黑体辐射普朗克假说

合集下载

黑体辐射公式

黑体辐射公式

黑体辐射公式(普朗克公式):推导普朗克黑体辐射公式设黑体腔内是稳定的驻波场,是具有不同频率、不同传播方向的驻波系统.在腔壁上电场形成波节,磁场形成波腹.每一驻波代表一种振动模式. 以长方形腔为例.腔内某一驻波的波矢为:产生驻波的条件为: 其中因此,谐振腔中可以存在的波矢为:因此有一组 对应一种模式.不同的频率应有不同的模式,相同的频率,因k 方向不同,也会有不同的模式. 一组 对应一个波矢,对应波矢三维空间中的一个点.波矢三维空间中的一任意点,其坐标为 注意:驻波波矢有限制.不同的 形成三维空间点阵, 8个格点形成一个长方体元, 每个格点又属于8个长方体元因此,每一格点对应一个长方体元, 有n 个格点, 对应n 个长方体元, 就有n 个振动模式.频率从 0~ν 范围内, 有多少个振动模式? 由 可知,允许存在的波矢数等于在波矢空间内半径为2πν/c 的球体内可以存在的体元数。

因m 1、m 2、m 3为正整数,故对应1/8球体内的体元数: 3221(,).1h kTh r T ce νπνν=⋅-2222,x y z k k k k =++2cos ,x k παλ=2cos ,y k πβλ=2cos ,zk πγλ=123,,0,1,2,m m m =112cos ,L m αλ=222cos ,L m βλ=332cos .L m γλ=11,x k m L π=22,y k m L π=33.z k m L π=222,/k c c πππνλν===22222312123()()()m m m k L L L π⎡⎤=++⎢⎥⎣⎦222312123()()().22m mm c c k L L L νπ==++1,2,3m m m 1,2,3m m m 123123(,,)m m m L L L πππ1,2,3m m m 222222()x y z k k k k cπν==++43331424(),833V c cπνπνπ=⋅=⋅球体元的体积:其中,V =L 1L 2L 3为谐振腔的体积 体元数:考虑到两个偏振态:将上式两边除以V 并对ν 微分,得单位体积频率在ν~ d ν 范围内的本征模数. 普朗克认为,黑体腔器壁是不同频率的线性谐振子,由能量子假说,这些谐振子取分立的值,按照玻耳兹曼定理,具有能量 的振动几率有如下关系所以,平均能量为壁上振子分布应与驻波分布相同,因此单位体积内频率范围在 ν ~ d ν 内的能量密度为黑体单色辐出度为二 证明关系式热辐射以光速c 向各个方向辐射,因此,在任意一方向上的立体角d Ω内,频率为ν的辐出度为在小孔外2π立体角空间内总辐射能量为 3123.V L L L Vππππ=⋅⋅=元334,3V V V c πν=⋅球元338.3N V cνπν=⋅238,dn d cπνν=0,h εν=0,m εε=0000,,2,3εεε230001:::kTkTkTeeeενενεν---0000000.11m kTm kT m h kTkTm m eh ee eεεενεενε--∞=∞====--∑∑3381().1h kTh d ceνπνρνν=⋅-30221(,)(,).41h kTc h r T T c eνπννρν==⋅-22001(,)(,)cos sin (,)44cr T c T d d T ππνρνθθθφρνπ==⎰⎰0(,)(,).4cr T T νρν=0(,)(,)cos ,4cdr T T d νρνθπ=Ω。

24.黑体辐射普朗克能量子假设

24.黑体辐射普朗克能量子假设

M (,T )d
等于曲线下方面积.
0
9
② 斯特藩-玻耳兹曼定律
黑体的辐出度与黑体的热力学温度的四次方成正比, 这就是斯特藩-玻耳兹曼定律。
MB (T )
M (,T )d sT 4
0
s=5.67×10-8W·m-2·K-4 为斯特藩-玻耳兹曼常量
③ 维恩位移定律
在任意温度下,能谱曲线的峰值所对应的波长 λm 与 温度 T 的乘积为一常数 b,即
瑞利和金斯将统计物理学中的能量均分定理应用到电
磁辐射上,认为每个线性谐振子的平均能量都为kT,
得到的公式
M
2
c2
2kT
式中k为玻尔兹曼常数。
困难:
• 在低频(长波)部分与实 M 瑞利-金斯理论曲线
验曲线相符合,在高频(短 6
波)则完全不能适用。
5
实验曲线 T=2000K
• 在高频部分,黑体辐射的
4 3
• 1905 年爱因斯坦提出了光量子的概念,成功地解 释了光电效应.
• 1913 年玻尔在卢瑟福原子的有核模型的基础上, 应用量子化概念,解释了氢原子光谱的规律.
• 1922 年康普顿散射实验进一步证实了光的量子性.
这一时期的量子论,对微观粒子的本性还缺乏全 面认识,称为早期量子论或旧量子论。
2
• 1924 年德布罗意提出微观粒子的波粒二象性的 假说,指出微观粒子也具有波动性.
M
(T
)
dE d
单位: W/m3
辐射出射度(辐出度)
在一定温度T下,物体单位表面积在单位时间内
所发射的各种波长范围的电磁波的能量总和,称
为辐射出射度,简称辐出度。
M (T ) 0 M (T )d

