改进变压器低压套管末屏接地装置

改进变压器低压套管末屏接地装置
改进变压器低压套管末屏接地装置

改进变压器低压套管末屏接地装置

发表时间:2017-11-30T09:20:54.523Z 来源:《电力设备》2017年第23期作者:朱丹平马勇

[导读] 变压器低压套管,它作为变压器引线对地的绝缘,同时也起到固定引线的作用。在它的内部,有一个电容芯子,将这个电容芯子的最后一层极板(也就是末屏)接地的装置就叫做末屏接地装置。

(国网新源水电公司新安江水电厂浙江建德 311600)

变压器低压套管,它作为变压器引线对地的绝缘,同时也起到固定引线的作用。在它的内部,有一个电容芯子,将这个电容芯子的最

后一层极板(也就是末屏)接地的装置就叫做末屏接地装置。它除了是套管的接地装置以外,还作为测试套管状况的试验端子。过去的几年中,我厂主变却恰恰由于这个小装置的缺陷问题几次造成被迫停运,变压器低压套管封闭在母线筒内,运行时无法监视,

同样也因封母关系,套管检修必须割开封母才能进行,检修费用高,客观上需要提高套管可靠性。而且作为试验端子,它拆卸起来也过于复杂了,耗时耗力不说,还容易损坏,甚至影响到套管的正常运行。因此,各方面因素都要求必须要改进低压套管末屏接地装置以提高我厂主变的运行可靠性。

2013年2月,对3台主变低压套管从2008年到2012年的缺陷的统计。这里我们可以看到,3台主变共9只套管就有6只曾出现过末屏缺陷,其中03号主变的2只套管末屏漏油的缺陷更是频繁发生。套管末屏缺陷率高达66.7%。另外,从缺陷调查表中我们发现,缺陷类型中“渗油”和“中心杆弯曲、滑牙”出现的频率相当高,我们对缺陷类型也进行了统计,可以很清楚的得出结论:“渗油”和“小鸯管中心导杆损坏”占到了末屏缺陷的90%,是末屏缺陷的关键问题。

那么,末屏接地装置为什么会频繁发生缺陷呢?下面是它的内部结构。

这就是末屏接地装置的两个重要部件:小鸯管与接地罩。套管末屏正是由软铜线经小鸯管的中心导杆引出,并通过接地罩经接地法兰接地。

了解了内部结构后,针对结构进行了深入分析,并结合平时在缺陷处理中的经验,运用科学的分析方法找出了引发“漏油”和“小鸯管中心杆损坏”的四个末端因素,分别为:接地罩孔径小;末屏接地罩拆卸困难;小鸯管中心导杆细以及套管内部压力高。

那么这些因素中哪些才是导致缺陷的主要原因呢?让我们一个一个地把它找出来。首先套管每年要进行一次试验,接地罩拆卸频繁,而这个接地装置为了接地可靠,接地孔设计的非常小,只有3mm左右,很容易卡住小鸯管中心铜杆,在接地罩拆卸旋转过程中,就极可能带动小鸯管及压紧螺帽旋转导致中心杆损坏和漏油,所以接地罩孔径小是主要原因。

其次因为套管外侧装有封母罩,拆卸末屏接地罩时就只能单手持工具盲操作,很容易损坏末屏;所以接地罩拆卸困难是主要原因。再者经游标卡尺测量,小鸯管中心导杆直径只有3mm,还车有螺纹,单手就可以折弯,折断,同时因为小鸯管直径小,使得其瓷套与中心杆胶合面积小,容易造成漏油;所以小鸯管中心杆细是主要原因。

而套管内部压力高,虽然是促发缺陷的原因之一,但其压力值并未超出标准。

因此,通过以上的分析,可以确认接地罩孔径小、末屏接地罩拆卸困难以及小鸯管中心杆细是造成末屏缺陷的的主要原因。

套管末屏传感器及应用

XD5661套管末屏传感器及检测技术 1、概述 110kV等级及以上主变出线方式主要采用容性套管,套管末屏是检测主变局放、介损等参量的重要信号拾取位置。 主变在运行状态下是无法打开套管末屏保护罩的,想要在运行状态下拾取局放及介损信号,现行的方法是将套管末屏接地线引到地面,但这样一定程度改变了接地方式,对安全运行构成一定的风险。 XD5661套管末屏传感器为解决上述问题而研发,它采用微型化传感技术嵌入现用的末屏保护罩,结构与现用的末屏保护罩可完全替换,在不改变原有套管末屏的电气特性(尤其是接地特性)条件下,高品质地提取出局放、接地电流等信号,为主变的带电检测与在线监测提供便捷、无风险检测方法。

2、套管末屏传感器 2.1组成 套管末屏传感器主要由高频脉冲感应单元、低频电流感应单元、信号出线盒、双屏蔽传输线几部分组成。 传感器按功能可分为:高频局放传感器、介损电流传感器及同时包含上述二种功能的综合传感器。 套管末屏传感器 传感器安装示意图

2.2特征及性能 2.2.1安全性高 不改变末屏原有接地方式和性能,不松动。 2.2.2可靠性高 内部灌胶固化,达到IP68(潜水型)防护等级,使用寿命与套管等同。 2.2.3灵敏度高 内置高频、低频传感器,可检测5pC局放信号和μA级接地电流。 2.2.4可标定 局放信号可参照GB7354标准,选用符合频带要求的脉冲发生器进行校准。 2.2.5安装便捷 结构上与现用各种套管末屏封盖完全互换,换装可在几十秒内完成。 2.2.6适用性广 传感器信号既可用于带电检测,也可作为在线监测的信号来源。

2.3应用方式 按工作方式,套管末屏传感器应用可分为巡检模式、本地在线模式和远程在线模式三类。 2.3.1巡检模式 在主变临近地面设置信号出线盒,将传感器获取信号引入信号出线盒,巡检时仪器从信号出线盒接收信号。 巡检模式示意图 巡检现场

