ≌△FMN ,∴MD =MN ,AD =FN . …………………………………………………………………………4分 在正方形ABCD 中,∵AD =DC ,∴DC =NF .…………………………………………………………………………5分 又∵EC =EF ,∴EC - DC =EF - NF 即 ED =EN . ………………………………………………6分 又∵∠DEN =90°,∴△DEN 是等腰直角三角形.∴EM ⊥MD ,ME =MD . …………………………………………………………………………7分 ∴△DEM 是等腰直角三角形. …………………………………………………………………8分(3)答:仍然成立.证法一:如图,在MN 上截取MP =MD ,连结EP 、FP ,延长FP 与DC 延长线交于点H .……………………………………………………………………………9分在△AMD 和△FMP 中,∵ 12MA MF MD MP ⎧⎪⎩∠⎪∠⎨=,=,=, ∴△AMD ≌△FMP .∴∠3=∠4,AD =PF .…………………………又∵四边形ABCD 、四边形CGFE 均为正方形, ∴CE =FE ,AD =DC ,∠ADC =90°,∠CEF =∠ADC =∠EFG =∠ECG =90°. ∴DC =PF .∵∠3=∠4,∴AD ∥FH .∴∠H =∠ADC =90°. ∵∠G =90°,∠5=∠6, ∠GCH =180°-∠H -∠5,N B∠GFH=180°-∠G -∠6,∴∠GCH=∠GFH.∵∠GCH+∠DCE=∠GFH+∠PFE=90°,∴∠DCE=∠PFE.………………………………………………………………………………11分在△DCE和△PFE中,∵DC PFDCE PFECE FE∠⎪⎨⎪⎩∠⎧=,=,=,∴△DCE≌△PFE.∴ED=EP,∠DEC=∠PEF.……………………………………………………………………12分∵∠CEF=90°,∴∠DEP=90°.∴△DEP是等腰直角三角形.∴EM⊥MD,ME=MD.…………………………………………………………………………13分∴△DEM是等腰直角三角形.…………………………………………………………………14分证法二:过点F作AD的平行线分别交DM、DC的延长线于P、H,连结EP.(与证法一相近,评分标准参照证法一)。
广东中考二模检测《数学试卷》含答案解析
广东数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一.选择题(共12小题)1.在-2,-1,0,1这四个数中,最小的数是( )A. -2B. -1C. 0D. 12.2019年4月10日,人类首次看到黑洞,该黑洞的质量是太阳的65亿倍,距离地球大约55000000年,将数据55000000用科学记数法表示为( )A. 0.55×108B. 5.5×108C. 5.5×107D. 55×1063.下列图形中,既是轴对称图形,又是中心对称图形的是( )A. B.C D.4.下列各运算中,计算正确的是( )A. a+a=a2B. (3a2)3=9a6C. (a+b)2=a2+b2D. 2a•3a=6a25.若x=2是一元二次方程x2﹣3x+a=0一个根,则a的值是( )A. 0B. 1C. 2D. 36.某学习小组的5名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、89分,则下列结论正确的是( )A. 平均分是91B. 众数是94C. 中位数是90D. 极差是87.如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道时间x与火车在隧道内的长度y之间的关系用图像描述大致是()A. B. C. D.8.如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于( )A. 122°B. 151°C. 116°D. 97°9.如图,在平面直角坐标系中,以坐标原点O为圆心,适当的长为半径作弧,分别交x轴、y轴于点M、点N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧在第二象限交于点P(a,b),则a与b的数量关系为( )A. a+b=0B. a+b>0C. a﹣b=0D. a﹣b>010.有两块面积相同的小麦试验田,分别收获小麦9000kg和15000kg.已知第一块试验田每公顷的产量比第二块少3000kg,若设第一块试验田每公顷的产量为x kg,由题意可列方程( )A.9000150003000x x=+B.9000150003000x x=-C.900015000+3000x x= D.9000150003000x x=-11.如图,AB是⊙O直径,点C、D在⊙O上,∠BOC=110°,AD//OC,则∠ABD等于( )A. 20︒B. 30C. 40︒D. 50︒12.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x轴的一个交点B(4,0),直线y2=mx+n(m≠0)与抛物线交于A,B两点,下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=3有两个相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,有y2<y1,其中正确的是( )A. ①②③B. ①③④C. ①③⑤D. ②④⑤二.填空题(共4小题)13.分解因式:a 2-4=________.14.在平面直角坐标系中,点P(m ,m -2)在第一象限内,则m 的取值范围是 .15.菱形OABC 在平面直角坐标系中的位置如图所示,∠AOC=45°,OC=22,则点B 的坐标为_________.16.如图,Rt △OAB 的边AB 延长线与反比例函数y =33x在第一象限的图象交于点C ,连接OC ,且∠AOB =30°,点C 的纵坐标为1,则△OBC 的面积是_____.三.解答题(共7小题)17.92cos30°+(1﹣π)0+|3|.18.先化简,再求值:226214432a a a a a a -+⋅+++-+,其中a =2. 19.体育中考临近时,某校体育老师随机抽取了九年级的部分学生进行体育中考的模拟测试,并对成绩进行统计分析,绘制了频数分布表和统计图,按得分划分成A 、B 、C 、D 、E 、F 六个等级,并绘制成如下两幅不完整的统计图表.等级得分x (分) 频数(人) A 95<x ≤100 4B 90<x≤95 mC 85<x≤90 nD 80<x≤85 24E 75<x≤80 8F 70<x≤75 4请你根据图表中的信息完成下列问题:(1)本次抽样调查中m=,n=;(2)扇形统计图中,E等级对应扇形的圆心角α的度数为;(3)该校决定从本次抽取的A等级学生(记为甲、乙、丙、丁)中,随机选择2名成为学校代表参加全市体能竞赛,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.20.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为45°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为110米,那么该建筑物的高度BC约为多少米?(结果保留整数,3≈1.73)21.如图,在边长为6的菱形ABCD中,点M是AB上的一点,连接DM交AC于点N,连接BN.(1)求证:△ABN≌△ADN;(2)若∠ABC=60°,AM=4,∠ABN=a,求点M到AD的距离及tan a的值.22.在美化校园活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2, 求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.23.如图1,抛物线y=ax2+bx﹣2与x轴交于两个不同的点A(﹣1,0)、B(4,0),与y轴交于点C.(1)求该抛物线的解析式;(2)如图2,连接BC,作垂直于x轴的直线x=m,与抛物线交于点D,与线段BC交于点E,连接BD和CD,求当△BCD面积的最大值时,线段ED的值;(3)在(2)中△BCD面积最大的条件下,如图3,直线x=m上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.答案与解析一.选择题(共12小题)1.在-2,-1,0,1这四个数中,最小的数是( )A. -2B. -1C. 0D. 1【答案】A【解析】【分析】根据正数大于0,负数小于0,负数绝对值越大值越小即可求解.【详解】解:在、、、这四个数中,-<-<<,大小顺序为:2101所以最小的数是.故选A.【点睛】此题考查了有理数的大小的比较,解题的关键利用正负数的性质及数轴可以解决问题.2.2019年4月10日,人类首次看到黑洞,该黑洞的质量是太阳的65亿倍,距离地球大约55000000年,将数据55000000用科学记数法表示为( )A. 0.55×108B. 5.5×108C. 5.5×107D. 55×106【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:将55000000科学记数法表示为:5.5×107.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.下列图形中,既是轴对称图形,又是中心对称图形的是( )A. B.C. D.【答案】A【解析】【分析】根据轴对称图形和中心对称图形定义逐个判断即可.【详解】解:A、既是轴对称图形,也是中心对称图形,故本选项符合题意;B、是轴对称图形,不是中心对称图形,故本选项不符合题意;C、是轴对称图形,不是中心对称图形,故本选项不符合题意;D、是轴对称图形,不是中心对称图形,故本选项不符合题意;故选:A.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180°后两部分重合.4.下列各运算中,计算正确的是( )A. a+a=a2B. (3a2)3=9a6C. (a+b)2=a2+b2D. 2a•3a=6a2【答案】D【解析】【分析】各项计算得到结果,即可作出判断.【详解】解:A、原式=2a,不符合题意;B、原式=27a6,不符合题意;C、原式=a2+2ab+b2,不符合题意;D、原式=6a2,符合题意.故选:D.【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.5.若x=2是一元二次方程x2﹣3x+a=0的一个根,则a的值是( )A. 0B. 1C. 2D. 3【答案】C【解析】【分析】把x=2代入方程x2﹣3x+a=0得4﹣6+a=0,然后解关于a的方程即可.【详解】解:把x=2代入方程x2﹣3x+a=0得4﹣6+a=0,解得a=2.故选:C.【点睛】本题考查了一元二次方程解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.6.某学习小组的5名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、89分,则下列结论正确的是( )A. 平均分是91B. 众数是94C. 中位数是90D. 极差是8【答案】B【解析】【分析】直接利用平均数、众数、中位数以及极差的定义分别分析得出答案.【详解】解:A、平均分为:(94+98+90+94+89)÷5=93(分),故此选项错误;B、94分、98分、90分、94分、89分中,众数是94分.故此选项正确;C、五名同学成绩按大小顺序排序为:89,90,94,94,98,故中位数是94分,故此选项错误;D、极差是98﹣89=9,故此选项错误.故选:B.【点睛】此题主要考查了平均数、众数、中位数以及极差的定义,正确把握相关定义是解题关键.7.如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x与火车在隧道内的长度y之间的关系用图像描述大致是()A. B. C. D.【答案】B【解析】先分析题意,把各个时间段内y与x之间的关系分析清楚,本题是分段函数,分为二段.根据题意和图示分析可知:火车进入隧道的时间x与火车在隧道内的长度y之间的关系具体可描述为:当火车开始进入时y逐渐变大,当火车完全进入隧道,由于隧道长等于火车长,此时y最大,当火车开始出来时y逐渐变小,故选B.8.如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于( )A. 122°B. 151°C. 116°D. 97°【答案】B【解析】试题分析:∵AB∥CD,∠1=58°,∴∠EFD=∠1=58°,∵FG平分∠EFD,∴∠GFD=12∠EFD=12×58°=29°,∵AB∥CD,∴∠FGB=180°﹣∠GFD=151°.故选B.考点:平行线的性质.9.如图,在平面直角坐标系中,以坐标原点O为圆心,适当的长为半径作弧,分别交x轴、y轴于点M、点N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧在第二象限交于点P(a,b),则a与b的数量关系为( )A. a+b=0B. a+b>0C. a﹣b=0D. a﹣b>0【答案】A【解析】【分析】利用基本作图得OP为第二象限的角平分线,则点P到x、y轴的距离相等,从而得到a与b互为相反数.【详解】解:利用作图得点OP为第二象限的角平分线,所以a+b=0.故选:A.【点睛】本题考查了作图-基本作图:熟练掌握基本作图之作已知角的角平分线,也考查了第二象限点的坐标特征.10.有两块面积相同的小麦试验田,分别收获小麦9000kg 和15000kg .已知第一块试验田每公顷的产量比第二块少3000kg ,若设第一块试验田每公顷的产量为x kg ,由题意可列方程( ) A. 9000150003000x x =+ B. 9000150003000x x =- C. 900015000+3000x x = D. 9000150003000x x=- 【答案】C【解析】解:第一块试验田的面积为:9000x ,第二块试验田的面积为:150003000x +.方程应该为:9000150003000x x =+.故选C . 11.如图,AB 是⊙O 的直径,点C 、D 在⊙O 上,∠BOC=110°,AD//OC,则∠ABD 等于( )A. 20︒B. 30C. 40︒D. 50︒【答案】A【解析】【分析】 根据平角的性质 可求得∠AOC 的度数,再根据平行线的性质及三角形内角和定理即可求得∠AOD 的度数.【详解】∵∠BOC=110°,∠BOC+∠AOC=180° ∴∠AOC=70°, ∵AD ∥OC ,OD=OA∴∠ADO=∠A=70°, ∴AOD 1802A 40,∠∠=-=OD=OB∴∠ODB=∠OBD=20°. 故选A.【点睛】考查圆周角定理, 平行线的性质, 三角形内角和定理,比较基础,难度不大.12.如图抛物线y 1=ax 2+bx+c(a≠0)图象的一部分,抛物线的顶点坐标A(1,3),与x 轴的一个交点B(4,0),直线y 2=mx+n(m≠0)与抛物线交于A ,B 两点,下列结论:①2a+b=0;②abc >0;③方程ax 2+bx+c=3有两个相等的实数根;④抛物线与x 轴的另一个交点是(﹣1,0);⑤当1<x <4时,有y 2<y 1,其中正确的是( )A. ①②③B. ①③④C. ①③⑤D. ②④⑤【答案】C【解析】试题解析:∵抛物线的顶点坐标A(1,3),∴抛物线的对称轴为直线x=-2ba =1,∴2a+b=0,所以①正确;∵抛物线开口向下,∴a <0,∴b=-2a >0,∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc <0,所以②错误;∵抛物线的顶点坐标A(1,3),∴x=1时,二次函数有最大值,∴方程ax 2+bx+c=3有两个相等的实数根,所以③正确;∵抛物线与x 轴的一个交点为(4,0)而抛物线的对称轴为直线x=1,∴抛物线与x 轴的另一个交点为(-2,0),所以④错误;∵抛物线y 1=ax 2+bx+c 与直线y 2=mx+n(m≠0)交于A(1,3),B 点(4,0)∴当1<x <4时,y 2<y 1,所以⑤正确.故选C .考点:1.二次函数图象与系数关系;2.抛物线与x 轴的交点.二.填空题(共4小题)13.分解因式:a2-4=________.【答案】(a+2)(a-2);【解析】【分析】有两项,都能写成完全平方数的形式,并且符号相反,可用平方差公式展开.【详解】解:a2-4=(a+2)(a-2).故答案为:(a+2)(a-2).考点:因式分解-运用公式法.14.在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是.【答案】m>2【解析】【分析】根据平面直角坐标系中各象限点的特征,得到不等式组求解.四个象限的符号特征分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).【详解】∵点P(m,m-2)在第一象限内,∴m0m20>⎧⎨->⎩,解得m>2,故答案为:m>2.15.菱形OABC在平面直角坐标系中的位置如图所示,∠AOC=45°,OC=22,则点B的坐标为_________.【答案】(2+2,2)【解析】【分析】根据菱形的性质,作CD⊥x轴,先利用三角函数求出OD、CD的长度,从而得出C点坐标,然后利用菱形的性质求得点B的坐标.【详解】解:由题意可得OA=OC=22,∠AOC=45°,∴CD=OCsin45°=2,OD=OCcos45°=2,点C的坐标为(2,2),则点B的坐标为(22+2,2).故答案为(22+2,2).【点睛】本题综合考查了菱形的性质和坐标的确定,解答本题的关键有两点,①掌握菱形的四边相等,②理解三角函数的定义,及各三角函数在直角三角形中的表示形式.16.如图,Rt△OAB的边AB延长线与反比例函数y=33x在第一象限的图象交于点C,连接OC,且∠AOB=30°,点C的纵坐标为1,则△OBC的面积是_____.【答案】433.【解析】【分析】过点C作CH⊥x轴于H,先求出点C坐标,可得CH=1,OH=3由直角三角形的性质可求BH3可求OB的长,由三角形面积公式可求解.【详解】解:如图,过点C作CH⊥x轴于H,∵点C在反比例函数图象上,点C的纵坐标为1,∴点C(31)∴CH=1,OH=3∵∠ABO=∠CBH,∠A=∠BHC=90°,∴∠HCB=∠AOB=30°,∴CH3,∴BH 3,∴OB=OH﹣BH=33,∴△OBC的面积=12×OB×CH4343.【点睛】本题考查了反比例函数图象上点的坐标特征,直角三角形的性质,求出OB的长是本题的关键.三.解答题(共7小题)17.92cos30°+(1﹣π)0+|3|.【答案】4.