数控机床发展简史
数控机床发展史
![数控机床发展史](https://img.taocdn.com/s3/m/c1f54603ba1aa8114431d935.png)
数控机床的发展史1.第一代数控机床产生于1952年(电子管时代)美国麻省理工学院研制出一套试验性数字控制系统,并把它装在一台立式铣床上,成功地实现了同时控制三轴的运动。
这台数控机床被大家称为世界上第一台数控机床,但是这台机床毕竟是一台试验性的机床。
到了1954年11月,在帕尔森斯专利基础上,第一台工业用的数控机床由美国本迪克斯公司。
2.第二代数控机床产生于1959年(晶体管时代)电子行业研制出晶体管元器件,因而数控系统中广泛采用晶体管和印制电路板,使数控机床跨入了第二代。
同年3月,由美国克耐·杜列克公司(Keaney &Trecker Corp)发明了带有自动换刀装置的数控机床,称为“加工中心”。
现在加工中心已成为数控机床中一种非常重要的品种,在工业发达的国家中约占数控机床总量的l/4左右。
生产出来。
3. 第三代数控机床产生于1960年(集成电路时代)研制出了小规模集成电路。
由于它的体积小,功耗低,使数控系统的可靠性得以进一步提高,数控系统发展到第三代。
以上三代,都是采用专用控制的硬件逻辑数控系统(NC)。
4.第四代数控机床产生于1970年前后随着计算机技术的发展,小型计算机的价格急剧下降、小型计算机开始取代专用控制的硬件逻辑数控系统(NC),数控的许多功能由软件程序实现。
由计算机作控制单元的数控系统(CNC),称为第四代。
1970年,在美国芝加哥国际展览会上,首次展出了这种系统。
5.第五代数控机床产生于1974年美、日等国首先研制出以微处理器为核心的数控系统的数控机床。
30多年来,微处理机数控系统的数控机床得到飞速发展和广泛的应用,这就是第五代数控(MNC)。
后来,人们将MNC也统称为CNC。
柔性制造系统1967年,英国首先把几台数控机床联接成具有柔性的加工系统,这就是最初的FMS—Flexible Manufacturing System柔性制造系统。
之后,美、欧、日等国也相继进行了开发和应用。
数控机床的发展历史及其技术的发展趋势
![数控机床的发展历史及其技术的发展趋势](https://img.taocdn.com/s3/m/e273a198d05abe23482fb4daa58da0116d171f62.png)
3、在关键技术的应用方面,伺服驱动技术、数控系统技术和机械结构技术 都在不断发展,其中伺服驱动技术和数控系统技术的数字化、高频化、集成化, 以及机械结构技术的高刚度、高精度、高可靠性都是当前发展的主要方向。
综上所述,数控机床的关键技术和发展趋势对制造业的发展至关重要。未来, 随着科学技术的不断进步和创新,我们有理由相信,数控机床的关键技术和发展 趋势将会有更大的突破和创新。
2、虚拟现实/增强现实技术在数 控机床上的应用
虚拟现实(VR)和增强现实(AR)技术的引入,为数控机床的操作和维护提 供了全新的视角。通过VR技术,可以将加工过程进行模拟仿真,帮助操作人员提 前发现潜在的错误和问题,提高实际加工过程中的安全性。而AR技术则可以将加 工信息实时叠加到实际场景中,使操作人员能够更加直观地了解设备状态和加工 进度,提高生产效率。
高速化指的是数控机床的加工速度不断提高,高精度化则是指数控机床的加 工精度不断提高。复合化是指数控机床具备多种加工功能,能够实现一机多能。 智能化则是指数控机床具备智能化的加工能力和自我诊断修复功能。
三、数控机床关键技术分析
1、伺服驱动技术:伺服驱动技术是数控机床的重要组成部分,其性能直接 影响到数控机床的加工精度和速度。目前,伺服驱动技术正朝着数字化、高频化、 集成化方向发展,其中数字化伺服驱动技术通过提高脉冲频率和采样率,能够大 幅度提高伺服系统的性能。
四、结论
数控机床作为现代制造业的核心设备,其性能和使用寿命直接影响到生产效 率和产品质量。本次演示通过对数控机床的关键技术和发展趋势进行分析,得出 以下结论:
1、数控机床的关键技术包括伺服驱动技术、数控系统技术、机械结构技术 等,这些技术的发展程度直接决定了数控机床的性能和使用寿命。
数控机床的发展历程和趋势
![数控机床的发展历程和趋势](https://img.taocdn.com/s3/m/fb9341de50e79b89680203d8ce2f0066f433647c.png)
现代数控机床的应用领域拓展
01
02
03
04
航空航天领域
用于加工飞机和航天器的复杂 零部件,如发动机叶片、机翼
等。
汽车制造领域
用于加工汽车零部件,如发动 机缸体、曲轴等。
模具制造领域
用于加工各种模具零部件,如 注塑模、压铸模等。
医疗器械领域
用于加工各种医疗器械零部件 ,如人工关节、牙科种植体等
高精度直线导轨和滚珠丝 杠
高精度直线导轨和滚珠丝杠的 应用提高了数控机床的定位精 度和重复定位精度,进一步提 升了加工质量。
智能化技术
中期发展阶段开始引入智能化 技术,如自适应控制、模糊控 制等,使数控机床能够根据不 同的加工条件自动调整参数, 提高加工过程的稳定性和效率 。
中期发展的主要应用领域
高速发展阶段
21世纪初,中国数控机床 产业进入高速发展阶段, 技术水平不断提高,产品 种类日益丰富。
中国数控机床的产业现状
产业规模
中国数控机床产业规模不断扩大, 已经成为全球最大的数控机床生 产国之一。
技术水平
中国数控机床的技术水平不断提高, 已经具备了国际竞争力。
产品种类
中国数控机床的产品种类日益丰富, 涵盖了各种加工中心、数控车床、 数控铣床等。
新兴领域应用 数控机床在新兴领域如新能源、 新材料、生物医药等领域的应用 不断拓展,为数控机床的发展提 供了新的机遇。
技术创新驱动 数控机床技术的不断创新和发展, 将推动其在高效、高精度、智能 化等方面取得更大突破。
如何应对数控机床发展的挑战和机遇
加强技术研发和创新
企业应加大技术研发和创新投入,提升 数控机床的技术水平和核心竞争力。
关于各个国家的数控机床的发展历史
![关于各个国家的数控机床的发展历史](https://img.taocdn.com/s3/m/4af834a1d5bbfd0a795673a4.png)
关于各个国家的数控机床的发展历史Newly compiled on November 23, 2020关于各个国家的数控机床的发展历史数控机床是由美国发明家约翰·帕森斯上个世纪发明的。