变压器套管末屏接地中存在的问题浅析

变压器套管末屏接地中存在的问题浅析 发表时间:2019-05-20T15:56:59.470Z 来源:《电力设备》2018年第34期作者:赵保义王平王继承 [导读] 摘要:本文介绍了变压器套管在预防性试验时对末屏接地装置拆装中发现的一些隐患,根据变压器套管末屏接地型式的不同分析其潜在的隐患,探讨其防范措施及日后维护重点关注对象。 (华润电力江苏检修有限公司彭城项目部) 摘要:本文介绍了变压器套管在预防性试验时对末屏接地装置拆装中发现的一些隐患,根据变压器套管末屏接地型式的不同分析其潜在的隐患,探讨其防范措施及日后维护重点关注对象。 关键词:变压器;套管末屏;接地 1、套管末屏结构 电容型套管是由接线端子、储油柜、上瓷套、下瓷套、电容芯子、导电杆、绝缘油、法兰、接地套管等部分组成。主绝缘为油纸绝缘,油纸电容式套管的中间法兰上,一般分别装有测量端子和电压抽头。测量端子是在最外层铝箔上卷入一层铜带后并通过接地小套管引出,即套管末屏,主要用来测量电容套管的介质损耗因数和电容量,在运行中必须保证末屏可靠接地。如果由于各种原因导致末屏接地不良,那么末屏对地会形成一个电容,而这个电容远小于套管本身的电容,按照电容串联原理,将在末屏与地之间形成悬浮电位,造成末屏对地放电,严重时还会发生套管爆炸事故。在进行套管试验时,需要解开末屏接地,从末屏引出线进行测量套管的电容值和介质损耗值,能够有效发现套管主屏和末屏绝缘受潮、绝缘油劣化、电容屏短路或开路等缺陷。 2、事件经过 (1)某电厂220KV启动变在进行高压套管tanδ预防性试验中,由于末屏接地结构采用小套管引出外接地方式,在进行末屏接地金属连片拆除过程中,导致金属连片断裂,并且末屏引线柱(螺杆)固定金属连片丝杆处滑丝。如图1所示。 图1 末屏接地缺陷图2 接地冒顶针接触式结构 (2)某电厂220KV启动变高压套管末屏为接地冒顶针接触式结构接地,在进行tanδ预防性试验时,由于末屏接地采用接地帽进行接地,接地帽为生铝材料制作,铝材质存在熔点低,材质软,在转动过程中易发生卡涩或“沾粘”,导致接地盖旋转受阻或不能旋转的现象,严重时导致末屏接地不良。如图2。 3、事故案例 (1)2006年3月?21日,大连某变电所?2号变定检时,发现一次?A相套管末屏与接地外罩上有很明显的放电、烧蚀痕迹。经检查原因是末屏引出铜线与小套管连接松动,造成放电。 (2)1991年 7月 24日,某变电所变压器(1986 年 1月生产,1987年 l 1月投入运行)在系统无操作、无负载情况下,A相差动保护动作跳闸,高压A 相套管电容芯子飞出,套管末屏熔断,套管电容芯子内电极(穿缆导杆)断成4段,套管下部绝缘成型件严重损坏,均压球变形。分析为由于套管末屏接地不良,产生局部放电,逐渐波及到主电容屏,使主电容屏电场发生严重畸变,导致套管主绝缘击穿、爆炸。 (3)某变电所主变型号为SFZ8一M一25000/63,套管型号为BRW3—66(1999年 l1月生产),小套管经接地罩接地。变压器预防性试验后投入运行时,66kV侧 A相、B相套管末屏小套管接地罩与法兰之问放电。经检查分析,在进行套管测量后,由于在上接地罩固定螺栓前,没有将接地罩和法兰问的油漆清除,致使接地罩和法兰之间接触不良,导致变压器运行后接地罩与法兰间放电。由于及时发现,并将接地罩和法兰之间油漆清除、接触良好后,设备运行正常,避免了一次事故的发生。 4、末屏接地型式及存在问题分析 针对以上事件经过,浅析小瓷套引出外接方式与接地帽顶针结构接地方式中存在的问题。 4.1末屏接地类型 4.11小瓷套引出外接地 此末屏接地方式为末屏引出线穿过小瓷套通过引线柱(丝杆)引出,引线柱经瓷套支撑对地绝缘,且引线柱外部经接地金属片与套管底座接地部位金属相连(即:引线柱一端用螺母固定在瓷套出线螺杆上,另一端经螺丝固定在套管底座法兰上进行接地)。如图3。

变压器套管分析

高压套管是变压器的重要组件之一,它起着将绕组引出线引出油箱,并连接到电网的作用,直接制约变压器运行可靠性。如果不能及时发现其内部故障或维护不当,极易发生绝缘损坏甚至击穿爆炸事故。而油色谱检测通过分析油中溶解气体的组分和含量,能灵敏地分析出充油电气设备存在的潜伏性故障,判断其发展趋势及危害程度。因此,应通过套管油样的定期检测分析,判断套管内部有无潜伏性故障,进而保证套管及主设备的安全运行。 1 故障情况 某220kV 变电站于2007 年10 月31 日投入运行,2009 年3 月14 日,该变电站3 号主变进行停电预防性试验,发现其高压C 相套管油色谱数据异常,总烃、氢气及乙炔含量均严重超标。该套管为某公司2006 年11 月出厂的BRL1W1-252/630-4 型产品。 利用改良三比值法编码规则,得出此次故障的编码为2 0 2,初步判断故障为该套管内部存在电弧放电故障,估计是由于该套管内部存在不同电位的不良连接点间的连续火花放电所引起的。 该套管主绝缘的介质损耗角正切值tanδ和电容量未发现异常,末屏绝缘电阻满足标准要求,表明该套管主绝缘没有受到严重破坏。 2 解体检查情况 为了查明该220kV 变电站3 号主变高压C 相套管的故障原因,将该套管进行了解体检查。 首先拆除该套管末屏接地装置,发现末屏接地装置的顶针与电容芯子末屏裸露部分的接触处已移动到末屏裸露部分的边缘,且顶针与电容芯子末屏接触处有明显放电烧蚀痕迹, 为了查找该套管末屏接地装置的顶针与电容芯子末屏裸露处产生移位的原因,对该套管做了进一步解体检查,松开中心导管两端的螺母,将电容芯子取出,发现该套管整个电容芯子沿中心导管整体下移23mm。 为了查找该套管电容芯子整体下移的原因,将电容芯子从中心导管上拆除,发现电容芯子最里层电缆纸与中心导管之间漏涂专用粘接剂(套管生产厂家的工艺要求:为了防止电容芯子整体下移,电容芯子最里层电缆纸与中心导管之间应涂专用粘接剂),且该套管电容芯子卷制得不够紧密,卷制同心度不满足工艺要求,导致电容芯子端部切削整形后外部成波浪形,部分电缆纸两端均无连接,镶嵌于电容芯子内部,使电容芯子整体绕紧力下降。另外,该套管的电容芯子下部没有防止电容芯子下移的绝缘支撑物也是造成电容芯子整体下移的主要原因。 3 故障原因分析 3.1 套管结构该 220kV 变电站3 号主变高压C 相套管为高压油纸电容型套管。高压油纸电容型套管具有内外绝缘两部分:内绝缘为一圆柱形电容芯子,是由电缆纸和多层铝箔极板卷制而成,从贴近中心导管的“零屏”到外部的“末屏”,随着直径增大,长度逐渐缩短,使每两层铝箔之间的电容大体相同,由此控制轴向和径向电场,均匀端部场强;外绝缘为瓷套,瓷套的中部有供安装用的金属连接套筒(也称法兰),头部有供油量变化的储油柜,法兰以下的下瓷套伸入变压器油箱内,也是内绝缘的容器,使瓷套内绝缘实现全封闭。套管经总装密封后,抽真空注入变压器油。套管中的油与变压器本体内的油是不相通的。套管轴向的紧固具有弹性,以补偿导电杆的伸缩。除主体结构外,为运行维护需要,在储油柜上有油面指示器,套筒上装有末屏接地装置(用来测量电容芯子的绝缘),还有取油样和注油孔等。 该套管末屏接地装置采用顶针式。顶针式末屏接地装置为接线柱一端接套管末屏,另一端接地,绝缘瓷套中间有一个弹簧将其连接。顶针式末屏接地装置原理如图3 所示。顶针式末屏接地装置最难控制的是接线柱与套管末屏的可靠接触,因为套管法兰与末屏之间的间隙公差约5mm(电压越高,公差越大)。由于是硬接触,接线柱与套管末屏的松紧度无法控制,太松易造成接触不良,太紧易损坏末屏与倒数第二屏的绝缘,很可能造成接线柱错位,导致与末屏接触不良。 3.2 故障原因分析 根据该220kV 变电站3 号主变高压C 相套管的试验、解体检查及产品结构情况,得出以下结论。 (1)该套管乙炔、总烃和氢气含量严重超标的直接原因是由于末屏接地引出处与电容屏末屏接触不良,造成该处在运行中产生火花放电,使变压器油大量分解。 (2)该套管末屏接地引出处与电容屏末屏接触不良的直接原因是生产厂家生产工艺控制不严,漏涂粘接剂。电容芯子绕制不紧,且同心度不满足工艺要求,切削后引起整体绕紧力下降。在制造、运输、安装和运行过程中存在的震动使该套管电容芯子整体下移,导致末屏绝缘瓷套的顶针滑到电缆纸上。 (3)该套管末屏接地引出处与电容屏末屏接触不良的间接原因该套管生产厂家未采取充分有效措施防止套管在制造、运输、安装和运行过程中可能产生的电容芯子位移。 4 防范措施 该220kV 变电站3 号主变高压C 相套管故障的及时发现,得力于油色谱检测,防止了一起可能发生的套管爆炸事故。

