应力-应变曲线64559

合集下载

应力-应变曲线

应力-应变曲线

应力-应变曲线(stress-strain curves)根据圆柱试件静力拉伸试验所得拉伸图(图a),对曲线上各对应点用试件原始尺寸除拉伸力与绝对伸长所得出的应力与延伸率的关系曲线(图6)。

应力一应变曲线是金属塑性加工工作中最重要的参考资料之一。

应力及应变值按下式计算:式中σi 表示拉伸图上任意点的应力值,δi为i点的延伸率,Pi及Δli为该点的拉力与绝对伸长值,F0及l为试件的断面积和计算长度。

试件受拉伸时,先产生弹性变形,这时应力应变成比例,当出现二者不能保持线性关系的点时,表示材料已屈服而将发生塑性变形,这时的应力定义为屈服应力或流变应力,用σs表示,其求法见屈服点。

拉伸时当试件计算长度上的均匀变形阶段结束而产生细颈时,变形将集中在细颈部分。

出现细颈前材料所能承受的应力名为强度极限或抗拉强度,用σb表示σb =Pmax/F式中Pmax为拉伸图上所记录的最大载荷值。

试件出现细颈后很快即断裂,断裂应力σfσf =Pf/Tf式中Pf 是断裂时的拉力,Ff是断口面积。

试件拉断时的延伸率δf(%)或断面收缩率ψ(%)是表示材料可承受最大塑性变形能力的指标:矾一牮×100(4)£fPf=盐≯×100(5)』’0式中厶和Ff是将断开的试件对合后测定的试件长度和断口处的面积。

抗拉强度靠及延伸率d或断面收缩率妒是材料性能的两个基本指标,在工程上有着广泛的应用。

屈服应力民(或乱:)是金属塑性加工时变形体开始产生塑性变形所必需的最小应力,它是计算变形力的一个重要参数。

应力-应变曲线表征材料受外力作用时的行为。

材料受力后即发生弹性变形,这时应力应变呈简单的线性关系,继续增加作用力至一定大小后材料将出现塑性变形,以后变形与应力的关系复杂,当塑性变形至一定程度以后,试件破断则变形过程终结。

所以任何变形过程均包括弹性变形、塑性变形及破断3个典型阶段。

金属的塑性加工过程处于弹性变形与破断二者之间。

首先要创造一定的应力状态条件使金属能发生塑性变形,其次是安排一个使塑性变形尽可能大又不致发生破坏的热力学条件。

真实应力-应变曲线

真实应力-应变曲线

§3.6 真实应力-应变曲线
应力-应变曲线反映变形体变形时应力随应变强化的规律。
初始屈服应力S
一般屈服应力( 流动应力S ,Y ) 真实应力:变形体内实际承受应力的大小。
影响流动应力的因素
材料属性, 温度, 应变, 应变速率
建立真实应力-应变曲线方法
拉伸试验,
压缩试验,
扭转试验
流动应力S 的公式表达形式
失稳点b,Fb = Fmax。
dF A0 edS Sed 0
dS Sd 0
dS
d
b
Sb
二、 压缩试验曲线
拉伸试验曲线:失稳,精确范围( < 0.3); 压缩试验曲线:摩擦(S ),精确范围( 2);
1、直接消除摩擦的圆柱体压缩法
S
P A
P A0e
ln H0
H
2、外推法 摩擦力影响和式样尺寸D0/H0 有关,根据不同的D0/H0 , 外推出D0/H0 = 0时的S,得到 真实应力-应变曲线。
1 1
Fd F(0)
1、拉伸图和条件应力-应变曲线
0
F A0
l
l0
b d
c
Fb= Fmax
Fp Fc
三个变形阶段:
ph
特征点:弹性极限点p,屈服点c,失稳点b,断裂点k。
?
k
Δl()
2、真实应力-应变曲线 用真实应力与应变表示的曲线。
S( ) ; S( ) ; S( )
2 2t
24
1 3 平面应变问题
2
3
1 2 2 2 3 2 3 1 2
2 3
6 1 1.1551
S 800 0.25
8001.151 0.25 443

应力应变曲线材料力学

应力应变曲线材料力学

E E tan

(1)弹性阶段 比例极限σp
oa段是直线,应力与应变在此段成正比关系,材
料符合虎克定律,直线oa的斜率 tan E 就是材
料的弹性模量,直线部分最高点所对应的应力值 记作σp,称为材料的比例极限。曲线超过a点,图 上ab段已不再是直线,说明材料已不符合虎克定 律。但在ab段内卸载,变形也随之消失,说明ab 段也发生弹性变形,所以ab段称为弹性阶段。b点 所对应的应力值记作σe ,称为材料的弹性极限。
、 值越大,其塑性越好。一般把 ≥5%的材
料称为塑性材料,如钢材、铜、铝等;把 <5%的
材料称为脆性材料,如铸铁、混凝土、石料等。
工程应用:冷作硬化
e