【解析】【分析】先计算算术平方根、三角函数值、计算零指数幂和绝对值,再计算乘法,最后计算加减可得.【详解】解:原式=3﹣2×323=333=4.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.18.先化简,再求值:226214432a a a a a a -+⋅+++-+,其中a =2. 【答案】32a +,34. 【解析】【分析】 先将原式利用因式分解的方法、分式的乘法和加法法则化简,再将a =2代入计算即可. 【详解】解:226214432a a a a a a -+⋅+++-+ =22(3)212)32(a a a a a -+⋅+-++ =1222a a +++ =32a +, ∵a =2, ∴原式=322+=34. 【点睛】此题主要考查了分式的化简求值,正确化简分式是解题关键.19.体育中考临近时,某校体育老师随机抽取了九年级的部分学生进行体育中考的模拟测试,并对成绩进行统计分析,绘制了频数分布表和统计图,按得分划分成A 、B 、C 、D 、E 、F 六个等级,并绘制成如下两幅不完整的统计图表.F 70<x≤75 4请你根据图表中的信息完成下列问题:(1)本次抽样调查中m=,n=;(2)扇形统计图中,E等级对应扇形的圆心角α的度数为;(3)该校决定从本次抽取的A等级学生(记为甲、乙、丙、丁)中,随机选择2名成为学校代表参加全市体能竞赛,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.【答案】(1)12,28;(2)36°;(3)16.【解析】【分析】(1)用D组的频数除以它所占的百分比得到样本容量;用样本容量乘以B组所占的百分比得到m的值,然后用样本容量分别减去其它各组的频数即可得到n的值;(2)用E组所占的百分比乘以360°得到α的值;(3)画树状图展示所有12种等可能的结果数,再找出恰好抽到甲和乙的结果数,然后根据概率公式求解.【详解】解:(1)24÷30%=80,所以样本容量为80;m=80×15%=12,n=80﹣12﹣4﹣24﹣8﹣4=28;故答案为12,28;(2)E等级对应扇形的圆心角α的度数=880×360°=36°,故答案为:36°;(3)画树状图如下:共12种等可能的结果数,其中恰好抽到甲和乙的结果数为2,所以恰好抽到甲和乙的概率=212=16.【点睛】本题考查了统计图表以及列举法求概率,解题的关键是读懂统计图以及掌握画树状图法求事件的发生概率.20.如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为45°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为110米,那么该建筑物的高度BC约为多少米?(结果保留整数,3≈1.73)【答案】该建筑物的高度BC约为300米.【解析】【分析】根据题意可得AD⊥BC,再根据特殊角三角函数即可求出该建筑物的高度BC.【详解】根据题意可知:AD⊥BC,∴在Rt△ABD中,∠BAD=45°,∴BD=AD=110,在Rt△ADC中,∠DAC=60°,∴tan60°=CD AD,3110 110BC,解得BC=1103+1)≈300(米).答:该建筑物的高度BC约为300米.【点睛】本题考查了解直角三角形的应用-仰角俯角问题,解决本题的关键是掌握仰角俯角定义.21.如图,在边长为6的菱形ABCD中,点M是AB上的一点,连接DM交AC于点N,连接BN.(1)求证:△ABN≌△ADN;(2)若∠ABC=60°,AM=4,∠ABN=a,求点M到AD的距离及tan a的值.【答案】(1)详见解析;(2)若点M到AD的距离为23,tanα=34.【解析】【分析】(1)△ABN和△ADN中,不难得出AB=AD,∠DAC=∠CAB,AN是公共边,根据SAS即可判定两三角形全等.(2)通过构建直角三角形来求解.作MH⊥DA交DA的延长线于点H.由①可得∠MDA=∠ABN,那么M 到AD的距离和∠α就转化到直角三角形MDH和MAH中,然后根据已知条件进行求解即可.【详解】(1)∵四边形ABCD是菱形,∴AB=AD,∠1=∠2.又∵AN=AN,∴△ABN≌△ADN(SAS).(2)作MH⊥DA交DA的延长线于点H.由AD∥BC,得∠MAH=∠ABC=60°.Rt△AMH中,MH=AM•sin60°=4×sin60°=3.∴点M到AD的距离为3∴AH=2.∴DH=6+2=8.在Rt△DMH中,tan∠MDH=MH DH,由(1)知,∠MDH=∠ABN=α,∴tanα=34.【点睛】本题考查菱形的性质、全等三角形的判定和性质、解直角三角形等知识,解题的关键是灵活运用所学知识解决问题.22.在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.(1)若花园的面积为192m2, 求x的值;(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.【答案】(1)12m或16m;(2)195.【解析】【分析】(1)、根据AB=x可得BC=28-x,然后根据面积列出一元二次方程求出x的值;(2)、根据题意列出S和x的函数关系熟,然后根据题意求出x的取值范围,然后根据函数的性质求出最大值.【详解】(1)、∵AB=xm,则BC=(28﹣x)m,∴x(28﹣x)=192,解得:x1=12,x2=16,答:x的值为12m或16m(2)、∵AB=xm,∴BC=28﹣x,∴S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,∵在P处有一棵树与墙CD,AD的距离分别是16m和6m,∵28-x≥15,x≥6 ∴6≤x≤13,∴当x=13时,S取到最大值为:S=﹣(13﹣14)2+196=195,答:花园面积S的最大值为195平方米.【点睛】题主要考查了二次函数的应用以及二次函数最值求法,得出S与x的函数关系式是解题关键.23.如图1,抛物线y=ax2+bx﹣2与x轴交于两个不同的点A(﹣1,0)、B(4,0),与y轴交于点C.(1)求该抛物线的解析式;(2)如图2,连接BC,作垂直于x轴的直线x=m,与抛物线交于点D,与线段BC交于点E,连接BD和CD,求当△BCD面积的最大值时,线段ED的值;(3)在(2)中△BCD面积最大的条件下,如图3,直线x=m上是否存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆?若存在,求出圆心Q的坐标;若不存在,请说明理由.【答案】(1)y=12x2﹣32x﹣2;(2)2;(3)存在,(2,﹣1)或(2,4).【解析】【分析】(1)利用待定系数法把问题转化为方程组解决即可.(2)设D(m,12m2﹣32m﹣2),直线直线BC的解析式,求出点E的坐标,构建二次函数,利用二次函数的性质求解即可.(3)连接BC,易证△BOC∽△COA,进而可得出BC⊥AC,由点A,B,C的坐标,利用待定系数法可求出直线BC,AC的解析式,设点Q的坐标为(2,n),由平行线的性质可得出过点Q且垂直AC的直线的解析式为y=12x+n﹣1,联立该直线与AC的解析式成方程组,通过解方程组可求出交点的坐标,再由该点到点Q的距离等于线段OQ的长度可得出关于n的一元二次方程,解之即可得出结论.【详解】(1)把A(﹣1,0)、B(4,0)代入y=ax2+bx﹣2得到2016420a ba b--=⎧⎨+-=⎩,解得1232ab⎧=⎪⎪⎨⎪=-⎪⎩,∴抛物线的解析式为y=12x2﹣32x﹣2.(2)设D(m,12m2﹣32m﹣2),∵C(0,﹣2),B(4,0),∴直线BC的解析式为y=12x﹣2,∴E(m,12m﹣2),∴DE=12m﹣2﹣(12m2﹣32m﹣2)=﹣12m2+2m,∴S△BCD=12•DE•OB=﹣m2+4m=﹣(m﹣2)2+4,∵﹣1<0,∴m=2时,△BDC的面积最大,此时DE=﹣12×22+2×2=2.(3)如图3中,连接BC.∵OBOC=OCOA=2,∠BCO=∠COA=90°,∴△BOC∽△COA,∴∠OBC=∠OCA.∵∠OBC+∠OCB=90°,∴∠OCA+∠OCB=90°=∠ACB,∴BC⊥AC.∵点B的坐标为(4,0),点C的坐标为(0,﹣2),点A的坐标为(﹣1,0),∴直线BC的解析式为y=12x﹣2,直线AC的解析式为y=﹣2x﹣2,设点Q的坐标为(2,n),则过点Q且垂直AC的直线的解析式为y=12x+n﹣1.联立两直线解析式成方程组,得:11222y x ny x⎧=+-⎪⎨⎪=--⎩,解得:225465nxny--⎧=⎪⎪⎨-⎪=⎪⎩,∴两直线的交点坐标为(225n--,465n-).依题意,得:(2﹣0)2+(n﹣0)2=(225n--﹣2)2+(465n-﹣n)2,整理,得:n2﹣3n﹣4=0,解得:n1=﹣1,n2=4,∴点Q的坐标为(2,﹣1)或(2,4).综上所述:在这条直线上存在一个以Q点为圆心,OQ为半径且与直线AC相切的圆,点Q的坐标为(2,﹣1)或(2,4).【点睛】本题考查了待定系数法求二次(一次)函数解析式、解直角三角形、二次函数图象上点的坐标特征、二次函数的最值、相似三角形的判定与性质、平行线的性质以及两点间的距离公式,解题的关键是:(1)利用待定系数法把问题转化为解方程组;(2)利用分割图形求面积法,找出S△BDC关于m的函数关系式;(3)利用两点间的距离公式,找出关于n的一元二次方程.。
2019年广东省广州二中中考数学二模试卷 解析版
2019年广东省广州二中中考数学二模试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.16的算术平方根是()A. 2B. −2C. 4D. −42.在下列四个图案中既是轴对称图形,又是中心对称图形的是()A. B. C. D.3.下列说法正确的是()A. “明天的降水概率为30%”是指明天下雨的可能性是30%B. 连续抛一枚硬币50次,出现正面朝上的次数一定是25次C. 连续三次掷一颗骰子都出现了奇数,则第四次出现的数一定是偶数D. 某地发行一种福利彩票,中奖概率为1%,买这种彩票100张一定会中奖4.为筹备班级的初中毕业联欢会,班长对全班同学爱吃哪几种水果作民意调查,从而最终决定买什么水果.下列调查数据中最值得关注的是()A. 平均数B. 中位数C. 方差D. 众数5.若分式x2−x−2的值为0,则x的值为()x+1A. x=1或x=2B. x=0C. x=2D. x=−16.下列计算中,正确的是()A. 2√3+4√2=6√5B. √27÷√3=3C. 3√3×3√2=3√6D. √(−3)2=±37.已知扇形的弧长为6πcm,该弧所对圆心角为90°,则此扇形的面积为()A. 36πcm2B. 72πcm2C. 36cm2D. 72cm28.如图是抛物线y=ax2+bx+c(a≠0)图象的一部分.当y<0时,自变量x的范围是()A. x<−1或x>2B. x<−1或x>5C. −1<x<5D. −1<x<29.如图,用同样规格的黑、白两色正方形瓷砖铺设矩形地面,请观察下列图形,探究在第n个图中,黑、白瓷砖分别各有多少块()A. 4n+6,n(n+1)B. 4n+6,n(n+2)C. n(n+1),4n+6D. n(n+2),4n+610.a≠0,函数y =ax与y=−ax2+a同一直角坐标系中的大致图象可能是()A. B. C. D.二、填空题(本大题共6小题,共18.0分)11.−√3的相反数是______.12.太阳系外距离地球最近的一颗恒星叫做比邻星,它离地球的距离约为360 000 000 000 000千米,这个数用科学记数法表示为______千米.13.分解因式:−3x2+6xy−3y2=______.14.如图,在平面直角坐标系中有两点A(6,0),B(0,3),如果点C在x轴上(C与A不重合),当点C的坐标为______时,△BOC与△AOB相似.15.如图,在直角坐标系中,点A(0,3)、点B(4,3)、C(0,−1),则△ABC外接圆的半径为______.16.如图,将△ABC沿DE折叠,使点A与BC边的中点F重合,下列结论中:①EF=12AB;②∠BAF=∠CAF;③S四边形ADFE =12AF×DE;④∠BDF+∠FEC=2∠BAC,正确的是______(填序号)三、计算题(本大题共1小题,共12.0分)17.已知关于x的方程x2−(k+2)x+14k2+1=0(1)k取什么值时,方程有两个不相等的实数根?(2)如果方程的两个实数根x1、x2(x1<x2)满足x1+|x2|=3,求k的值和方程的两根.第2页,共19页四、解答题(本大题共9小题,共98.0分))−2+tan45°18.计算:−12+(2019−π)0+(1319.如图,方格纸中每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,△ABC的顶点在格点上,且A(−4,−4),B(6,−6),C(0,−2)(1)画出△ABC,并求出△ABC的面积;(2)以点O为位似中心,画出△ABC的位似图形,使之与△ABC的相似比为1:2.20.如图,AB是半圆O的直径,C、D是半圆O上的两点,且OD//BC,OD与AC交于点E.(1)若∠B=70°,求∠CAD的度数;(2)若AB=8,AC=6,求DE的长.21.某商场销售A,B两种商品,售出2件A种商品和3件B种商品所得利润为700元;售出3件A种商品和5件B种商品所得利润为1100元.(1)求每件A种商品和每件B种商品售出后所得利润分别为多少元;(2)由于需求量大,A,B两种商品很快售完,商场决定再一次购进A,B两种商品共34件,如果将这34件商品全部售完后所得利润不低于4000元,那么此商场至少需购进多少件A种商品?22.为了掌握八年级数学考试卷的命题质量与难度系数,命题组教师赴外地选取一个水平相当的八年级班级进行预测,将考试成绩分布情况进行处理分析,制成频数分布()组别成绩分组频数频率147.5~59.520.05259.5~71.540.10371.5~83.5a0.2483.5~95.5100.25595.5~107.5b c6107.5~12060.15合计40 1.00根据表中提供的信息解答下列问题:(1)频数分布表中的a=______,b=______,c=______;(2)已知全区八年级共有200个班(平均每班40人),用这份试卷检测,108分及以上为优秀,预计优秀的人数约为______,72分及以上为及格,预计及格的人数约为______,及格的百分比约为______;(3)补充完整频数分布直方图.第4页,共19页(x<0,a为常数)的图象经过点B(−4,2).23.已知反比例函数y=ax(1)求a的值;(2)如图,过点B作直线AB与函数的图象交于点A,与x轴交于点C,且AB=3BC,过点A作直线AF⊥AB,交x轴于点F,求线段AF的长.24.如图,正方形ABCD的边长为1,点P在射线BC上(异于点B、C),直线AP与对角线BD及射线DC分别交于点F、Q(1)若BP=√3,求∠BAP的度数;3(2)若点P在线段BC上,过点F作FG⊥CD,垂足为G,当△FGC≌△QCP时,求PC的长;(3)以PQ为直径作⊙M.①判断FC和⊙M的位置关系,并说明理由;②当直线BD与⊙M相切时,直接写出PC的长.25.如图(1),在平面直角坐标系中,矩形ABCO,B点坐标为(4,3),抛物线y=−12x2+bx+c经过矩形ABCO的顶点B、C,D为BC的中点,直线AD与y轴交于E点,与抛物线y=−12x2+bx+c交于第四象限的F点.(1)求该抛物线解析式与F点坐标;(2)如图(2),动点P从点C出发,沿线段CB以每秒1个单位长度的速度向终点B运动;同时,动点M从点A出发,沿线段AE以每秒√132个单位长度的速度向终点E 运动.过点P作PH⊥OA,垂足为H,连接MP,MH.设点P的运动时间为t秒.①问EP+PH+HF是否有最小值?如果有,求出t的值;如果没有,请说明理由.②若△PMH是等腰三角形,请直接写出此时t的值.第6页,共19页答案和解析1.【答案】C【解析】解:√16=4,故选:C.根据算术平方根,即可解答.本题考查了算术平方根,解决本题的关键是熟记算术平方根的定义.2.【答案】D【解析】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,不是中心对称图形;C、不是轴对称图形,不是中心对称图形;D、既是轴对称图形,又是中心对称图形.故选:D.根据轴对称图形与中心对称图形的概念求解.本题主要考查轴对称图形和中心对称图形的概念,以及对轴对称图形和中心对称图形的认识.3.【答案】A【解析】解:A、正确;B、这是一个随机事件,抛一枚硬币,出现正面朝上或者反面朝上都有可能,但事先无法预料,错误;C、这是一个随机事件,掷一颗骰子,出现奇数或者偶数都有可能,但事先无法预料,错误;D、这是一个随机事件,买这种彩票,中奖或者不中奖都有可能,但事先无法预料,错误.故选:A.概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.正确理解概率的含义是解决本题的关键.4.【答案】D【解析】解:平均数、中位数、众数是描述一组数据集中程度的统计量;方差、标准差是描述一组数据离散程度的统计量.既然是为筹备班级的初中毕业联欢会做准备,那么买的水果肯定是大多数人爱吃的才行,故最值得关注的是众数.故选:D.根据平均数、中位数、众数、方差的意义进行分析选择.此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的平均数、中位数、众数各有局限性,因此要对统计量进行合理的选择和恰当的运用.5.【答案】C为0,【解析】解:∵x2−x−2x+1∴{x2−x−2=0,x+1≠0∴x=2,故选:C.分式的值为0的条件是:(1)分子=0;(2)分母≠0.两个条件需同时具备,缺一不可.据此可以解答本题.此题考查的是对分式的值为0的条件的理解,该类型的题易忽略分母不为0这个条件.6.【答案】B【解析】解:A、错误.不是同类二次根式不能合并;B、正确;C、错误.3√3×3√2=9√6;D、错误.√(−3)2=3;故选:B.根据二次根式的性质一一判断即可.本题考查二次根式的混合运算,解题的关键是熟练掌握二次根式的混合运算法则,灵活运用所学知识解决问题,属于中考常考题型.7.【答案】A【解析】解:设扇形的半径为rcm,,由题意:6π=90⋅π⋅r180∴r=12,∴扇形的面积=90⋅π⋅122=36π(cm2),360故选:A.利用弧长公式求出扇形的半径r,再利用扇形的面积公式计算即可.本题考查扇形的面积公式,弧长公式等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.【答案】C【解析】解:∵由函数图象可知,函数图象与x轴的一个交点坐标为(−1,0),对称轴为直线x=2,∴抛物线与x轴的另一个交点坐标为(5,0),∴当y<0时,−1<x<5.故选:C.先求出抛物线与x轴的另一个交点坐标,再根据函数图象即可得出结论.