改进变压器低压套管末屏接地装置

改进变压器低压套管末屏接地装置 发表时间:2017-11-30T09:20:54.523Z 来源:《电力设备》2017年第23期作者:朱丹平马勇 [导读] 变压器低压套管,它作为变压器引线对地的绝缘,同时也起到固定引线的作用。在它的内部,有一个电容芯子,将这个电容芯子的最后一层极板(也就是末屏)接地的装置就叫做末屏接地装置。 (国网新源水电公司新安江水电厂浙江建德 311600) 变压器低压套管,它作为变压器引线对地的绝缘,同时也起到固定引线的作用。在它的内部,有一个电容芯子,将这个电容芯子的最 后一层极板(也就是末屏)接地的装置就叫做末屏接地装置。它除了是套管的接地装置以外,还作为测试套管状况的试验端子。过去的几年中,我厂主变却恰恰由于这个小装置的缺陷问题几次造成被迫停运,变压器低压套管封闭在母线筒内,运行时无法监视, 同样也因封母关系,套管检修必须割开封母才能进行,检修费用高,客观上需要提高套管可靠性。而且作为试验端子,它拆卸起来也过于复杂了,耗时耗力不说,还容易损坏,甚至影响到套管的正常运行。因此,各方面因素都要求必须要改进低压套管末屏接地装置以提高我厂主变的运行可靠性。 2013年2月,对3台主变低压套管从2008年到2012年的缺陷的统计。这里我们可以看到,3台主变共9只套管就有6只曾出现过末屏缺陷,其中03号主变的2只套管末屏漏油的缺陷更是频繁发生。套管末屏缺陷率高达66.7%。另外,从缺陷调查表中我们发现,缺陷类型中“渗油”和“中心杆弯曲、滑牙”出现的频率相当高,我们对缺陷类型也进行了统计,可以很清楚的得出结论:“渗油”和“小鸯管中心导杆损坏”占到了末屏缺陷的90%,是末屏缺陷的关键问题。 那么,末屏接地装置为什么会频繁发生缺陷呢?下面是它的内部结构。 这就是末屏接地装置的两个重要部件:小鸯管与接地罩。套管末屏正是由软铜线经小鸯管的中心导杆引出,并通过接地罩经接地法兰接地。 了解了内部结构后,针对结构进行了深入分析,并结合平时在缺陷处理中的经验,运用科学的分析方法找出了引发“漏油”和“小鸯管中心杆损坏”的四个末端因素,分别为:接地罩孔径小;末屏接地罩拆卸困难;小鸯管中心导杆细以及套管内部压力高。 那么这些因素中哪些才是导致缺陷的主要原因呢?让我们一个一个地把它找出来。首先套管每年要进行一次试验,接地罩拆卸频繁,而这个接地装置为了接地可靠,接地孔设计的非常小,只有3mm左右,很容易卡住小鸯管中心铜杆,在接地罩拆卸旋转过程中,就极可能带动小鸯管及压紧螺帽旋转导致中心杆损坏和漏油,所以接地罩孔径小是主要原因。 其次因为套管外侧装有封母罩,拆卸末屏接地罩时就只能单手持工具盲操作,很容易损坏末屏;所以接地罩拆卸困难是主要原因。再者经游标卡尺测量,小鸯管中心导杆直径只有3mm,还车有螺纹,单手就可以折弯,折断,同时因为小鸯管直径小,使得其瓷套与中心杆胶合面积小,容易造成漏油;所以小鸯管中心杆细是主要原因。 而套管内部压力高,虽然是促发缺陷的原因之一,但其压力值并未超出标准。 因此,通过以上的分析,可以确认接地罩孔径小、末屏接地罩拆卸困难以及小鸯管中心杆细是造成末屏缺陷的的主要原因。

变压器套管的故障原因及处理方法

变压器套管的故障原因及处理方法 变压器作为电力输送环节中非常重要的一个环节,在使用的过程中,需要格外注意,而变压器的管套,起着保护变压器的作用,但是变压器的套管长期放置于户外,日晒雨淋,时常会发生故障,严重影响变压器的使用寿命,因此在实际的工作中,需要格外注意,本文就简单介绍变压器套管故障的主要原因及解决的方法。 变压器套管表面脏污吸收水分后,会使绝缘电阻降低,其后果是容易发生闪络,造成跳闸。同时,闪络也会损坏套管表面。脏污吸收水分后,导电性提高,不仅引起表面闪络,还可能因泄漏电流增加,使绝缘套管发热并造成瓷质损坏,甚至击穿;套管胶垫密封失效,油纸电容式套管顶部密封不良,可能导致进水使绝缘击穿,下部密封不良使套管渗油,导致油面下降。套管密封失效的原因主要有两个方面:一是由于检修人员经验不足,螺栓紧固力不够;二是由于超周期运行或是胶垫存在质量问题、胶垫老化等;套管本身结构不合理,且存在缺陷。 遇到这种故障,一般的处理方法为,在起吊﹑卧放﹑运输过程中, 套管起吊速度应缓慢,避免碰撞其它物体;直立起吊安装时,应使用法兰盘上的吊耳,并用麻绳绑扎套管上部,以防倾倒;注意不可起吊套管瓷裙,以防钢丝绳与瓷套相碰损坏;竖起套管时,应避免任何部位落地;套管卧放及运输时,应放在专用的箱内。安装法兰处应有两个支撑点,上端无瓷裙部位设支撑点,尾部也要设支撑点,并用软物将支撑点垫好。套管在箱中应固定,以免运输中窜动损伤。