随着电子信息技术的发展,世界机床业已进入了以数字化制造技术为核心的机电一体化时代,其中数控机床就是代表产品之一。
数控机床是制造业的加工母机和国民经济的重要基础。
它为国民经济各个部门提供装备和手段,具有无限放大的经济与社会效应。
欧、美、日等工业化国家已先后完成了数控机床产业化进程,而中国从20世纪80年代开始起步,仍处于发展阶段。
美国发展美国政府重视机床工业,美国国防部等部门因其军事方面的需求而不断提出机床的发展方向、科研任务,并且提供充足的经费,且网罗世界人才,特别讲究"效率"和"创新",注重基础科研。
因而在机床技术上不断创新,如1952年研制出世界第一台数控机床、1958年创制出加工中心、70年代初研制成FMS、1987年首创开放式数控系统等。
由于美国首先结合汽车、轴承生产需求,充分发展了大量大批生产自动化所需的自动线,而且电子、计算机技术在世界上领先,因此其数控机床的主机设计、制造及数控系统基础扎实,且一贯重视科研和创新,故其高性能数控机床技术在世界也一直领先。
当今美国生产宇航等使用的高性能数控机床,其存在的教训是,偏重于基础科研,忽视应用技术,且在上世纪80代政府一度放松了引导,致使数控机床产量增加缓慢,于1982年被后进的日本超过,并大量进口。
从90年代起,纠正过去偏向,数控机床技术上转向实用,产量又逐渐上升。
德国发展德国政府一贯重视机床工业的重要战略地位,在多方面大力扶植。
于1956年研制出第一台数控机床后,德国特别注重科学试验,理论与实际相结合,基础科研与应用技术科研并重。
企业与大学科研部门紧密合作,对数控机床的共性和特性问题进行深入的研究,在质量上精益求精。
数控车床发展史
![数控车床发展史](https://img.taocdn.com/s3/m/4fe29f6602d8ce2f0066f5335a8102d276a26181.png)
1970年代末至1980年代初
美国、德国、日本等国在数控机床领域取得显著进展,推出了一系列高性能的数控机床
数控机床技术逐渐成熟,应用领域不断扩大
1980年代
日本数控机床产量超过美国,成为世界最大的数控机床生产国
日本在数控机床领域的技术创新和质量控制使其在全球市场上占据领先地位
数控车床发展史
时间节点
发展事件
技术特点
1952年
美国帕森斯公司与麻省理工学院合作试制出世界上第一台三坐标联动、利用脉冲乘法器原理工作的立式数控铣床
数控技术的初步探索,采用电子管控制
1954年
美国本迪克斯公司生产了世界上第一台工业用数控机床
数控机床的工业化应用开始,标志着数控技术的初步成熟
1959年
数控系统发展到第二代,采用晶体管控制
1990年代至今
数控机床技术持续发展,各国纷纷推出高性能、高精度的数控机床
数控机床在控制、精度、自动化、灵活性等方面不断提升,广泛应用于航空航天、汽车、电子等高端制造领域
2020年代
中国数控机床产业发展迅速,技术突破显著,打破了国外的技术垄断
相比电子管,晶体管具有更高的可靠性和稳定性
1965年
数控系统发展到第三代,采用小规模集成电路控制
集成电路的应用提高了数控系统的性能和可靠性
1970年
第四代数控系统出现,小型计算机开始用于数控系统
计算机技术的应用使数控系统具有更高的智能化和自动化水平
1974年
第五代数控系统出现,微处理器开始用于数控系统
数控机床发展历程
![数控机床发展历程](https://img.taocdn.com/s3/m/2134bb5153d380eb6294dd88d0d233d4b14e3ff3.png)
数控机床发展历程数控机床是利用计算机数字控制技术来完成各种机械加工过程的机床。
它具有高精度、高自动化程度和高效率的特点,被广泛应用于机械制造领域。
下面将介绍数控机床的发展历程。
数控机床的起源可以追溯到20世纪50年代,最初是在航天航空领域应用,在飞机发动机的制造中起到了重要的作用。
当时的数控机床主要由电子管控制系统组成,机床的精度和可靠性较低。
但是随着计算机技术的飞速发展,数控技术得到了迅猛的发展。
到了20世纪60年代,随着集成电路技术的发展,数控机床逐渐由电子管控制系统转向使用集成电路控制系统。
这使得数控机床的控制更加稳定可靠,精度也得到了一定程度的提高。
但是当时的数控机床还比较笨重,体积庞大,功能有限。
20世纪70年代,随着微处理器的出现,数控机床得到了进一步的发展。
微处理器技术的应用使得机床的控制系统更加灵活多样化,运算速度也大大提高,机床的精度和效率得到了显著提升。
同时,液晶显示器的使用也使得操作界面更加直观,大大提高了操作的便利性。
到了20世纪80年代,数控机床开始逐渐应用于各个行业,成为工业企业的重要设备之一。
同时,随着计算机网络技术的兴起,数控机床开始与计算机网络进行连接,实现了数据的共享和远程监控。
这使得机床的生产过程更加智能化和自动化。
到了21世纪,随着互联网和云计算的飞速发展,数控机床发展到了一个新的阶段。
数控机床不仅能够实现远程监控和数据共享,还可以通过云计算技术实现大数据分析和人工智能。
这样,数控机床的生产效率和精度得到了进一步提高,同时还大大降低了生产成本。
总之,数控机床经过多年的发展,从最初的电子管控制系统到现在的云计算智能化系统,不断提升了精度、效率和自动化程度。
数控机床的发展不仅推动了工业制造的进步,也极大地提高了工人的工作环境和工作效率。
相信在不久的将来,数控机床将会继续发展壮大,成为工业制造的重要支撑。
数控机床发展史
![数控机床发展史](https://img.taocdn.com/s3/m/c1c3921386c24028915f804d2b160b4e767f8121.png)
数控机床发展史数控机床发展史摘要:数控机床是一种用数字化的代码作为指令,由数字控制系统进行处理儿实现的自动控制的机床。
它是综合应用计算机技术、自动控制、精密测量和机械设计等领域的先进技术成就而发展起来的一种新型自动化机床。
它的出现和发展,有效地解决了多品种小批量生产精密、复杂零件的自动化问题。
关键词:数控机床发展历史特点发展趋势1、数控机床的起源数控加工技术是20世纪40年代后期为适应加工复杂外形零件而发展起来的一种自动加工技术,它采用数字信息对零件加工工程进行定义,并控制机床进行自动运行。
采用数字技术进行机械加工,最早是在40年代初,由美国北密支安的一个小型飞机工业承包商派尔逊斯公司实现的。
他们在制造飞机的框架及直升飞机的转动机翼时,利用全数字电子计算机对机翼加工路径进行数据处理,并考虑到刀具直径对加工路线的影响,使得加工精度达到±0.0381mm(±0.0015in),达到了当时的最高水平。