本题考查的是二次函数与不等式组,能利用函数图象求出不等式组的解是解答此题的关键.9.【答案】A【解析】解:通过观察图形可知,当n=1时,用白瓷砖2块,黑瓷砖10块;当n=2时,用白瓷砖6块,黑瓷砖14块;当n=3时,用白瓷砖12块,黑瓷砖18块;可以发现,需要白瓷砖的数量和图形数之间存在这样的关系,即白瓷砖块数等于图形数的平方加上图形数;需要黑瓷砖的数量和图形数之间存在这样的关系,即黑瓷砖块数等于图形数的4倍加上图形数.所以,在第n个图形中,白瓷砖的块数可用含n的代数式表示为n(n+1);白瓷砖的块数可用含n的代数式表示为4n+6.故选:A.第8页,共19页分别清点题目给出的三个图形中的白瓷砖和黑瓷砖的块数,然后通过分析,找出白瓷砖和黑瓷砖的块数与图形数之间的规律,即可解答此题.此题主要考查学生对图形变化的规律,解答此题的关键是通过观察和分析,找出其中的规律,利用规律解决问题.10.【答案】D的图象位于一、三象限,y=−ax2+a的开口向下,【解析】解:当a>0时,函数y=ax交y轴的正半轴,没有符合的选项,的图象位于二、四象限,y=−ax2+a的开口向上,交y轴的负当a<0时,函数y=ax半轴,D选项符合;故选:D.分a>0和a<0两种情况分类讨论即可确定正确的选项.本题考查了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大.11.【答案】√3【解析】解:∵−√3的相反数是√3,故答案为√3.根据相反数的定义进行填空即可.本题考查了实数的性质以及算术平方根,掌握相反数的定义是解题的关键.12.【答案】3.6×1014【解析】解:将360 000 000 000 000用科学记数法表示为:3.6×1014.故答案为:3.6×1014.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.【答案】−3(x−y)2【解析】解:−3x2+6xy−3y2,=−3(x2−2xy+y2),=−3(x−y)2.故答案为:−3(x−y)2.先提取公因式−3,再对余下的多项式利用完全平方公式进行因式分解.本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.14.【答案】(−1.5,0),(1.5,0),(−6,0)【解析】解:∵点C在x轴上,∴∠BOC=90°,两个三角形相似时,应该与∠BOA=90°对应,若OC与OA对应,则OC=OA=6,C(−6,0);若OC与OB对应,则OC=1.5,C(−1.5,0)或者(1.5,0).∴C点坐标为:(−1.5,0),(1.5,0),(−6,0).故答案为:(−1.5,0),(1.5,0),(−6,0).本题可从两个三角形相似入手,根据C点在x轴上得知C点纵坐标为0,讨论OC与OA对应以及OC与OB对应的情况,分别讨论即可.本题考查了相似三角形的判定、坐标与图形性质.解答此类题目时,首先判断由B、O、C三点组成的三角形形状,再利用两个三角形直角边与直角边对应关系的两种可能,分别求解.15.【答案】2√2【解析】解:连接AB,分别作AC、AB的垂直平分线,两直线交于点H,由垂径定理得,点H为△ABC的外接圆的圆心,∵A(0,3)、点B(4,3)、C(0,−1),∴点H的坐标为(2,1),则△ABC外接圆的半径=√22+22=2√2,故答案为:2√2.连接AB,分别作AC、AB的垂直平分线,两直线交于点H,根据垂径定理、坐标与图形性质求出点H的坐标,根据勾股定理计算即可.本题考查的是三角形的外接圆与外心、垂径定理、坐标与图形性质,掌握垂径定理、勾股定理是解题的关键.16.【答案】③④【解析】解:∵△ABC沿DE折叠点A与BC边的中点F重合,∴AE=EF,AF⊥DE,∠ADE=∠EDF,∠AED=∠DEF,只有AB=AC时,∠BAF=∠CAF=∠AFE,EF//AB,故①②错误;∵AF⊥DE,∴S四边形ADFE =12AF⋅DE,故③正确;由翻折的性质得,∠ADE=12(180°−∠BDF),∠AED=12(180°−∠FEC),在△ADE中,∠ADE+∠AED+∠BAC=180°,∴12(180°−∠BDF)+12(180°−∠FEC)+∠BAC=180°,整理得,∠BDF+∠FEC=2∠BAC,故④正确.综上所述,正确的是③④共2个.故答案为:③④.根据翻折变换的性质可得AE=EF,AF⊥DE,∠ADE=∠EDF,∠AED=∠DEF,根据平行线的性质和等腰三角形三线合一的性质判断只有AB=AC时①②正确;根据对角线互相垂直的四边形的面积等于对角线乘积的一半可得S四边形ADFE =12AF⋅DE,判断出③正确;根据翻折的性质和平角的定义表示出∠ADE和∠AED,然后利用三角形的内角第10页,共19页和定理列式整理即可得到∠BDF +∠FEC =2∠BAC ,判断出④正确.本题考查了翻折变换的性质,主要利用了平行线判定,等腰三角形三线合一的性质,三角形的内角和定理,熟记各性质并准确识图是解题的关键.17.【答案】解:(1)在已知一元二次方程中,a =1,b =−(k +2),c =(14k 2+1),又由△=b 2−4ac=[−(k +2)]2−4(14k 2+1) =k 2+4k +4−k 2−4=4k >0,得k >0,即k >0时方程有两个不相等的实数。
2019年广东省广州市白云区中考数学二模试卷(解析版)
2019年广东省广州市白云区中考数学二模试卷一、选择题1.计算20的结果是()A. 0B. 1C. 2D. 1 2【答案】B【解析】【分析】根据:a0=1(a≠0)可得结论.【详解】解:20=1,故选:B.【点睛】本题考查了零指数幂的计算,比较简单,熟练掌握公式是关键.2.下列运算正确的是()A. (a﹣b)2=a2﹣b2B. (a+b)2=a2+b2C. a2b2=(ab)4D. (a3)2=a6【答案】D【解析】【分析】直接利用完全平方公式以及积的乘方、幂的乘方运算法则分别判断得出答案.【详解】解:A、(a﹣b)2=a2﹣2ab+b2,故此选项错误;B、(a+b)2=a2+2ab+b2,故此选项错误;C、a2b2=(ab)2,故此选项错误;D、(a3)2=a6,正确.故选:D.【点睛】此题主要考查了完全平方公式以及积的乘方运算,正确掌握相关运算法则是解题关键.3.下列调查方式,合适的是()A. 要了解一批灯泡的使用寿命,采用普查方式B. 要了解广州电视台“今日报道”栏目的收视率,采用普查方式C. 要了解我国15岁少年身高情况,采用普查方式D. 要选出某校短跑最快的学生参加全市比赛,采用普查方式【答案】D【解析】【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A、要了解一批灯泡的使用寿命,调查过程带有破坏性,只能采取抽样调查,而不能将整批灯泡全部用于实验;B、要了解广州电视台“今日报道”栏目的收视率,进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可;C、要了解我国15岁少年身高情况,进行一次全面的调查,费大量的人力物力是得不尝失的,采取抽样调查即可;D、要选出某校短跑最快的学生参加全市比赛,必须选用普查;故选:D.【点睛】本题考查的是调查方法的选择;正确选择调查方式要根据全面调查的优缺点再结合实际情况去分析.4.若分式212xx-+的值为0,则x的值为()A. ﹣1B. 0C. 1D. ±1 【答案】D【分析】直接利用分式的值为零则分子为零分母不为零进而得出答案.【详解】∵分式212xx-+的值为0,∴x2-1=0,解得:x=±1.故选D.【点睛】此题主要考查了分式的值为零的条件,正确把握定义是解题关键.5.解方程x5x1123--+=时,去分母后得到的方程是()A. 3(x﹣5)+2(x﹣1)=1B. 3(x﹣5)+2x﹣1=1C. 3(x﹣5)+2(x﹣1)=6D. 3(x﹣5)+2x﹣1=6【答案】C【解析】【分析】根据一元一次方程的解法即可求出答案.【详解】解:等式两边同时乘以6可得:3(x﹣5)+2(x﹣1)=6,故选:C.【点睛】本题考查了一元一次方程的解法,解一元一次方程去分母的方法是两边都乘各分母的最小公倍数,一是不要漏乘不含分母的项,二是去掉分母后要把多项式的分子加括号.6.下列函数中,当x>0时,y随x的增大而增大的是()A. y=﹣2x+1B. y=2xC. y=﹣2x2+1D. y=2x【答案】D 【解析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断.【详解】解:A、y=﹣2x+1,一次函数,k<0,故y随着x增大而减小,故A错误;B、y=2x,k=2>0,在每个象限里,y随x的增大而减小,故B错误;C、y=﹣2x2+1(x>0),二次函数,a<0,故当图象在对称轴右侧,y随着x的增大而减小;而在对称轴左侧(x<0),y随着x的增大而增大,故C错误;D、y=2x,一次函数,k>0,故y随着x增大而增大,故D正确.故选:D.【点睛】本题综合考查二次函数、一次函数、反比例函数的增减性(单调性),是一道难度中等的题目.7.如图,将矩形ABCD折叠,使点C与点E重合,折痕为线段DF,已知矩形ABCD的面积为6,四边形CDEF的面积为4,则AC=()A. 5B. 10C. 13D. 15【答案】C【解析】【分析】根据四边形CDEF是正方形,即可得出CD4=2,根据矩形ABCD的面积为6,即可得出AD=3,再根据勾股定理即可得到AC的长.【详解】解:由折叠可得,∠DEF=∠DCF=∠CDE=90°,∴四边形CDEF是矩形,由折叠可得,CD=DE,∴四边形CDEF是正方形,∴CD4=2,又∵矩形ABCD的面积为6,∴AD=3,∴Rt△ACD中,AC=22=13,23故选:C.【点睛】本题主要考查了折叠问题,矩形的性质,以及勾股定理,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8.如图,在梯形ABCD中,AB∥CD,过点C作CE∥BD,交AB延长线于点E,对角线AC、BD相交于点O,下列结论中,错误的是()A. △AOB∽△CODB. ∠AOB=∠ACBC. 四边形BDCE是平行四边形D. S△AOD=S△BOC【答案】B【解析】【分析】根据梯形的性质和相似三角形的判定和性质解答即可.【详解】解:∵CD∥AB,∴△AOB∽△COD,故A正确;∵CD∥BE,DB∥CE,∴四边形BDCE是平行四边形,故C正确;∵△ABC的面积=△BOC的面积+△AOB的面积=△ADB的面积=△AOD的面积+△AOB的面积,∴△AOD的面积=△BOC的面积,故D正确;∵∠AOB=∠COD,∴∠DOC=∠OCE>∠ACB,故B错误;故选:B.【点睛】此题考查相似三角形的判定,关键是根据梯形的性质和相似三角形的判定和性质解答.平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似.9.在正方体表面上画有如图中所示的粗线,那么它的展开图可以是()A. B.C. D.【答案】D【解析】【分析】具体折一折,从中发挥想象力,可得正确的答案.【详解】解:由带有各种符号的面的特点及位置,可知只有选项D符合.故选:D.【点睛】考查了几何体的展开图,解决此类问题,要充分考虑带有各种符号的面的特点及位置.10.k≠0,函数y=kx﹣k与y=kx在同一平面直角坐标系中的大致图象可能是()A. B.C. D.【答案】A【解析】【分析】分两种情况讨论,当k >0时,分析出一次函数和反比例函数所过象限;再分析出k <0时,一次函数和反比例函数所过象限,符合题意者即为正确答案.【详解】解:①当k >0时,y =kx ﹣k 过一、三、四象限;y =k x 过一、三象限; ②当k <0时,y =kx ﹣k 过一、二、四象象限;y =k x过二、四象限. 观察图形可知,只有A 选项符合题意.故选:A .【点睛】本题主要考查了反比例函数的图象和一次函数的图象,熟悉两函数中k 和b 的符号对函数图象的影响是解题的关键.二、填空题11.计算:6ab 2÷3ab =_____. 【答案】2b【解析】【分析】根据单项式的除法法则即可求出答案.【详解】解:原式=2b ,故答案为:2b【点睛】本题考查了单项式的除法,单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.12.不等式组10 2350xx⎧-<⎪⎨⎪+>⎩的解集是_____.【答案】x>0【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【详解】解:解不等式﹣12x<0得x>0,解不等式3x+5>0得x>﹣53,所以不等式组的解集为x>0,故答案为:x>0.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.13.如图,如果AE∥BD,CD=20,CE=36,AC=27,那么BC=_____.【答案】15【解析】【分析】根据平行线分线段成比例解答即可.【详解】解:∵AE∥BD,CD=20,CE=36,AC=27,∴CB CDAC CE=,即202736BC=,解得:BC=15,【点睛】本题考查了平行线分线段成比例定理,平行线分线段成比例定理指的是两条直线被一组平行线所截,截得的对应线段的长度成比例.14.某样本数据分成5组,第1组和第2组的频率之和为0.3,第3组的频率是0.14,第4组和第5组的频率相等,那么第5组的频率是_____.【答案】0.28【解析】【分析】直接利用5各小组的频率之和为1,进而得出答案.【详解】解:∵某样本数据分成5组,第1组和第2组的频率之和为0.3,第3组的频率是0.14,∴第4组和第5组的频率和为:1﹣0.3﹣0.14=0.56,∵第4组和第5组的频率相等,∴第5组的频率是:0.28.故答案为:0.28.【点睛】此题主要考查了频率的意义,正确得出第4组和第5组的频率和是解题关键.15.一张试卷只有25道选择题,答对一题得4分,答错倒扣1分,某学生解答了全部试题共得70分,他答对了__________道题.【答案】19【解析】【分析】设他做对了x道题,则小英做错了(25-x)道题,根据总得分=4×做对的题数-1×做错的题数,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设他做对了x道题,则他做错了(25-x)道题,根据题意得:4x-(25-x)=70,解得:x=19,【点睛】本题考查了一元一次方程的应用,根据总得分=4×做对的题数-1×做错的题数列出关于x的一元一次方程是解题的关键.16.如图,在四边形ABCD中,对角线AC垂直平分BD,∠BAD=120°,AB=4,点E是AB的中点,点F 是AC上一动点,则EF+BF的最小值是_____.【答案】7【解析】【分析】连接DF,过E作EG⊥BD于G,当E,F,D三点共线时,EF+BF的最小值等于DE的长,利用勾股定理求得DE的长,即可得出EF+BF的最小值.【详解】解:如图所示,连接DF,过E作EG⊥BD于G,∵AC垂直平分BD,∴FB=FD,AB=AD,∴EF+BF=EF+FD,当E,F,D三点共线时,EF+BF的最小值等于DE的长,∵∠BAD=120°,∴∠ABD=30°,又∵AB=4,点E是AB的中点,∴EG=12BE=1,AH=12AB=2,∴BG =3,BH =23,GH =3,∴DH =23,DG =33,∴Rt △DEG 中,DE =22EG DG +=221(33)+=27,故答案为:27.【点睛】本题主要考查了最短路线问题,以及勾股定理,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.三、解答题17.计算:112sin 30362-︒⎛⎫-- ⎪⎝⎭【答案】﹣3【解析】【分析】直接利用二次根式的性质以及特殊角的三角函数值、负指数幂的性质分别化简得出答案.【详解】解:原式=2×12﹣(﹣2)﹣6=1+2﹣6=﹣3.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.18.如图,在Y ABCD 中,点E ,F 分别在BC ,AD 上,且BE=FD ,求证:四边形AECF 是平行四边形.【答案】证明:在ABCD中,AD=BC且AD∥BC,∵BE=FD,∴AF=CE。
2019年白云区初中毕业班综合测试二(数学答案)(19-5-21)