黑体辐射普朗克的能量子假说

黑体辐射普朗克的能量子假说

利用这一假设,普朗克从理论上导出了绝对黑体单色辐出度的表达式
2.普朗克公式
M 0
2 hc2 5
1
hc
ekT 1
P199, 16.10b
此式在全波段内与实验相符,它是国际实用温标用以定标的基础。
黑体辐射曲线与经典比较
M 0 (T )
**
**
*
瑞利 - 金斯线
* *
* *
实验值
*
* 普朗克线
*
维恩线
*
***
0 1 2 3 4 5 6 7 8 / m
•△普朗克提出的能量量子化假设——意义 成功解释了黑体辐射的实验规律;开
创了物理学研究的新局面;标志人类对自 然规律认识从宏观领域进入了微观领域; 为量子力学诞生奠定了基础。
普朗克(L.Planck 18581947 德国物理学家)由于提出 量子假设而对量子理论的建立 所做的贡献获得1918年的诺贝 尔物理学奖。
M0(T) = T 4
P196,16.6式及上面一行
5.67 108 W m2 K4 称为斯特藩常量
2)维恩位移定律 常量
T m = b
P197,16.7式
可见,当绝对黑体随温度升高时,其单色辐出度的最大值向短波方向移动。 如:炉温升高其火焰颜色由红——黄;炉火纯青也说明该现象。
4.说明:该定律适用于绝对黑体的平衡热辐射。
3)对频率为 的谐振子,最小能量 = h,式中 h = 6.63×10-34 J · s,叫普朗克常量。
P199, 第3行及10.10b下第6行
4)谐振子在吸收或辐射能量时,振子从这些状态之一跃迁到其他一个状态。即物 体发射或吸收的能量必须是最小能量的整数倍,而且是一份一份地按不连续的方式 进行。每一份能量叫一能量子( = h )。

黑体辐射普朗克能量子假说

黑体辐射普朗克能量子假说

普朗克能量子假说
对现代物理学的意义
普朗克的能量子假说开启了量子时代, 对现代物理学的发展产生了深远影响。
为解决黑体辐射问题,普朗克提出了 能量子假说,成为量子力学的起点。
历史发展概述
19世纪末的实验研究
01
科学家们通过实验发现了黑体辐射的规律,但经典物理学无法
解释。
普朗克的突破
02
1900年,普朗克提出了能量子假说,成功解释了黑体辐射现象。
黑体是一个理想化的物体,它能 够吸收外来的全部电磁辐射,并
且不会有任何的反射与透射。
黑体的辐射特性仅与其温度有关, 与表面材质、粗糙度等无关。
在热平衡状态下,黑体辐射的能 量密度和波长有关,呈现出连续
光谱。
辐射定律与公式推导
普朗克辐射定律描述了黑体辐射的能量密度与温度、波长之间的关系,是量子力学 的基础之一。
拓展普朗克能量子假说的应用范围
普朗克能量子假说在量子力学领域具有重要地位,未来科学家们将继续拓展其应用范围, 探索更多量子现象和量子技术。
跨学科研究与应用
黑体辐射和普朗克能量子假说涉及多个学科领域,未来跨学科研究将成为重要趋势,推动 不同学科之间的交叉融合和创新发展。
对相关领域发展的启示
重视基础理论研究
能量子的提出解决了经典物理学无法解释黑体辐射的问题,因为能量子 可以解释为什么能量似乎是一份一份地发射和吸收的。
能量子的概念对后来的量子力学发展产生了深远影响,成为量子力学的 基础之一。
04 能量子假说对黑体辐射问 题解释
能量子假说与黑体辐射关系
能量子假说是解释黑体辐射现象的基础
普朗克提出,能量在发射和吸收时是以微小的能量单位(即能量子)进行的,这 一假说成功解释了黑体辐射的频谱分布。

15-1 黑体辐射 普朗克能量子假设

15-1   黑体辐射 普朗克能量子假设
3
1.0
可 见 光 区
6 000 K
m K
0
12
3 000 K 1 000 m
/ nm
2 000
例1(1)温度为 20 C 的黑体,其单色辐 出度的峰值所对应的波长是多少?(2)太阳的 单色辐出度的峰值波长 m 483nm,试由 此估算太阳表面的温度.(3)以上两辐出度 之比为多少? 解 (1)由维恩位移定律
d范围内吸收的能量与入射的能量之比.
入射 反射
5
吸收 透射
单色反射比r(T ) : 在波长 到 d 范围内反射的能量与入射能量之比. 对于不透明物体 (T ) + r(T )=1
入射 反射
6
吸收 透射
(4)黑体
若物体在任何温度下,对任何波长的辐 射能的吸收比都 等于1, 则称此 物体为黑体.
太阳 M(T )/(108 W m2 Hz 1 ) 钨丝 M(T )/(109 W m-2 Hz 1 )
12 10 8 6 4 2 钨丝 太阳
T 5 800 K
可见 光区
/ 1014 Hz
2 4 6
4
0
8 10 12
(3)单色吸收比和单色反射比
单色吸收比(T ) : 在波长 到
量子概念是 1900 年普朗克首先提出, 距今已有 100 多年的历史. 其间,经过爱 因斯坦、玻尔、德布罗意、玻恩、海森伯、 薛定谔、狄拉克等许多物理大师的创新努 力,到 20 世纪 30 年代,就建立了一套 完整的量子力学理论.
1
一 热辐射
1 热辐射的基本概念和基本定律 (1)单色辐射出射度 单位时间内从物 体单位表面积发出的频率在 附近单位频率 区间内的电磁波的能量.

