必修三第三章 概率经典练习题

合集下载

(好题)高中数学必修三第三章《概率》测试卷(含答案解析)(3)

(好题)高中数学必修三第三章《概率》测试卷(含答案解析)(3)

一、选择题1.已知ABCD 为正方形,其内切圆I 与各边分别切于,,,E F G H ,连接,,,EF FG GH HE ,现向正方形ABCD 内随机抛掷一枚豆子(豆子大小忽略不计),记事件A:豆子落在圆I 内;事件B:豆子落在四边形EFGH 外,则()P B A =( )A .14π-B .4π C .21π-D .2π2.从[]2,3-中任取一个实数a ,则a 的值使函数()sin f x x a x =+在R 上单调递增的概率为( ) A .45B .35C .25D .153.甲、乙两人约定某天晚上6:00~7:00之间在某处会面,并约定甲早到应等乙半小时,而乙早到无需等待即可离去,那么两人能会面的概率是( ) A .58B .13C .18D .384.如图,过球心的平面和球面的交线称为球的大圆.球面几何中,球O 的三个大圆两两相交所得三段劣弧AB ,BC ,CA 构成的图形称为球面三角形ABC . AB 与AC 所成的角称为球面角A ,它可用二面角B OA C --的大小度量.若球面角3A π=,2B π=,2C π=,则在球面上任取一点P ,P 落在球面三角形ABC 内的概率为( )A .16B .18C .112D .1165.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如40337=+.(注:如果一个大于1的整数除1和自身外无其他正因数,则称这个整数为素数.)在不超过11的素数中,随机选取2个不同的数,其和小于等于10的概率是( )A .12B .13C .14D .156.4名同学参加4项不同的课外活动,若每名同学可自由选择参加其中一项,则每项活动至少一名同学参加的概率为( ) A .49B .427C .364D .3327.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥.如图,半球内有一内接正四棱锥S ABCD -,该四棱锥的体积为423,现在半球内任取一点,则该点在正四棱锥内的概率为( )A .1πB .2C .3D .2π8.民间有一种五巧板拼图游戏.这种五巧板(图1)可以说是七巧板的变形,它是由一个正方形分割而成(图2),若在图2所示的正方形中任取一点,则该点取自标号为③和④的巧板的概率为( )A .518B .13C .718D .499.如图所示,在一个边长为2.的正方形AOBC 内,曲2y x =和曲线y x =图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是( )A.12B.14C.13D.1610.《易·系辞上》有“河出图,洛出书”之说,河图、洛书是中华文化,阴阳术数之源,其中河图的排列结构是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如图,白圈为阳数,黑点为阴数,若从阴数和阳数中各取一数,则其差的绝对值为5的概率为A.15B.625C.825D.2511.连续掷两次骰子,先后得到的点数,m n为点(,)P m n的坐标,那么点P在圆2217x y+=内部的概率是()A.13B.25C.29D.4912.在一个棱长为3cm的正方体的表面涂上颜色,将其适当分割成棱长为1cm的小正方体,全部放入不透明的口袋中,搅拌均匀后,从中任取一个,取出的小正方体表面仅有一个面涂有颜色的概率是()A.49B.827C.29D.127二、填空题13.2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足,医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援.若某医疗团队从3名男医生和2名女医生志愿者中,随机选取2名医生赴湖北支援,则至少有1名女医生被选中的概率为__________.14.一个多面体的直观图和三视图所示,M是AB的中点,一只蝴蝶在几何体ADF BCE -内自由飞翔,由它飞入几何体F AMCD -内的概率为______.15.在区间[2,4]-上随机地取一个实数x ,若实数x 满足||x m ≤的概率为23,则m =_______.16.在正方体的12条面对角线和4条体对角线中随机地选取两条对角线,则这两条对角线所在的直线为异面直线的概率等于________.17.西周初数学家商高在公元前1000年发现勾股定理的一个特例:勾三,股四,弦五.此发现早于毕达哥拉斯定理五百到六百年.我们把可以构成一个直角三角形三边的一组正整数称为勾股数.