.2019年白云区初中毕业班综合测试(二)数学参考答案及评分标准三、解答题17.(本小题满分9分)解:原式=2×21-(-2)-6…………………………………………………………………………4分 =1+2-6………………………………………………………………………………………8分 =-3…………………………………………………………………………………………9分18.(本小题满分9分)证明:在 ABCD 中,∵AD = BC , ………………………………………………………………………………………2分 FD=EB ,∴AD -FD = BC -EB .……………………………………………………………………………4分 即AF = EC .………………………………………………………………………………………5分 在 ABCD 中,∵AD ∥BC , 即AF ∥EC .……………………………………………………………………7分 ∴四边形AECF 是平行四边形. …………………………………………………………………9分(第18题图)解:22a b a b a b--- =22a b a b--…………………………………………………………………………………………………2分 =()()+a b a b a b-- ………………………………………………………………………………………4分=+a b . …………………………………………………………………………………………………6分 方法一:2540x x -+=.()()410x x --=.…………………………………………………………………………7分解得1=4x 或2=1x .……………………………………………………………………………………8分∵a 、b (a b >)是方程2540x x -+=的两个不相等的实数根,∴ a =4,b =1.…………………………………………………………………………………9分 ∴原式=+=4+1=5a b . ………………………………………………………………………………10分 方法二:∵a 、b (a b >)是方程2540x x -+=的两个不相等的实数根,∴ a + b = 5,…………………………………………………………………………………8分 ∴原式=5. …………………………………………………………………………………10分20.(本小题满分10分) 答:…………………………………………………………………………4分(2)这两天最低气温之差是 3 ℃; …………………………………………………………6分 (3)23S < 25S ,………………………………………………………………………………8分2019年 3 月份的更稳定. ………………………………………………………………10分解:(1) 由图①可得,当0≤t ≤30时,可设日销售量w =k t . ∵ 点(30,60)在图象上,∴ 60=30k .∴ k =2.即w =2 t .………………………………………………………………3分 当30<t ≤40时,可设日销售量w =k 1t +b . ∵点(30,60)和(40,0)在图象上,∴ ⎩⎨⎧+=+=bk b k 114003060解得 k 1=-6,b =240.…………………………………………………………………………6分 ∴w =-6t +240.综上所述,日销售量03020260043t t t w t ⎧=⎨-+≤≤<≤⎩)4(()(当0≤t ≤30时,日销售量w =2t ;当30 < t ≤40时,日销售量w =-6t +240.) …7分 (2)由图①知,当t =30(天)时,日销售量w 达到最大,最大值60w =max (件);……8分 又由图②知,当t =30(天)时,产品A 的日销售利润y 达到最大,最大值60y =max (元/件).…………………………………………………………………………9分∴当t =30(天)时,日销售量利润Q 最大,…………………………………………………10分最大日销售利润60603600Q w y =∙=⨯=max max max (元).答:第一批产品A 上市后30天,这家商店日销售利润Q 最大,日销售利润Q 最大是3600元. …………………………………………………………………………………………………………12分 22.(本小题满分12分)解:过点B 作BF ⊥AD 、BE ⊥CD ,垂足分别为E 、F ……………………………………………2分在Rt △ABF 中,∵∠F AB =60º,………………………………………………………………………………3分∴AF =AB co s ∠F AB =20×12 =10. ………………5分在Rt △BCE 中,∵∠EBC =45º,BC =40. ………………6分∴BE =BC co s ∠EBC =40×22=20 2 . …8分 在矩形BEDF 中,FD = BE =20 2 ,∴AD = AF +FD =10+20 2 .…………………11分 答:AD 的长约为(10+20 2 )米. ……………12分F E花园人工湖CBAD北23.(本小题满分12分)解:(1) 令y =0,得kx -8k=0,∵k ≠0,解得x =8,2分∴直线l 与x 轴的交点N 的坐标为(8,0) .4分(2)连结OB ,过点O 作OD ⊥AB ,垂足为D . ∴点O 到直线AB 的距离为线段 OD 的长度.∵⊙O 的半径为5,∴OB = 5.又∵AB = 6, ∴BD =116322AB =⨯=. ………………………………………………………………6分 在Rt △OBD 中,∵∠ODB =90°,∴OD =OB 2-BD 2 = 52-32 =4 .答:点O 到直线AB 的距离为4.…………………………………………………………………8分(3) 由(1)得N 的坐标为(8,0),∴ON = 8.由(2)得OD = 4.方法一:∴在Rt △ODN 中,DN =ON 2-OD 2 ==82-42 = 4 3 .……………………………10分又∵∠OMD + ∠MOD =90°,∠NOD + ∠MOD =90°, ∴∠OMD =∠NOD .∴Rt △OMD ∽Rt △NOD , ∴ OM NO = ODND.∴OM =OD ND ·NO = 443 ×8 =8 33 .………………11分 ∴直线AB 与y 轴的交点为(0,8 33). ………………………………………12分 方法二:∴在Rt △OND 中,41sin 82OD OND ON ∠===. ………………………………………9分 ∴∠OND =30°. …………………………………………………………………………10分 ∵在Rt △OMN 中,tan OM ON OND =∠, ∴838tan 30=OM =.…………………………………………………………………11分 ∴直线AB 与y 轴的交点为(0,8 33). ………………………………………12分24.(本小题满分14分) 解:(1)在Rt △ABC 中,∵∠CAB = 60°,∠ACB = 90°, ∴∠ABC = 30°. 又∵BC =6,∴OC =BC sin ∠ABC =6sin30°=3. ∴C 点的坐标为(0,3). 在Rt △COB 中,∴OB =OC cot ∠CBO =3×cot30°=33. ∴B (33,0). 在Rt △AOC 中,∴AO =OC cot ∠CAO =3×cot60°. ∴A (3-,0).∵抛物线y = ax 2+ bx + c 经过点C (0,3),∴c =3.………………………………………………………………………………………………1分 ∵抛物线y = ax 2+ bx + c 经过A 、B 两点,∴330,2730.a a ⎧+=⎪⎨++=⎪⎩解得1,3a b ⎧=-⎪⎪⎨⎪=⎪⎩………………………………………………3分综上所述,1, 3.3a b c =-== (2)当等腰Rt △DEF 的直角顶点F 在y 轴负半轴时,∵DE =6,∴OE =OF =362121=⨯=DE .……………………………………………………………4分 ∴F 点起始位置的坐标为(0,-3),E 点起始位置的坐标为(3,0),………………………5分 ∵B (33,0),∴BE =OB -OE =333-.……………………………………………………………………6分 ∴△DEF 沿x 轴正方向(向右)平移(333-)个单位长度,可使点E 与点B 重合.当点E 与点B 重合时,点F 的坐标为(333-,-3).……………………………………………………7分 (3)设⊙P 的半径为r ,⊙P 与直线AC 和BC 都相切,有两种情况:①圆心P 1在直线AC 的右侧时,过点P 1作P 1Q 1⊥AC ,垂足为Q 1,作P 1R 1⊥BC ,垂足为R 1. ∵∠ACB = 90°,∴四边形Q 1CR 1P 1是矩形.∵⊙P 1与AC 、BC 相切于点Q 1、R 1, ∴R 1P 1=P 1Q 1,∴矩形Q 1CR 1P 1是正方形.…………………………………………………………………8分 设 Q 1C =CR 1=R 1P 1=P 1Q 1= r 1,∴在Rt △P 1R 1B 中,BR 1=R 1P 1cot ∠CBA = r 1cot 30°=3 r 1, ∴BC =CR 1+BR 1= r 1 +3 r 1=()13+ r 1,又∵BC = 6, ∴()13+ r 1 = 6,∴()()3313321361361-=-=-=+=r ………………………………………9∴P 1B = 2R 1P 1=2r 1 =()236, ∴OP 1= OB -BP 1=()33663633-=--, ∴P 1的坐标为(336-,0). ∵OE =3,∴(1136 3.EP OE OP =-=--=∴把△DEF 沿x 轴负方向(向左)平移()3个单位长度,可使⊙E 与直线AC 和BC 均相切.………………………………………………………………………………………10分②当圆心P 2在直线AC 的左侧时,过点P 2作P 2Q 2⊥AC ,垂足为Q 2,作P 2R 2⊥BC ,垂足为R 2. ∵∠ACB = 90°, ∴∠R 2CQ 2 = 90°,∵⊙P 2与AC 、BC 相切于点Q 2、R 2,∴矩形Q 2CR 2P 2是正方形.…………………………………………………………………11分 设 Q 2C =CR 2=R 2P 2=P 2Q 2= r 2,∴在Rt △P 2R 2B 中,BR 2=R 2P 2cot ∠CBA = r 2cot 30°=3 r 2, ∴BC =BR 2-CR 2 =3 r 2 - r 2 =()13- r 2,又∵BC = 6, ∴()13- r 2 = 6,∴()()33313321361362+=+=+=-=r ,……………………………………12分∴P 2B = 2R 2P 2=2r 2 =()6363332+=+,∴OP 2= BP 2 - OB =33633636+=-+, ∴P 2的坐标为(6--,0). ∵OE =3,2OP =∴(22+3+EP OE OP ===∴把△DEF 沿x 轴负方向(向左)平移(个单位长度,可使⊙E 与直线AC 和BC 均相切.……………………………………………………………………………………………13分⊙E与直线AC 和BC 均相切.……………………………………………………………………………14分A BF G25.(本小题满分14分)(1)证明:∵四边形ABCD 和四边形CGFE 是正方形,∴CE =FE ,AD =DC ,∠CEF =90°,AD ∥EF .∴∠1=∠2.在△AMD 和△FMN 中,∵ 1234MA MF ⎧⎪⎨⎪∠∠∠∠⎩=,=,=,∴△AMD ≌△FMN .……………………3分(2)答:△DEM 是等腰直角三角形. 证明:由(1)得△AMD ≌△FMN ,∴MD =MN ,AD =FN . …………………………………………………………………………4分 在正方形ABCD 中,∵AD =DC ,∴DC =NF .…………………………………………………………………………5分 又∵EC =EF ,∴EC - DC =EF - NF 即 ED =EN . ………………………………………………6分 又∵∠DEN =90°,∴△DEN 是等腰直角三角形.∴EM ⊥MD ,ME =MD . …………………………………………………………………………7分 ∴△DEM 是等腰直角三角形. …………………………………………………………………8分(3)答:仍然成立.证法一:如图,在MN 上截取MP =MD ,连结EP 、FP ,延长FP 与DC 延长线交于点H .……………………………………………………………………………9分在△AMD 和△FMP 中,∵ 12MA MF MD MP ⎧⎪⎩∠⎪∠⎨=,=,=, ∴△AMD ≌△FMP .∴∠3=∠4,AD =PF .…………………………又∵四边形ABCD 、四边形CGFE 均为正方形, ∴CE =FE ,AD =DC ,∠ADC =90°,∠CEF =∠ADC =∠EFG =∠ECG =90°. ∴DC =PF .∵∠3=∠4,∴AD ∥FH .∴∠H =∠ADC =90°. ∵∠G =90°,∠5=∠6, ∠GCH =180°-∠H -∠5,N B∠GFH=180°-∠G -∠6,∴∠GCH=∠GFH.∵∠GCH+∠DCE=∠GFH+∠PFE=90°,∴∠DCE=∠PFE.………………………………………………………………………………11分在△DCE和△PFE中,∵DC PFDCE PFECE FE∠⎪⎨⎪⎩∠⎧=,=,=,∴△DCE≌△PFE.∴ED=EP,∠DEC=∠PEF.……………………………………………………………………12分∵∠CEF=90°,∴∠DEP=90°.∴△DEP是等腰直角三角形.∴EM⊥MD,ME=MD.…………………………………………………………………………13分∴△DEM是等腰直角三角形.…………………………………………………………………14分证法二:过点F作AD的平行线分别交DM、DC的延长线于P、H,连结EP.(与证法一相近,评分标准参照证法一)。
2019届广东省等校联考中考二模考试数学试卷【含答案及解析】
2019届广东省等校联考中考二模考试数学试卷【含答案及解析】姓名_____________ 班级________________ 分数___________ 题号-二二三四五六总分得分一、选择题1. 给出四个数0,叮-,n,- 1,其中最小的是()A. 0 B . . ' - C . n D .- 12. 据深圳特区报3月30日早间消息,华为公司获得2016中国质量领域最高奖.华为公司将2016年销售收入目标定为818亿美元,是国内互联网巨头BAT三家2014年收入的两倍以上.其中818亿美元可用科学记数法表示为()美元.A. 8.18 X 109B. 8.18 X 1010C 8.18 X 1011D 0.818 X 10113. 在奔驰、宝马、丰田、三菱等汽车标志图形中,为中心对称图形的是()4.马大哈做题很快,但经常不仔细思考,所以往往错误率很高,有一次做了四个题,但只做对了一个,他做对的是()A . a8*a4=a2B . a3?a4=a12C . J 丨=±2D . 2x3?x2=2x57. 2015赛季中超联赛中,广州恒大足球队在联赛30场比赛中除4月3日输给河南建业外, 其它场次全部保持不败,取得了 67个积分的骄人成绩,已知胜一场得 3分,平一场得1 分,负一场得0分,设广州恒大一共胜了 x 场,则可列方程为() A. 3x+ (29 - x ) =67B . x+3 (29 - x ) =67C. 3 x+ (30 - x ) =67D. x+3 (30 - x ) =678.两组邻边分别相等的四边形叫做“筝形”,如图,四边形AD=CD AB=CB 在探究筝形的性质时,得到如下结论:①△ 9.如表是深圳某气象局于 (AQI )如表所示: 2016年3月22日,在全国是一个监测点检测到的空气质量指数10. 监测点荔园西乡华侨城南油盐田龙岗洪湖南澳葵涌梅沙观澜AQI1531252431242525342026质量优优优优优优优优优优优 td11. 如图,在平行四边形 ABCD 中,以A 为圆心,AB 为半径画弧,交 AD 于 F ,再分别以B 、F 为圆心,大于一BF 的长为半径画弧,两弧相交于点 G,若BF=6, AB=5,则AE 的长为ABCD 是 一个筝形,其中 ABD^^ CBD ②ACL BD ③四主视方向 D .1012. 如图,二次函数y=ax2+bx+c 图象的一部分,对称轴为 x=^,且经过(2, 0)这个点, b+c=0;④若(0, y1),( 1, y2)是抛物线上 )3 k1 > 0)和y2=—在第一象限内的图象依次是 C1 rA 、B 两点,OA 的延长线交 C1于点E , EF ±x 轴则 EF : AC 为()C F AA. 「 : 1 B . 2 : J - C . 2 : 1 D . 二、填空题-J _14 已知a 工0, a 工b ,x=1是方程ax2+bx - 10=0的一个解,则 -------- 的值是 .15.周星驰拍摄的电影《美人鱼》取景地在深圳杨梅坑,据称是深圳最美的溪谷,为估计 全罗湖区8000名九年级学生云过杨梅坑的人数,随机抽取400名九年级学生,发现其中 有50名学生去过该景点,由此估计全区九年级学生中有 个学生去过该景点.有下列说法:①abc v 0;②a+b=0;③a - 的两点,则y 仁y2 .上述说法正确的是(13.如图,两个反比例函数 y 仁一(其中 和C2,点P 在C1上.矩形PCO 咬C2于于F 点,且图中四边形 BOA 啲面积为6, 29 : 14D A. 11 B . 6 C . 8 D①③④D.①②16.将一些相同的“O”按如图所示的规律,观察每个“稻草人”中的“O”的个数,则第6个“稻草人”中有个“C y,则第n个“稻草人”中有个“OQ O C O 0O U QUO ******o O O Q O 00 0 0O O0 0 0 0O 0O° ° 017.如图,在等腰Rt △ABC中,/ BAC=90° ,B=AC BC=J^,点D是AC边上一动点,二、计算题18.计算:| —|+0 - 2sin45 ° + ()- 2.四、解答题;3工-(r-2 庐519•解不等式组丨-.并写出它的整数解.x + l> —-—L[■和界m20. 九年级(1)班的全体同学根据自己的兴趣爱好参加了六个学生社团(每个学生必须参加且只参加一个),为了了解学生参加社团的情况,学生会对该班参加各个社团的人数进行了统计,绘制成了如图不完整的扇形统计图,已知参加“读书社”的学生有10人,请解答下列问题:(1)该班的学生共有名;该班参加“爱心社”的人数为名,若该班参加“吉他社”与“街舞社”的人数相同,则“吉他社”对应扇形的圆心角的度数为(2)—班学生甲、乙、丙是“爱心社”的优秀社员,现要从这三名学生中随机选两名学生参加“社区义工”活动,请你用画树状图或列表的方法求出恰好选中甲和乙的概率.五、计算题21. 如图,菱形ABCD勺对角线AC和BD交于点0,分别过点C、D作CE// BD, DE// ACCE六、解答题22. 如图,河坝横断面背水坡AB的坡角是45 °,背水坡AB长度为20 .■米,现在为加固堤坝,将斜坡AB 改成坡度为1: 2的斜坡AD【备注:ACLCB求/ EAD的正切值.(1)求加固部分即△ ABD的横截面的面积;(2)若该堤坝的长度为100米,某工程队承包了这一加固的土石方工程,为抢在在汛期到来之际提前完成这一工程,现在每天完成的土方比原计划增加25%这样实际比原计划提前10天完成了,求原计划每天完成的土方•【提示土石方=横截面x堤坝长度】23. 如图,点O为Rt △ ABC斜边AB上一点,以OA为半径的OO与BC切于点D,与AC交于点E,连接AD.(2)若/ BAC=60 , 0A=2求阴影部分的面积(结果保留n )24.如图,抛物线y - x2+bx+c与x轴交于点A (- 1, 0), B (3, 0)(1)求b、c.(2)如图1,在第一象限内的抛物线上是否存在点D,使得三角形BCD的面积最大?若存在,求出D点坐标,求出三角形BCD的面积最大值;若不存在,请说明理由.(3)如图2,抛物线的对称轴与抛物线交于点P,与直线BC相交于点M连接PB•问在直线BC下方的抛物线上是否存在否存在点Q使得△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.参考答案及解析第1题【答案】I)【解析】 试题井析:根据正实数都大干0」员实数都小于0,正实数大于一切员实数,两个员实数绝对值大的反而 小,可得-1<0<73 5 故结出四个数山 忑,-1,其中最小的是「1.故选:D -第2题【答案】B【解析】 故选日・第3题【答案】【解析】试题分析:根据中心对称凰形的槪萬瓠J 睹环是中心对称厨枚是中心对称團形的只有艮故选B ・第4题【答案】严』空+于S-严I 口正正斑廳的評 玮燼歸艇谱澈艇餐元【解析】试题丹析:乐根据同底敢显的除法,可得齐故此选项错误,取根据同底欝臬的乘法,可得故此选项错误;仁根協算术平方根的意义知J7 =2,故此选项错误;叭根据单项式乘以单顶式运算法则可知旳m呜故正确.故选:D-第5题【答案】b I【解析】试题井析:氐Z1=Z2,不是互为余角关系,故本选项错误;E, Z1=Z2,是对顶鼠不是互为余角关航故本选项错误!J厶討互为余角关系/故本选项止确/D\ Z1^Z2互为补角关系,故本选项错误.故选「第6题【答案】【解析】试题分析:根据正三棱柱的主视團是的险主视團中间有竖看的卖线,即可解答. 