d
b
b
e P
a c s
即材料在卸载过程中 应力和应变是线形关系,
f 这就是卸载定律。
材料的比例极限增高, 延伸率降低,称之为冷作硬 化或加工硬化。
值记作 ,称b为材料的抗拉强度(或强度极限),
它是衡量材料强度的又一个重要指标。
(4)缩颈断裂阶段
曲线到达e点前,试件的变形是均匀发生的, 曲线到达e点,在试件比较薄弱的某一局部(材 质不均匀或有缺陷处),变形显著增加,有效横 截面急剧减小,出现了缩颈现象,试件很快被 拉断,所以ef段称为缩颈断裂阶段。
4.塑性指标 试件拉断后,弹性变形消失,但塑性变形仍保 留下来。工程上用试件拉断后遗留下来的变形 表示材料的塑性指标。常用的塑性指标有两个:
伸长率: L1 L 100 % 断面收缩率 : LA A1 100 %
A L1 —试件拉断后的标距
L —是原标距 A1 —试件断口处的最小横截面面积 A —原横截面面积。

应力-应变曲线

应力-应变曲线

第Ⅱ种类型的应力-应变曲线
20
多数塑性金属材料,如铝-镁合金、铜合金、中碳合金结构 钢(经淬火+中高温回火)其应力-应变曲线也是如此。
材料由弹性连续过渡到塑性变形,塑性变形时无锯齿形平台, 变形时总伴随着加工硬化。
21
3)第Ⅲ种类型:弹性-不均匀塑性变形 在正常弹性后,有一系列锯齿叠加在抛物线型曲线上。 此类材料特性:是由于材料内部不均匀变形所致。
11
4、定义真应力S(应变e)的意义
1)真应力 S 和真应变 e 的定义:
承认了在变形过程中试件长度和直径间相互变化的事实。 因变形过程中体积保持不变,因此
A1L1 A2L2 常数
即长度伸长了,其实际截面积 A 就会相应减少,因此,
真应力S 工程应力
S

Fi Ai

瞬时载荷 试件瞬时截面积
2. 铸铁、陶瓷:只有第I阶段
3. 中、高碳钢:没有第II阶段
7
3、真应力S-真应变e 曲线
3、真应力S-真应变e 曲线:(流变曲线)
在实践的塑性变形中,试样的截面积与长度也在不断发生着变化,在研究 金属塑性变形时,为了获得真实的变形特性,应当按真应力和真应变来进 行分析。
流变曲线真实反映变形过程中,随应变量增大,材料性质的变化。
如:在混凝土材料中通过配钢筋来提高其抗拉伸性能。
18
高分子材料,聚氯乙烯:在拉伸开始时,应力和应变不成直 线关系,即不服从虎克定律,而且变形表现为粘弹性。
粘弹性:是指材料在外力作用下,弹性和粘性两种变形机理 同时存在的力学行为。
其特征是应变对应力的响应 (或反之)不是瞬时完成的 (应变落后于应力),需要 通过一个弛豫过程,但卸裁 后,应变恢复到初始值,不 留下残余变形。

1.应力应变曲线

1.应力应变曲线

材料的力学性能材料力学性能:材料抵抗变形和断裂的能力。

保持设计要求的外形和尺寸,服役过程:保证在服役期内安全地运行。

拉伸应力-应变曲线示意图应力腐蚀破裂发生具有如下三个基本特征拉伸性能通过拉伸试验可测材料的弹性、强度、延性、应变硬化和韧度等重要的力学性能指标,它们是材料的基本力学性能。

力作用于材料弹性变形弹塑性变形断裂静力拉伸试验-模型图静力拉伸试验-实物图拉伸试验结果➢L0-原始标距(original gauge length)➢L c -平行长度(parallel length)➢S 0-试件工作部分的原始横截面积低碳钢的拉伸图——加载后标距间的长度变化量∆L ~载荷F 关系曲线应力-应变曲线工程应力(或名义应力,也简称作应力)R ---力除以试件的原始截面积即得工程应力,R =F /S 01伸长率(或工程应变,也简称作应变)e ----伸长量除以原始标距长度即得工程应变,e =ΔL /L 0,ΔL =L -L 0,其中L 为加载中伸长后的标距长度2低碳钢的工程应力-工程应变曲线弹性变形单纯弹性变形过程中应力与应变的比值。

比例极限R p (原标准,符号为σp )应力和应变成严格的正比关系的上限应力。

弹性模量E eR E /=弹性极限R e (原标准,符号为σe )材料发生可逆的弹性变形的上限应力值。

对于多数材料,与比例极限接近。

低碳钢的工程应力-工程应变曲线规定塑性延伸强度所谓规定塑性延伸强度,是拉伸中当试样的塑性伸长率等于L 0的某一百分率时,所对应的应力值。

规定塑性延伸强度求规定塑性伸长率为0.2%的强度塑性伸长率为0.2%的点R p0.2工程上最常用的强度指标,传统使用的符号为σ0.2。

R p0.01,R p0.5测力弹簧?石油管线钢?炮管钢?A B 有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)屈服在拉伸试验期间,出现力不增加但仍旧能发生塑性变形的现象叫作屈服或不连续屈服。