现从3,4,5,6,7,8,9,10,11,12,13这11个数中随机抽取3个数,则这3个数能构成勾股数的概率为__________.18.有五条线段,长度分别为2,3,5,7,9,从这五条线段中任取三条,则所取三条线段能构成一个三角形的概率为___________.19.如图,在平放的边长为1的正方形中随机撒1000粒豆子,有380粒落到红心阴影部分上,据此估计红心阴影部分的面积为____.20.已知7个实数1,2,4,,,,a b c d -依次构成等比数列,若从这7个数中任取2个,则它们的和为正数的概率为___________.三、解答题21.某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:日期 1月10日2月10日3月10日4月10日5月10日6月10日昼夜温差()°C x101113128 6就诊人数222529261612 y(人)该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的概率;(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出y关于x的线性=+;回归方程y bx a(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该小组所得线性回归方程是否理想?22.某校某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图(已知本次测试成绩满分100分,且均为不低于50分的整数),请根据图表中的信息解答下列问题.(1)求全班的学生人数及频率分布直方图中分数在[70,80)之间的矩形的高;(2)为了帮助学生提高数学成绩,决定在班里成立“二帮一”小组,即从成绩[90,100]中选两位同学,共同帮助[50,60)中的某一位同学,已知甲同学的成绩为53分,乙同学的成绩为96分,求甲、乙恰好被安排在同一小组的概率.23.班级新年晚会设置抽奖环节.不透明纸箱中有大小相同的红球3个,黄球2个,且这5个球外别标有数字1、2、3、4、5.有如下两种方案可供选择:方案一:一次性...抽取两球,若颜色相同,则获得奖品;方案二:依次有放回...地抽取两球,若数字之和大于5,则获得奖品.(1)写出按方案一抽奖的试验的所有基本事件;(2)哪种方案获得奖品的可能性更大?24.某中学为研究学生的身体素质与课外体育锻炼时间的关系,对该校200名学生的课外体育锻炼平均每天运动的时间(单位:min)进行调查,将收集到的数据分成[0,10),[10,20),[20,30),[30,40),[40,50),[50,60]六组,并作出频率分布直方图(如图).将日均课外体育锻炼时间不低于40 min的学生评价为“课外体育达标”.(1)请根据频率分布直方图中的数据填写下面的2×2列联表,并通过计算判断是否能在犯错误的概率不超过0.01的前提下认为“课外体育达标”与性别有关?课外体育不达标课外体育达标总计男60女110总计(2)现从“课外体育达标”学生中按分层抽样抽取5人,再从这5名学生中随机抽取2人参加体育知识问卷调查,求抽取的这2人课外体育锻炼时间都在[40,50)内的概率.附参考公式与数据:K2=2(-)()()()()n ad bca b c d a c b d ++++P(K2≥k0)0.100.050.0100.0050.001k02.7063.8416.6357.87910.82825.为响应国家“精准扶贫、精准脱贫”的号召,某贫困县在精准推进上下功夫,在精准扶贫上见实效.根据当地气候特点大力发展中医药产业,药用昆虫的使用相应愈来愈多,每年春暖以后到寒冬前,昆虫大量活动与繁殖,易于采取各种药用昆虫.已知一只药用昆虫的产卵数y(单位:个)与一定范围内的温度x(单位:℃)有关,于是科研人员在3月份的31天中随机选取了5天进行研究,现收集了该种药物昆虫的5组观察数据如表:日期2日7日15日22日30日温度x/℃101113128产卵数y/个2224292516(1)从这5天中任选2天,记这2天药用昆虫的产卵数分别为m ,n ,求“事件m ,n 均不小于24”的概率?(2)科研人员确定的研究方案是:先从这5组数据中任选2组,用剩下的3组数据建立线性回归方程,再对被选取的2组数据进行检验.①若选取的是3月2日与3月30日这2组数据,请根据3月7日、15日和22日这三组数据,求出y 关于x 的线性回归方程?②若由线性回归方程得到的估计数据与所选出的检验数据的差的绝对值均不超过2个,则认为得到的线性回归方程是可靠的,试问①中所得的线性回归方程是否可靠?附公式:ˆybx a =+,()()()121niii nii x x y y b x x ==--=-∑∑26.