大学物理15-1黑体辐射普朗克能量子假设

大学物理15-1黑体辐射普朗克能量子假设

THANKS FOR WATCHING
感谢您的观看
05 结论
对黑体辐射和普朗克能量子假设的理解
黑体辐射
黑体辐射是物理学中的一个基本概念,它描述了一个理想化 的物体在特定温度下发射电磁辐射的方式。普朗克能量子假 设指出,黑体辐射的能量只能以离散的量子形式发射或吸收 ,每个量子的大小与频率成正比。
普朗克能量子假设
普朗克提出,黑体辐射的能量只能以离散的量子形式发射或 吸收,每个量子的大小与频率成正比。这一假设为量子力学 的发展奠定了基础,是理解微观世界中能量传递和转换的关 键。
能源利用
普朗克能量子假设对于能源利用具有重要启示。例如,在太阳能电池中,光子的 能量被转换成电能。通过理解量子力学原理,可以提高太阳能电池的效率,为可 再生能源利用提供更多可能性。
信息技术
量子力学原理在信息技术领域也有广泛应用。例如,量子计算利用量子比特进行 信息处理,具有超越传统计算机的潜力。通过深入研究和应用量子力学原理,可 以推动信息技术的发展和创新。
04 黑体辐射与普朗克能量子 假设的关系
黑体辐射与量子力学的联系
黑体辐射是物理学中一个经典 的热辐射模型,它描述了一个 理想物体在特定温度下发射的 电磁辐射。
量子力学是描述微观粒子运动 和相互作用的物理学理论。
黑体辐射的实验结果与量子力 学的基本原理密切相关,表明 光和物质在微观层面上具有波 粒二象性。
过程
为了解决这一难题,普朗克提出了能 量子假设,认为能量不是连续变化的, 而是以离散的能量子形式传递。
普朗克能量子假设的内容
01
02
03
内容概述
普朗克假设能量只能以离 散的能量子形式传递,并 且每个能量子的大小与频 率成正比。

普朗克黑体辐射公式的详细推导

普朗克黑体辐射公式的详细推导

普朗克黑体辐射公式的详细推导普朗克假设黑体辐射是由一系列离散的微观振动体产生的,这些振动体能够吸收和释放以能量量子(hf)为单位的能量。

当这些振动体处于平衡状态时,设振动体的能量分布函数为Ψ(ε),其中ε表示振动体的能量。

考虑单位体积和单位能量范围内的振动体数目,记为N(ε)dε,其中N表示单位体积内振动体的总数。

根据统计力学的理论,N(ε)dε可表达为波尔兹曼分布,即:N(ε)dε = g(ε)exp(-ε/kBT)dε其中,g(ε)表示在特定能量范围内的能量态的数目,exp(-ε/kBT)是由玻尔兹曼因子得到,k是玻尔兹曼常数,T是温度。

由于辐射的能量不连续,因此,可以将单位体积和单位频率范围内的振动体数目表示为N(v)dv,其中v表示频率,dv表示频率范围。

考虑到能量和频率之间的关系,有ε = hv,其中h是普朗克常数。

根据可加性和幂次原理,能量态的数目g(ε)应满足:g(ε)dε=4π(2m/h^2)^(3/2)ε^(1/2)dε其中,m是振动体的质量。

将ε和dε用v和dv表示,并对能量态的数目函数进行简化得到:g(v)dv = (8πv^2/c^3)dv其中,c是光速。

由于单位体积和单位能量范围内的振动体数目与单位体积和单位频率范围内的振动体数目之间有关系:N(ε)dε = N(v)dv将上述得出的g(ε)和g(v)带入上式,并整理可得:N(v) = (8πv^2/c^3)exp(-hv/kBT)dv可以将上式转化为单位面积、单位时间、单位频率范围内的能量密度u(v):u(v) = N(v)hv代入上式并进行整理,得到:u(v) = (8πhv^3/c^3)exp(-hv/kBT)dv利用频率和波长的关系,即v=c/λ,可以将上式转化为以波长表示的能量密度:u(λ) = (8πhc/λ^5)exp(-hc/λkBT)dλ这就是普朗克黑体辐射公式的最终形式。