应力应变曲线实验

应力应变曲线实验

P / A0
L0
L
试样的伸长率即应变ε为 :
(MP a)
(100%)
L / l0
P
上式中P为拉伸载荷;A0为试样的初始截面 ;L0为试样标定 线间的初始长度;△L为拉伸后标定线长度的增长量。
典型的聚合物拉伸应力—应变曲线如图所示:
弹性区 塑性区
屈服点
屈服点 之前是 弹性区
屈服点 之后是 塑性区
6.样品被拉断时停止实验.
五.数据处理
1. 根据电子拉力机绘出的PS,PP拉伸曲线,比较和鉴别 它们的性能特征。 2. 根据PP的载荷—伸长曲线、逐点计其 ,
, / ;
ቤተ መጻሕፍቲ ባይዱ
P / A0 L / L0 (1 ) J ln(1 )
(MPa ) (100%) (MPa ) (100%)
P
真应力σ'为: P / A 真应变 为:
L
( A为试样瞬时截面积 )
L0
L
dLi L0 L L ln ln( ) ln(1 )(100%) L0 L L0 L0 i
假定试样在大形变时体积不变,即AL=A0L0,则真应 力可表示为:
P PL0 P 1 1 A A0 L0 A0
六.思考题
1. 改变试验的拉伸速率会对试验产生什么影响? 2. 在试验过程中,试样的截面积变化会对最终谱图产
生什么影响? 3.你认为在现有的试验条件下能否真实地获得或通过
计算获得瞬时地截面积A?
0
图1 典型聚合物拉伸应力-应变曲线图
弹性区: 塑性区 :
除去应力后材料能恢复原状. 材料产生塑性形变,不再恢复原状.

应力应变曲线材料力学讲解

应力应变曲线材料力学讲解

二、压缩时的应力——应变曲线 1、试样及试验条件
常 温 、 静 载
§9-5
2、低碳钢压缩实验
(MPa) 400
低碳钢压缩 应力应变曲线
E(b)
C(s上)
f1(f)
低碳钢拉伸
g
(e) B
D(s下)
应力应变曲线
200 A(p)
E=Etgy=tg

O
O1 O2 0.1
0.2
金属材料的压缩试样,一般制成短圆柱形,柱的 高度约为直径的1.5 ~ 3倍,试样的上下平面有平行 度和光洁度的要求非金属材料,如混凝土、石料等 通常制成正方形。
、 值越大,其塑性越好。一般把 ≥5%的材
料称为塑性材料,如钢材、铜、铝等;把 <5%的
材料称为脆性材料,如铸铁、混凝土、石料等。
工程应用:冷作硬化
e

d
b
b
e P
a c s
即材料在卸载过程中 应力和应变是线形关系,
f 这就是卸载定律。
材料的比例极限增高, 延伸率降低,称之为冷作硬 化或加工硬化。
低碳钢是塑性材料,压缩时的应力–应变图, 如图示。
在屈服以前,压缩时的曲线和拉伸时的曲线 基本重合,屈服以后随着压力的增大,试样被 压成“鼓形”,最后被压成“薄饼”而不发生 断裂,所以低碳钢压缩时无强度极限。
3、灰铸铁
by
灰铸铁的 压缩曲线 bL
灰铸铁的 拉伸曲线 O
= 45o~55o
d g
o
f h

1、弹性范围内卸载、再加载 2、过弹性范围卸载、再加载
5、灰铸铁
对于脆性材料(铸铁),拉伸时的应力 应变曲线为微弯的曲线,没有屈服和径缩现 象,试件突然拉断。断后伸长率约为0.5%。 为典型的脆性材料。

4 应力-应变曲线

4 应力-应变曲线

应力-应变曲线MA 02139,剑桥麻省理工学院材料科学与工程系David Roylance2001年8月23日引言应力-应变曲线是描述材料力学性能的极其重要的图形。

所有学习材料力学的学生将经常接触这些曲线。

这些曲线也有某些细微的差别,特别对试验时会产生显著的几何变形的塑性材料。

在本模块中,将对表明应力-应变曲线特征的几个点作简略讨论,使读者对材料力学性能的某些方面有初步的总体了解。

本模块中不准备纵述“现代工程材料的应力-应变曲线”这一广阔的领域,相关内容可参阅参考文献中列出的博依(Boyer )编的图集。

这里提到的几个专题——特别是屈服和断裂——将在随后的模块中更详尽地叙述。

“工程”应力-应变曲线在确定材料力学响应的各种试验中,最重要的恐怕就是拉伸试验1了。

进行拉伸试验时,杆状或线状试样的一端被加载装置夹紧,另一端的位移δ是可以控制的,参见图1。

传感器与试样相串联,能显示与位移对应的载荷)(δP 的电子读数。

若采用现代的伺服控制试验机,则允许选择载荷而不是位移为控制变量,此时位移)(P δ是作为载荷的函数而被监控的。

图1 拉伸试验在本模块中,应力和应变的工程测量值分别记作e σ和e ε,它们由测得的载荷和位移值,及试样的原始横截面面积和原始长度按下式确定0A 0L1 应力-应变试验及材料力学中几乎所有的试验方法都由制定标准的组织,特别是美国试验和材料学会(ASTM)作详尽的规定。