故选:B-第7题【答案】A【解析】亍乔分析:设该队共胜了盂场』则平了(30 - X》场,由题意得妝十(29 _x)=57,故选A第8题【答案】1J【解析】试题井析:在厶期!)与△CED中,AD = CD j AB - BC , [DB = DB/.A AED^A CBD (SSS)7故①正确;.'.ZAD0=ZCDB,在△AOD与△COD中,\4D = CD厶4DB = ZCD3 7[OD - OD.'.AAOI^ACOD (SAS),.'.ZAOI>=ZOOD=90?;AO=OCj.'.AC±DE,故②正确j四边形ABCD的面积%斑空攻QA^DB OC AC-BD,# w 搐故③正确;故选D・第9题【答案】【睥析】试题井析;在这一组数据中鬲是出现次数最多的』故众数是曲!排序后辿于中间位盖的那个数是込那么由中位数的定又可絶这组数据的屮位数是更;故选:乩第10题【答案】C【加试题分析;连接E匚根据题意得出AE垂直平井BF, AF=AE=5?得出03=0*爲ZBAE=ZFZE,由勾股走理玻出込再证出EE 二AE二AF,得岀匹边形屈EF是平讦四边腰由平行四边形的世质得出(UR巨二+ AE,即可得出AE=2OA^..故选:C.第11题【答案】【解析】试题井析:①丁抛牲密幵口向T,.\a<0,丁抽物线与血交于正半轴,.'.€>0;B一-- =——孑Nla 2.\L>0,.\ibe<0,正确;2a 2.'.-b=a> 即a+b^)j 正确;旨当x—- 1时j尸0 f.\a- btc>0j 正5® j钢艮据抛物线的对称$由是沪+可知L点0 yi)和点⑴严)关丹J对称,■'yi=yaj正确』故选;人.第12题【答案】【解析】 试题井析;苜先根1®反比例醱2的解祈式可得到%厂%就W X3=^ J 再由阴詣部分面积x 2 2为勺可得到工f 从而得到團象◎的函数关系式为y=?,再算出AEOF 的面积,可以得到△AOC 与ZXEOF 的面积比』然后证明厶EOFS △皿,根1S 对应边之比等于面积比的平万可得到EF : AC= 侖- 故选:A. 第13题【答案】口+占亍小【解析】试题分析:根据一元二次方程根与系数的关系和代數式变形求则可.a--b 2 口卡62a ・2b 2(4?』方) 2将沪1代入方程aF+S-L A0中可得a+b-lCKJ 」解得寸010则宁■二匚第14题【答案】1000【解析】试題分析:首先求出随机抽取的400宕学生中去Et 该量点,的学生所占的百井比,然后再乘CJ.800O,即可第15题【答案】得出估计全区九年级学主去过该景点的人数为:X 8000=1000 <个). ■10026;1+ (n43) 4- (n-1) 2【解析】试题井析;分析细可得;第1个圉形中小圆的个数再;第2个團形中小圆的个数为1+^+1-7 5第2个團形中小国的伞数为1-^44=11、第4个團形中小圆的个数羽丄肯阳二口多«I «■底此得岀第n个團形中小圆的个戮为埒(曲3)4心-1)\報个弩舀草人"中的 9、析数为1仔4 J海第16题【答案】2爲-2【解析】析;连结肚,如⑥,先根据等隅卓魚三角羽的枕周賈型AB枚f 囲雕圆周角鬱&申皿聊彳攜到Z肛冋0。
广东省广州市2019-2020学年中考数学二模试卷含解析
广东省广州市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.在同一平面直角坐标系中,函数y=x+k 与ky x=(k 为常数,k≠0)的图象大致是( ) A . B .C .D .2.m-n 的一个有理化因式是( ) A .m n +B .m n -C .m n +D .m n -3.一个几何体的三视图如图所示,则该几何体的形状可能是( )A .B .C .D .4.在平面直角坐标系中,已知点A (﹣4,2),B (﹣6,﹣4),以原点O 为位似中心,相似比为12,把△ABO 缩小,则点A 的对应点A′的坐标是( ) A .(﹣2,1)B .(﹣8,4)C .(﹣8,4)或(8,﹣4)D .(﹣2,1)或(2,﹣1)5.下列关于x 的方程一定有实数解的是( ) A .2x mx 10--= B .ax 3= C x 64x 0--=D .1x x 1x 1=-- 6.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是25400cm ,设金色纸边的宽为xcm ,那么x 满足的方程是( )A .213014000x x +-=B .2653500x x +-=C .213014000x x --=D .2653500x x --=7.下面运算正确的是( ) A .111()22-=-B .(2a )2=2a 2C .x 2+x 2=x 4D .|a|=|﹣a|8.已知⊙O 的半径为3,圆心O 到直线L 的距离为2,则直线L 与⊙O 的位置关系是( ) A .相交B .相切C .相离D .不能确定9.如图,正方形ABCD 中,E ,F 分别在边AD ,CD 上,AF ,BE 相交于点G ,若AE=3ED ,DF=CF ,则AGGF的值是( )A .43B .54C .65D .7610.今年,我省启动了“关爱留守儿童工程”.某村小为了了解各年级留守儿童的数量, 对一到六年级留守儿童数量进行了统计,得到每个年级的留守儿童人数分别为10,15,10,17,18,1.对于这组数据,下列说法错误的是( ) A .平均数是15B .众数是10C .中位数是17D .方差是44311.如图,将△ABC 绕点C 顺时针旋转,使点B 落在AB 边上点B′处,此时,点A 的对应点 A′恰好落在 BC 边的延长线上,下列结论错误的是( )A .∠BCB′=∠ACA′B .∠ACB=2∠BC .∠B′CA=∠B′ACD .B′C 平分∠BB′A′12.某校数学兴趣小组在一次数学课外活动中,随机抽查该校10名同学参加今年初中学业水平考试的体育成绩,得到结果如下表所示:下列说法正确的是( )A .这10名同学体育成绩的中位数为38分B .这10名同学体育成绩的平均数为38分C .这10名同学体育成绩的众数为39分D .这10名同学体育成绩的方差为2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.八位女生的体重(单位:kg )分别为36、42、38、40、42、35、45、38,则这八位女生的体重的中位数为_____kg .14.如图(a ),有一张矩形纸片ABCD ,其中AD=6cm ,以AD 为直径的半圆,正好与对边BC 相切,将矩形纸片ABCD 沿DE 折叠,使点A 落在BC 上,如图(b ).则半圆还露在外面的部分(阴影部分)的面积为_______.15.方程32x x =+的根是________.16.唐老师为了了解学生的期末数学成绩,在班级随机抽查了10名学生的成绩,其统计数据如下表: 分数(单位:分) 100 90 80 70 60 人数14212则这10名学生的数学成绩的中位数是_____分.17.在平面直角坐标系中,抛物线y=x 2+x+2上有一动点P ,直线y=﹣x ﹣2上有一动线段AB ,当P 点坐标为_____时,△PAB 的面积最小.18.如图所示,在平面直角坐标系中,已知反比例函数y=kx(x>0)的图象和菱形OABC ,且OB=4,tan ∠BOC=12,若将菱形向右平移,菱形的两个顶点B 、C 恰好同时落在反比例函数的图象上,则反比例函数的解析式是______________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图, 二次函数23y ax bx =++的图象与 x 轴交于()30A -,和()10B ,两点,与 y 轴交于点 C ,一次函数的图象过点 A 、C .(1)求二次函数的表达式(2)根据函数图象直接写出使二次函数值大于一次函数值的自变量 x 的取值范围.20.(6分)某校初三进行了第三次模拟考试,该校领导为了了解学生的数学考试情况,抽样调查了部分学生的数学成绩,并将抽样的数据进行了如下整理.(1)填空m =_______,n =_______,数学成绩的中位数所在的等级_________. (2)如果该校有1200名学生参加了本次模拟测,估计D 等级的人数;(3)已知抽样调查学生的数学成绩平均分为102分,求A 级学生的数学成绩的平均分数. ①如下分数段整理样本 等级等级分数段各组总分人数 A110120X <≤ P4B100110X <≤ 843 n C90100X <≤ 574 mD8090X <≤1712②根据上表绘制扇形统计图21.(6分)如图,在平行四边形ABCD中,过点A作AE⊥DC,垂足为点E,连接BE,点F为BE上一点,连接AF,∠AFE=∠D.(1)求证:∠BAF=∠CBE;(2)若AD=5,AB=8,sinD=45.求证:AF=BF.22.(8分)如图,在△ABC中,AD是BC边上的高,BE平分∠ABC交AC边于E,∠BAC=60°,∠ABE=25°.求∠DAC的度数.23.(8分)我校对全校学生进传统文化礼仪知识测试,为了了解测试结果,随机抽取部分学生的成绩进行分析,现将成绩分为三个等级:不合格、一般、优秀,并绘制成如下两幅统计图(不完整).请你根据图中所给的信息解答下列问题:(1)本次随机抽取的人数是人,并将以上两幅统计图补充完整;(2)若“一般”和“优秀”均被视为达标成绩,则我校被抽取的学生中有人达标;(3)若我校学生有1200人,请你估计此次测试中,全校达标的学生有多少人?24.(10分)(1)解方程:x2﹣4x﹣3=0;(2)解不等式组:25.(10分)如图,AB 、CD 是⊙O 的直径,DF 、BE 是弦,且DF =BE ,求证:∠D =∠B .26.(12分)如图,AB 是⊙O 的直径,点C 在AB 的延长线上,AD 平分∠CAE 交⊙O 于点D ,且AE ⊥CD ,垂足为点E .(1)求证:直线CE 是⊙O 的切线. (2)若BC =3,CD =32,求弦AD 的长.27.(12分)先化简,再求值:22x 3x 311x 1x 2x 1x 1--⎛⎫÷-+ ⎪-++-⎝⎭,再从0x 4<<的范围内选取一个你最喜欢的值代入,求值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】 【分析】 【详解】选项A 中,由一次函数y=x+k 的图象知k<0,由反比例函数y=的图象知k>0,矛盾,所以选项A 错误;选项B 中,由一次函数y=x+k 的图象知k>0,由反比例函数y=的图象知k>0,正确,所以选项B 正确;由一次函数y=x+k 的图象知,函数图象从左到右上升,所以选项C 、D 错误.故选B.2.B【解析】【分析】找出原式的一个有理化因式即可.【详解】m-n的一个有理化因式是m-n,故选B.【点睛】此题考查了分母有理化,熟练掌握有理化因式的取法是解本题的关键.3.D【解析】试题分析:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.考点:由三视图判断几何体.视频4.D【解析】【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,即可求得答案.【详解】∵点A(-4,2),B(-6,-4),以原点O为位似中心,相似比为12,把△ABO缩小,∴点A的对应点A′的坐标是:(-2,1)或(2,-1).故选D.【点睛】此题考查了位似图形与坐标的关系.此题比较简单,注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标比等于±k.5.A【解析】【分析】根据一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根逐一判断即可得.【详解】A .x 2-mx-1=0中△=m 2+4>0,一定有两个不相等的实数根,符合题意;B .ax=3中当a=0时,方程无解,不符合题意;C .由6040x x -≥⎧⎨-≥⎩可解得不等式组无解,不符合题意;D .111x x x =--有增根x=1,此方程无解,不符合题意; 故选A . 【点睛】本题主要考查方程的解,解题的关键是掌握一元二次方程根的判别式、二次根式有意义的条件、分式方程的增根. 6.B 【解析】 【分析】根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程. 【详解】由题意,设金色纸边的宽为xcm , 得出方程:(80+2x )(50+2x )=5400, 整理后得:2653500x x +-= 故选:B. 【点睛】本题主要考查了由实际问题得出一元二次方程,对于面积问题应熟记各种图形的面积公式,然后根据等量关系列出方程是解题关键. 7.D 【解析】 【分析】分别利用整数指数幂的性质以及合并同类项以及积的乘方运算、 绝对值的性质分别化简求出答案. 【详解】解:A,-11=22(),故此选项错误; B,222a 4a =(),故此选项错误;C ,2222x x x +=,故此选项错误;D ,a a =-,故此选项正确.所以D选项是正确的.【点睛】灵活运用整数指数幂的性质以及合并同类项以及积的乘方运算、绝对值的性质可以求出答案.8.A【解析】试题分析:根据圆O的半径和,圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.解:∵⊙O的半径为3,圆心O到直线L的距离为2,∵3>2,即:d<r,∴直线L与⊙O的位置关系是相交.故选A.考点:直线与圆的位置关系.9.C【解析】【分析】如图作,FN∥AD,交AB于N,交BE于M.设DE=a,则AE=3a,利用平行线分线段成比例定理解决问题即可.【详解】如图作,FN∥AD,交AB于N,交BE于M.∵四边形ABCD是正方形,∴AB∥CD,∵FN∥AD,∴四边形ANFD是平行四边形,∵∠D=90°,∴四边形ANFD是矩形,∵AE=3DE,设DE=a,则AE=3a,AD=AB=CD=FN=4a,AN=DF=2a,∵AN=BN,MN∥AE,∴BM=ME,∴MN=32 a,∴FM=52a , ∵AE ∥FM ,∴36552AG AE a GF FM a ===,故选C . 【点睛】本题考查正方形的性质、平行线分线段成比例定理、三角形中位线定理等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,学会利用参数解决问题,属于中考常考题型. 10.C 【解析】 【详解】解:中位数应该是15和17的平均数16,故C 选项错误,其他选择正确. 故选C . 【点睛】本题考查求中位数,众数,方差,理解相关概念是本题的解题关键. 11.C 【解析】 【分析】根据旋转的性质求解即可. 【详解】解:根据旋转的性质,A:∠'BCB 与∠ACA '均为旋转角,故∠'BCB =∠ACA ',故A 正确; B:CB CB ='Q ,B BB C ∴∠=∠', 又A CB B BB C ∠=∠+∠'''Q2A CB B ''∴∠=∠, ACB A CB ∠=∠''Q 2ACB B ∴∠=∠,故B 正确;D:A BC B ''∠=∠Q ,A B C BB C ∴∠=∠'''∴B′C 平分∠BB′A′,故D 正确.无法得出C 中结论, 故答案:C. 【点睛】本题主要考查三角形旋转后具有的性质,注意灵活运用各条件 12.C【解析】试题分析:10名学生的体育成绩中39分出现的次数最多,众数为39;第5和第6名同学的成绩的平均值为中位数,中位数为:=39; 平均数==38.4 方差=[(36﹣38.4)2+2×(37﹣38.4)2+(38﹣38.4)2+4×(39﹣38.4)2+2×(40﹣38.4)2]=1.64; ∴选项A ,B 、D 错误;故选C .考点:方差;加权平均数;中位数;众数.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】根据中位数的定义,结合图表信息解答即可.【详解】将这八位女生的体重重新排列为:35、36、38、38、40、42、42、45, 则这八位女生的体重的中位数为38402+=1kg , 故答案为1.【点睛】本题考查了中位数,确定中位数的时候一定要先排好顺序,然后再根据个数是奇数或偶数来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数,中位数有时不一定是这组数据的数.14.2933cm π⎛⎫- ⎪ ⎪⎝⎭【解析】【分析】【详解】解:如图,作OH ⊥DK 于H ,连接OK ,∵以AD 为直径的半圆,正好与对边BC 相切,∴AD=2CD .∴根据折叠对称的性质,A'D=2CD .∵∠C=90°,∴∠DA'C=30°.∴∠ODH=30°.∴∠DOH=60°.∴∠DOK=120°.∴扇形ODK 的面积为()2212033cm 360ππ⨯⨯=.∵∠ODH=∠OKH=30°,OD=3cm ,∴3OH cm,DH 2==.∴DK =.∴△ODK 的面积为()213cm 224⨯=.∴半圆还露在外面的部分(阴影部分)的面积是:23cm π⎛ ⎝⎭.故答案为:23cm π⎛- ⎝⎭.15.x=2【解析】分析:解此方程首先要把它化为我们熟悉的方程(一元二次方程),解新方程,检验是否符合题意,即可求得原方程的解.详解:据题意得:2+2x=x 2,∴x 2﹣2x ﹣2=0,∴(x ﹣2)(x+1)=0,∴x 1=2,x 2=﹣1.,∴x=2.故答案为:2.点睛:本题考查了学生综合应用能力,解方程时要注意解题方法的选择,在求值时要注意解的检验. 16.1【解析】【分析】根据中位数的概念求解即可.【详解】这组数据按照从小到大的顺序排列为:60,60,70,80,80,90,90,90,90,100, 则中位数为:90802+=1. 故答案为:1.【点睛】本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.17.(-1,2)【解析】【分析】因为线段AB 是定值,故抛物线上的点到直线的距离最短,则面积最小,平移直线与抛物线的切点即为P 点,然后求得平移后的直线,联立方程,解方程即可.【详解】因为线段AB 是定值,故抛物线上的点到直线的距离最短,则面积最小,若直线向上平移与抛物线相切,切点即为P 点,设平移后的直线为y=-x-2+b ,∵直线y=-x-2+b 与抛物线y=x 2+x+2相切,∴x 2+x+2=-x-2+b ,即x 2+2x+4-b=0,则△=4-4(4-b )=0,∴b=3,∴平移后的直线为y=-x+1,解212y x y x x -+⎧⎨++⎩==得x=-1,y=2, ∴P 点坐标为(-1,2),故答案为(-1,2).【点睛】本题主要考查了二次函数图象上点的坐标特征,三角形的面积以及解方程等,理解直线向上平移与抛物线相切,切点即为P 点是解题的关键.18.4y x= 【解析】解:连接AC ,交y 轴于D .∵四边形形OABC 是菱形,∴AC ⊥OB ,OD=BD ,AD=CD .∵OB=4,tan ∠BOC=12,∴OD=2,CD=1,∴A (﹣1,2),B (0,4),C (1,2).