在套管大修的装配中应特别注意以下几点:防止受潮。装配中除要有清洁干燥的条件以外,最好能在40-50℃温度下进行组装。因为电容芯子温度高出环境温度温度10-15℃时能减少受潮的影响,所以最好在组装前将套管的零部件和电容芯子加热到70-80℃,保持3-4h,以便排除表面潮气,尽可能在温度尚未降低时装配完;套管顶部的密封。 套管引线是穿缆式结构,如果顶部接线板、导电头之间密封不严密,雨水会沿套管顶部接线板、导电头及电缆线顺导管渗入变压器内部。水分进入变压器引线根部,将会导致受潮击穿,造成停电。为避免这种情况,必须用螺栓压紧,保证密封;中部法兰的小套管。电容屏的最外层屏蔽极板即接地电屏,用一根1.5mm2的软绞线,套上塑料管引到接地小套管的导电杆上,此套管叫测量端子,装配时要注意小套管的密封和引出软线的绝缘。检修时,应将套管水平卧倒,末屏小套管朝上,卸开小套管即可检查末屏引线等情况,还可以作相应的修理。在套管运行和作耐压试验时,其外部接地罩应良好接地;均压球调整应适当。 变压器的维护人员在日常的工作中,除了以上的几个方法之外,还需要对变压器的套管进行一些日常的清洁防雨等维护,并且在故障发生后做好相应的记录,做到有备无患。同时,在日常工作中,应当及时对变压器进行巡查,以防范于未然。

变压器套管末屏日常工作注意事项

变压器套管(互感器、穿墙套管)末屏 常见结构型式及日常工作注意事项 安徽省电力科学研究院 一、概述 近几年省公司系统发生多起变压器套管、互感器等设备末屏装置异常情况,严重危及主变压器、互感器等设备的安全可靠运行,为贯彻省公司关于加强对变压器套管、互感器等设备末屏装置运行维护管理工作的要求,省电科院特对末屏接地的常见结构型式进行了梳理,并提出了其日常工作注意事项。 二、末屏接地的几种常见型式 1.普通金属片(线)式接地 2.弹簧片式接地

3.推拔式接地 推拔式末屏原理图 推拔式末屏接地时的状况

4.内外螺旋式接地 旋掉接地帽时的末屏状态(正常)

5.螺旋帽式接地 螺旋帽式接地末屏接地帽打开时的状态

螺旋帽式接地末屏接地帽打开时的状态和接地帽 三、末屏运行维护注意事项 针对各种接地类型的末屏装置,在运行维护中需要注意以下事项: 1)变电运行人员在巡视设备时,除其它应巡视的项目外,尚需注意末屏装置是否渗漏、油污情况,末屏处有无异常放电情况,发现异常应及时上报; 2)电气试验人员在对套管或互感器进行试验前,打开末屏接地时应注意: ●对于推拔式接地的末屏,应使用专用工具,卡住外铜套,使末屏处于断开状态; ●对于金属片接地的末屏,宜先松末屏端螺帽,再松接地端螺帽; 3)电气试验人员在对套管或互感器进行完试验,恢复末屏接线时应注意: ●对于普通金属片式接地末屏,宜先上接地端螺帽,后上末屏端螺帽,并注意控制 拧紧的力度,避免折断该金属片。如发现金属片异常应更换; ●对于推拔式接地的末屏,在末屏处于接地状态时,使用万用表测量末屏对变压器 外壳(地)的电阻值,如异常应处理;如上述步骤正常,应旋紧保护帽,避免末屏处受潮,导致末屏接地装置中的金属部件锈蚀,进而造成推拔铜套与法兰接触面因铜锈存在而出现末屏接地不良现象。 ●对于内外螺旋式接地的末屏,不应使用扳手旋紧接地保护帽,而应用手旋紧接地 保护帽。

某220kV变压器高压套管爆炸故障原因分析_陈杰华

文章编号:1007-290X(2009)05-0070-03 某220kV变压器高压套管爆炸故障原因分析 陈杰华,林春耀,姚森敬,陈忠东 (广东电网公司电力科学研究院,广州510600) 摘要:对某220kV变电站发生粉碎性爆炸的主变压器高压套管进行现场解体,指出套管发生爆炸事故的根本原因是套管本体内部绝缘被击穿,提出应加强套管制造过程的质量检测和加强运行中套管的在线检测,及时发现缺陷,避免事故的发生。 关键词:变电站;主变压器;套管;缺陷 中图分类号:TM406;TM855 文献标志码:B Reason Analysis of HV Bushing Explosion of a220kV Transformer CHEN Jie-hua,LI N C hun-yao,YAO Sen-jing,CHEN Z hong-dong (Elec tric Power Resear ch Inst.of Guangdong Power Grid C or p.,Guangzhou510600,China) A bstract:Upon on-site strip inspection of the explode d HV busing of a220kV m ain tr ansf or mer,the r oot ca u se of the explosion was deem ed to be the insulation br eakdown in the bushing pr oper.I t is indica ted tha t quality inspec tion dur ing the manuf acture of bushing and on-line monitoring of bushing in oper ation should be str engthe ne d,so as to discover defec ts timely and avoid accide nts. Key words:substa tion;ma in tr ansfor mer;bushing;def ect 某220kV变电站2号主变压器型号为SFPSZ-24000/220,常州东芝变压器有限公司2005年3月生产。变压器高压侧U相套管型号为COT1050-1250,额定电压252kV,额定电流1250A,上海MWB互感器有限公司2005年2月生产。 2号主变压器在2005年5月11日的交接试验中检验合格,2005年6月17日投入运行。2008年3月2日主变压器红外测温结果正常。2008年1月24日本体油色谱测试正常,氢气与总烃含量均在较低水平。 1 故障现象及其处理 1.1 故障过程 2008年5月31日零时6分,2号主变压器保护一的差动保护速断(12ms)、工频变化量差动保护动作(22ms)、比率差动保护动作(23ms);主变压器保护二的差动保护速断(12ms)、工频变化量差动保护动作(22ms)、比率差动保护动作(23 ms),约60ms后,2号主变压器三侧开关跳闸。零时6分20秒,10kV自动投入保护装置动作,出口跳2号主变压器,变压器低压侧动作,同时合上10kV母联开关500B。故障电流为31992A。U相套管炸裂起火,水喷雾系统动作。1时3分,变压器高压侧U相套管明火被扑灭。 故障前,该变电站的设备全接线运行,无操作任务;故障前后,该变电站及其架空线路附近地区均无落雷记录;线路避雷器的放电计数器无动作。 故障后,主变压器本体常规电气与绕组变形测试结果正常。本体油色谱试验结果正常,各特征气体组分未发现异常增长。 1.2 事故现象 现场检查发现,变压器高压侧U相套管的上瓷套发生粉碎性炸裂,内部铝管距接地法兰约700mm处有一明显击穿点,周边油纸电容屏外翻撕裂并烧损[1]。变压器高压侧V相套管与变压器高压侧中性点套管上瓷套部分瓷裙破损(未漏  第22卷第5期广东电力Vol.22No.5 2009年5月GUANGD ONG ELEC TRIC P OWER May2009  收稿日期:2008-12-15