金属材料的拉伸试验由ASTM 试验E8规定;塑料的拉伸试验由ASTM D638规定;复合材料的拉伸试验由ASTM D3039规定。

当以应变e ε为自变量、应力e σ为函数绘制图形时,就得到如图2所示的工程应力-应变曲线。

图2 退火的多晶体铜在小应变区的工程应力-应变曲线(在许多塑性金属中,这一曲线具有典型性)在应力-应变曲线的初始部分(小应变阶段),作为合理的近似,许多材料都服从胡克定律。

于是应力与应变成正比,比例常数即弹性模量或杨氏模量,记作E :随着应变的增大,许多材料的应力与应变最终都偏离了线性的比例关系,该偏离点称为比例极限。

真实应力应变曲线

真实应力应变曲线

基于拉伸实验确定真实应力-应变曲线
2、真实应力-应变曲线
真实应力-应变曲线分类
真实应力,简称真应力,也就是瞬时的流动应力Y,用单向均匀拉
伸(或压缩)时各加载瞬间的载荷P与该瞬间试样的横截面积A之比
来表示,则
YP A
真实应力-应变曲线可分为三类:
(1)Y ;(2)Y ;(3)Y
基于拉伸实验确定真实应力-应变曲线
2、变形速度对真实应力-应变曲线的影响 速度增加→位错运动加快→ 需要更大的切应力→流动应力提高 速度增加→硬化得不到恢复→ 流动应力提高
但如果速度很大→温度效应大→ 流动应力降低
在冷变形时,温度效应显著,强化被软化所抵消,最终表现出的是: 变形速度的影响不明显,动态时的真实应力—应变曲线比静态时略高 一点,差别不大。
基于拉伸实验确定真实应力-应变曲线
1、标称应力(名义应力、条件应力)-应变曲线
标称应力-应变曲线上的三个特征点
oc(弹性变形阶段)——cb(均匀塑性变 形阶段)——bk(局部塑性变形阶段)
屈服点c:
弹性变形与均匀塑性变形的分界点,对应
应力为屈服点 s ,或屈服强度 0.2
基于拉伸实验确定真实应力-应变曲线
Y- ∈曲线的修正
由于缩颈,即形状变化而产生应力升高的现象称 形状硬化。
基于压缩实验和轧制实验确定真实应力-应变曲线
1.基于圆柱压缩实验确定真实应力—应变曲线
拉伸Y- ∈曲线受塑性失稳的限制,精度较低, ∈<0.3,实际塑性成
形变形量较大,如锻造≤1.6,反挤≤2.5,拉伸试验曲线不够用。需要
压缩Y- ∈曲线。
换算:σ1=0, σ3=p, ∈2=0, σ2=p/2
1
2

《应力应变曲线》课件

《应力应变曲线》课件

结果输出
绘制应力应变曲线,并分 析材料的弹塑性行为。
实验结果与分析
要点一
实验结果
通过实验获得一组应力应变数据,可以绘制出应力应变曲 线。
要点二
结果分析
根据应力应变曲线,可以分析材料的弹塑性行为,包括屈 服点、弹性极限、应变硬化等特性。这些特性对于材料的 选择和应用具有重要意义。例如,在机械设计中,需要选 择具有合适弹塑性行为的材料来保证结构的稳定性和安全 性。同时,通过分析材料的弹塑性行为,可以为材料的进 一步改性或优化提供理论依据。
理论计算方法
弹性力学公式
根据材料的弹性常数和几何形状,利用弹性力学公式计 算应力应变关系。
塑性力学公式
在达到屈服点后,材料进入塑性阶段,此时需要利用塑 性力学公式计算应力应变关系。
数值模拟方法
01
有限元分析
利用有限元分析软件建立材料的有限元模型,通 过模拟加载过程得到应力应变曲线。
02
有限差分法
06
应变曲线的理论计算
弹性力学基础
弹性力学定义
弹性力学是研究物体在弹性介质中受 到外力作用时的应力、应变和位移的 学科。
基本假设
弹性力学的基本方程
包括平衡方程、几何方程、物理方程 等。
连续性、均匀性、各向同性、小变形 等假设。
应变曲线的理论模型
应变曲线的基本形式
描述了应力与应变之间的关系,通常呈现非线性的特点。
通过建立材料的有限元模型,模拟材料的 应力应变行为,可以得到材料的应力应变 曲线。
材料模型的建立
根据材料的性质和实验数据,建立材料的 本构方程或材料模型,如弹性模型、弹塑 性模型、粘塑性模型等。
边界条件的设定
求解方法的选择

第4章 真实应力——应变曲线

第4章 真实应力——应变曲线

➢ 简单拉伸的名义应力——名义应变曲线

D B
名 义 应
C A

O
名义应变

➢ 简单拉伸的真应力—真应变曲线

D B
真应力名义应力
C A
O
名真义应应变变

三、拉伸真实应力——应变曲线塑性失稳点的特征
设某一瞬间,轴向力P、断面F、真实应力S
当在塑性失稳点时,P有极大值
dp=0
在塑性失稳点,S=Sb 、∈=∈b 、代入上式: ∈=1 失稳点特性
材料的硬化认为是线性的。 其数学表达式为
s
S s B2
➢适合于经过较大的冷
变形量之后,并且其加
工硬化率几乎不变的金 属材料
O