设菱形平移后B 的坐标是(x ,4),C 的坐标是(1+x ,2).∵B 、C 落在反比例函数的图象上,∴k=4x=2(1+x ),解得:x=1,即菱形平移后B 的坐标是(1,4),代入反比例函数的解析式得:k=1×4=4,即B 、C 落在反比例函数的图象上,菱形的平移距离是1,反比例函数的解析式是y=4x .故答案为y=4x.点睛:本题考查了菱形的性质,用待定系数法求反比例函数的解析式,平移的性质的应用,主要考查学生的计算能力.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)223y x x =--+;(2)30x -<<.【解析】【分析】(1)将()30A -,和()10B ,两点代入函数解析式即可; (2)结合二次函数图象即可.【详解】解:(1)∵二次函数23y ax bx =++与x 轴交于(3,0)A -和(1,0)B 两点, 933030a b a b -+=⎧∴⎨++=⎩ 解得12a b =-⎧⎨=-⎩∴二次函数的表达式为223y x x =--+.(2)由函数图象可知,二次函数值大于一次函数值的自变量x 的取值范围是30x -<<.【点睛】本题考查了待定系数法求二次函数解析式以及二次函数与不等式,解题的关键是熟悉二次函数的性质. 20.(1)6;8;B ;(2)120人;(3)113分.【解析】【分析】(1)根据表格中的数据和扇形统计图中的数据可以求得本次抽查的人数,从而可以得到m 、n 的值,从而可以得到数学成绩的中位数所在的等级;(2)根据表格中的数据可以求得D 等级的人数;(3)根据表格中的数据,可以计算出A 等级学生的数学成绩的平均分数.【详解】(1)本次抽查的学生有:72420360︒÷=︒(人),2030%62043211 m n=⨯==---=,,数学成绩的中位数所在的等级B,故答案为:6,11,B;(2)2120020⨯=120(人),答:D等级的约有120人;(3)由表可得,A等级学生的数学成绩的平均分数:102208435741711134⨯---=(分),即A等级学生的数学成绩的平均分是113分.【点睛】本题考查了扇形统计图、中位数、加权平均数,解答本题的关键是明确题意,利用数形结合的思想解答.21.(1)见解析;(2)【解析】【分析】(1)根据相似三角形的判定,易证△ABF∽△BEC,从而可以证明∠BAF=∠CBE成立;(2)根据锐角三角函数和三角形的相似可以求得AF的长【详解】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,AD=BC,∴∠D+∠C=180°,∠ABF=∠BEC,∵∠AFB+∠AFE=180°,∠AFE=∠D,∴∠C=∠AFB,∴△ABF∽△BEC,∴∠BAF=∠CBE;(2)∵AE⊥DC,AD=5,AB=8,sin∠D=45,∴AE=4,DE=3∴EC=5∵AE⊥DC,AB∥DC,∴∠AED=∠BAE=90°,在Rt△ABE中,根据勾股定理得:=∵BC=AD=5,由(1)得:△ABF ∽△BEC ,∴ AF BC =AB AE =BF EC即5AF =5BF解得:【点睛】本题考查相似三角形的判定与性质、平行四边形的性质、解直角三角形,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答22.∠DAC=20°.【解析】【分析】根据角平分线的定义可得∠ABC=2∠ABE ,再根据直角三角形两锐角互余求出∠BAD ,然后根据∠DAC=∠BAC ﹣∠BAD 计算即可得解.【详解】∵BE 平分∠ABC ,∴∠ABC=2∠ABE=2×25°=50°.∵AD 是BC 边上的高,∴∠BAD=90°﹣∠ABC=90°﹣50°=40°,∴∠DAC=∠BAC ﹣∠BAD=60°﹣40°=20°.【点睛】本题考查了三角形的内角和定理,角平分线的定义,准确识图理清图中各角度之间的关系是解题的关键.23.(1)120,补图见解析;(2)96;(3)960人.【解析】【分析】(1)由“不合格”的人数除以占的百分比求出总人数,确定出“优秀”的人数,以及一般的百分比,补全统计图即可;(2)求出“一般”与“优秀”占的百分比,乘以总人数即可得到结果;(3)求出达标占的百分比,乘以1200即可得到结果.【详解】(1)根据题意得:24÷20%=120(人),则“优秀”人数为120﹣(24+36)=60(人),“一般”占的百分比为36120×100%=30%, 补全统计图,如图所示:(2)根据题意得:36+60=96(人),则达标的人数为96人;(3)根据题意得:96120×1200=960(人),则全校达标的学生有960人.故答案为(1)120;(2)96人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.(1),;(2)1≤x<1.【解析】试题分析:利用配方法进行解方程;首先分别求出两个不等式的解,然后得出不等式组的解.试题解析:(1)-1x=3-1x+1=7=7 x-2=±解得:,(2)解不等式1,得x≥1 解不等式2,得x<1 ∴不等式组的解集是1≤x<1考点:一元二次方程的解法;不等式组.25.证明见解析.【解析】【分析】根据在同圆中等弦对的弧相等,AB、CD是⊙O的直径,则¼¼CFD AEB=,由FD=EB,得,»»FD EB=,由等量减去等量仍是等量得:¼»¼»CFD FD AEB EB-=-,即»»FC AE=,由等弧对的圆周角相等,得∠D=∠B.【详解】解:方法(一)证明:∵AB、CD是⊙O的直径,∴¼¼CFD AEB=.∵FD=EB,∴»»FD EB=.∴¼»¼»CFD FD AEB EB-=-.即»»FC AE=.∴∠D=∠B.方法(二)证明:如图,连接CF,AE.∵AB、CD是⊙O的直径,∴∠F=∠E=90°(直径所对的圆周角是直角).∵AB=CD,DF=BE,∴Rt△DFC≌Rt△BEA(HL).∴∠D=∠B.【点睛】本题利用了在同圆中等弦对的弧相等,等弧对的弦,圆周角相等,等量减去等量仍是等量求解.26.(1)证明见解析(26【解析】【分析】(1)连结OC,如图,由AD平分∠EAC得到∠1=∠3,加上∠1=∠2,则∠3=∠2,于是可判断OD∥AE,根据平行线的性质得OD⊥CE,然后根据切线的判定定理得到结论;(2)由△CDB∽△CAD,可得CD CB BDCA CD AD==,推出CD2=CB•CA,可得(2)2=3CA,推出CA=6,推出AB=CA﹣BC=3,32262BDAD==,设2k,AD=2k,在Rt△ADB中,可得2k2+4k2=5,求出k即可解决问题.【详解】(1)证明:连结OC,如图,∵AD平分∠EAC,∴∠1=∠3,∵OA=OD,∴∠1=∠2,∴∠3=∠2,∴OD∥AE,∵AE⊥DC,∴OD⊥CE,∴CE是⊙O的切线;(2)∵∠CDO=∠ADB=90°,∴∠2=∠CDB=∠1,∵∠C=∠C,∴△CDB∽△CAD,∴CD CB BD CA CD AD==,∴CD2=CB•CA,∴(2)2=3CA,∴CA=6,∴AB=CA﹣BC=3,32262BDAD==,设2k,AD=2k,在Rt△ADB中,2k2+4k2=5,∴k=306,∴3027.原式=11x-,把x=2代入的原式=1.【解析】试题分析:先对原分式的分子、分母进行因式分解,然后按顺序进行乘除法运算、加减法运算,最后选取有意义的数值代入计算即可.试题解析:原式=()()()21311·1131x x x x x x x +-+--+--- =11x - 当x=2时,原式=1。
2019广州二模文科数学试题及答案WORD
图1俯视图侧视图正视图试卷类型:A2019年广州市普通高中毕业班综合测试(二)数学(文科)2018.4本试卷共4页,21小题, 满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B 铅笔将试卷类型(A )填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B 铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回. 参考公式: 锥体的体积公式是13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、选择题:本大题共10小题,每小题5分,满分50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z 满足 i 2z =,其中i 为虚数单位,则z 等于A .2-iB .2iC .2-D .2 2.已知集合{}}{20,1,2,3,0A B x x x ==-=,则集合AB 的子集个数为A .2B .4C .6D .8 3.命题“对任意x ∈R ,都有32x x >”的否定是A .存在0x ∈R ,使得3200x x >B .不存在0x ∈R ,使得3200x x > C .存在0x ∈R ,使得3200x x ≤ D .对任意x ∈R ,都有32x x ≤ 4. 下列函数中,既是偶函数又在()0,+∞上单调递增的是A.y =B .21y x =-+C .cos y x =D .1y x =+5.有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3,将两张卡片排在一起组成两位数,则所组成的两位数为奇数的概率是 A .16 B .13 C .12 D .386.一个几何体的三视图如图1,则该几何体的体积为A .12πB .6πC .4πD .2π7.设n S 是等差数列{}n a 的前n 项和,公差0d ≠, 若113132,24k S a a =+=,则正整数k 的值为 A .9 B .10 C .11 D .128.在△ABC 中,60ABC ︒∠=,1AB =,3BC =, 则sin BAC ∠的值为A.14B.14 C.14 D.149.设12,F F 分别是椭圆()2222:10x y C a b a b+=>>的左、右焦点,点P 在椭圆C 上,线段1PF的中点在y 轴上,若1230PF F ︒∠=,则椭圆C 的离心率为 AC .13D . 1610.将正偶数2,4,6,8,按表1的方式进行排列,记ij a 表示第i 行第j 列的数,若2014ij a =,则i j +的值为A .257B .256C .254D .253表1二、填空题:本大题共5小题,考生作答4小题,每小题5分,满分20分. (一)必做题(11~13题)11.不等式()()120x x +-<的解集为 .12. 已知四边形ABCD 是边长为3的正方形,若2,2DE EC CF FB ==,则AE AF ⋅的值 为 .13.设,x y 满足约束条件 220,840,0,0.x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩若目标函数()0,0z ax by a b =+>>的最大值为8,则ab 的最大值为 .(二)选做题(14~15题,考生从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,直线,(x a t t y t=-⎧⎨=⎩为参数)与圆1cos ,(sin x y θθθ=+⎧⎨=⎩为参数)相切,切点在第一象限,则实数a 的值为 .15.(几何证明选讲选做题)在平行四边形ABCD 中,点E 在线段AB 上,且12AE EB =,连接,DE AC ,AC 与DE 相交于点F ,若△AEF 的面积为1 cm 2,则△AFD 的面积为 cm 2.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) 已知函数()4f x x π⎛⎫=+ ⎪⎝⎭,x ∈R .(1) 求函数()f x 的最小正周期和值域; (2)若0,2πθ⎛⎫∈ ⎪⎝⎭,且()12f θ=,求sin 2θ的值. 17.(本小题满分12分)某校高三年级一次数学考试之后,为了解学生的数学学习情况, 随机抽取n 名学生的数 学成绩, 制成表2所示的频率分布表. (1) 求a ,b ,n 的值;(2) 若从第三, 四, 五组中用分层抽样方法抽取6名学生,并在这6名学生中随机抽取2 名与张老师面谈,求第三组中至少有1名学生与张老师面谈的概率.H FED C BA表2 18.(本小题满分14分)如图2,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形,EF ∥平面ABCD , 1EF =,,90FB FC BFC ︒=∠=,AE =H 是BC 的中点. (1)求证:FH ∥平面BDE ; (2)求证:AB ⊥平面BCF ; (3)求五面体ABCDEF 的体积.图2 19.(本小题满分14分) 已知等差数列{}n a 的前n 项和为n S 2(,n pn q p q =++∈R ),且235,,a a a 成等比数列.(1)求,p q 的值;(2)若数列{}n b 满足22log log n n a n b +=,求数列{}n b 的前n 项和n T . 20.(本小题满分14分)已知函数()2ln f x x x ax =++,a ∈R .(1)若函数()f x 在其定义域上为增函数,求a 的取值范围; (2)当1a =时,函数()()1f xg x x x =-+在区间[),t +∞(t ∈N *)上存在极值,求t 的最大 值.( 参考数值: 自然对数的底数e ≈2.71828) 21.(本小题满分14分)已知点()2,1A 在抛物线2:E x ay =上,直线1:1(l y kx k =+∈R ,且0)k ≠与抛物线E相交于,B C 两点,直线,AB AC 分别交直线2:1l y =-于点,S T . (1)求a 的值;(2)若ST =,求直线1l 的方程;(3)试判断以线段ST 为直径的圆是否恒过两个定点?若是,求这两个定点的坐标;若 不是,说明理由.2019年广州市普通高中毕业班综合测试(二)数学(文科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.一、选择题:本大题共10小题,每小题5分,满分50分.二、填空题:本大题共5小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题.11.()1,2- 12.9 13.4 141 15.3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)(1)解:∵()4f x x π⎛⎫=+ ⎪⎝⎭,∴ 函数()f x 的最小正周期为2π. ……………2分∵x ∈R ,[]cos 1,14x π⎛⎫+∈- ⎪⎝⎭, ……………3分4x π⎛⎫⎡+∈ ⎪⎣⎝⎭. ……………4分∴ 函数()f x 的值域为⎡⎣. ……………5分 (2)解法1:∵()12f θ=,142πθ⎛⎫+= ⎪⎝⎭. ……………6分∴cos 44πθ⎛⎫+= ⎪⎝⎭. ……………7分 ∴ sin 2cos 22πθθ⎛⎫=-+ ⎪⎝⎭……………9分212cos 4πθ⎛⎫=-+ ⎪⎝⎭ ……………11分2124⎛=-⨯ ⎝⎭34=. ……………12分解法2:∵()12f θ=,142πθ⎛⎫+= ⎪⎝⎭. ……………6分1cos cos sin sin 442ππθθ⎫-=⎪⎭. ……………7分∴1cos sin 2θθ-=. ……………8分两边平方得221cos 2cos sin sin 4θθθθ-+=. ……………10分∴ 3sin 24θ=. ……………12分17.(本小题满分12分)M OH FE D CB (1) 解:依题意,得5200.05,0.35,a b n n n===, 解得,100n =,35a =,0.2b =. ……………3分(2) 解:因为第三、四、五组共有60名学生,用分层抽样方法抽取6名学生,则第三、四、五组分别抽取306360⨯=名,206260⨯=名,106160⨯=名. …………6分 第三组的3名学生记为123,,a a a ,第四组的2名学生记为12,b b ,第五组的1名学生记为1c ,则从6名学生中随机抽取2名,共有15种不同取法,具体如下:{}12,a a ,{}13,a a ,{}11,a b ,{}12,a b ,{}11,a c ,{}23,a a ,{}21,a b ,{}22,a b ,{}21,a c ,{}31,a b ,{}32,a b ,{}31,a c ,{}12,b b ,{}11,b c ,{}21,b c . ……………8分其中第三组的3名学生123,,a a a 没有一名学生被抽取的情况共有3种,具体如下:{}12,b b ,{}11,b c ,{}21,b c . ……………10分故第三组中至少有1名学生与张老师面谈的概率为310.815-=. ……………12分 18.(本小题满分14分)(1)证明:连接AC ,AC 与BD 相交于点O ,则点O 是AC 的中点,连接,OH EO , ∵H 是BC 的中点,∴OH ∥AB ,112OH AB ==. ……………1分 ∵EF ∥平面ABCD ,EF ⊂平面ABFE ,平面ABCD 平面ABFE AB =, ∴EF ∥AB . ……………2分 ∵1EF =,∴OH ∥EF ,OH EF =.∴四边形EOHF 是平行四边形.∴EO ∥FH ,EO =FH . ……………3分∵EO ⊂平面BDE ,FH ⊄平面BDE , ∴FH ∥平面BDE . ……………4分(2)证法1:取AB 的中点M ,连接EM ,则1AM MB ==,由(1)知,EF ∥MB ,且EF =MB , ∴四边形EMBF 是平行四边形.∴EM ∥FB ,EM FB =. ……………5分在Rt△BFC 中,2224FB FC BC +==,又FB FC =,得FB =∴EM =……………6分 在△AME中,AE =1AM =,EM =∴2223AM EM AE +==.∴AM EM ⊥. ……………7分 ∴AM FB ⊥,即AB FB ⊥. ∵四边形ABCD 是正方形,∴AB BC ⊥. ……………8分 ∵FB BC B =,FB ⊂平面BCF ,BC ⊂平面BCF ,∴AB ⊥平面BCF . ……………9分 证法2:在Rt △BFC 中,H 为BC 的中点,∴112FH BC ==.在△AEO中,112AE AO AC EO FH =====,∴222AO EO AE +=.∴AO EO ⊥. ……………5分 ∵FH ∥EO ,∴AO FH ⊥. ……………6分OHFE D C B A ∵,FH BC BC ⊥⊂平面ABCD , AO ⊂平面ABCD , AO BC C =,∴FH ⊥平面ABCD .∵AB ⊂平面ABCD ,∴FH ⊥AB . ……………7分 ∵四边形ABCD 是正方形,∴AB BC ⊥. ……………8分∵BC ⊂平面BCF , FH ⊂平面BCF , BC FH H =,∴AB ⊥平面BCF . ……………9分(3)解:连接EC ,在Rt△BFC 中,112FH BC ==, ∴1EO FH ==.