变压器套管末屏故障

来源:旺点电气时间:2010-09-15 阅读:505次 标签:变压器套管机组 1引言 变压器套管是将变压器内部的高、低压引线引到油箱外部的出线装置。套管作为引线对地的绝缘,还担负着固定引线的作用。因此,它必须具有规定的电气和机械强度。由于它在运行中除应承受长期负载电流外,还应能承受短路时的瞬时过热,即应有良表 1 2000年一2007年套管故障数据Table 1 Data of fault bushings in 2000 to 2007 年代 2000托 2001年20o2年 2003经 2004钜 2005年 2006钲 2007年套管事故次数 1 5 2 l 5 O 4 4 套管故障次数 63 63 l09 89 77 3l3 359 628 末屏接地不良 2 4 6 7 8 l7 l6 30 故障发生次数注:2007年套管故障次数中含套管渗漏油 310次。好的热稳定性。如果变压器套管存在缺陷或发生故障,将直接危及变压器的安全运行及其供龟可靠性。近年来,运行中的套管事故率和故障率都呈上升趋势。据不完全统计,2000年以来,50okV变压器套管在运行中发生爆炸、着火事故的有 9次之多。国家电网公司资料统计如表 l所示。油浸电容式套管故障的形成主要是结构或制造工艺不良、安装工艺不良等造成套管接头过热; 瓷套外绝缘在恶劣环境下发生雨中闪络;末屏接地不良造成油色谱超标等。长期运行中密封垫圈老化裂纹,发生漏油、渗水,加上维护不到位,使套管的电气绝缘性能下降,甚至发生套管爆炸。因此,对运行中的油纸电容式套管应加强监视,及时进行检修、维护及试验,提前采取防范措施,确保设备安全运行。笔者就油浸电容式套管末屏接地不良引起的故障加以分析,并提出改进建议和防范措施。 2油浸电容式套管的基本结构信息来源:https://www.360docs.net/doc/6c1417832.html, 油浸电容式套管是由接线端子、储油柜、上瓷套、下瓷套、电容芯子、导杆、绝缘油、法兰、接地套管、电压抽头和均压球等组成的。套管绝缘由内绝缘和外绝缘构成。外绝缘通常为瓷套,内绝缘为一圆柱形电容芯子,该圆柱中心的铜(铝) 导管既是电容芯子的骨架,又是套管用于穿过引线电缆的引线孔(穿缆式),必要时可作为零屏。油纸电容式套管的中间法兰上,一般分别装有测量端子和电压抽头。测量端子是从电容芯子最外一层电容屏卷入一层约0.3ram厚、50ram宽的铜带,电容芯子机械加工后,挖一小窗口,使铜带露出,然后用焊锡焊上软铜绞线与接地小套管内部导杆相连接,通过绝缘套管引出的,该层电容屏主要用来测量电容套管的介质损耗因数和电容量。在局部放电测量时,用该电容屏对中间法兰的电容值(该端子对地电容较小)和电容芯子的电容值形成分压器,用来测量变压器的局部放电量。电压抽头是由套管电容芯子最外第二层屏通过绝缘套管引出的,其对地电容比较大,可以输出一定功率。无论是测量端子还是电压抽头,由于它们的对地电容与套管的主电容相比都是比较小的,所以,在套管运行时,必须可靠接地。

220kV变压器高压套管末屏故障原因分析与处理

第33卷第7期华电技术Vol.33No.7 2011年7月Huadian Technology Jul.2011 220kV 变压器高压套管末屏故障原因 分析与处理 唐嘉宏 (广东惠州天然气发电有限公司,广东惠州516082) 摘 要:某电厂1台220kV 变压器高压侧B 相套管末屏存在严重放电痕迹,套管内绝缘油中检验出超标的乙炔,通过分 析, 判断故障原因为套管在线检测装置设计、安装存在缺陷,导致运行中末屏接地线断裂,末屏悬浮电位升高而放电。提出了一种现场不排油更换套管的方法,节约了大量的人力、物力,缩短了检修工期。关键词:变压器;高压套管;末屏;故障中图分类号:TM 407 文献标志码:B 文章编号:1674-1951(2011)07-0045-03 收稿日期:2011-04- 17 图2正常状态及放电后的信号耦合装置对比 0引言 发电厂内主变压器最基本、最重要的功能是将发 电机产生的电能升压后送至电网, 一旦其发生故障,不仅会严重影响发电厂经济效益,还会对电网的安全 产生严重影响。作为变压器重要部件的高压套管一向是故障多发点,2009年度,广东省发生了2起变压 器事故,其中一起就是220kV 变压器高压套管爆炸,导致变压器着火烧毁。鉴于此,近年来国内高压套管在线监测技术开始兴起,不少发电厂装备了这样的在线装置,但由于该项技术处于发展初期,没有运行经验, 设计、安装不当极易引发更严重的事故。2008年广东某电厂就发生了由套管在线装置引起的套管末屏放电故障,发现故障后进行了套管更换。 1套管故障基本情况 2008年10月,某电厂# 2机组主变压器(SFP - 480000/220型三相变压器,额定容量为480MV ·A ) 停电检修,在打开主变压器高压侧B 相套管(型号为 BRLW -252)接地末屏的在线监测装置进行检查时,发现末屏小套管有放电痕迹,小套管瓷瓶尾部断裂,如图1所示 。 图1末屏存在严重的放电现象 在线监测装置信号耦合装置内放电痕迹严重, 连接导线断裂,正常状态及放电后的信号耦合装置对比如图2所示。 末屏清理后进行了相关电气试验,试验结果见表1,表2为主变压器高压套管交接试验数据。

电力变压器套管末屏接地典型故障及其处理

电力变压器套管末屏接地典型故障及其处理 摘要:近几年,随着用电负荷的增加,套管故障逐渐增多。高压套管是变压器 组件中较容易发生故障的部件。倘若套管存在缺陷或故障,将直接危及变压器的 安全稳定运行及供电可靠性。其中末屏接地不良是影响套管正常运行的根源。基 于此,本文主要对电力变压器套管末屏接地典型故障及其处理进行分析探讨。 关键词:电力变压器;套管末屏;接地典型故障;处理 1、前言 高压套管是电网内重要的电气设备,它能使带有高电压和强大电流的导线安 全地穿过接地墙壁、箱壁和金属外壳,与其他高压电气设备相连接,其不但是引 线对地的绝缘,而且还担负着固定引线的作用。从变压器高压套管故障分析中看出,在高压套管故障中,末屏接地不良通常是引发套管不正常运行的多发诱因的 重点。 2、电力变压器套管末屏接地分析 高压电容式套管是套管中较常用的一种。电容式套管由电容芯子、末屏、瓷套、金属附件和导体构成。套管的电容芯子由多层相互绝缘的铝箔层组成,称为 电容屏,能有效改善内部电场分布,提高绝缘材料利用率。电容屏数目越多,绝 缘中电场分布越均匀,其中靠近高压导电部分的第一个屏为零屏,它与一次导电 部分相联,最外一层屏称为末屏,通过末屏接地装置引出接地,整个电容屏全部 浸在绝缘油中。 在电网内运行时,末屏须可靠接地,这样才能使外绝缘的瓷套表面的电场受 内部电容芯子的均压作用而分布均匀,也起到保护电容芯子的作用,从而提高了 套管的电气绝缘性能。通过末屏可以测量其电容屏的电容量和介损,从而判断电 容屏的绝缘状况,掌握绝缘性能,因此末屏接地装置的引出端子也称为测量端子。通过末屏测量端子能有效地发现主末屏绝缘受潮、绝缘油劣化、电容屏间开路或 短路等缺陷,如运行中末屏开路,将出现高电压,极易导致设备损坏。 变压器电容式套管末屏接地方式,可分为外露连接式(外置式)、金属外罩 封闭式(内置式)和常接地式(靠弹簧压力末端长期接地,试验时用专用工具把 末端接地点断开) 3、电力变压器套管末屏接地典型故障及其处理 3.1常接地结构特点分析 对于常接地结构接地方式的末屏,试验时应先将护盖套打开,然后将接地套 压下,取一金属销插入引线柱的准4小孔中,再松开压下的接地套,接地套在弹 簧作用下回弹直至金属销位置。此时引线柱和接地法兰断开,末屏引线柱不接地,这时可对引线柱连接测试线进行试验。这种接地方式的优点是能够自动接地,避 免工作人员疏忽造成末屏未接地。缺点是弹簧力减少时或接地套与引线柱间有卡 涩时,接地套不能随弹簧完全弹出,造成末屏不能可靠接地。 3.2实例一 在110kV凤凰变电站#2主变套管预试工作中,试验时试验人员发现异常状况:110kV高压侧A相套管末屏的护盖套无法拧开,导致不能进行末屏绝缘、套管介 质损耗角正切值tanδ及电容量测量试验。110kV凤凰变电站#2主变A相套管型 号为BRDLW1-126/630-3,额定电压126kV,额定电流630A,油号10GBX。投入运行以来,运行、试验正常。 3.3高压套管末屏异常现场分析及处理