1952年,麻省理工学院在一台立式铣床上,装上了一套试验性的数控系统,成功地实现了同时控制三轴的运动。
这台数控机床被大家称为世界上第一台数控机床。
这台机床是一台试验性机床,到了1954年11月,在派尔逊斯专利的基础上,第一台工业用的数控机床由美国本迪克斯公司正式生产出来在此以后,从1960年开始,其他一些工业国家,如德国、日本都陆续开发、生产及使用了数控机床。
2、数控车床的兴起数控机床中最初出现并获得使用的是数控铣床,因为数控机床能够解决普通机床难于胜任的、需要进行轮廓加工的曲线或曲面零件。
然而,由于当时的数控系统采用的是电子管,体积庞大,功耗高,因此除了在军事部门使用外,在其他行业没有得到推广使用。
70年代,出现了大规模集成电路和小型计算机,特别是微处理器的研制成功,实现了数控系统体积小、运算速度快、可靠性提高、价格下降,使数控系统总体性能、质量有了很大提高,同时,数控机床的基础理论和关键技术有了新的突破,从而给数控机床发展注入了新的活力,世界发达国家的数控机床产业开始进入了发展阶段。
数控机床发展简史
![数控机床发展简史](https://img.taocdn.com/s3/m/395b41dd50e2524de5187e49.png)
数控系统和数控装备的智能化,不仅有助于减轻操作者的劳动强度,而且能够提高数控加工的质量和效率。因而智能化是数控发展的重要技术发展方向之一。主要体现以下几个方面:
( 1 )自适应控制技术。
数控系统能检测过 程中一些重要信息 ,并自动调整系统的有关参数 ,达到改进系统运行状态的目的。
( z ) 专家系统。将熟练工人和专家 的经验 ,加工的一般规律与特殊规律存人系统中,以 工艺参数数据库为支撑 ,建立具有人工智能的专家系统 。当前已开发出模糊 逻辑控制和带 自学习功能的人工神经 网络电火花加工数控系统。
数控技术发展趋势:
随着微电子技术和计算机技术的发展,数控系统的性能日益完善,数控技术的应用领域日益扩大;不同的应用领域对数控技术提出的新的使用要求,有促进了数控技术的发展。总的发展趋势可以归纳为高速高精度、智能化、开放式、网络化、提高可靠性何数控装备的复合化等几个方面。
1.高速高精度
数控机床高速化指主轴转速和进给速度的提高。高速度既可以提高机床的金属切除率,减少辅助时间,又能改善切屑形成过程,减少刀具的每转进给量,有助于提高加工精度。
我国数控技术的发展起步于二十世纪五十年代,通过“六五”期间引进数控技术,“七五”期间组织消化吸收“科技攻关”,我国数控技术和数 控产业取得了相当大的成绩。特别是最近几年,我国数控产业发展迅速,1998~2004年国产数控机床产量和消费量的年平均增长率分别为39.3% 34.9%。尽管如此,进口机床的发展势头依然强劲,从2002年开始,中国连续三年成为世界机床消费第一大国、机床进口第一大国,2004年中国机床主 机消费高达94.6亿美元,但进出口逆差严重,国产机床市场占有率连年下降,1999年是33.6%,2003年仅占 27.7%。1999年机床进口额为8.78亿美元(7624台),2003年达27.1亿美元(23320台),相当于同年国内数控机床产值的2.7 倍。国内数控机床制造企业在中高档与大型数控机床的研究开发方面与国外的差距更加明显,70%以上的此类设备和绝大多数的功能部件均依赖进口。由此可以看 出国产数控机床特别是中高档数控机床仍然缺乏市场竞争力,究其原因主要在于国产数控机床的研究开发深度不够、制造水平依然落后、服务意识与能力欠缺、数控 系统生产应用推广不力及数控人才缺乏等。
数控机床的发展历史和趋势
![数控机床的发展历史和趋势](https://img.taocdn.com/s3/m/57f1913743323968011c9208.png)
未来的数控机床
智能化、 3.智能化、网络化: 智能化 网络化:
追求加工效率的智能化,如自适应控制; 追求加工效率的智能化,如自适应控制;提高驱动性 能及使用连接方便的智能化,如电机参数的自适应运 能及使用连接方便的智能化, 算等;简化编程、简化操作的智能化, 算等;简化编程、简化操作的智能化,如智能化的自 动编程、智能诊断等。 动编程、智能诊断等。 数控装备的网络化实现了新的制造模式如敏捷制造、 数控装备的网络化实现了新的制造模式如敏捷制造、 虚拟企业等。 虚拟企业等。
数控机床的发展先后 经历了电子管( 经历了电子管(1952 )、晶体管 晶体管( 年)、晶体管(1959 )、小规摸集成电 年)、小规摸集成电 路(1965年)、大规 年)、大规 模集成电路及小型计 算机( 算机(1970年)和微 年 处理机或微型机算机 (1974年)等五代数 年 控系统。 控系统。
高精度、高可靠性 高精度、高可靠性: 普通级数控机床的加工精度已由±10μm提高 普通级数控机床的加工精度已由±10μm提高 5μm; 到±5μm; 精密级加工中心的加工精度则从± 5μm, 精密级加工中心的加工精度则从±3~5μm, 提高到± 1.5μm。 提高到±1~1.5μm。 数控装置的平均无故障时间值已达6000小时 数控装置的平均无故障时间值已达6000小时 平均无故障时间值已达6000 以上,驱动装置达30000小时以上。 30000小时以上 以上,驱动装置达30000小时以上。
2.复合化、多轴化: 2.复合化、多轴化: 复合化 一次装夹,整体加工。 一次装夹,整体加工。 在加工自由曲面时, 在加工自由曲面时,5轴联动控制对球头 铣刀的数控编程比较简单, 铣刀的数控编程比较简单,并且能使球头铣 刀在铣削3 刀在铣削3维曲面的过程中始终保持合理的切 从而提高加工效率。 速,从而提高加工效率。
简述我国及世界数控机床的发展史
![简述我国及世界数控机床的发展史](https://img.taocdn.com/s3/m/47386f775627a5e9856a561252d380eb629423ed.png)
一、我国数控机床的发展历程随着我国改革开放,国家对高端装备制造业的重视不断加大,数控机床作为高端装备制造业的重要组成部分,也得到了极大的发展。
1973年,我国研制成功了第一台数控机床,标志着我国数控机床的研发工作正式拉开了序幕。
随后,我国陆续研制出了数控车床、数控加工中心、数控数铣床等一系列数控机床产品,为我国制造业的现代化进程提供了强大的支撑。