某校高三课外兴趣小组为了解高三同学高考结束后是否打算观看2019年足球世界杯比赛的情况,从全校高三年级1500名男生、1000名女生中按分层抽样的方式抽取125名学生进行问卷调查,情况如下表:(1)求出表中数据b ,c ;(2)判断是否有99%的把握认为观看2019年足球世界杯比赛与性别有关;(3)为了计算“从10人中选出9人参加比赛”的情况有多少种,我们可以发现它与“从10人中选出1人不参加比赛”的情况有多少种是一致的.现有问题:在打算观看2019年足球世界杯比赛的同学中有5名男生、2名女生来自高三(5)班,现从中推选5人接受校园电视台采访,请根据上述方法,求被推选出的5人中恰有四名男生、一名女生的概率.附:()()()()()22n ad bc K a b c d a c b d -=++++.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】分析:设正方形ABCD 边长为a ,分别求解圆I 和正方形EFGH 的面积,得到在圆I 内且在正方形EFGH 内的面积,即可求解()P B A . 详解:设正方形ABCD 边长为a ,则圆I 的半径为,2a r =其面积为21.4a π设正方形EFGH 边长为b ,,a b =⇒=其面积为211,2S a =则在圆I 内且在正方形EFGH 内的面积为21,S S S =- 故()121.S S P B A S π-==- 故选C .点睛:本题考查条件概率的计算,其中设正方形ABCD 边长和正方形EFGH 得到在圆I 内且在正方形EFGH 内的面积是解题的关键.2.C解析:C 【分析】先利用导数求出函数()sin f x x a x =+在R 上单调递增时a 的范围,然后再由几何概型的知识解决问题. 【详解】∵()'1cos f x a x =+,要使函数()sin f x x a x =+在R 上单调递增,则1cos 0a x +≥对任意实数x 都成立.∵1cos 1x -≤≤,∴①当0a >时,cos a a x a -≤≤,∴1a -≥-,∴01a <≤;②当0a =时适合;③当0a <时,cos a a x a ≤≤-,∴1a ≥-,∴10a -≤<,综上11a -≤≤,∴函数()sin f x x a x =+在R 上单调递增的概率为25P =.选C . 【点睛】 本题主要考查已知函数的单调性求参数的范围及几何概型问题,属中等难度题.3.D解析:D 【分析】由题意知本题是一个几何概型,试验包含的所有事件是{(,)|01x y x Ω=,01}y ,写出满足条件的事件是{(,)|01A x y x =,01y ,12y x -≤,}x y ≤,算出事件对应的集合表示的面积,根据几何概型概率公式得到结果. 【详解】解:由题意知本题是一个几何概型,设甲到的时间为x ,乙到的时间为y ,则试验包含的所有事件是{(,)|01x y x Ω=,01}y , 事件对应的集合表示的面积是1S =,满足条件的事件是{(,)|01A x y x =,01y ,12y x -≤,}x y ≤, 则()1,1B ,1,12C ⎛⎫⎪⎝⎭,10,2D ⎛⎫ ⎪⎝⎭, 则事件A 对应的集合表示的面积是111131122228⨯⨯-⨯⨯=,根据几何概型概率公式得到33818P ==; 所以甲、乙两人能见面的概率38P =. 故选:D .【点睛】本题主要考查几何概型的概率计算,要解决此问题,一般要通过把试验发生包含的事件所对应的区域求出,根据集合对应的图形面积,用面积的比值得到结果.4.C解析:C 【分析】根据球体的性质,利用面积比求出概率即可. 【详解】解:由题知,球面角3A π=,2B π=,2C π=,则得出球面三角形ABC 是112的球面,设球面三角形ABC 的面积为S , 则球面上任取一点P ,P 落在球面三角形ABC 内的概率为:1=12S P S =球. 故选:C. 【点睛】本题考查面积型几何概型,通过面积比求概率,还考查球体的性质和应用,解题时需要认真审题和理解分析题目.5.A解析:A 【分析】先列出不超过11的素数,再列举出随机选取2个不同的数的情况,进而找到和小于等于10的情况,即可求解 【详解】不超过11的素数有:2,3,5,7,11,共有5个, 随机选取2个不同的数可能为:()2,3,()2,5,()2,7,()2,11,()3,5,()3,7,()3,11,()5,7,()5,11,()7,11,共有10种情况, 其中和小于等于10的有:()2,3,()2,5,()2,7,()3,5,()3,7,共有5种情况, 则概率为51102P , 故选:A 【点睛】本题考查列举法求古典概型的概率,属于基础题6.D解析:D 【分析】先求出基本事件总数n ,再求出每项活动至少有一名同学参加,包含的基本事件个数,由此能求出每项活动至少有一名同学参加的概率. 