通过对普朗克黑体辐射公式的推导,我们可以看出,普朗克假设了黑体辐射的能量是以能量量子为单位的离散量,这个假设是量子力学发展的重要先导。

黑体辐射的量子假说

黑体辐射的量子假说

黑体辐射的量子假说
黑体辐射的量子假说是指根据普朗克的量子理论,黑体辐射的能量不是连续分布的,而是以离散的能量量子形式存在的。

普朗克在1900年提出了辐射的量子假说,他认为辐射的能量
只能以离散的形式传播,且每个能量量子的大小与频率呈正比。

这个能量量子被称为普朗克常数,记作h。

根据量子假说,辐
射能量E与频率ν之间的关系为E = hν,其中h约等于
6.62607015 × 10^-34 J·s。

量子假说的提出解决了经典物理学中的紫外灾变问题,即根据经典电动力学理论,黑体辐射的能量应该是无限大的。

量子假说进一步奠定了量子力学的基础,推动了对微观世界的探索,对现代物理学的发展产生了巨大的影响。

普朗克黑体辐射公式的详细推导

普朗克黑体辐射公式的详细推导

普朗克黑体辐射公式的详细推导辐射是物体由于内部热运动而产生的电磁波。

普朗克假设黑体辐射是由许多振动的谐振子(即电磁振子)组成的,每个谐振子只能具有离散能量值。

普朗克假设这些能量是量子化的,即能量E只能取整数倍的基本能量hν,其中ν为辐射频率。

设一个振子的能量为E,频率为ν,则E=hν。

普朗克认为振子的能量只能取整数倍的基本能量hν,因此振子的能量只能是离散的。

假设在单位时间内,频率在ν到ν+dν范围内,能量在E到E+dE范围内的谐振子数为n(E,ν)。

则单位体积内频率在ν到ν+dν范围内,能量在E到E+dE范围内的谐振子数为:n(E,ν)dEdν为了求解n(E,ν),我们需要引入玻尔兹曼分布和玻尔兹曼常数k。

在热平衡状态下,系统中具有能量E的状况数(即相同的谐振子数)为:W(E)=n(E,ν)*e^(-E/kT)其中,T为系统的温度,n(E,ν)为单位体积内频率在ν到ν+dν范围内,能量在E到E+dE范围内的谐振子数。

根据统计物理学的理论,系统的熵S与状况数W的关系为:dS = k * ln W(E)将W(E)代入上式并对E求微分,我们可以得到:dS = k * [ d(n(E,ν)) - (E/kT) * dn(E,ν) ]根据熵的最大化原理,熵是关于能量的单调递增函数,即dS>=0,即有:d(n(E,ν)) - (E/kT) * dn(E,ν) >= 0 (式1)我们将式1两边对E积分,可得:∫(d(n(E,ν)) - (E/kT) * dn(E,ν)) = ∫0到E dn(E,ν) (式2)其中,积分区间为0到E。

对式2进行变换,得到:n(E,ν) - (∫0到E (E/kT) * dn(E,ν)) = ∫0到E dn(E,ν)整理后,我们可以得到:n(E,ν)=[∫0到E(1/e^(E/kT))]*n(E,ν)令x=E/(kT),则式子变为:n(E,ν)=[∫0到x(1/e^x)]*n(E,ν)通过计算可知,上式的积分结果为:∫0到x(1/e^x)=1-(1+x)e^(-x)将该结果代入n(E,ν)的表达式中,我们可以得到:n(E,ν)=(1-(1+x)e^(-x))*n(E,ν)(式3)进一步简化,我们可以得到:n(E,ν)=(1-(1+E/(kT))e^(-E/(kT)))*n(E,ν)(式4)根据统计物理学的经验公式,单位体积频率为ν到ν+dν范围内,能量为E到E+dE范围内的谐振子数n(E,ν)与能量E的关系为:n(E,ν)=C*E^3*1/(e^(E/(kT))-1)(式5)其中,C为常数。

黑体辐射、普朗克量子假说

黑体辐射、普朗克量子假说
的比值为一恒量。
M (T ) 恒量
( T)
①这个恒量与物体的性质无关,而只与物体的温度和辐射 能的波长有关。
3
②说明单色吸收比大的物体,其单色辐出度也大。 (例如黑色物体,吸热能力强,其辐出本领也大) ③若物体不能发射某一波长的辐射能,那么该物体也就不能吸 收这一波长的辐射能。
*关于物体颜色的说明:――均指可见光范围。例如, 红色――表示除红光外,其余都吸收(余类推) 白色――表示对所有波长的光都不吸收。 黑色――表示对所有波长的光都吸收。
Ed
c13 ec / T
2
d
M
B
(T
)
C e 5
C2 T
1
按照这个函数绘制出的曲线,其在高频 (短波) 部份与实验
曲线能很好地相符,但在低频 (长波) 部份与实验曲线相差较远。
9
E 瑞-金线
实验结果
维恩线
2 、瑞利-金斯公式 他们把分子物理中的能量按自由度均分原理运用到电磁
辐射上,并认为在黑体空腔中辐射的电磁波是谐振子所发射 的驻波,这样得到的公式为
h=6.6260755 × 10-34 J ·s续的概念是经典物理学完全不容许的。
但从这个假定出发,导出了与实验曲线极为符合的普朗 克公式:
Ed
c13 d
ec /T 2
1
M B (T ) 2hc25
1
hc
ekT 1
当,趋于维恩公式; 当0,趋于瑞利—金斯公式。
13
辐射极为重要。
6
3 、绝对黑体单色辐射本领按波长分布曲线 MBλ(T) 只和温度有关 保持一定温度,用实验方法可测出单色辐射本领随波长的
变化曲线。取不同的温度得到不同的实验曲线,如图:

量子力学:普朗克关于黑体辐射的研究

量子力学:普朗克关于黑体辐射的研究

量⼦⼒学:普朗克关于⿊体辐射的研究从⿊体辐射到现在,我们好像刚刚来过!——灵遁者我们不能⼀下⼦解决所有问题,很多问题需要时间,这是⼀个客观的现象。

由研究对象本⾝或时代背景限制所造成。

⽐如要研究⽉⾷,⽇⾷的规律,超新星的爆发,太阳风等现象。

这些现象本⾝不常发⽣,超新星爆发⼀般是⼏⼗年⼀次,那么你如何快速搞清楚呢?⼀个⼈的⼀⽣,也许只能见⼀次吧。

所以书籍和知识传递就变的异常重要。

⼀个⼈的⽣命是有限的,但很多后代的⽣命连续起来,也还是可观的。

我收到了读者的反馈,建议我增加关于⿊体辐射的内容。

其实这些内容,在本书中的章节中,有提到了。

但我还是觉得读者反馈的意见是不错的。

⽐较⿊体辐射是量⼦⼒学的开端事件,所以就有了本章的内容。

我们知道任何物体都具有不断辐射、吸收、发射电磁波的本领。

⿊体辐射能量按波长的分布仅与温度有关。

辐射出去的电磁波在各个波段是不同的,也就是具有⼀定的谱分布。

这种谱分布与物体本⾝的特性及其温度有关,因⽽被称之为热辐射。

为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了⼀种理想物体——⿊体(blackbody),以此作为热辐射研究的标准物体。

⿊体的定义就是:在任何条件下,对任何波长的外来辐射完全吸收⽽⽆任何反射的物体,即吸收⽐为1的物体。

在⿊体辐射中,随着温度不同,光的颜⾊各不相同,⿊体呈现由红——橙红——黄——黄⽩——⽩——蓝⽩的渐变过程。

某个光源所发射的光的颜⾊,看起来与⿊体在某⼀个温度下所发射的光颜⾊相同时,⿊体的这个温度称为该光源的⾊温。

“⿊体”的温度越⾼,光谱中蓝⾊的成份则越多,⽽红⾊的成份则越少。

例如,⽩炽灯的光⾊是暖⽩⾊,其⾊温表⽰为4700K,⽽⽇光⾊荧光灯的⾊温表⽰则是6000K。

正是对于⿊体的研究,使⾃然现象中的量⼦效应被发现。

⽽在现实中⿊体辐射是不存在的,只有⾮常近似的⿊体(好⽐在⼀颗恒星或⼀个只有单⼀开⼝的空腔之中)。

理想的⿊体可以吸收所有照射到它表⾯的电磁辐射,并将这些辐射转化为热辐射,其光谱特征仅与该⿊体的温度有关,与⿊体的材质⽆关。

黑体辐射与普朗克公式

黑体辐射与普朗克公式

理学院 物理系
§2.1黑体辐射与普朗克公式


dE
dV d
单色:单一波长(频率)
二.普朗克公式推导 1.普朗克光量子假说: 黑体由带电谐振子组成,且这些谐振子能量取值
只能为谐振子最小能量 = h 的整数倍。 2.普朗克公式:
在温度T的热平衡状态下,黑体辐射分配到每个 模式的平均能量为:
2019年11月21日星期四
理学院 物理系
§2.1黑体辐射与普朗克公式
E

h
eh / kT
1
K=1.3810ˉ²³—玻尔兹曼常数
由(1—6)式,在ν ~ν +dν 内光波模式数为:
M

8π 2d
c3
V
故,单位体积,单位频率间隔内模式数为:
2019年11月21日星期四
理学院 物理系
§2.1黑体辐射与普朗克公式
第2章 激光工作物质及基本原理
§2.1黑体辐射与普朗克公式
一.黑体辐射 1.热辐射:任何物体在任何温度下都在不断向外发射 各种波长电磁波现象。
2.黑体:完全吸收各种波长电磁波而无反射和透射的 物体。
3.单色能量密度:单位体积内,频率在ν 处的单位频 率间隔内的电磁辐射能量。
2019年11月21日星期四


M
V d

8π 2
c3
—单色Байду номын сангаас式密度
黑体辐射单色能量密度为:
ρυ


E

8π h
c3
3
1 eh/kT 1
……①
—黑体辐射普朗克公式 ,K =1.38×10-23玻尔兹 曼常数, h=6.63×10-34 普朗克常量 。

普朗克黑体辐射量子理论

普朗克黑体辐射量子理论

普朗克黑体辐射量子理论普朗克的假设在热力学中,黑体(Black body),是一个理想化的物体,它能够吸收外来的全部电磁辐射,并且不会有任何的反射和透射。

随着温度上升,黑体所辐射出来的电磁波则称为黑体辐射。

“紫外灾难”:在经典统计理论中,能量均分定律预言黑体辐射的强度在紫外区域会发散至无穷大,这和事实严重违背马克斯·普朗克于1900年建立了黑体辐射定律的公式,并于1901年发表。

其目的是改进由威廉·维恩提出的维恩近似(至于描述黑体辐射的另一公式:由瑞利勋爵和金斯爵士提出的瑞利-金斯定律,其建立时间要稍晚于普朗克定律。

由此可见瑞利-金斯公式所导致的“紫外灾难”并不是普朗克建立黑体辐射定律的动机。

)。

维恩近似在短波范围内和实验数据相当符合,但在长波范围内偏差较大;而瑞利-金斯公式则正好相反。

普朗克得到的公式则在全波段范围内都和实验结果符合得相当好。

在推导过程中,普朗克考虑将电磁场的能量按照物质中带电振子的不同振动模式分布。

得到普朗克公式的前提假设是这些振子的能量只能取某些基本能量单位的整数倍,这些基本能量单位只与电磁波的频率有关,并且和频率成正比。

这即是普朗克的能量量子化假说,这一假说的提出比爱因斯坦为解释光电效应而提出的光子概念还要至少早五年。

然而普朗克并没有像爱因斯坦那样假设电磁波本身即是具有分立能量的量子化的波束,他认为这种量子化只不过是对于处在封闭区域所形成的腔内的微小振子而言的,用半经典的语言来说就是束缚态必然导出量子化。