二、世界数控机床的发展历程在世界范围内,数控机床的发展历程也是令人瞩目的。
20世纪50年代,随着计算机技术的发展,德国、日本等国家开始了数控机床的研发工作。
随后,美国也加入了数控机床的研发和生产行列。
现在,德国的DMG、日本的三菱、美国的哈斯等知名企业在全球数控机床行业中占据着重要地位,为全球制造业的发展做出了重大贡献。
三、我国数控机床的发展现状当前,我国数控机床行业已经进入了快速发展的新阶段。
随着科技的不断进步和国家的大力支持,我国的数控机床在高速、高精、高刚需求方面取得了重大突破,已经成为我国制造业转型升级的重要支撑。
我国数控机床在节能环保、柔性制造等方面也取得了显著成就,为我国经济可持续发展做出了积极贡献。
四、世界数控机床的发展现状在全球范围内,数控机床行业也是持续向前发展的。
全球范围内,新兴市场的需求和发展对数控机床行业的发展起到了重要推动作用。
全球范围内的科技创新和产业升级,也为数控机床行业带来了新的发展机遇。
世界范围内的数控机床企业也在不断提升产品的品质和技术,致力于为全球制造业的发展贡献力量。
五、我国数控机床的发展前景展望未来,我国数控机床行业的发展前景是十分光明的。
随着国家制造业的转型升级,数控机床作为制造业的基础设施,将会得到更多的重视和支持。
随着技术的不断进步和创新,我国数控机床的产品性能将会得到进一步提升,产品的多样化和柔性化水平也将会不断提高。
六、世界数控机床的发展前景全球范围内,数控机床行业的发展前景也是十分广阔的。
随着全球制造业格局的不断调整和优化,数控机床行业将会面临更多的市场机遇和发展空间。
数控机床的发展史
![数控机床的发展史](https://img.taocdn.com/s3/m/2bbde59df524ccbff12184e4.png)
先后经历电子管、晶体管、小集成电路、
1
大规模集成电路、小型计算机 ,微处理器等
起动阶段(1952-1979年)
数控机床的发展趋势
体系开放化
绿色化
1
8
系统软件化 2
多轴加工 7
发展趋势
3 控制智能化
6 功能复合化
5 高精度高速加工
4 信息网络化
我国数控机床的发展现状
我国数控技术的发展起步于二十世纪五十年代,通过 “六五”期间引进数控技术,“七五”期间组织消化吸收 “科技攻关”,我国数控技术和数控产业取得了相当大的 成绩。
数控机床的发展历程
智能化、网络化、敏捷制造、虚拟制造
4
更高水平开始应用
3 产业化成熟阶段(1990-1999年)
数控系统微处理器运算速度快速提高,功能不断完善、
2
可靠性进一步提高,监控、检测、换刀、外围设备得到了应用
发展应用阶段(1980-1989年)
我国数控机床的发展现状
国内数控机床制造企业在中高档与大型数控机床的研 究开发方面与国外的差距更加明显,70%以上的此类设备 和绝大多数的功能部件均依赖进口。由此可以看出国产数 控机床特别是中高档数控机床仍然缺乏市场竞争力,究其 原因主要在于国产数控机床的研究开发深度不够、制造水 平依然落后、服务意识与能力欠缺、数控系统生产应用推 广不力及数控人才缺乏等。
特别是最近几年,我国数控产业发展迅速,1998~ 2004年国产数控机床产量和消费量的年平均增长率分别为 39.3%34.9%。尽管如此,进口机床的发展势头依然强劲, 从2002年开始,中国连续三年成为世界机床消费第一大国、 机床进口第一大国,2004年中国机床主机消费高达94.6亿 美元,但进出口逆差严重,国产机床市场占有率连年下降, 1999年是33.6%,2003年仅占27.7%。1999年机床进口额 为8.78亿美元(7624台),2003年达27.1亿美元(23320台), 相当于同年国内数控机床产值的2.7倍。
中国数控机床的发展史
![中国数控机床的发展史](https://img.taocdn.com/s3/m/ef9fa61bbf23482fb4daa58da0116c175f0e1ed9.png)
中国数控机床的发展史
中国数控机床的发展史可以追溯到20世纪50年代。
当时的中国处于农业社会向工业社会转型的阶段,机械工业起步较晚,数控技术也没有得到广泛应用。
然而,中国政府意识到提高机床制造业水平的重要性,于是开始着手推动数控机床的发展。
1956年,中央政府决定在北京、上海和哈尔滨建设三个机床制造厂,其中北京机床厂被指定为国内数控机床研制的重点厂家。
之后,中国在引进和消化吸收国外技术的基础上,开始试制数控机床。
1960年代,中国自主研发出了第一台五轴数控加工中心机床。
在1970年代,中国开始建立自己的完整数控机床产业体系。
1973年,中国首次引进了美国CNC技术,并开始批量生产数控机床。
1978年,国家机械工业部成立了中国第一个数控机床研究所,进行数控机床的研究和开发工作。
1980年代,中国开始大力推进数控机床的研发和生产。
1983年,中国成功研制出了第一台伺服伺智能式数控系统机床。
1987年,中国成功开发出了第一台高速镗刨插铣复合加工中心。
进入21世纪,中国的数控机床产业迅速发展。
2005年,中国成为全球最大的数控机床生产国。
2013年,中国数控机床年产量达到了30万台,占全球总产量的一半以上。
目前,中国数控机床已经发展到了高速、高精度、多功能的水
平。
国内一些龙头企业如大立科技、华中数控等在数控机床领域取得了重大突破和进展。
而中国政府也一直积极支持和推动数控机床产业的发展,通过加大投入、加强技术研发和提供政策支持,力争将中国建设成为全球数控机床制造业强国。
数控系统发展简史及趋势
![数控系统发展简史及趋势](https://img.taocdn.com/s3/m/0b47db742f3f5727a5e9856a561252d380eb20fb.png)
数控系统发展简史及趋势数控系统是指利用计算机和数字化控制技术来实现机床自动化加工的一种控制方式。
自数控系统问世以来,它对传统机床行业的发展产生了深刻影响,也为制造业的发展提供了可靠保障。
本文将从数控系统的起源、发展历程、技术进步和未来趋势等方面进行阐述。
一、数控系统的起源1952年,美国MIT(麻省理工学院)的工程师JohnT.Parsons发明了一种数控机床,这个发明被视为数控技术的开端。
随着计算机技术的发展,数控系统的应用范围和功能不断提升。
20世纪70年代中期,计算机在工业企业中的广泛应用,为数控系统的大规模应用和普及奠定了基础。
二、数控系统的发展历程1、数控技术从单轴到多轴数控技术最初只能控制机床的一条轴线,即只能实现二维切削。