S
幂指数硬化材料模型的数学表达式为
n=1
n = 0.3
适合于大多数金属材料
硬化指数n 是表明材料加工硬化特性的一个重要参数, n 值越大,说明材料的应变强化能力越强。对金属材 料, n 的范围是0 < n < 1 。B 与n 不仅与材料的化学 成分有关,而且与其热处理状态有关,常用材料的B 和n 可查相关手册。
第4章 真实应力——应变曲线
一、拉伸图和条件应力-应变曲线
条件应力----应变曲线 最大拉力点b----强度极限。b点以后继续拉伸 ,试样断面出现局部收缩,形成所谓缩颈,此后,应力逐渐减小,曲 线下降,直至k点发生断裂。
对于大多数金属,没有明显的屈服点(屈服平台),典型的应力-应变曲线如下图 所示。这时的屈服应力规定用ε=0.2%时的应力表示,即σ0.2
n=0 理想刚塑性 线弹性

抛物线型真实应力——应变曲线的经验方程
在失稳点b处, 由于

应力-应变曲线图

应力-应变曲线图

應力-應變曲線圖StrainStress Fy :材料受力超過降伏點後,即產生永久變形Fp : 材料受力低於Fp時外力除去後可恢復原狀Ft : 材料受外力而斷裂yield strength400450500550600650S am ple A 300350400450500550S a m p l e B 18732654T ensile T est-S tress at Y eild(K gf/cm ^2)系統誤差亂度誤差亂度誤差系統誤差a. < 109極好(Excellent)b. 109~ 1010很好(Very Good)c. 1010~ 1011很好至一般(Good to Moderate)d. 1011~ 1012一般(Moderate)e. > 1012不足(Insufficient)Inner Filter 內濾鏡Outer Filter外濾鏡Application應用Test Method測試規範Borosilicate 硼矽玻璃Borosilicate硼矽玻璃模擬戶外太陽光–塗料,塑膠,建材,橡膠汽車內裝ASTM G155, ISO 4892-2-A,ISO 11341, Ford InnerMaterialsBorosilicate 硼矽玻璃Soda Lime碳酸玻璃模擬室內太陽光–紡織品,汽車內裝材料,DVD,CDROM,TFT,家電產品,印刷ISO 105-B02, ISO 4892-2-B, AATCC 16, JASO M346-93Quartz 石英玻璃Borosilicate硼矽玻璃模擬美國汽車內裝材料–car interior and exteriormaterialSAE J1885, SAE J1960Cira紅外線玻璃Soda Lime碳酸玻璃模擬戶外太陽光–塗料,塑膠,建材,橡膠ISO 4892-2-A Xenon Arc InstrumentsApplication of Inner Filter& Outer Filter紅外線光譜儀(IR)γ-Rays 珈瑪射線X-RaysX射線Ultraviolet紫外線可見光Infrared紅外線Microwave微波RadioTclevisonWaves無線電波原子核躍遷內核層電子躍遷價電子躍遷分子振動、轉動分子轉動電子在磁場中之自旋排列波長µm10-4 10-310-210-1 1 10 102103104105106107波數cm-1108 107106105104103 10210 1 10-1 10-2 10-3-1範例-CH 2-SymmetricalstretchingAntisymmetricalstretching Scissoring Rocking Wagging TwistingFT-IR 應用實例-PVCCHOOR C-Cl C-Cl-ClPBT聚對苯二甲酸二丁烯酯●◇△○▼●芳香甜味PET聚對苯二甲酸二乙酯○◇■○▼●芳香甜味PPO聚苯撐氧●◆△○╳●酚味PC聚碳酸脂○◇■○◇●酚味PB聚丁烯△□○╳▼▲蠟燭味LDPE低密度聚乙烯●□○╳▼▲蠟燭味HDPE高密度聚乙烯●□○╳▼▲蠟燭味PP聚丙烯△□○╳▼▲蠟燭味PVCs聚氯乙烯(軟質)○◇○○╳■鹽酸+DOP 味PVCr聚氯乙烯(硬質)○□△○╳■鹽酸+焦味POM聚縮醛●◇■╳▼▲甲醛味PU 聚尿酯樹脂○□○╳▼●異氰酸脂味(isocyanate)名稱中文學名○透明△半透明●不透明◇光亮□油滑◆不光亮○柔軟△半硬■硬質○有黑煙╳無黑煙▼滴垂◇無滴垂╳自熄●黃▲藍■綠燃燒後之氣味。

应力应变曲线

应力应变曲线
剪应力引起断裂

曲线没有明显的直线部分,应力较 小时,近似认为符合虎克定律。曲线没 有屈服阶段,变形很小时沿与轴线大约 成45°的斜截面发生破裂破坏。曲线最
高点的应力值 by 称为抗压强度。
铸铁材料抗压性能远好于抗拉性能, 这也是脆性材料共有的属性。因此,工 程中常用铸铁等脆性材料作受压构件, 而不用作受拉构件。
一、拉伸时的应力——应变曲线