【详解】因为4名同学参加4项不同的课外活动,若每名同学可自由选择参加其中一项,所以基本事件总数n =44,每项活动至少有一名同学参加,因此4名同学分别参加一项活动,共有44A 种不同的情况.因此:每项活动至少一名同学参加的概率为:4443432A p ==. 【点睛】本题考查了排列组合在古典概型中的应用,考查了学生综合分析,转化与划归的能力,属于中档题.7.A解析:A 【分析】先根据四棱锥的体积求出球的半径,再根据几何概型概率公式求结果. 【详解】因为四棱锥的体积为3,设球半径为R,则1122332R R R R =⨯⨯⨯⨯∴=因此所求概率为3131423ππ=⨯,故选:A 【点睛】本题考查四棱锥体积、球体积以及几何概型概率公式,考查综合分析求解能力,属中档题.8.C解析:C 【分析】分别求出③和④的巧板的面积,根据几何概型的概率关系转化为面积比. 【详解】设巧板①的边长为1,则结合图2可知大正方形的边长为3, 其面积239S ==.其中巧板③是底边长为2的等腰直角三角形,其面积为112112S =⨯⨯=,巧板④的正方形 与腰长为1的等腰直角三角形的组合图形,其面积为22151122S ⨯⨯+==, 故所求的概率12718S S P S +==. 故选:C . 【点睛】本题考查几何概型的概率求法,转化为面积比,属于中档题 .9.C解析:C 【分析】欲求所投的点落在叶形图内部的概率,须结合定积分计算叶形图(阴影部分)平面区域的面积,再根据几何概型概率计算公式求解. 【详解】联立2y y x⎧=⎪⎨=⎪⎩(1,1)C .由图可知基本事件空间所对应的几何度量1OBCA S =正方形, 满足所投的点落在叶形图内部所对应的几何度量:S (A)3123120021)()|33x dx x x ==-⎰13=. 所以P (A )1()1313OBCAS A S ===正方形. 故选:C . 【点睛】本题综合考查了几何概型及定积分在求面积中的应用,考查定积分的计算,意在考查学生对这些知识的理解掌握水平.10.A解析:A 【分析】阳数:1,3,5,7,9,阴数:2,4,6,8,10,然后分析阴数和阳数差的绝对值为5的情况数,最后计算相应概率. 【详解】因为阳数:1,3,5,7,9,阴数:2,4,6,8,10,所以从阴数和阳数中各取一数差的绝对值有:5525⨯=个,满足差的绝对值为5的有:()()()()()1,6,3,8,5,10,7,2,9,4共5个,则51255P ==. 故选A. 【点睛】本题考查实际背景下古典概型的计算,难度一般.古典概型的概率计算公式:P =目标事件的个数基本本事件的总个数.11.C解析:C 【分析】所有的点(,)P m n 共有6636⨯=个,用列举法求得其中满足2217x y +<的点(,)P m n 有8个,由此求得点P 在圆2217x y +=内部的概率.【详解】所有的点(,)P m n 共有6636⨯=个,点P 在圆2217x y +=内部,即点(,)P m n 满足2217x y +<,故满足此条件的点(,)P m n 有:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)共8个,故点P 在圆2217x y +=内部的概率是82369=, 故选C.【点睛】该题考查的是有关古典概型概率的求解问题,涉及到的知识点有古典概型概率公式,在解题的过程中,正确找出基本事件的个数以及满足条件的基本事件数是关键.12.C解析:C【分析】由在27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面仅有一个面涂有颜色,有6种结果,根据古典概型及其概率的计算公式,即可求解.【详解】由题意,在27个小正方体中,恰好有三个面都涂色有颜色的共有8个,恰好有两个都涂有颜色的共12个,恰好有一个面都涂有颜色的共6个,表面没涂颜色的1个,可得试验发生包含的事件是从27个小正方体中选一个正方体,共有27种结果,满足条件的事件是取出的小正方体表面仅有一个面涂有颜色,有6种结果,所以所求概率为62279=.故选:C.【点睛】本题主要考查了古典概型及其概率的计算公式的应用,其中解答根据几何体的结构特征,得出基本事件的总数和所求事件所包含基本事件的个数是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.二、填空题13.【分析】基本事件总数选中的都是男医生包含的基本事件个数根据对立事件的概率能求出选中的至少有1名女医生的概率【详解】因为医疗团队从3名男医生和2名女医生志愿者所以随机选取2名医生赴湖北支援共有个基本事解析:7 10【分析】基本事件总数2510n C==,选中的都是男医生包含的基本事件个数233m C==,根据对立事件的概率能求出选中的至少有1名女医生的概率.