随着技术的不断发展,数控机床可以控制多轴,实现更加复杂的三维切削。
2、数控技术从线性插补到圆弧插补线性插补只能做直线运动,无法实现曲线运动。
圆弧插补技术的引入,实现了机床刀具在曲线轨迹上的运动,使机床切削更加精确。
3、数控技术从手动编程到自动编程最初的数控机床是由计算机控制的,由于计算机的高昂成本,编程需要手工完成。
手工编程容易出错且速度较慢。
自动编程技术的问世,极大地提高了编程效率和准确性。
4、数控技术从毛坯到定位最初的数控机床需要通过感应头或机械手动装夹工件。
现在的数控机床一般都配备有自动定位系统,可直接从机器库中提取工件,省去了人工操作。
5、数控技术从加工到修磨最初的数控技术只能加工,无法进行修磨等后续工序。
现在的数控机床可以实现自动修磨等后续工序,使加工效率和精度得到了进一步提高。
三、数控系统技术进步1、高速化高速化是当前数控技术研究的热点之一。
数控机床高速化可以使加工效率更高,缩短加工时间,提高机床使用寿命。
2、智能化智能化是指数控机床的自动控制功能更完善化,机床能够自主判断工件状态,并调整加工参数,以最大限度地提高加工质量和效率。
3、柔性化柔性化是指数控机床的生产能力更加具有弹性,能满足多品种、小批量的生产需求,提高企业应对市场的能力。
数控技术历程总结范文
![数控技术历程总结范文](https://img.taocdn.com/s3/m/047ffb3259fafab069dc5022aaea998fcc2240ec.png)
随着我国经济的快速发展,制造业已成为国家经济的支柱产业。
数控技术作为现代制造业的核心技术,在我国的发展历程中扮演着举足轻重的角色。
本文将从数控技术的发展历程、关键技术及其在我国的应用现状等方面进行总结。
一、数控技术发展历程1. 第一代数控技术(20世纪50年代):以继电器和电子管为基础的机床数控装置,主要用于简单的机械加工。
2. 第二代数控技术(20世纪60年代):以晶体管为基础的数控系统,功能逐渐增强,可实现多轴联动加工。
3. 第三代数控技术(20世纪70年代):以集成电路为基础的数控系统,性能得到显著提高,可实现复杂形状的加工。
4. 第四代数控技术(20世纪80年代):以微处理器为基础的数控系统,功能更加丰富,可实现实时监控和自适应加工。
5. 第五代数控技术(20世纪90年代):以嵌入式系统为基础的数控系统,具备更高的智能化和自动化水平。
6. 第六代数控技术(21世纪初):以网络化、智能化、绿色环保为特点的数控技术,推动制造业向高端、绿色、智能方向发展。
二、数控关键技术1. 数控编程:数控编程是数控技术的基础,主要包括语言编程、图形编程和参数编程等。
2. 数控系统:数控系统是实现数控加工的核心,包括数控控制器、伺服驱动器、执行机构等。
3. 伺服驱动技术:伺服驱动技术是实现数控加工高精度、高速度的关键,主要包括步进电机、伺服电机等。
4. 检测与反馈技术:检测与反馈技术是保证数控加工精度的重要手段,主要包括位移传感器、速度传感器等。
5. 人工智能与大数据:人工智能与大数据技术应用于数控加工,可实现加工过程的智能化、优化和预测。
三、数控技术在我国的应用现状1. 数控加工设备:我国数控加工设备产业已具备一定规模,产品涵盖了车床、铣床、磨床、镗床等。
2. 数控技术应用领域:数控技术广泛应用于航空航天、汽车、电子、能源、船舶等领域。
3. 人才培养:我国已形成较为完善的数控技术人才培养体系,为数控产业发展提供有力支撑。
数控机床的发展历程
![数控机床的发展历程](https://img.taocdn.com/s3/m/10e21ba8988fcc22bcd126fff705cc1754275f53.png)
数控机床的发展历程
数控机床是在数控技术的基础上发展起来的一种新型机床,在过去的几十年间,经历了不断的发展和演进。
下面将从数控技术的出现开始,简要描述数控机床的发展历程。
20世纪50年代,计算机技术和电子技术的迅速发展引起了机械加工工业的关注。
此时,数控技术应运而生。
数控技术能够通过数字信号控制机床的运动,使机床能够自动完成各种加工操作,大大提高了加工效率和精度。
在数控技术问世后的几十年间,数控机床经历了多次技术革新和改进。
在60年代,数控机床主要采用纸带作为程序输入介质,控制系统采用电气元件和继电器进行控制。
70年代,随着集成电路的发展,控制系统开始采用数字电子元件,使得数控机床的性能和稳定性得到了大幅提升。
80年代,计算机的普及使得数控机床得到了更大的进步。
计算机数控(CNC)系统应运而生,取代了传统的数字电子元件控制系统。
CNC系统具有更高的可编程性和灵活性,能够更好地适应各种复杂加工需求。
随着计算机技术的不断发展,90年代以后,数控机床进一步融合了计算机和网络技术。
刀具管理系统、模拟仿真和远程监控等新技术被引入数控机床,使其具备了更高的自动化水平和智能化程度。
目前,数控机床正朝着高速、高精度、多功能、柔性化和智能
化的方向发展。
通过引入先进的传感器技术、自适应控制算法和人工智能技术,数控机床能够更好地适应复杂的加工任务和工艺要求。
总的来说,数控机床在数控技术的推动下,经历了从纸带控制到数字电子控制再到计算机数控的发展历程。
随着技术的不断创新和进步,数控机床将不断提升其加工能力和智能化水平,为制造业的发展贡献更大的力量。
数控机床的发展与趋势
![数控机床的发展与趋势](https://img.taocdn.com/s3/m/964062e8b04e852458fb770bf78a6529647d359f.png)
数控机床的发展与趋势一、引言数控机床是一种以数字信号为控制指令,实现工件加工的自动化机床。
它以其高精度、高效率和灵活性等优势,成为现代制造业中不可或缺的重要设备。
本文将从数控机床的发展历程、技术特点以及未来的发展趋势等方面进行详细探讨。
二、数控机床的发展历程1. 早期机械化阶段在20世纪50年代以前,机床加工主要依靠人工操作,生产效率低下,精度难以保证。
这时期的数控机床还处于起步阶段,主要应用于军工领域。
2. 数控技术的发展阶段20世纪60年代,随着计算机技术的发展,数控技术开始得到广泛应用。
数控机床逐渐取代了传统机床,实现了工件的高精度加工。
3. 现代化阶段随着计算机技术和控制技术的不断进步,数控机床实现了更高的精度、更高的效率和更大的灵活性。
同时,随着自动化技术的发展,数控机床还实现了自动化生产线的应用。