验 条 件
常 温 、


1、 试件
(1)材料类型: 低碳钢: 塑性材料的典型代表; 灰铸铁: 脆性材料的典型代表;
标距
L0
(2)标准试件:
d0
标点
尺寸符合国标的试件;
2.标用标于距准测:试试件的:等截面部分长度;
圆截面试件标距:L0=10d0或5d0
2、试验机
0
3、低碳钢拉伸曲线
e

b
b
e P
a c s

o
f
2、屈服阶段bc(失去抵 抗变形的能力)
s — 屈服极限
3、强化阶段ce(恢复抵抗 变形的能力)
b — 强度极限 4、局部径缩阶段ef
明显的四个阶段 1、弹性阶段ob P — 比例极限 e — 弹性极限
E E tan
4.塑性指标 试件拉断后,弹性变形消失,但塑性变形仍保 留下来。工程上用试件拉断后遗留下来的变形 表示材料的塑性指标。常用的塑性指标有两个:
伸长率: L1 L 100 % 断面收缩率 : LA A1 100 %
A L1 —试件拉断后的标距
L —是原标距 A1 —试件断口处的最小横截面面积 A —原横截面面积。

应力应变曲线材料力学

应力应变曲线材料力学

工程应用:冷作硬化


e
d
e

bห้องสมุดไป่ตู้
f
P
b a c s
即材料在卸载过程中 应力和应变是线形关系, 这就是卸载定律。
材料的比例极限增高, 延伸率降低,称之为冷作硬 化或加工硬化。
f
h
o

d
g

1、弹性范围内卸载、再加载
2、过弹性范围卸载、再加载
5、灰铸铁
对于脆性材料(铸铁),拉伸时的应力 应变曲线为微弯的曲线,没有屈服和径缩现 象,试件突然拉断。断后伸长率约为0.5%。 为典型的脆性材料。
L1 L 伸长率: 100 % L A A1 断面收缩率 : 100 A L —试件拉断后的标距
L —是原标距 A1 —试件断口处的最小横截面面积 A —原横截面面积。
1
%
料称为塑性材料,如钢材、铜、铝等;把 <5%的 材料称为脆性材料,如铸铁、混凝土、石料等。
值越大,其塑性越好。一般把 ≥5%的材 、
激励学生学习的名言格言 220、每一个成功者都有一个开始。勇于开始,才能找到成功的路。 221、世界会向那些有目标和远见的人让路(冯两努——香港著名推销商) 222、绊脚石乃是进身之阶。 223、销售世界上第一号的产品——不是汽车,而是自己。在你成功地把自己推销给别人之前,你必须百分之百的把自己推销给自己。 224、即使爬到最高的山上,一次也只能脚踏实地地迈一步。 225、积极思考造成积极人生,消极思考造成消极人生。 226、人之所以有一张嘴,而有两只耳朵,原因是听的要比说的多一倍。 227、别想一下造出大海,必须先由小河川开始。 228、有事者,事竟成;破釜沉舟,百二秦关终归楚;苦心人,天不负;卧薪尝胆,三千越甲可吞吴。 229、以诚感人者,人亦诚而应。 230、积极的人在每一次忧患中都看到一个机会,而消极的人则在每个机会都看到某种忧患。 231、出门走好路,出口说好话,出手做好事。 232、旁观者的姓名永远爬不到比赛的计分板上。 233、怠惰是贫穷的制造厂。 234、莫找借口失败,只找理由成功。(不为失败找理由,要为成功找方法) 235、如果我们想要更多的玫瑰花,就必须种植更多的玫瑰树。 236、伟人之所以伟大,是因为他与别人共处逆境时,别人失去了信心,他却下决心实现自己的目标。 237、世上没有绝望的处境,只有对处境绝望的人。 238、回避现实的人,未来将更不理想。 239、当你感到悲哀痛苦时,最好是去学些什么东西。学习会使你永远立于不败之地。 240、伟人所达到并保持着的高处,并不是一飞就到的,而是他们在同伴们都睡着的时候,一步步艰辛地向上爬 241、世界上那些最容易的事情中,拖延时间最不费力。 242、坚韧是成功的一大要素,只要在门上敲得够久、够大声,终会把人唤醒的。 243、人之所以能,是相信能。 244、没有口水与汗水,就没有成功的泪水。 245、一个有信念者所开发出的力量,大于99个只有兴趣者。 246、环境不会改变,解决之道在于改变自己。 247、两粒种子,一片森林。 248、每一发奋努力的背后,必有加倍的赏赐。 249、如果你希望成功,以恒心为良友,以经验为参谋,以小心为兄弟,以希望为哨兵。 250、大多数人想要改造这个世界,但却罕有人想改造自己。