普朗克没能为这一量子化假设给出更多的物理解释,他只是相信这是一种数学上的推导手段,从而能够使理论和经验上的实验数据在全波段范围内符合。

不过最终普朗克的量子化假说和爱因斯坦的光子假说都成为了量子力学的基石。

爱因斯坦的光电子假设截止电压,最大动能,极限频率,几乎瞬时发射,偏振方向经典理论无法完美解释以上现象1905年,爱因斯坦发表论文《关于光的产生和转化的一个试探性观点》,对于光电效应给出另外一种解释。

普朗克黑体辐射公式推导

普朗克黑体辐射公式推导

普朗克黑体辐射公式推导普朗克黑体辐射公式是描述黑体辐射谱的一个重要公式,由德国物理学家马克斯·普朗克于公元1900年推导得出。

这个公式在量子力学的起源和发展中起到了重要的作用,被称为“普朗克的奇迹”。

下面我们将对普朗克黑体辐射公式进行推导。

首先,我们需要了解什么是黑体辐射。

黑体是指一个能将所有传入它的辐射吸收完全,并能以最大限度地辐射出来的理想物体。

黑体辐射谱指的是黑体在不同波长上辐射的强度分布特性。

普朗克的推导基于两个假设。

第一,电磁辐射是由许多具有不同能量的微观振动子组成的。

第二,这些微观振动子的能量是量子化的,即只能取离散的特定值。

根据热力学理论,一个谐振子在频率ω上分布的能量是由玻尔兹曼分布给出的:n(ω) = (1 / (exp(ħω / kT) - 1)其中n(ω)是单位体积中在频率ω上的振动子数,ħ是普朗克常量除以2π,k是玻尔兹曼常量,T是温度。

一个谐振子的能量为ħω,所以单位体积中在频率ω上的能量分布就是n(ω)乘以该能量:E(ω)=ħω*n(ω)现在我们将微观振动子的能量与频率进行积分,得到所有振动子的能量。

积分的范围从零到无穷大,对于每一个能量级别ΔE,能量能取的频率范围是(ΔE-ΔE+δΔE),其中δΔE是能量级别间的间隔。

我们有:E(ΔE)=∫(ΔE-ΔE+δΔE)E(ω)dω代入E(ω)的表达式:E(ΔE)=∫(ΔE-ΔE+δΔE)ħω*n(ω)dω然后将n(ω)的表达式代入:E(ΔE) = ∫(ΔE-ΔE+δΔE) ħω * (1 / (exp(ħω / kT) - 1)) dω接下来,我们通过变换积分变量,将积分变为更简洁的形式。

令x=ħω/(kT),代入上式:E(ΔE) = (kT)^4 / (ħ^3 c^2) ∫(ΔE-ΔE+δΔE) x^3 / (exp(x) - 1) dx右边的积分是一个标准的积分,可以通过数值计算或查表得到。

下面我们将这个积分表示为一个函数f(x)。

普朗克能量子假说

普朗克能量子假说

德国物理学家,量子物理 学的开创者和奠基人。 普朗克的伟大成就,就是 创立了量子理论,1900年12月 14日他在德国物理学会上,宣 读了以《关于正常光谱中能量 分布定律的理论》为题的论文, 提出了能量的量子化假设。这 是物理学史上的一次巨大变革。 从此结束了经典物理学一统天 下的局面。劳厄称这一天为 “量子论的诞生日”。
二、爱因斯坦光子论
1、光电效应的实验规律
当光照射到金属表面 时,金属中有电子逸出的 现象叫光电效应。 A
实验装置 K
G
如将K接正极、A接负极, 则光电子离开K后,将受到 电场的阻碍作用。当K、A 之间的反向电势差等于U0时, 从K逸出的动能最大的电子 刚好不能到达A,电路中没 有电流,U0叫遏止电压。
弗兰克-赫兹实验
实验装置 ——证明原子能级的存在
F V G P A 管内充满低压汞蒸汽,电 子从加热的灯丝F发射, + 在加速电压U0作用下电子 被加速,向栅极G运动, 在GP之间加反向电压Ur (0.5V左右),电子穿过栅 极G到达P,在电路中可 看出电流IP。
300 IP 200 100
+
9.8 4.9
U
Ek max eU0
实验现象
(1)饱和光电流:饱和光电流强度与入射光强度成正比。 I (2)存在截止频率:对某一种金属来说,只有
当入射光的频率大于某一频率n0时,电子才能 从金属表面逸出,电路中才有光电流,这个频 率n0叫做截止频率——红限.
IS
2 1 0
3
(3)线性性:用不同频率的光照射金属K的表 面时,只要入射光的频率大于截止频率,遏 止电势差与入射光频率具有线性关系。
丹麦理论物 理学家,现 代物理学的 创始人之一

大学物理,量子物理基础21-01 黑体辐射 普朗克能量子假设..