变压器套管

变压器套管的用途:是将变压器线圈的引线分别引到油箱外面的绝缘装置,它既是引线对油箱的绝缘,又是引线的固定装置。 在变压器运行中,套管长期通过负载电流,当外部短路时通过短路电流。因此对变压器套管有以下要求:①必须具有规定的电气强度和足够的机械强度。②必须具有良好的热稳定性,并能承受短路时的瞬间过热。③外形小、重量轻、密封性能好、通用性强和便于维修。 套管的外部构造包括:接线板、引线接头、防雨罩、油表、油塞、油枕、上瓷套、末屏、吊环、取油阀、铭牌、放气塞、连接套管、下瓷套、均压球。内部构造:1.以油浸渍的电缆纸和铝箔均压电极组成的多层圆柱形电容芯子作为主绝缘,瓷件作为外绝缘及变压器油的容器。2.套管为全密封结构,其内部的变压器油为独立系统,不受大气影响。3.套管的整体连接采用强力弹簧机械紧固,既保证密封,又可补偿由于温度变化而引起的各部件长度变化。 套管头部的油枕用来调节因温度变化而引起的油体积变化,使套管内部免受大的压力。油枕上的油表供运行时监视油面。尾部均压球的作用是改善电场分布,从而缩小套管尾部与接地部位和线圈的绝缘距离。油纸电容式套管末屏上引出的小套管是供套管介损试验和变压器局部放电试验用的,正常运行中小套管应可靠接地,拆卸末屏小套管时须防止小套管导杆转动和拉出,以免发生引线断线或极板上的引出铜皮损坏。 三相变压器套管标号的排列:从变压器高压套管一侧看,从左到右的标号顺序为: 高压:O,A,B,C;中压:Om,Am,Bm,Cm;低压:O,a,b,c。 套管按绝缘材料和绝缘结构可分为三种:①单一绝缘套管:又分为纯瓷、树脂套管两种; ②复合绝缘套管:又分为充油、充胶和充气套管三种;③电容式套管:又分为油纸电容式和胶纸电容式两种。油纸电容式变压器套管从载流结构进行分类,一般可分为穿缆式和导管载流式,其中导管载流式按油中接线端子与套管的连接方式可分为直接式和穿杆式。穿缆式和直接导管载流式套管在电力系统得到广泛的应用,而穿杆式结构的油纸电容套管则为数不多。 电容式套管的电容芯子是在空心导电铜管外面用0.08~0.12mm厚的电缆纸紧包一定厚度绝缘层,在其外面再用0.01mm或0.007mm厚的铝箔包一层作为电容屏,以后交错地继续包电缆纸和铝箔达到所需层数和厚度为止。这样形成了多层串联的电容器电路,导电管电位最高,最外层铝箔接地(地屏)。按串联电容分压原理,导电管对地电压应等于各电容屏间电压之和,而电容屏之间的电压与其电容成反比,使得全部电压较均匀地分配在电容芯子的全部绝缘上,从而使套管尺寸小、重量轻。 变压器套管的型号及其含义:B变压器用; F复合绝缘式;D单体绝缘式;J有附加绝缘的;R电容式;Y充油式;L穿缆式;Q加强式;L可装电流互感器的;数字/数字额定电压(KV)/额定电流(A)。 油纸电容式套管顶部密封不良,可能导致进水使绝缘击穿,下部密封不良将使套管渗油使油面下降。 套管瓷绝缘发生污闪的两个必要条件是表面落有脏污粉尘和表面湿润。套管表面脏污容易发生闪络,造成误跳闸。同时,闪络也会损坏套管表面。套管表面脏污的另一危害是:脏污吸收水分后导电性提高,不仅引起表面闪络,还可能因泄漏电流增加,使绝缘套管发热并产生裂缝,最后击穿。 油纸电容式套管芯子是由多层电缆纸盒铝箔卷制的整体,如按常规注油,屏间容易残存空气,在高电场作用下,会发生局部放电,甚至导致绝缘层击穿,造成事故,因而必须高真空浸油,以除去残存的空气。 油纸电容式套管的芯子两端缠绕成锥形的原因:为了使各极板之间承受近似相等的电压,使电场趋于均匀,提高抗电强度,必须使各极板间的电容近似相等。但电容大小与极板面积成正比,因此随着电极径向尺寸的加大,轴向尺寸应相应减小。所以,必须使油纸电容式套管的芯子两端形成锥形。

一种变压器套管末屏缺陷的原因分析及整改措施

一种变压器套管末屏缺陷的原因分析及整改措施 发表时间:2019-12-11T15:58:05.337Z 来源:《河南电力》2019年6期作者:朱劲磊[导读] 对于变压器而言,要保证其稳定性,则必须要求所有变压器元件更加可靠。 (广州供电局有限公司广东广州 510600) 摘要:对于变压器而言,要保证其稳定性,则必须要求所有变压器元件更加可靠。本文通过对一种变压器套管末屏接地缺陷的深入分析研究,旨在寻找末屏故障分析及相关整改措施的思路,并通过本文的探讨提出了相应的解决办法和建议,为变压器套管的安全、稳定运行提供参考。 关键词:变压器、套管末屏、接地端盖、故障分析、整改措施探索一、引言 在电力系统中,变压器的地位十分重要,而变压器套管作为变压器的载流元件之一,不仅数量多而且要求性能稳定、安全可靠。油浸式变压器套管多为电容式结构,由储油柜、上下瓷套、导电杆、电容屏、接地端子等部分组成。主绝缘为油纸绝缘,由若干层同心串联圆柱形电容屏组成,最里面靠近导电杆的为零屏,最外面的为末屏,电容屏数目越多,电场分布越均匀。在变压器运行时必须保证末屏接地,才能使电容屏起到均压作用保证绝缘,否则容易引起末屏悬浮放电,甚至是套管爆炸等严重事故,因此保证末屏运行时的可靠接地是保证变压器安全运行的重要措施。 二、故障情况 某500kV变电站在试验过程中,发现#1主变B 相变高套管末屏引线端子存在严重烧蚀现象。当日常规电气试验结果合格,绕组变形测试结果无异常。(套管交接及现场试验数据如下表)。 #1 主变 B 相变高套管末屏绝缘电阻及介损测试为经表面处理后测得。 三、检查情况 测试套管介损时,测试人员首先须将末屏接地断开,并从末屏针形端子处抽取信号进行测量。打开接地盖时,发现有较浓烈的烧糊味逸出。检查发现: ① B 相变高套管整个末屏内部呈发黑状、积聚大量碳化物质。