应力应变曲线材料力学

应力应变曲线材料力学

E
E
tan
(1)弹性阶段 比例极限σ
p
oa段是直线,应力与应变在此段成正比关系,材 料符合虎克定律,直线oa的斜率 ta n E就是材 料的弹性模量,直线部分最高点所对应的应力值 记作σ p,称为材料的比例极限。曲线超过a点,图 上ab段已不再是直线,说明材料已不符合虎克定 律。但在ab段内卸载,变形也随之消失,说明ab 段也发生弹性变形,所以ab段称为弹性阶段。b点 所对应的应力值记作σ e ,称为材料的弹性极限。
曲线到达e点前,试件的变形是均匀发生的, 曲线到达 e 点,在试件比较薄弱的某一局部 ( 材 质不均匀或有缺陷处),变形显著增加,有效横 截面急剧减小,出现了缩颈现象,试件很快被 拉断,所以ef段称为缩颈断裂阶段。
4.塑性指标 试件拉断后,弹性变形消失,但塑性变形仍保 留下来。工程上用试件拉断后遗留下来的变形 表示材料的塑性指标。常用的塑性指标有两个:
第五节 应力——应变曲线
力学性质:在外力作用下材料在变形和破坏方面所 表现出的力学性能 一、拉伸时的应力——应变曲线
试 件 和 实 验 条 件
常 温 、 静 载
§9-4
1、 试件
(1)材料类型: 低碳钢: 塑性材料的典型代表; 灰铸铁: 脆性材料的典型代表;
(2)标准试件:
标距
L0
d0
标点
尺寸符合国标的试件;
弹性极限与比例极限非常接近,工程实际中通常对二者不 作严格区分,而近似地用比例极限代替弹性极限。
(2)屈服阶段 屈服点

s
曲线超过 b 点后,出现了一段锯齿形曲线, 这—阶段应力没有增加,而应变依然在增加,材 料好像失去了抵抗变形的能力,把这种应力不增 加而应变显著增加的现象称作屈服,bc段称为屈 服阶段。屈服阶段曲线最低点所对应的应力 s 称为屈服点(或屈服极限)。在屈服阶段卸载,将 出现不能消失的塑性变形。工程上一般不允许构 件发生塑性变形,并把塑性变形作为塑性材料破 坏的标志,所以屈服点 s 是衡量材料强度的一 个重要指标。

第六节 真实应力-应变曲线

第六节 真实应力-应变曲线

10
(2)第二个特征点是曲线的最高点b。这时载荷达到最 大值,与此 对应的条件应力称为抗拉强度。以σb表示。
在b点之前,试样均匀伸长,达 到b点时,试样开始产生缩颈,变 形集中发生在试样的某一局部,这 种现象叫做单向拉伸的失稳。 b— —失稳点。
此后,试件承载能力急剧下降, 曲线也迅速下降。
因此抗拉强度是均匀塑性变形和 局部塑性变形两个阶段的分界点。
38
采用外推的方法,间接推出D/H=0的真实应力,进 而求出真实应力-应变曲线。
39
四种圆柱,分别为D/H=0.5,1.0,,2.0,3.0。 试样两端涂上润滑剂,在垫板上分别进行压缩。记 录压缩后的高度H和压力P,可求得每种试样的S∈。
40
然后将每种试样的S-∈曲线转换成S-D/H曲线,再将每条 ∈相同的曲线延长外推到D/H=0的纵坐标轴上,得到截 距S1、S2、S3,便是试样在ε1、ε2、ε3 的真实应力。 再把 S1、ε1 ;S2、ε2 ;S3、ε3 转回到S-∈坐标中,连成 曲线,就是所求的真实应力-应变曲线。
F
14
3)第三类真实应力—应变曲线:真实应力—对数应变 (Y—∈)
Y f ()
对数应变(真实应变)的定义为: d dl l
l—为试样的瞬时长度。
d l—为瞬时长度的改变量
所以