大学物理,量子物理基础21-01  黑体辐射 普朗克能量子假设..

3
这两条定律是黑体辐射的基本定律,它们在 现代科学技术中有广泛的应用,是测量高温以及 遥感和红外跟踪等技术的物理基础。恒星的有效 温度也是通过这种方法测量的。
17
21.1 黑体辐射 普朗克能量子假设
第21章 量子物理基础
例:1)温度为室温(20°C)的黑体,其单色辐出度 的峰值所对应的波长是多少?2)辐出度是多少? 解:1)由维恩位移定律
任何物体在任何温度下都不断地向四周发 射着不同波长的电磁波,这种现象称为辐射, 其原因是分子中包含的带电粒子的热运动会使 物体辐射电磁波。 物体以电磁波的形式向外辐射出去的能量, 称为辐射能。
物体辐射能量的大小及辐射能量按波长的 分布都与温度有关。
这种由于物质中的分子、原子受到热激发 而发射电磁波的现象称为热辐射。
Tm b
3
b 2.898 10 m T 293
9890 nm
2)由斯特藩-玻耳兹曼定律
M (T ) T
4
4
M (T ) T 4
5.67 10 (293)
8
4.17 10 W/m
2
2
18
21.1 黑体辐射 普朗克能量子假设
第21章 量子物理基础
例:实验测得太阳的单色辐出度的峰值波长为: m = 0.483 m,若将太阳当作黑体, 请估算:太阳表面的温度和太阳的辐出度。 解:由维恩位移定律:
是 h 的整数倍。 nh ,
(n 1,2,3)
普朗克常量 h 6.6260755 1034 J s
23
21.1 黑体辐射 普朗克能量子假设
• 能量是分立的,不是连续的。 存在着能量的最小单元: 能量子 0 = h ;
• 振子只能一份一份地按不 连续方式辐射或吸收能量。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


2.9 106
m

2.9 106 0.47 106

6166 K
辐出度
M B (T ) Ts4 8.20 107 W/m2
说明
太阳不是黑体,所以按黑体计算出的 Ts 低于太阳的实际温度; MB(T) 高于实际辐出度。
19世纪末,由于冶金等各方面的需求, 人们急于知道辐射强度与光波长之间的函数 关系。当时维恩和瑞利-金斯分别发表了两 个公式,试图解决这一问题。
瑞 利
瑞利--金斯公式
M 0 (T ) C34T
这个公式在波长很长处与实验曲线比较相近,
但在短波区,按此公式,M

将随波长趋向于零而
0
趋向无穷大。
瑞利、金斯两人是根据经典物理的理论
严密推导的,理论值与实验值在短波区的北 辙南辕,使人们不得不称之为“紫外灾难”。
M 0 (T )
实验值
N.玻尔、M.玻恩、 W.L.布拉格、L.V.德布罗意、A.H.康普顿、 M.居里、P.A.M 狄喇克、A.爱因斯坦、W.K.海森堡、 郞之万、W.泡利、普朗克、薛定谔 等
普 朗 克 像
热辐射
普朗克的量子假设
普朗克(1858-1947)
§16-1 热辐射 普朗克的量子假设
1. 热辐射现象
热辐射 : 由温度决定的物体的电磁辐射。
M0 (10-7 × W / m2 ·m)
T m b
b 2.897 103 m K
( m)
热辐射的峰值波长随着温度的增加而向着短 波方向移动。
例 测得太阳光谱的峰值波长在

绿光区域,为 m = 0.47 m.
试估算太阳的表面温度和辐
出度。
解 太阳表面温度
m

Ts
2hc25
M0
hc
e kT 1
式中的k为玻尔兹曼常数,c为光速,h为 普朗克常数。
这个工作在1900年12月14日完成的。
这一天,被称为量子力学的生日。
M0

2hc25
hc
e kT 1
令 C1 2hc2
x hc
kT
dx


hc
2 k T
d
kT x2d
(1) 斯特藩-玻耳兹曼定律 黑体的辐出度与黑体的绝对温度四次方成正比:( m)
M 0 (T ) T 4 斯特藩常数 5.67 108 W/(m2 K4 )
热辐射的功率随着温度的升高而迅速增加。
(2) 维恩位移定律
对于给定温度T ,黑体的单色辐出度M 0 有一
最大值,其对应波长为m 。
M
(T
)


0
M

(T
)
d

辐出度只是物体温度的函数。
3.单色吸收比和单色反射比
如果以 I 表示入射能量,A和R分别表示吸收能量 和反射能量
R I
A
则有 I (T) = A (T) + R (T)
(T) + (T) = 1
其中 (T) = A (T) / I (T) 称为单色吸收比。
体单位面积上发射的波长在 到 d 范围内 的辐射能量 d M 与波长间隔d 的比值,用
M (T ) 表示。
M

(T
)

dM
d
单色辐出度 M (T ) 与物体的 温度和辐射波长有关。
辐射出射度:单位时间内,从物体单位面 积上所发射的各种波长的总辐射能,称为物体 的辐射出射度,简称辐出度。
M 0 2hc25
1
hc
ekT 1
h 6.6260755 1034 J s 普朗克常数
这一公式称为普朗克公式。它与实验结果符 合得很好。
M 0 (T )
实验值