由(2)知AB ⊥平面BCF ,且EF ∥AB ,∴EF ⊥平面BCF . ……………10分 ∵FH ⊥平面ABCD , EO ∥FH,∴EO ⊥平面ABCD . ……………11分 ∴四棱锥E ABCD -的体积为113ABCD V EO S =⋅⋅正方形2141233=⨯⨯=. ………12分 ∴三棱锥E BCF -的体积为213BCF V EF S =⋅⋅∆21111323=⨯⨯⨯=. ………13分∴五面体ABCDEF 的体积为1253V V V =+=. ……………14分19.(本小题满分14分)(1)解法1:当1n =时,111a S p q ==++, ……………1分 当2n ≥时,1n n n a S S -=- ……………2分 ()()221121n pn q n p n q n p ⎡⎤=++--+-+=-+⎣⎦. ………3分∵{}n a 是等差数列,∴1211p q p ++=⨯-+,得0q =. ……………4分 又2353,5,9a p a p a p =+=+=+, ……………5分 ∵235,,a a a 成等比数列,∴2325a a a =,即()()()2539p p p +=++, ……………6分解得1p =-. ……………7分 解法2:设等差数列{}n a 的公差为d ,则()2111222n n n d d S na d n a n -⎛⎫=+=+- ⎪⎝⎭. ……………1分 ∵2n S n pn q =++,∴12d =,12da p -=,0q =. ……………4分∴2d =,11p a =-,0q =.∵235,,a a a 成等比数列,∴2325a a a =, ……………5分 即()()()2111428a a a +=++.解得10a =. ……………6分 ∴1p =-. ……………7分 (2)解法1:由(1)得22n a n =-. ……………8分 ∵22log log n n a n b +=, ∴221224n an n n b n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++()0122142434144n n n n --=+⨯+⨯++-⋅+⋅,①……………10分()1231442434144n n n T n n -=+⨯+⨯++-⋅+⋅,② ……………11分①-②得0121344444n nn T n --=++++-⋅14414nn n -=-⋅-()13413n n -⋅-=. ……………13分∴()131419nn T n ⎡⎤=-⋅+⎣⎦. ……………14分 解法2:由(1)得22n a n =-. ……………8分∵22log log n n a n b +=,∴221224n an n n b n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++()0122142434144n n n n --=+⨯+⨯++-⋅+⋅.……………10分由()12311n nx x x x x x x x+-++++=≠-, ……………11分两边对x 取导数得,012123n x x x nx -++++=()()12111n n nx n x x +-++-. …………12分 令4x =,得()()0122114243414431419n n n n n n --⎡⎤+⨯+⨯++-⋅+⋅=-⋅+⎣⎦. ∴()131419nn T n ⎡⎤=-⋅+⎣⎦. ……………14分 20.(本小题满分14分)(1)解法1:函数()f x 的定义域为()0,+∞, ……………1分∵()2ln f x x x ax =++, ∴()12f x x a x'=++. ……………2分 ∵ 函数()f x 在()0,+∞上单调递增, ∴ ()0f x '≥, 即120x a x++≥对()0,x ∈+∞都成立. ……………3分 ∴ 12a x x-≤+对()0,x∈+∞都成立. ……………4分 当0x >时, 12xx +≥=当且仅当12x x =,即x =时,取等号. ……………5分∴a -≤即a ≥-.∴a 的取值范围为)⎡-+∞⎣. ……………6分解法2:函数()f x 的定义域为()0,+∞, ……………1分∵()2ln f x x x ax =++, ∴()21212x ax f x x a x x++'=++=.……………2分方程2210x ax ++=的判别式28a ∆=-.……………3分① 当0∆≤, 即a -≤时, 2210x ax ++≥,此时, ()0f x '≥对(0,x ∈+∞都成立,故函数()f x 在定义域()0,+∞上是增函数. ……………4分②当0∆>, 即a <-或a >时, 要使函数()f x 在定义域()0,+∞上为增函数, 只需2210x ax ++≥对()0,x ∈+∞都成立.设()221h x x ax =++, 则()010,0,4h a ⎧=>⎪⎨-<⎪⎩得0a >.故a >……………5分综合①②得a的取值范围为)⎡-+∞⎣. ……………6分(2)解:当1a =时, ()()2ln ln 111f x x x x xg x x x x x x ++=-=-=+++. ()()211ln 1x x g x x +-'=+. ……………7分 ∵ 函数()g x 在[),t +∞(t ∈N *)上存在极值,∴ 方程()0g x '=在[),t +∞(t ∈N *)上有解,即方程11ln 0x x +-=在[),t +∞(t ∈N *)上有解. ……………8分 令()11ln x x x ϕ=+-()0x >, 由于0x >, 则()2110x x xϕ'=--<,∴函数()x ϕ在()0,+∞上单调递减. ……………9分∵()413ln 3ln33ϕ=-=4e 2741 2.5ln 0327>>, ……………10分 ()514ln 4ln 44ϕ=-=5e 256513ln 04256<<, ……………11分∴函数()x ϕ的零点()03,4x ∈. ……………12分∵方程()0x ϕ=在[),t +∞(t ∈ N *)上有解, t ∈N *∴3t ≤. ……………13分∵t ∈N *,∴t 的最大值为3. ……………14分 21.(本小题满分14分)(1)解:∵点()2,1A 在抛物线2:E x ay =上, ∴4a =. ……………1分第(2)、(3)问提供以下两种解法:解法1:(2)由(1)得抛物线E 的方程为24x y =.设点,B C 的坐标分别为()()1122,,,x y x y ,依题意,2211224,4x y x y ==,由21,4,y kx x y =+⎧⎨=⎩消去y 得2440x kx --=,解得1,22x k ==±.∴12124,4x x k x x +==-. ……………2分直线AB 的斜率2111111124224AB x y x k x x --+===--, 故直线AB 的方程为()12124x y x +-=-. ……………3分令1y =-,得1822x x =-+,∴点S 的坐标为182,12x ⎛⎫-- ⎪+⎝⎭. ……………4分同理可得点T 的坐标为282,12x ⎛⎫-- ⎪+⎝⎭. ……………5分 ∴()()()121212888222222x x ST x x x x -⎛⎫=---= ⎪++++⎝⎭ ()()()121212121288248x x x x x xx x x x k k---===+++. ……………6分∵ST =,∴12x x -=. 由()221212124x x x x x x -=+-,得22201616k k =+,解得2k =, 或2k =-, …………… 7分∴直线1l 的方程为21y x =+,或21y x =-+. ……………9分 (3)设线段ST 的中点坐标为()0,1x -, 则()()()12012124418822222222x x x x x x x ++⎛⎫=-+-=- ⎪++++⎝⎭ ()()()1212444444222248k k x x x x k k++=-=-=-+++. ……………10分而2ST =()()()2221212122221614k x x x x x x kkk+-+-==, ……………11分∴以线段ST 为直径的圆的方程为()2222114x y ST k ⎛⎫+++= ⎪⎝⎭()2241k k +=. 展开得()()22222414414k x x y k k k++++=-=. ……………12分 令0x =,得()214y +=,解得1y =或3y =-. ……………13分∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分 解法2:(2)由(1)得抛物线E 的方程为24x y =.设直线AB 的方程为()112y k x -=-,点B 的坐标为()11,x y ,由()112,1,y k x y ⎧-=-⎨=-⎩解得122,1.x k y ⎧=-⎪⎨⎪=-⎩∴点S 的坐标为122,1k ⎛⎫-- ⎪⎝⎭. ……………2分 由()1212,4,y k x x y ⎧-=-⎨=⎩消去y ,得2114840x k x k -+-=,即()()12420x x k --+=,解得2x =或142x k =-.∴1142x k =-,22111114414y x k k ==-+.∴点B 的坐标为()211142,441k k k --+. ……………3分同理,设直线AC 的方程为()212y k x -=-, 则点T 的坐标为222,1k ⎛⎫-- ⎪⎝⎭,点C 的坐标为()222242,441k k k --+. …………4分 ∵点,B C 在直线1:1l y kx =+上,∴()()()()()()22222211212121214414414242k k k k k k k k k k k k k -+--+---==----121k k =+-.∴121k k k +=+. ……………5分 又()211144142k k k k -+=-1+,得()21111214442412k k kk k k k k k -=-=+--, 化简得122kk k =. ……………6分 ()12121222222k k ST k k k k -⎛⎫⎛⎫=---= ⎪ ⎪⎝⎭⎝⎭, ……………7分∵ST =, ∴()12122k k k k -=.∴()()2212125k k k k -=.由()()()2221212121212454k k k k k k k k k k +=-+=+, 得()225124k k k +=+, 解得2k =±. ……………8分 ∴直线1l 的方程为21y x =+,或21y x =-+. …………… 9分 (3)设点(),P x y 是以线段ST 为直径的圆上任意一点,则0SP TP ⋅=, ……………10分得()()122222110x x y y k k ⎛⎫⎛⎫-+-++++= ⎪⎪⎝⎭⎝⎭, ……………11分 整理得,()224410x x y k+-++=. ……………12分令0x =,得()214y +=,解得1y =或3y =-. ……………13分∴ 以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分。
2019广州二模理科数学试题及答案WORD
侧视图正视图试卷类型:A2019年广州市普通高中毕业班综合测试(二)数学(理科)2018.4 本试卷共4页,21小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生务必用黑色字迹钢笔或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上.用2B铅笔将试卷类型(A)填涂在答题卡相应位置上.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液.不按以上要求作答的答案无效.4.作答选做题时,请先用2B铅笔填涂选做题的题号对应的信息点,再作答.漏涂、错涂、多涂的,答案无效.5.考生必须保持答题卡的整洁.考试结束后,将试卷和答题卡一并交回.参考公式:锥体的体积公式是13V Sh=,其中S是锥体的底面积,h是锥体的高.一、选择题:本大题共8小题,每小题5分,满分40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 若复数z满足 i2z=,其中i为虚数单位,则z的虚部为A.2- B.2 C.2-i D.2i2.若函数()y f x=是函数3xy=的反函数,则12f⎛⎫⎪⎝⎭的值为A.2log3- B.3log2- C.19D3.命题“对任意x∈R,都有32x x>”的否定是A.存在x∈R,使得3200x x> B.不存在x∈R,使得3200x x>C.存在x∈R,使得3200x x≤ D.对任意x∈R,都有32x x≤4. 将函数()2cos2(f x x x x=+∈R)的图象向左平移6π个单位长度后得到函数()y g x=,则函数()y g x=A.是奇函数 B.是偶函数C.既是奇函数又是偶函数 D.既不是奇函数,也不是偶函数5.有两张卡片,一张的正反面分别写着数字0与1,另一张的正反面分别写着数字2与3,将两张卡片排在一起组成两位数,则所组成的两位数为奇数的概率是A.16B.13C.12D.386.设12,F F分别是椭圆()2222:10x yC a ba b+=>>的左、右焦点,点P在椭圆C上,线段1PF的中点在y轴上,若1230PF F︒∠=,则椭圆C的离心率为A.16B.13C7.一个几何体的三视图如图1,则该几何体的体积为A.6π4+ B.12π4+D CB AC .6π12+D .12π12+ 8.将正偶数2,4,6,8,按表1的方式进行排列,记ij a 表示第i 行第j 列的数,若2014ij a =,则i j +的值为A .257B .256C .254D .253表二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分. (一)必做题(9~13题)9.不等式2210x x --<的解集为 .10.已知312nx x ⎛⎫- ⎪⎝⎭的展开式的常数项是第7项,则正整数n 的值为 .11.已知四边形ABCD 是边长为a 的正方形,若2,2DE EC CF FB ==,则AE AF ⋅的值为 .12.设,x y 满足约束条件 220,840,0,0.x y x y x y -+≥⎧⎪--≤⎨⎪≥≥⎩若目标函数()0,0z ax by a b =+>>的最大值为8,则ab 的最大值为 .13.已知[]x 表示不超过x 的最大整数,例如[][]1.52,1.51-=-=.设函数()[]f x x x ⎡⎤=⎣⎦,当[)0,(x n n ∈∈N *)时,函数()f x 的值域为集合A ,则A 中的元素个数为 .(二)选做题(14~15题,考生从中选做一题)14.(坐标系与参数方程选做题)在平面直角坐标系xOy 中,直线,(x a t t y t =-⎧⎨=⎩为参数)与圆1cos ,(sin x y θθθ=+⎧⎨=⎩为参数)相切,切点在第一象限,则实数a 的值为 .15.(几何证明选讲选做题)在平行四边形ABCD 中,点E 在线段AB 上,且12AE EB =,连接,DE AC ,AC 与DE 相交于点F ,若△AEF 的面积为1 cm 2,则△AFD 的面积为 cm 2.三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分)如图2,在△ABC 中,D 是边AC 的中点, 且1AB AD ==,3BD =. (1) 求cos A 的值; (2)求sin C 的值.图217.(本小题满分12分)一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样 本,称出它们的重量(单位:克),重量分组区间为(]5,15,(]15,25,(]25,35,(]35,45,由此得到样本的重量频率分布直方图,如图3. (1)求a 的值;(2)根据样本数据,试估计盒子中小球重量的平均值;(注:设样本数据第i 组的频率为i p ,第i 组区间的中点值为i x ()1,2,3,,i n =,则样本数据的平均值为112233n n X x p x p x p x p =++++. (3)从盒子中随机抽取3个小球,其中重量在(]5,15内FE D CBA 的小球个数为ξ,求ξ的分布列和数学期望.18.(本小题满分14分)如图4,在五面体ABCDEF 中,四边形ABCD 是边长为2的正方形,EF ∥平面ABCD , 1EF =,,90FB FC BFC ︒=∠=,AE =(1)求证:AB ⊥平面BCF ;(2)求直线AE 与平面BDE 所成角的正切值.图4 19.(本小题满分14分) 已知数列{}n a 的前n 项和为n S ,且10a =,对任意n ∈N *,都有()11n n na S n n +=++.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足22log log n n a n b +=,求数列{}n b 的前n 项和n T .20.(本小题满分14分)已知定点()0,1F 和直线:1l y =-,过点F 且与直线l 相切的动圆圆心为点M ,记点M 的轨迹为曲线E . (1) 求曲线E 的方程;(2) 若点A 的坐标为()2,1, 直线1:1(l y kx k =+∈R ,且0)k ≠与曲线E 相交于,B C 两 点,直线,AB AC 分别交直线l 于点,S T . 试判断以线段ST 为直径的圆是否恒过两个定点? 若是,求这两个定点的坐标;若不是,说明理由. 21.(本小题满分14分)已知函数()ln (,f x a x bx a b =+∈R )在点()()1,1f 处的切线方程为220x y --=. (1)求,a b 的值;(2)当1x >时,()0kf x x+<恒成立,求实数k 的取值范围; (3)证明:当n ∈N *,且2n ≥时,22111322ln 23ln 3ln 22n n n n n n--+++>+. 2019年广州市普通高中毕业班综合测试(二) 数学(理科)试题参考答案及评分标准说明:1.参考答案与评分标准指出了每道题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数.4.只给整数分数,选择题和填空题不给中间分.二、填空题:本大题考查基本知识和基本运算,体现选择性.共7小题,每小题5分,满分30分.