l1 d
l
dl

ln
l 1
l0
l0 l
l0
15
金 属 塑
均匀拉伸时
ln l1 ln(l0 l ) ln(1 )
ln H 0 H
Y

P F

P F0e
式中H0、H—试样压缩前后的高度;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
e — 弹性极限
E E tan
-
(1)弹性阶段 比例极限σp
oa段是直线,应力与应变在此段成正比关系,材
料符合虎克定律,直线oa的斜率 tanE就是材
料的弹性模量,直线部分最高点所对应的应力值 记作σp,称为材料的比例极限。曲线超过a点,图 上ab段已不再是直线,说明材料已不符合虎克定 律。但在ab段内卸载,变形也随之消失,说明ab 段也发生弹性变形,所以ab段称为弹性阶段。b点 所对应的应力值记作σe ,称为材料的弹性极限。
-
4.塑性指标 试件拉断后,弹性变形消失,但塑性变形仍保 留下来。工程上用试件拉断后遗留下来的变形 表示材料的塑性指标。常用的塑性指标有两个:
伸长率: L1 L 100 % 断面收缩率 : LA A1 100 %
A L1 —试件拉断后的标距
L —是原标距 A1 —试件断口处的最小横截面面积 A —原横截面面积。
弹性极限与比例极限非常接近,工程实际中通常对二者不 作严格区分,而近似地用比例极限代替弹性极限。
-
(2)屈服阶段 屈服点
s
曲线超过b点后,出现了一段锯齿形曲线,
这—阶段应力没有增加,而应变依然在增加,材
料好像失去了抵抗变形的能力,把这种应力不增
加而应变显著增加的现象称作屈服,bc段称为屈
服阶段。屈服阶段曲线最低点所对应的应力
曲线没有明显的直线部分,应力较 小时,近似认为符合虎克定律。曲线没 有屈服阶段,变形很小时沿与轴线大约 成45°的斜截面发生破裂破坏。曲线最
高点的应力值 by 称为抗压强度。
铸铁材料抗压性能远好于抗拉性能, 这也是脆性材料共有的属性。因此,工 程中常用铸铁等脆性材料作受压构件, 而不用作受拉构件。
低碳钢是塑性材料,压缩时的应力–应变图, 如图示。
在屈服以前,压缩时的曲线和拉伸时的曲线 基本重合,屈服以后随着压力的增大,试样被 压成“鼓形”,最后被压成“薄饼”而不发生 断裂,所以低碳钢压缩时无强度极限。
-
3、灰铸铁
by
灰铸铁的
压缩曲线
bL
灰铸铁的 拉伸曲线
O
-
= 45o~55o 剪应力引起断裂
d g
o
f h
1、弹性范围内卸载、再加载 2、过弹性范围卸载、再加载
-
5、灰铸铁
对于脆性材料(铸铁),拉伸时的应力 应变曲线为微弯的曲线,没有屈服和径缩现 象,试件突然拉断。断后伸长率约为0.5%。 为典型的脆性材料。
bt
o
σbt—拉伸强度极限(约为140MPa)。它是 衡量脆性材料(铸铁)拉- 伸的唯一强度指标。
二、压缩时的应力——应变曲线 1、试样及试验条件
§9-5
载常 温 、 静
2、低碳钢压缩实验
(MPa) 400
低碳钢压缩 应力应变曲线
E(b)
C(s上)
f1(f)
低碳钢拉伸
g
(e) B
D(s下)
应力应变曲线
200 A(p)
E=Etgy=tg
O
O1 O2
0.1
-
0.2
金属材料的压缩试样,一般制成短圆柱形,柱的 高度约为直径的1.5 ~ 3倍,试样的上下平面有平行 度和光洁度的要求非金属材料,如混凝土、石料等 通常制成正方形。
称为屈服点(或屈服极限)。在屈服阶段卸载,将
s
出现不能消失的塑性变形。工程上一般不允许构
件发生塑性变形,并把塑性变形作为塑性材料破
坏的标志,所以屈服点
个重要指标。
s 是衡量材料强度的一
-
(3)强化阶段 抗拉强度 b
经过屈服阶段后,曲线从c点又开始逐渐上
升,说明要使应变增加,必须增加应力,材料 又恢复了抵抗变形的能力,这种现象称作强化, ce段称为强化阶段。曲线最高点所对应的应力
圆截面试件标距:L0=10d0或5d0
-
2、试验机
-
0
-
3、低碳钢拉伸曲线
-
e
Hale Waihona Puke bbe P
a c s
o
f
2、屈服阶段bc(失去抵 抗变形的能力)
s — 屈服极限
3、强化阶段ce(恢复抵抗 变形的能力)
b — 强度极限
4、局部径缩阶段ef
明显的四个阶段 1、弹性阶段ob P — 比例极限
-
-
塑性材料和脆性材料力学性能比较
塑性材料
脆性材料
延伸率 δ > 5%
延伸率 δ < 5%
断裂前有很大塑性变形
断裂前变形很小
抗压能力与抗拉能力相近 抗压能力远大于抗拉能力
可承受冲击载荷,适合于 适合于做基础构件或外壳 锻压和冷加工
材料的塑性和脆性会因为制造方法工艺条件 的改变而改变
-
应力——应变曲线
-
力学性质:在外力作用下材料在变形和破坏方面所 表现出的力学性能
一、拉伸时的应力——应变曲线
件试 件 和 实 验 条
§9-4
静常 载温

1、 试件
(1)材料类型: 低碳钢: 塑性材料的典型代表; 灰铸铁: 脆性材料的典型代表;
标距
L0
(2)标准试件:
d0
标点
尺寸符合国标的试件;
2.标用标于距准测:试试件的:等截面部分长度;
值记作 ,称b 为材料的抗拉强度(或强度极限),
它是衡量材料强度的又一个重要指标。
(4)缩颈断裂阶段
曲线到达e点前,试件的变形是均匀发生的, 曲线到达e点,在试件比较薄弱的某一局部(材 质不均匀或有缺陷处),变形显著增加,有效横 截面急剧减小,出现了缩颈现象,试件很快被 拉断,所以ef段称为缩颈断裂阶段。
、 值越大,其塑性越好。一般把 ≥5%的材 料称为塑性材料,如钢材、铜、铝等;把 <5%的
材料称为脆性材料,如铸铁、混凝土、石料等。 -
工程应用:冷作硬化
e
d
b
b
e P
a c s
即材料在卸载过程中 应力和应变是线形关系,
f 这就是卸载定律。
材料的比例极限增高, 延伸率降低,称之为冷作硬 化或加工硬化。
相关文档
最新文档