500kV变压器高压套管末屏故障原因分析与防范措施

500kV变压器高压套管末屏故障原因分析与防范措施 摘要:本文介绍了某发电厂主变压器检修中套管末屏渗油故障,通过解体分析 出末屏故障原因,提出了有效防范措施,具有广泛的参考借鉴意义。 关键词:套管末屏;渗油;接地 Abstract: This paper introduces the oil leakage at the end of the screen during the overhaul of the main transformer in a power plant. Through the disintegration analysis, the causes of the failure of the screen are put forward and the effective preventive measures are put forward. It has broad reference significance. Key words: casing at the end of screen; oil leakage; grounding 0 引言 某电厂在2016年#1机组大修中,进行#1主变高压侧套管介损试验,打开C 相套管末屏外部护盖套时,发生内部喷油,取油样进行色谱分析,发现氢气、乙炔 及总烃含量严重超标,判断内部有放电现象。对末屏解体发现其绝缘密封垫片以 及内部引出线烧损,随更换新套管。本文对主变高压套管末屏接地结构进行讲解,对故障原因进行分析并制定了防范措施。 1 套管末屏结构介绍 该故障套管由沈阳传奇电气有限公司制造,型号为:BRDLW-550/1250-4,其 绝缘结构采用电容型,即在导电杆上包上多层绝缘纸,其间根据场强分布特点夹 有铝箔,以组成一串同心圆柱形电容器。最下层铝箔即末屏通过小套管引出,供 测量套管的介损和电容量,末屏在运行中应可靠接地。如果由于某种原因造成末 屏接地不良,那么末屏本身是个大电容,对地就会形成一个较高的悬浮电压,造 成末屏对地放电,烧毁内部绝缘件,同时套管油会裂化产生氢气、乙炔及总烃, 严重时会引起套管爆炸事故。套管末屏为弹簧金属套接地式,其结构原理图如下: 正常情况下,末屏接地引出线穿过绝缘套筒引出,引线柱套有一个弹簧和金 属铜套,运行时金属铜套在弹簧的压力作用力下与接地金属法兰紧密接触,实现 可靠接地,进行套管介损试验需要打开接地时,使用销钉插入限位孔即可断开接 地连接。 2 检查过程 将故障末屏保护罩拆除后,测量末屏绝缘,阻值无穷大,判断末屏未接地, 如下图: 图5:接地铜套等部件图6:小瓷套及接地金属 3 原因分析 该套管上次大修试验为2012年,分析试验人员在进行介损试验时,操作不 规范,使用尖锐金属工器具下压接地铜套,导致引线柱表面划伤,通过解体后发 现的划痕和毛刺可验证这一点。试验结束后,接地铜套因卡涩未能正常弹起接地,试验人员在恢复护盖套时未检查测量末屏接地绝缘状况。套管带电运行后,因末 屏未接地,末屏部位发生局部放电引起油裂化,导致总烃气体超标,放电同时造 成末屏密封绝缘垫过热烧穿,套管油流入护盖套内。 4 防范措施 1.规范高压套管末屏试验及检修操作,严禁使用尖锐金属工器具下压接地铜套,断开接地时使用专用销钉,尽量使用厂家专用工具或非金属材质销钉,防止 接地引线柱及限位孔部位划伤受损导致接地铜套卡涩。

套管末屏接地分析

220KV变压器高压套管末屏放电原因分析与处理惠州天然气发电厂安装3台保定天威保变电气股份有限公司生产型号为SFP-480000/220主变及1台常州变压器厂生产型号为SFZ10-16000/220的启动备用变压器。主变出线高压套管是南京雷电有限责任公司生产,型号为BRLW-252/1600-4,启动备用变压器高压套管是抚顺传奇套管有限公司生产,型号为BRDLW2-252/630-4。2010年10月#2主变C级检修期间,对高压套管绝缘油进行常规性试验时,发现B相套管油乙炔含量达39ppm,严重超标,其它A、C相为零。经过全面检查,发现B相套管末屏有明显的放电痕迹,A相套管有轻微的放电痕迹。利用停机的机会对另外两台主变和一台启备变的高压套管进行油色普试验 一、试验情况分析: #2主变B相套管情况 厂家出厂时的数据 启备变A相套管 厂家出厂时的数据 由此可知,#2主变B相套管和启备变A相套管都含有可燃气体, 根据《电力变压器运行规程 DL/T 572-1995》3.2.10条规定及按照中试所套管内绝缘油不能含有乙炔的要求,上述设备是不能投入运行的. 二、原因分析(加入结构图片更好) 1、运行方式改变了。原来的主变套管末屏是用端盖接地的,现在主变的套管加装有局部放电在线监测装置,末屏是与在线监测装置的二次电缆接头连接,再通过二次电缆连接到监测装置信号后接地,接地方式改变了。通过检查、分析,确认在线监测装置的探头与末屏不能可靠的配合、接触,造成了尖端放电,局部温

度急剧上升,在此作用下,套管内部的绝缘油分解出可燃气体,情况严重时会引起爆炸。 2、启备变的高压套管末屏接地是采用弹簧压紧式结构,弹簧作导体。由于设计存在缺陷,弹簧长期受压出现松弛,弹力不足,接触不良引起局部放电,长期运行造成恶性循环使到套管内的绝缘油分解出可燃气体。 三、处理情况介绍: 1、更换启备变A相侧套管和#2主变B相套管 2、拆除三台主变套管的在线监测装置,装回原来厂家提供的端盖 3、启备变的末屏接地方式与主变的不一样,接地端盖的压缩弹簧有明显的变形,不能保证可靠接地。我们用一根4mm2的多股导线焊接在末屏尾端,另一头用螺栓可靠地接在接地法兰上。经过测试接触良好。(加入改良图片更好) 四、建议 1、定期检查末屏接地装置端盖内是否有悬浮放电痕迹、弹簧弹性是否良好,以保证接地可靠。 2、定期进行套管油色普分析,找出原因,确保全安可靠运行 3、建议定期对套管末屏部分进行远红外测温检查,对因接触不良产生发热的套管末屏,力争及时发现。目前,对套管的末屏接地装置接地可靠性缺乏有效的检测手段,建议开展末屏良好接地监测的试验和研究,将末屏接地不良故障减少到最小 4、管的末屏接地不良是引起套管不正常运行的多发故障,其后果也比较严重。建议制造厂对其结构加以改进。

