仓库配送线路规划的几种方法

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

车辆路径问题VRP(Vehicle Routing Problem),又称车辆调度问题,通常可以描述为:对一系列装货点和卸货点,组织适当的行车路线,使车辆有序地通过它们,在满足一定的约束条件(如货物需求量、发送量、交货时间、车辆运量限制、行驶里程限制、时间限制等)下,达到一定的目标(如路程最短、费用最少、时间尽量少、使用车辆台次数尽量少等)。对这个问题的研究比较多,现在还是许多物流专业大学生毕业设计的热门题材。

当前,解决VRP问题已经很少靠手工操作了,基本都是在TMS中有相应的模块,输入基础数据后直接得出推荐的最优路线。总结起来,解决VRP问题的常规方法,主要包括以下这些。

一、定性方法。主要有经验判断法,综合评价法。这些方法配以GPS导航,可用性还是比较强的,起码王二的仓库里主要就是这么用的。

二、定量方法

1、货物调拨规划

指的是当一个企业的产品有多个供应商和多个市场时,需要决定产品从不同供应地到不同市场的分拨方案,即如何在多个供应地和多个需求地之间合理调配货物,在满足需求的前提下实现总运输成本的最小化。可采用的方法包括:图上作业法、表上作业法(西北角法、闭回路法、位势法等)。

2、车辆路径优化

(1)单一车辆配送

一般以行车时间最短、距离最短或费用最小为优化目标,也称为最短路径问题,通常采用的方法有:多阶段动态决策法、Dijkstra方法、旅行商问题模型、中国邮递员问题等。

(2)多车辆路径问题

一般描述为:某仓库要为多个客户提供服务,已知每个客户的地理位置及货运需求量,仓库需要调用多辆货车来满足这些客户的需求,每辆汽车的载重量一定,要求确定为这些客户提供服务的货车数量,并为每辆车分配一定的服务客户;同时,确定每辆车的行驶路径(或服务顺序),使总成本(如距离、时间等)最低,可以采用的方法包括:扫描法、里程节约法等。

当然了,随着AI技术的兴起,一些更智能的方法已经应用于实际工作中,比如模拟退火算法、禁忌搜索算法、遗传算法、蚁群算法和神经网络方法等。

相关文档
最新文档