普朗 克线
外 灾 难
维恩线
瑞利--金斯线
o 1 2 3 4 5 6 7 8 /μm
普朗克公式还可以用频率表示为:
5. 基尔霍夫辐射定律
在同样的温度下,各种物体对同一波长的单色辐出度与单色 吸收比之比值都相等。
M 1(T ) a1(T )

M 2 (T ) a2 (T )

M 3 (T ) a3 (T )

M 0 (T )
该定律适用于平衡热辐射。
基尔霍夫
M 1(T a1(T )
)

M 2 (T ) a2 (T )
M 0(T )
2h 3
c3
1
h
e kT
1
当ν→0,即在长波范围,普朗克定律变为瑞
利——金斯公式。
当ν→∞,即在短波范围,又与维恩定律一 致。
将维恩公式和瑞利公式综合在一起,理论值 与实验结果符合得较好。
普朗克得到上述公式后意识到,如 果仅仅是一个侥幸揣测出来的内插公式, 其价值只能是有限的。必须寻找这个公 式的理论根据。
固体在温度升高时颜色的变化
800K
1000K
1200K 1400K
物体辐射总能量及能量按波长分布都决定于温度。


能 量
头 部 热



头部各部分温度不同,因此它们
的热辐射存在差异,这种差异可
0
1.0
1.75 通过热象仪转换成可见光图象。
波长 ( m )
2.单色辐出度和辐射出射度
单色辐出度:单位时间内,温度为T 的物
mT 2898 10 6 (m K ) b
普朗克于1918年获诺贝尔奖。
普朗克在热辐射理论中所提出的能 量子理论,启发了爱因斯坦。
爱因斯坦的光量子理论
电磁波
1、电磁波是一横波
E
2、E与H同位相
3、 E H
v
4、电磁波的偏振性
H
5.电磁波的传播速度
介质中 v 1 真空中 c 1
波速:
波速:
0 0
能量密度

e
m

1 2
E
2

1 2
H 2
能流密度 S E H
量子物理基础
第五次索尔维会议与会者合影(1927年)


M 0 (T )
(1)某物体辐射的能量多,吸收的能量也多。不辐射 某一波长的辐射能,也不吸收这一波长的辐射能。
室温下的白底黑五星瓷片 高温下的白底黑五星瓷片
M 1(T ) a1(T )

M 2 (T ) a2 (T )



M 0 (T
)
(2)对任何波长的辐射能,黑体比同温度下所有
8.普朗克的能量子假说
能量的量子假说:辐射物质中具有带电的线 性谐振子,它和周围电磁场交换能量。这些 谐振子只能处于某种特殊的状态,它的能量 取值只能为某一最小能量ε(称为能量子) 的整数倍,即:
ε,2ε, 3ε, ... , nε n为正整数 对于频率为 的谐振子最小能量为:
h
在能量子假说基础上,普朗克得到了黑 体辐射公式如下
7. 普朗克量子假设
问题:如何从理论上找到符合实验曲线的函数式
M0 (T ) f (,T )

维恩经验公式

M0
(T
)

C e 5
C2
T
1
这个公式与实验曲线波长短
处符合得很好,但在波长很长处 与实验曲线相差较大。
M 0 (T )
实验值
维恩线
o 1 2 3 4 5 6 7 8 /μm
hc
所以
M0

C1k 5T 5 h5c5
x5 ex 1
M0
0
M 0d

C1k 5T h5c5
5
x5 0 ex 1 dx
6.494
C1k 4T 4 h4c4
T 4
2hc25
M0
hc
e kT 1
M 0 0

mT

hc kx
x 4.9651
B2
C
A为黑体
B1PB2为分光系统
C为热电偶
测定黑体辐出度的实验简图
M0 (10-7 × W / m2 ·m)
( m)
M0 (10-7 × W / m2 ·m)
10
6000K 可见光
5
5000K
4000K
3000K
0
( m)
0.5
1.0
1.5
2.0
根据实验得出黑体辐射的两条定律: M0 (10-7 × W / m2 ·m)
紫 外 灾

瑞利--金斯线
维恩线
o 1 23 4 5
6 78
/μm
维恩公式和瑞利-金斯公式都是用经 典物理学的方法来研究热辐射所得的结 果,都与实验结果不符,明显地暴露了 经典物理学的缺陷。黑体辐射实验是物 理学晴朗天空中一朵令人不安的乌云。
8.普朗克的内插公式
为了解决上述困难,普朗克利用内插法将适 用于短波的维恩公式和适用于长波的瑞利-金斯公 式衔接 起来,提出了一个新的公式:
其他物体发射和吸收的1
T
S2
B2
6. 黑体辐射实验规律
不透明的材料制成带小孔的的空腔,可近似看 作黑体。
M 1(T ) a1(T )

M 2 (T ) a2 (T )


M 0 (T )
研究黑体辐射的 规律是了解一般物体 热辐射性质的基础。
黑体模型
A
L1
B1
P L2
(,T) = R (T) / I (T) 称为单色反射比。
4. 绝对黑体
若物体能够完全吸收入射的全部可见光 — 黑颜色物体 若物体能够完全吸收任何入射波长的辐射能 — 绝对黑体
相关文档
最新文档