其中14~15题是选做题,考生只能选做一题.9.1,12⎛⎫- ⎪⎝⎭10.8 11.2a 12.4 13.222n n -+141 15.3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) (1)解:在△ABD 中,1AB AD ==,BD =, ∴222cos 2AB AD BD A AB AD +-=⋅⋅2221112113+-⎝⎭==⨯⨯. ……………4分(2)解:由(1)知,1cos 3A =,且0A <<π,∴sin 3A ==. ……………6分∵D 是边AC 的中点,∴22AC AD ==.在△ABC 中,222222121cos 22123AB AC BC BC A AB AC +-+-===⋅⋅⨯⨯,………8分解得BC =……………10分由正弦定理得,sin sin BC ABA C=, ……………11分∴1sin sin 33AB A C BC ⨯⋅===……………12分 17.(本小题满分12分)(1) 解:由题意,得()0.020.0320.018101x +++⨯=, ……………1分 解得0.03x =. ……………2分 (2)解:50个样本小球重量的平均值为0.2100.32200.3300.184024.6X =⨯+⨯+⨯+⨯=(克). ……………3分 由样本估计总体,可估计盒子中小球重量的平均值约为24.6克. ……………4分(3)解:利用样本估计总体,该盒子中小球重量在(]5,15内的概率为0.2,则13,5B ξ⎛⎫⎪⎝⎭.……………5分 ξ的取值为0,1,2,3, ……………6分()30346405125P C ξ⎛⎫=== ⎪⎝⎭,()2131448155125P C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭, ()2231412255125P C ξ⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,()3331135125P C ξ⎛⎫=== ⎪⎝⎭. ……………10分 ∴ξ的分布列为:……………11分M O H F E D CBA ∴6448121301231251251251255E ξ=⨯+⨯+⨯+⨯=. ……………12分 (或者13355E ξ=⨯=)18.(本小题满分14分)(1)证明:取AB 的中点M ,连接EM ,则1AM MB ==,∵EF ∥平面ABCD ,EF ⊂平面ABFE ,平面ABCD 平面ABFE AB =, ∴EF ∥AB ,即EF ∥MB . ……………1分 ∵EF =MB 1=∴四边形EMBF 是平行四边形. ……………2分 ∴EM ∥FB ,EM FB =.在Rt△BFC 中,2224FB FC BC +==,又FB FC =,得FB =∴EM =……………3分在△AME中,AE =1AM =,EM =∴2223AM EM AE +==,∴AM EM ⊥. ……………4分 ∴AM FB ⊥,即AB FB ⊥. ∵四边形ABCD 是正方形,∴AB BC ⊥. ……………5分 ∵FB BC B =,FB ⊂平面BCF ,BC ⊂平面BCF ,∴AB ⊥平面BCF . ……………6分 (2)证法1:连接AC ,AC 与BD 相交于点O ,则点O 是AC 的中点, 取BC 的中点H ,连接,OH EO ,FH ,则OH ∥AB ,112OH AB ==. 由(1)知EF ∥AB ,且12EF AB =, ∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形.∴EO ∥FH ,且1EO FH == .……………7分由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF ,∴FH AB ⊥. ……………8分 ∵FH BC ⊥,,AB BC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD . ……………9分 ∴EO ⊥平面ABCD . ∵AO ⊂平面ABCD ,∴EO ⊥AO . ……………10分 ∵AO BD ⊥,,EO BD O EO =⊂平面EBD ,BD ⊂平面EBD ,∴AO ⊥平面EBD . ……………11分 ∴AEO ∠是直线AE 与平面BDE 所成的角. ……………12分在Rt △AOE中,tan AOAEO EO∠==……………13分 ∴直线AE 与平面BDE. ……………14分 证法2:连接AC ,AC 与BD 相交于点O ,则点O 取BC 的中点H ,连接,OH EO ,FH ,则OH ∥AB ,112OH AB ==.由(1)知EF ∥AB ,且12EF AB =, ∴EF ∥OH ,且EF OH =. ∴四边形EOHF 是平行四边形. ∴EO ∥FH ,且1EO FH ==由(1)知AB ⊥平面BCF ,又FH ⊂平面BCF , ∴FH AB ⊥.∵FH BC ⊥,,AB BC B AB =⊂平面ABCD ,BC ⊂平面ABCD ,∴FH ⊥平面ABCD .∴EO ⊥平面ABCD . ……………8分 以H 为坐标原点,BC 所在直线为x 轴,OH 所在直线为y 轴,HF 所在直线为z 轴, 建立空间直角坐标系H xyz -,则()1,2,0A -,()1,0,0B ,()1,2,0D --,()0,1,1E -. ∴()1,1,1AE =-,()2,2,0BD =--,()1,1,1BE =--. ……………9分 设平面BDE 的法向量为=n (),,x y z ,由n 0BD ⋅=,n 0BE ⋅=, 得220x y --=,0x y z --+=,得0,z x y ==-.令1x =,则平面BDE 的一个法向量为=n ()1,1,0-. ……………10分 设直线AE 与平面BDE 所成角为θ, 则sin θ=cos ,nAE⋅=n AE n AE=. ……………11分∴cos 3θ==,sin tan cos θθθ==……………13分 ∴直线AE 与平面BDE . ……………14分19.(本小题满分14分)(1)解法1:当2n ≥时,()11n n na S n n +=++,()()111n n n a S n n --=+-,……1分 两式相减得()()()11111n n n n na n a S S n n n n +---=-++--, ……………3分 即()112n n n na n a a n +--=+,得12n n a a +-=. ……………5分 当1n =时,21112a S ⨯=+⨯,即212a a -=. ……………6分 ∴数列{}n a 是以10a =为首项,公差为2的等差数列.∴()2122n a n n =-=-. ……………7分 解法2:由()11n n na S n n +=++,得()()11n n n n S S S n n +-=++, ……………1分 整理得,()()111n n nS n S n n +=+++, ……………2分 两边同除以()1n n +得,111n nS S n n+-=+. ……………3分 ∴数列n S n ⎧⎫⎨⎬⎩⎭是以101S =为首项,公差为1的等差数列. ∴011nS n n n=+-=-. ∴()1n S n n =-. ……………4分当2n ≥时,()()()111222n n n a S S n n n n n -=-=----=-. ……………5分 又10a =适合上式, ……………6分 ∴数列{}n a 的通项公式为22n a n =-. ……………7分 (2)解法1:∵22log log n n a n b +=, ∴221224na n n nb n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++()0122142434144n n n n --=+⨯+⨯++-⋅+⋅,①()1231442434144n n n T n n -=+⨯+⨯++-⋅+⋅,② ……………11分①-②得0121344444n nn T n --=++++-⋅14414n nn -=-⋅-()13413n n -⋅-=.……………13分∴()131419n n T n ⎡⎤=-⋅+⎣⎦. ……………14分 解法2:∵22log log n n a n b +=,∴221224na n n nb n n n --=⋅=⋅=⋅. ……………9分∴1231n n n T b b b b b -=+++++()0122142434144n n n n --=+⨯+⨯++-⋅+⋅.由()12311n nx x x x x x x x+-++++=≠-, ……………11分两边对x 取导数得,012123n x x x nx -++++=()()12111n n nx n x x +-++-. ………12分 令4x =,得()()0122114243414431419n n n n n n --⎡⎤+⨯+⨯++-⋅+⋅=-⋅+⎣⎦. ……………13分 ∴ ()131419nn T n ⎡⎤=-⋅+⎣⎦. ……………14分 20.(本小题满分14分)(1)解法1:由题意, 点M 到点F 的距离等于它到直线l 的距离,故点M 的轨迹是以点F 为焦点, l 为准线的抛物线. ……………1分 ∴曲线E 的方程为24x y =. ……………2分解法2:设点M 的坐标为(),x y ,依题意, 得1MF y =+,1y =+, ……………1分化简得24x y =.∴曲线E 的方程为24x y =. ……………2分(2) 解法1: 设点,B C 的坐标分别为()()1122,,,x y x y ,依题意得,2211224,4x y x y ==.由21,4,y kx x y =+⎧⎨=⎩消去y 得2440x kx --=, 解得1,22x k ==±. ∴12124,4x x k x x +==-. ……………3分直线AB 的斜率2111111124224AB x y x k x x --+===--, 故直线AB 的方程为()12124x y x +-=-. ……………4分令1y =-,得1822x x =-+,∴点S 的坐标为182,12x ⎛⎫-- ⎪+⎝⎭. ……………5分 同理可得点T 的坐标为282,12x ⎛⎫-- ⎪+⎝⎭. ……………6分 ∴()()()121212888222222x x ST x x x x -⎛⎫=---= ⎪++++⎝⎭ ()()()121212121288248x x x x x xx x x x k k---===+++. ……………7分∴2ST=()()()2221212122221614k x x x x x x kkk+-+-==. ……………8分设线段ST 的中点坐标为()0,1x -,则()()()12012124418822222222x x x x x x x ++⎛⎫=-+-=- ⎪++++⎝⎭ ()()()1212444444222248k k x x x x k k++=-=-=-+++. ……………9分∴以线段ST 为直径的圆的方程为()2222114x y ST k ⎛⎫+++= ⎪⎝⎭()2241k k+=.……………10分展开得()()22222414414k x x y k k k++++=-=. ……………11分令0x =,得()214y +=,解得1y =或3y =-. ……………12分∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分 解法2:由(1)得抛物线E 的方程为24x y =.设直线AB 的方程为()112y k x -=-,点B 的坐标为()11,x y ,由()112,1,y k x y ⎧-=-⎨=-⎩解得122,1.x k y ⎧=-⎪⎨⎪=-⎩∴点S 的坐标为122,1k ⎛⎫-- ⎪⎝⎭. …………3分 由()1212,4,y k x x y ⎧-=-⎨=⎩消去y ,得2114840x k x k -+-=, 即()()12420x x k --+=,解得2x =或142x k =-. ……………4分∴1142x k =-,22111114414y x k k ==-+. ∴点B 的坐标为()211142,441k k k --+. ……………5分同理,设直线AC 的方程为()212y k x -=-, 则点T 的坐标为222,1k ⎛⎫-- ⎪⎝⎭,点C 的坐标为()222242,441k k k --+. …………6分 ∵点,B C 在直线1:1l y kx =+上,∴()()()()()()22222211212121214414414242k k k k kk k k k k k k k -+--+---==----121k k =+-.∴121k k k +=+. ……………7分 又()211144142k k k k -+=-1+,得()21111214442412k k kk k k k k k -=-=+--,化简得122kk k =. ……………8分 设点(),P x y 是以线段ST 为直径的圆上任意一点,则0SP TP ⋅=, ……………9分得()()122222110x x y y k k ⎛⎫⎛⎫-+-++++= ⎪⎪⎝⎭⎝⎭, ……………10分整理得,()224410x x y k+-++=. ……………11分令0x =,得()214y +=,解得1y =或3y =-. ……………12分∴以线段ST 为直径的圆恒过两个定点()()0,1,0,3-. ……………14分21.(本小题满分14分)(1)解:∵()ln f x a x bx =+, ∴()af x b x'=+. ∵直线220x y --=的斜率为12,且过点11,2⎛⎫- ⎪⎝⎭, ……………1分∴()()11,211,2f f ⎧=-⎪⎪⎨⎪'=⎪⎩即1,21,2b a b ⎧=-⎪⎪⎨⎪+=⎪⎩解得11,2a b ==-. ……………3分(2)解法1:由(1)得()ln 2xf x x =-.当1x >时,()0k f x x +<恒成立,即ln 02x kx x-+<,等价于2ln 2x k x x <-. ……………4分令()2ln 2x g x x x =-,则()()ln 11ln g x x x x x '=-+=--. ……………5分 令()1ln h x x x =--,则()111x h x x x-'=-=.当1x >时,()0h x '>,函数()h x 在()1,+∞上单调递增,故()()10h x h >=.……………6分 从而,当1x >时,()0g x '>,即函数()g x 在()1,+∞上单调递增,故()()112g x g >=. ……………7分 因此,当1x >时,2ln 2x k x x <-恒成立,则12k ≤. ……………8分 ∴所求k 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. ……………9分解法2:由(1)得()ln 2xf x x =-.当1x >时,()0k f x x +<恒成立,即ln 02x kx x-+<恒成立. ……………4分令()ln 2x kg x x x=-+,则()222112222k x x k g x x x x -+'=--=-. 方程2220x x k -+=(﹡)的判别式48k ∆=-.(ⅰ)当0∆<,即12k >时,则1x >时,2220x x k -+>,得()0g x '<,故函数()g x 在()1,+∞上单调递减.由于()()110,2ln 21022kg k g =-+>=-+>, 则当()1,2x ∈时,()0g x >,即ln 02x kx x-+>,与题设矛盾. …………5分(ⅱ)当0∆=,即12k =时,则1x >时,()()2222121022x x x g x x x --+'=-=-<. 故函数()g x 在()1,+∞上单调递减,则()()10g x g <=,符合题意. ………6分(ⅲ) 当0∆>,即12k <时,方程(﹡)的两根为1211,11x x ==>, 则()21,x x ∈时,()0g x '>,()2,x x ∈+∞时,()0g x '<.故函数()g x 在()21,x 上单调递增,在()2,x +∞上单调递减, 从而,函数()g x 在()1,+∞上的最大值为()2222ln 2x kg x x x =-+. ………7分 而()2222ln 2x k g x x x =-+2221ln 22x x x <-+, 由(ⅱ)知,当1x >时,1ln 022x x x-+<,得2221ln 022x x x -+<,从而()20g x <. 故当1x >时,()()20g x g x ≤<,符合题意. ……………8分 综上所述,k 的取值范围是1,2⎛⎤-∞ ⎥⎝⎦. ……………9分(3)证明:由(2)得,当1x >时,1ln 022x x x-+<,可化为21ln 2x x x -<, …10分 又ln 0x x >,从而,21211ln 111x x x x x >=---+. ……………11分 把2,3,4,,x n =分别代入上面不等式,并相加得, 11111111111112ln 23ln 3ln 32435211n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++>-+-+-+-+- ⎪ ⎪ ⎪ ⎪ ⎪--+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭……………12分111121n n =+--+ ……………13分 223222n n n n--=+. ……………14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年广东省广州市白云区中考数学二模试卷
一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.计算20的结果是()
A.0B.1C.2D .
2.下列运算正确的是()
A.(a﹣b)2=a2﹣b2B.(a+b)2=a2+b2
C.a2b2=(ab)4D.(a3)2=a6
3.下列调查方式,合适的是()
A.要了解一批灯泡的使用寿命,采用普查方式
B.要了解广州电视台“今日报道”栏目的收视率,采用普查方式
C.要了解我国15岁少年身高情况,采用普查方式
D.要选出某校短跑最快的学生参加全市比赛,采用普查方式
4.若分式的值为0,则x的值为()
A.﹣1B.0C.1D.±1
5.解方程+时,去分母后得到的方程是()
A.3(x﹣5)+2(x﹣1)=1B.3(x﹣5)+2x﹣1=1
C.3(x﹣5)+2(x﹣1)=6D.3(x﹣5)+2x﹣1=6
6.下列函数中,当x>0时,y随x的增大而增大的是()
A.y=﹣2x+1B.y =C.y=﹣2x2+1D.y=2x
7.如图,将矩形ABCD折叠,使点C与点E重合,折痕为线段DF,已知矩形ABCD的面积为6,四边形CDEF的面积为4,则AC=()
A .
B .
C .
D .
8.如图,在梯形ABCD中,AB∥CD,过点C作CE∥BD,交AB延长线于点E,对角线
第1页(共28页)。