三、数控机床的技术特点1. 高精度数控机床采用数字信号控制,可以实现微小误差的控制,保证了工件加工的高精度。
2. 高效率数控机床具有高速度、高加工效率的特点,可以大幅度提高生产效率,缩短生产周期。
3. 灵活性数控机床可以根据不同的加工要求进行编程,实现不同工艺的加工,具有较高的灵活性。
4. 自动化程度高数控机床可以实现自动化生产,减少人工干预,提高生产效率,降低劳动强度。
四、数控机床的发展趋势1. 智能化发展随着人工智能技术的不断发展,数控机床将更加智能化。
通过引入机器学习和深度学习等技术,数控机床可以自动学习和优化加工过程,提高加工效率和精度。
2. 高速化发展随着电机和传感器技术的进步,数控机床的加工速度将进一步提高。
高速加工将成为数控机床发展的重要方向,以满足生产效率的提高需求。
3. 精密化发展随着精密加工领域的不断扩大,数控机床的精度要求也越来越高。
未来的数控机床将更加注重精密加工,提高加工精度和稳定性。
4. 网络化发展随着互联网技术的普及,数控机床将更加网络化。
通过与其他设备和系统的连接,实现生产过程的信息化管理和远程监控,提高生产效率和灵活性。
数控机床发展历史
![数控机床发展历史](https://img.taocdn.com/s3/m/5f3eb4230066f5335a8121f7.png)
机床数控改造1 数控系统发展简史及趋势1946年诞生了世界上第一台电子计算机,这表明人类创造了可增强和部分代替脑力劳动的工具。
它与人类在农业、工业社会中创造的那些只是增强体力劳动的工具相比,起了质的飞跃,为人类进入信息社会奠定了基础。
6年后,即在1952年,计算机技术应用到了机床上,在美国诞生了第一台数控机床。
从此,传统机床产生了质的变化。
近半个世纪以来,数控系统经历了两个阶段和六代的发展。
1.1 数控(NC)阶段(1952~1970年)早期计算机的运算速度低,对当时的科学计算和数据处理影响还不大,但不能适应机床实时控制的要求。
人们不得不采用数字逻辑电路"搭"成一台机床专用计算机作为数控系统,被称为硬件连接数控(HARD-WIRED NC),简称为数控(NC)。
随着元器件的发展,这个阶段历经了三代,即1952年的第一代--电子管;1959年的第二代--晶体管;1965年的第三代--小规模集成电路。
1.2 计算机数控(CNC)阶段(1970年~现在)到1970年,通用小型计算机业已出现并成批生产。
于是将它移植过来作为数控系统的核心部件,从此进入了计算机数控(CNC)阶段(把计算机前面应有的"通用"两个字省略了)。
到1971年,美国INTEL公司在世界上第一次将计算机的两个最核心的部件--运算器和控制器,采用大规模集成电路技术集成在一块芯片上,称之为微处理器(MICROPROCESSOR),又可称为中央处理单元(简称CPU)。
到1974年微处理器被应用于数控系统。
这是因为小型计算机功能太强,控制一台机床能力有富裕(故当时曾用于控制多台机床,称之为群控),不如采用微处理器经济合理。
而且当时的小型机可靠性也不理想。
早期的微处理器速度和功能虽还不够高,但可以通过多处理器结构来解决。
由于微处理器是通用计算机的核心部件,故仍称为计算机数控。
到了1990年,PC机(个人计算机,国内习惯称微机)的性能已发展到很高的阶段,可以满足作为数控系统核心部件的要求。
数控机床的发展历史
![数控机床的发展历史](https://img.taocdn.com/s3/m/719ea599aff8941ea76e58fafab069dc502247a9.png)
数控机床的发展历史嘿呀,咱今天就来唠唠数控机床的发展历史,这可真是一段精彩又漫长的历程呢!要说数控机床的诞生,那得回到 20 世纪 50 年代。
那时候,美国有个叫约翰·帕森斯的人,那可是个厉害的角色。
他在自己的工厂里琢磨怎么能更精确地加工飞机螺旋桨叶片轮廓样板。
这叶片形状复杂得很,精度要求又高,普通加工设备根本搞不定。
于是,他就想到用计算机来控制机床。
在美国麻省理工学院伺服研究室的帮忙下,1952 年,第一台数控机床就这么诞生啦!这可是个了不起的突破,就像在机械制造领域放了一颗大炸弹,开启了数控加工的新时代。
一开始的数控机床,体型可大了,就像个大怪兽似的。
毕竟是从大型立式仿行钳床改装而成的嘛。
但是它能做的事情可不少,能按照设定好的程序,精确地加工出零件,这在以前可是不敢想的。
那时候的人看到这玩意儿,眼睛都瞪得大大的,心想:“哇塞,这也太神奇了吧!”后来,数控机床在美国就慢慢发展起来了。
到了 1958 年,美国又弄出了加工中心,这可不得了啦,加工零件的效率那是蹭蹭往上涨。
70 年代初呢,又有了 FMS(柔性制造系统),这系统就像是给数控机床加了一双翅膀,让生产变得更加灵活。
80 年代还出现了开放式数控系统,数控机床变得越来越智能。
再看看德国,德国本来机械方面就厉害得很,搞数控机床对他们来说就是把机械和电子结合起来。
他们的人素质高,又肯钻研,机床技术一下子就超过了法国和英国,后来还赶上了美国。
德国的数控机床那质量,杠杠的,精度高、性能好,在世界上也是响当当的。
日本也不甘示弱,政府对机床工业特别重视。
他们先模仿,然后再创新,先生产量大的中档数控机床,大量出口,占了好大一片市场。
后来又不断发展各种档次的数控系统,到现在,日本的数控机床产量和出口量那都是名列前茅的。
咱中国也不落后,数控技术的发展起步于 20 世纪 50 年代。
一开始虽然经历了一些波折,但后来通过引进技术、合作生产,数控机床也开始正式生产和使用啦。
数控机床发展史
![数控机床发展史](https://img.taocdn.com/s3/m/713e5610ec630b1c59eef8c75fbfc77da3699742.png)
数控机床发展史一、引言数控机床是指通过计算机控制系统,实现机床的自动化加工操作的一种高精度、高效率的机床。
它的出现彻底改变了传统机床的加工方式,极大地提高了加工精度和生产效率。
本文将从数控机床的发展历程、关键技术和应用领域等方面介绍数控机床的发展史。
二、数控机床的发展历程数控机床的发展可以追溯到20世纪40年代,当时以美国为代表的工业发达国家开始研究数控技术。
1947年,美国麻省理工学院的数学家维茨尔(W.H.Witzel)提出了数控机床的概念,并设计出第一台数控铣床。
此后,数控技术得到了迅速发展,出现了一系列划时代的技术突破。
1952年,美国麻省理工学院的尤金·W·伯里(Eugene W.Berry)教授成功开发出世界上第一台数控车床。