变压器套管末屏接地装置常见故障及判断方法 张会娟

变压器套管末屏接地装置常见故障及判断方法张会娟 发表时间:2019-08-29T09:43:55.030Z 来源:《电力设备》2019年第7期作者:张会娟余亚芳[导读] 摘要:变压器绕组的引出线通过绝缘套管内的导电杆连接到箱体外,导电杆外面是瓷绝缘套管,通过绝缘套管将导电杆固定在箱体上,保证导电杆与箱体绝缘,绝缘套管起到固定引出线和绝缘的作用。 (普洱供电局云南普洱 665000) 摘要:变压器绕组的引出线通过绝缘套管内的导电杆连接到箱体外,导电杆外面是瓷绝缘套管,通过绝缘套管将导电杆固定在箱体上,保证导电杆与箱体绝缘,绝缘套管起到固定引出线和绝缘的作用。为保证110kV及以上套管径向和轴向磁场强度均匀,其绝缘结构一般采用电容式,即采用多层绝缘纸和铝箔交替包裹导电杆,在导电杆外套管绝缘层与铝箔形成一组串联的电容器,而串联电容器具有分压作用,从而提高套管的耐压强度。最外层铝箔即末屏通过小套管引出接地,方便对套管进行介损和绝缘测试。如果末屏在运行过程中不健全或接地不良,末屏将对地形成电容。根据电容串联原理,在末屏与地面之间形成高的悬浮电压,使末屏对地放电,灼伤附近的绝缘,严重的还可能引起套管爆炸。因此,保证套管末屏在运行过程中可靠接地具有重要意义。 关键词:变压器;套管;末屏;绝缘缺陷 提出了变压器套管端部屏蔽结构和接地装置常见的内外故障。提出了一种通过对变压器套管端面进行绝缘电阻试验、介电损耗和电容试验来判断接地装置故障的方法。实例分析表明,该方法能有效地找出套管末屏接地的缺陷,提高变压器运行的可靠性。 一、变压器套管末屏结构 变压器套管末屏接地方式可分为外置式、内置式和常接地结构式,其中外置式末屏接地引出线穿过小瓷套通过引线柱(螺杆)引出,引线柱对地绝缘,外部通过接地金属连片、接地金属软线或接地金属连接装置等与接地部位底座金属相连。末屏内置式接地引线穿过小瓷套,引线穿过接地柱,接地柱与地面绝缘。导柱外有带弹簧装置的金属套筒,与导柱紧密接触。在使用过程中,金属套管通过内弹簧的压力与套管内接地金属法兰连接,使末屏可靠接地,最外层由金属帽保护,防潮密封。其型式主要有顶针式、弹簧板、推拉式、螺旋盖式等。 二、套管末屏常见故障及判断 套管末屏接地故障有以下2种:一是末屏接地装置内部故障,即末屏与小套管内的导电杆接触不良或焊接点脱落;二是末屏接地装置外部故障,即小套管内的导电杆与外部接地部位接触故障,如外部引线断裂、末屏旋转盖内弹簧压紧不够,导致悬空或接地引线发生锈蚀、接触不良、密封胶垫老化、接触部分炭化、受潮等。 1.内部故障。对于内部故障主要靠保证产品质量来预防,这就要求在产品的采购、监造过程中把关。同时,利用设备停电检修的机会,通过试验方法对套管末屏内部故障进行检测。(1)末屏的红外测温。套管末屏内部断裂后,末屏上产生的高电压会产生悬浮放电,引起局部过热,红外测温能够有效检测到这种过热现象。(2)套管的介质损耗和电容量测试。介质损耗和电容量测试不仅能有效判断主绝缘的绝缘状况,还能有效地检测末屏内部故障。如果无法测试出套管的介质损耗和电容量,可以怀疑末屏内部断线。(3)末屏绝缘电阻测试。与历史数据比较,同时与同厂家的同类型、同批次的套管进行横向比较,如果末屏绝缘电阻明显增大或某相的末屏绝缘电阻大得多,可以怀疑是末屏内部断线。(4)观察套管绝缘电阻测试过程中的吸收现象。正常情况下,套管绝缘电阻测试过程中都有明显的吸收现象,如果吸收现象不明显或根本没有吸收现象,说明末屏内部故障。 2.外部故障。对于套管末屏外部,由于防水不当、引线截面比较小,长时间运行后,引线锈蚀严重,经过多次试验的拆接,加上设备的振动,容易发生断裂、接触不良、受潮等情况,导致套管末屏接地不良,产生悬浮电位放电。悬浮电位由于电压高,场强较集中,一般会使周围固体介质烧坏或炭化。高压套管电容层间电压分布畸变,可能引起电容屏间绝缘击穿,产生火花放电,甚至发生套管爆裂。对于外部故障,可以利用停电机会,进行专项检查,在新安装或停电检修后投运前验收时,实行标准化验收,末屏接地作为重点验收内容纳入验收程序。运行人员巡视时,加强对外部接线形式的末屏接地进行专项确认,可判断是否发生外部故障。 三、套管末屏接地的优劣 1.末屏外置式接地的最大特点是可以在运行及检修中直观的看出末屏的接地是否可靠。劣势:①外置式接地长期暴露在外环境中导致金属连接线或金属片受到雨水、无机盐的腐蚀,长期使用造成金属接地线或接地片的断裂,接地点存在断开风险;②停电试验检修过程中,检修人员对末屏进行拆卸断开检查时容易使得引线柱的松动造成渗漏,如果引线柱随着转动,极易造成内部末屏接地线断裂,致使接地不可靠。 2.末屏内置式接地彻底解决了外置式接地的缺点,避免了接地部件的腐蚀以及试验、检修人员极易造成缺陷的问题。内置的末屏接地利用弹性金属夹片或接地罩进行接地,方式较为简单,但存在着一定的缺陷:①弹性金属夹片长期使用会变形或金属弹性下降导致接地点接触不良;②试验人员进行末屏试验完毕后,恢复末屏罩后不能对其进行接地导通测试,无法判断接地点是否已经可靠接地。 3.常接地结构的套管末屏,结合上面两种接地方式的优点。即避免了外环境的腐蚀,也解决了不能测量是否可靠接地的问题。通过挤压接地环,即可实现接线柱与金属外壳的分离,实现接地点的断开,便于试验人员的测试工作,松开接地环,接地环在弹簧弹性推动下回弹到金属接线柱顶端位置,接地点自动恢复导通,此时可测量末屏接地点是否可靠导通。长期使用中,该类末屏接地方式比较可靠,但在长期运行中也逐渐暴露出其缺点:①弹簧弹性下降致使接地环回弹不到位,金属接线柱与末屏接地装置外壳有间隙,导致接地点不可靠; ②接地环表面产生氧化层,导致接地环接地不可靠。 四、管末屏缺陷分析及处理案例 1.缺陷及测试情况。2017年9月11日,试验人员在对某220kV变电站2号主变压器(型号为SFPSZ 240000/220,2014年9月出产)开展检修试验中,发现110 kV侧A相套管(型号为BRLW 126/1600 3)末屏对地绝缘电阻为50MΩ,随后又对套管的末屏进行了介质损耗和电容量的测试,介质损耗因数明显大于规程要求。9月12日,试验人员使用丙酮擦拭末屏引出套管,并使用电吹风烘烤表面潮气,末屏对地绝缘电阻无变化。2次的测试数据和油色谱分析结果如表1、表2所示。

相关文档
最新文档