此后,数控机床开始广泛应用于航空航天、军工、汽车等领域,并逐渐取代了传统机床。
1960年代,计算机技术的飞速发展为数控机床的进一步发展提供了坚实的基础。
计算机数控(CNC)系统的出现,使得数控机床的编程更加灵活方便,加工精度也得到了大幅提高。
此后,数控机床的发展进入了一个新的阶段。
1980年代,随着微电子技术和信息技术的不断进步,数控机床的性能得到了大幅提升。
高速切削技术、高精度测量技术等先进技术的应用,使得数控机床在加工效率和加工精度上达到了前所未有的水平。
到了21世纪,数控机床的发展进入了智能化阶段。
人工智能、云计算、大数据等技术的应用,使得数控机床具备了更高的自动化程度和智能化水平。
现如今,数控机床已经成为工业制造中不可或缺的设备。
三、数控机床的关键技术数控机床的发展离不开一系列关键技术的突破。
首先是数控系统技术,包括硬件和软件两个方面。
硬件方面,数控系统需要具备高性能的计算机、精密的运动控制装置和灵敏的传感器等。
软件方面,数控系统需要具备强大的编程和控制功能,能够实现复杂的加工操作。
其次是伺服控制技术,伺服系统是数控机床实现高精度加工的关键。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
采用通用计算机组成总线式 、模块化、开放式 、嵌人式体系结构 ,便于裁剪 、扩展 和升级 ,可 组成不同档次 、不同类型 、不同集成程度的数控系统。加工过程中采用 开放式用 型实时动态全闭环控制模式 ,易于将计算机实时智能技术 、网络技术、多媒体技术 、CA D / CA M、伺服控制、自适应控制、动态数据管理及动态刀具补偿 、动态仿真等高新技术融于一体,构成严密的制造过程闭环控制体系 ,从而实现集成化、智能化、网络化。基于 PC 的第六代方向发展所具有的开放性 、低成本 、高可靠性 、软 硬件资源丰富等特点 ,更多的数控系统厂 家会走 上这条道路。
我们应看清形势,充分认识国产数控机床的不足,努力发展先进技术,加大技术创新与培训服务力度,以缩短与发达国家之间的差距。不断加强技术创新是提高国产数控机床水平的关键,但是仍然要认清我们的现状:制造水平与管理手段依然落后,服务水平与能力欠缺也是影响国产数控机床占有率的一个重要因素。因此要加大数控专业人才的培养力度。
1965年,出现了第三代的集成电路数控装置,不仅体积小,功率消耗少,且可靠性提高,价格进一步下降,促进了数控机床品种和产量的发展。60年代末,先后出现了由一台计算机直接控制多台机床的直接数控系统(简称DNC),又称群控系统;采用小型计算机控制的计算机数控系统(简称CNC),使数控装置进入了以小型计算机化为特征的第四代。
当时的数控装置采用电子管元件,体积庞大,价格昂贵,只在航空工业等少数有特殊需要的部门用来加工复杂型面零件;1959年,制成了晶体管元件和印刷电路板,使数控装置进入了第二代,体积缩小,成本有所下降;1960年以后,较为简单和经济的点位控制数控钻床,和直线控制数控铣床得到较快发展,使数控机床在机械制造业各部门逐步获得推广。我国于1958年开始研制数控机床,成功试制出配有电子管数控系统的数控机床,1965年开始批量生产配有晶体管数控系统的三坐标数控铣床。
我国数控技术的发展起步于二十世纪五十年代,通过“六五”期间引进数控技术,“七五”期间组织消化吸收“科技攻关”,我国数控技术和数 控产业取得了相当大的成绩。特别是最近几年,我国数控产业发展迅速,1998~2004年国产数控机床产量和消费量的年平均增长率分别为39.3% 34.9%。尽管如此,进口机床的发展势头依然强劲,从2002年开始,中国连续三年成为世界机床消费第一大国、机床进口第一大国,2004年中国机床主 机消费高达94.6亿美元,但进出口逆差严重,国产机床市场占有率连年下降,1999年是33.6%,2003年仅占 27.7%。1999年机床进口额为8.78亿美元(7624台),2003年达27.1亿美元(23320台),相当于同年国内数控机床产值的2.7 倍。国内数控机床制造企业在中高档与大型数控机床的研究开发方面与国外的差距更加明显,70%以上的此类设备和绝大多数的功能部件均依赖进口。由此可以看 出国产数控机床特别是中高档数控机床仍然缺乏市场竞争力,究其原因主要在于国产数控机床的研究开发深度不够、制造水平依然落后、服务意识与能力欠缺、数控 系统生产应用推广不力及数控人才缺乏等。
5.高可靠性。
数控机床的工作环境比较恶劣 ,工业电网电压的波动和干扰对数控机床的可靠性极 为不利 ,因而对 CNC 的可靠性要求要优于一般的计算机。数控机床加工的零件型面较复杂,加工周期长 ,要求平均无故障时间在 2 万小时以上 ,且有多种报警和保护措施 :出故障时尽可 能不损坏机床、刀具和工件 ,并能根据报警信息了解故障部 件,及时排除故障。
6. 复合化与系统化
工件一次装夹 , 能进行多种工序复合加工 , 可大大地提高生产效率和加工精度,是机床一贯追求的。由于产品开发周期愈来愈短 , 对制造速度的要求也相应提高 , 机床也朝高效能发展 。 机床已逐渐发展成为系统化产品 , 用一台电脑控制一条生产线的作业 。 产品对外观曲线要求的提高 , 机床五轴加工 、 六轴加工已日益普及 , 机床加工的复合化已是不可避免的发展趋势。
1.1高精度
一般的数控机床是通过高速主轴和高速坐标驱动来实现上述加工精度要求的。
图1.1数控机床加工精度的提高历程
图1.2数控机床的高速化对加工质量的影响
1.1.1 高速主轴
高速主轴是高速机床中最为关键的部件,高速主轴多采用电机和主轴一体化设计的高速电主轴(HSES)或复合电主轴。轴承作为电丰轴的关键部件。它决定了电主轴的寿命和负载容量。高质景的钢轴承现仍有使用.但随主轴转速需求的不断提高,出现一些新结构、新材料的高速应用轴承,如混合球轴承、磁浮、气浮和液体静动压轴承等。Ill高主轴转速并不是高速加工的全部。而对电主轴的大功率、高转矩和高刚性的需要也应考虑在内。同时还成能控制主轴的温升等。由于用户的不断需求推动r主轴制造技术的进步.也将引导上轴制造技术向轻结构、高强度,高刚性、良好的动平衡和热控制方向继续发展。
数控机床发展简史:
1948年,美国帕森斯公司接受美国空军委托,研制飞机螺旋桨叶片轮廓样板的加工设备。由于样板形状复杂多样,精度要求高,一般加工设备难以适应,于是提出计算机控制机床的设想。1949年,该公司在美国麻省理工学院(MIT)伺服机构研究室的协助下,开始数控机床研究,并于1952年试制成功第一台由大型立式仿形铣床改装而成的三坐标数控铣床,不久即开始正式生产,于1957年正式投入使用。这是制造技术发展过程中的一个重大突破,标志着制造领域中数控加工时代的开始。数控加工是现代制造技术的基础,这一发明对于制造行业而言,具有划时代的意义和深远的影响。世界上主要工业发达国家都十分重视数控加工技术的研究和发展。
1974年,研制成功使用微处理器和半导体存贮器的微型计算机数控装置(简称MNC),这是第五代数控系统。第五代与第三代相比,数控装置的功能扩大了一倍,而体积则缩小为原来的1/20,价格降低了3/4,可靠性也得到极大的提高。80年代初,随着计算机软、硬件技术的发展,出现了能进行人机对话式自动编制程序的数控装置;数控装置愈趋小型化,可以直接安装在机床上;数控机床的自动化程度进一步提高,具有自动监控刀具破损和自动检测工件等功能。
参考文献:
[1]Fan xiao nian Inquiry into Applieation of the Numerieal Control Maehine ToolTe eh n iq u e sa n d th e D e v el o Pin g T r e n d
[]
[]
[]
[]
[]
数控技术发展趋势:
随着微电子技术和计算机技术的发展,数控系统的性能日益完善,数控技术的应用领域日益扩大;不同的应用领域对数控技术提出的新的使用要求,有促进了数控技术的发展。总的发展趋势可以归纳为高速高精度、智能化、开放式、网络化、提高可靠性何数控装备的复合化等几个方面。
1.高速高精度
数控机床高速化指主轴转速和进给速度的提高。高速度既可以提高机床的金属切除率,减少辅助时间,又能改善切屑形成过程,减少刀具的每转进给量,有助于提高加工精度。
1.1.2高速坐标驱动
高速高精加工机床的进给驱动,一般要求容易移动,快速响应,准确定位和具有高重复定位精度。故采用轻质结构溜板、线性导轨和直线伺服电机驱动具有{。分重要得意义。目前,直线伺服电机己被公认为未来机床坐标驱动的最佳形式,但由于其价格、散热及磁场对周围灰尘和切屑的吸附作用等原因.非常广泛被应用还得经过一段时间。但这也正是未来发展的研究改进方向。
2.智能化
数控系统和数控装备的智能化,不仅有助于减轻操作者的劳动强度,而且能够提高数控加工的质量和效率。因而智能化是数控发展的重要技术发展方向之一。主要体现以下几个方面:
( 1 )自适应控制技术。
数控系统能检测过 程中一些重要信息 ,并自动调整系统的有关参数 ,达到改进系统运行状态的目的。
( z ) 专家系统。将熟练工人和专家 的经验 ,加工的一般规律与特殊规律存人系统中,以 工艺参数数据库为支撑 ,建立具有人工智能的专家系统 。当前已开发出模糊 逻辑控制和带 自学习功能的人工神经 网络电火花加工数控系统。
( 3 )故障诊断系统。
如智能诊断、智能监控,方便系统的诊断及维修等。
(4)智能化数字伺服驱动装置。
可以通过 自动识别负载而 自动调整参数,使驱动系统获得最佳的运行。如前馈控制、电机参数的 自适应运算、自动识别负载自动选定模型、自整定等。
智能控制的特点为:(l ) 控制对象的数学模型复杂,具有高度的非线性 ,或是难于建模的系统 ;( 2 ) 任务复杂,要求具有规划、决策能力;( 3 ) 具有故障 自动诊断功能。另外 ,高速高精加工 的智能控制还可以进行多程序段预处理,预计算出刀具轨迹 ,按机床的机械性能 ,选择最佳的允许进给率和最大的允许加速度工作,还具有特殊 的控制功能 ,比如自适应控制、学 习控制、虚拟轴机床的平行轴控制等。
4.网络化和集成化。
数控机床向网络化和集成化系统发展 的趋势是 :从点( 数控单机 、加工中心和数控复合加工机床)、线( FM C 、FMS、盯L、FML )、向面( 工段车间独立制造岛、F A )、体( C I MS、分布式网络集成制造系统)的方向发 展 ;另 一方面 向注重应用性和经济性方向发展。通过研究计算机辅助设计( C AD )、计算机 辅助工程 ( CA E )、计算 自动化技术和 网络 技术,在综合自动化概 念框架下集成 CA D /CAU CAPP/ CA M/ N E T 的应用 ,将其功能有 机地结合起来 ,统一组织和管理有关信息提取、交换、共享。其重点是易于联网和集成;注重加强单元技术的开拓、完善; CNC 单机向高精度、高速度和高集成方向发展 ;数控机床及其构成柔性制造系统能方便地与CA D /CAM/ CAPP / MI S 联结,向信息集成方向发展;网络系统向开放、集成和智能化方向发展 。
数控技术现状:
我国数控技术经过近50年的发展,取得了比较显著的成效。 我国现在已基本掌握了从数控系统、 伺服驱动、 数控主机、专机及其配套件的基础技术,其中大部分技术已具备进行商品化开发的基础,部分技术已商品化、 产业化。 在攻关成果和部分技术商品化的基础上,建立了诸如华中数控、航天数控等具有批量生产能力的数控系统生产厂,基本形成了数控产业基地。 同时,建立了一支数控研究、 开发、 管理人才的基本队伍。 但是,也要清醒地认识到,我国高端数控技术的研究开发,尤其是在产业化方面的技术水平现状与我国的现实需求还有较大的差距。 虽然从纵向看我国的发展速度很快,但与国外相比不仅技术水平有差距,在某些方面发展速度也有差距,尤其是一些高精尖的数控装备的技术水平差距有扩大趋势。 在技术水平上,与国外先进水平大约落后10年到15年,在高精尖技术方面则更大。 在产业化水平上,市场占有率低,品种覆盖率小,还没有形成规模生产;功能部件专业化生产水平及成套能力较低;外观质量相对差;可靠性不高,商品化程度不足;国产数控系统尚未建立自己的品牌效应,用户信心不足。 在可持续发展的能力上,对竞争前数控技术的研究开发、工程化能力较弱;数控技术应用领域拓展力度不强;相关标准规范的研究、 制定滞后。我国数控技术发展与国外的差距,主要有四个方面的原因。 一是认识上的差距,对国产数控产业进程艰巨性、 复杂性和长期性的特点认识不足;对市场的不规范、国外的封锁加扼杀、 体制等困难估计不足;对我国数控技术应用水平及能力分析不够。二是发展体系不够完善,从技术的角度关注数控产业化问题的时候多,从系统的、产业链的角度综合考虑数控产业化问题的时候少;没有建立完整的高质量的配套体系、完善的培训、 服务网络等支撑体系。 三是运行机制落后,制约了技术及技术路线创新、产品创新。 四是技术创新能力不强,核心技术的工程化能力不强,机床标准落后,水平较低,数控系统新标准研究不够。