【详解】因为医疗团队从3名男医生和2名女医生志愿者,所以随机选取2名医生赴湖北支援共有2510n C==个基本事件,又因为选中的都是男医生包含的基本事件个数233m C==,所以至少有1名女医生被选中的概率为3711010 P=-=.故答案为:7 10【点睛】本题主要考查了排列组合,古典概型,对立事件,属于中档题.14.【分析】先根据三棱锥的体积公式求出的体积与三棱锥的体积公式求出的体积最后根据几何概型的概率公式解之即可【详解】解:因为所以它飞入几何体内的概率为故答案为:【点睛】本题主要考查空间几何体的体积公式以及解析:12【分析】先根据三棱锥的体积公式求出F AMCD-的体积与三棱锥的体积公式求出ADF BCE-的体积,最后根据几何概型的概率公式解之即可.【详解】解:因为31134F AMCD AMCDV S DF a-=⨯⨯=,312ADF BCEV a-=所以它飞入几何体F AMCD-内的概率为33114122aa=,故答案为:12.【点睛】本题主要考查空间几何体的体积公式,以及几何概型的应用,同时考查了空间想象能力和计算能力,属于中档题.15.2【分析】画出数轴利用满足的概率可以求出的值即可【详解】如图所示区间的长度是6在区间上随机地取一个数若满足的概率为则有解得故答案是:2【点睛】该题考查的是有关长度型几何概型的问题涉及到的知识点有长度解析:2【分析】画出数轴,利用x满足||x m≤的概率,可以求出m的值即可.【详解】如图所示,区间[2,4]-的长度是6,在区间[2,4]-上随机地取一个数x,若x满足||x m≤的概率为23,则有2263m =,解得2m =, 故答案是:2. 【点睛】该题考查的是有关长度型几何概型的问题,涉及到的知识点有长度型几何概型的概率公式,属于简单题目.16.【分析】将异面直线分为两种情况:(1)两条面对角线是异面直线(2)一条面对角线和一条体对角线是异面直线由此分别计算出满足要求的方法数最后即可计算出相应概率【详解】由于4条体对角线都经过正方体的中心所 解析:920【分析】将异面直线分为两种情况:(1)两条面对角线是异面直线,(2)一条面对角线和一条体对角线是异面直线,由此分别计算出满足要求的方法数,最后即可计算出相应概率. 【详解】由于4条体对角线都经过正方体的中心,所选的两条对角线至少包含一条面对角线: ①两条对角线都是面对角线:任取1条面对角线,剩余的11条面对角线中,有5条与之异面,考虑重复选取,125302⨯∴=(种); ②一条面对角线一条体对角线:任取1条面对角线,有2条体对角线与之异面,∴12224⨯=(种) ∴概率为2163024920C +=. 故答案为:920. 【点睛】本题考查异面直线的理解以及用排列组合的方法计算概率,难度一般.排列组合的方法计算相应概率时,可采用古典概型的概率计算方法:先计算出基本事件的总数,然后计算出满足要求的基本事件的数量,此时P =满足要求的基本事件数量基本事件的总数.17.【分析】由组合数结合古典概型求解即可【详解】从11个数中随机抽取3个数有种不同的方法其中能构成勾股数的有共三种所以所求概率为故答案为【点睛】本题考查古典概型与数学文化考查组合问题数据处理能力和应用意识 解析:155【分析】由组合数结合古典概型求解即可 【详解】从11个数中随机抽取3个数有311C 种不同的方法,其中能构成勾股数的有共()()()3,4,5,6,8,10,5,12,13三种,所以,所求概率为3113155P C ==. 故答案为155【点睛】本题考查古典概型与数学文化,考查组合问题,数据处理能力和应用意识.18.【解析】【分析】列出所有的基本事件并找出事件所取三条线段能构成一个三角形所包含的基本事件再利用古典概型的概率公式计算出所求事件的概率【详解】所有的基本事件有:共个其中事件所取三条线段能构成一个三角形 解析:310【解析】 【分析】列出所有的基本事件,并找出事件“所取三条线段能构成一个三角形”所包含的基本事件,再利用古典概型的概率公式计算出所求事件的概率. 【详解】所有的基本事件有:()2,3,5、()2,3,7、()2,3,9、()2,5,7、()2,5,9、()2,7,9、()3,5,7、()3,5,9、()3,7,9、()5,7,9,共10个,其中,事件“所取三条线段能构成一个三角形”所包含的基本事件有:()3,5,7、()3,7,9、()5,7,9,共3个,由古典概型的概率公式可知,事件“所取三条线段能构成一个三角形”的概率为310, 故答案为310. 【点睛】本题考查古典概型的概率的计算,解题的关键就是列举基本事件,常见的列举方法有:枚举法和树状图法,列举时应遵循不重不漏的基本原则,考查计算能力,属于中等题.19.38【解析】【分析】根据几何槪型的概率意义即可得到结论【详解】正方形的面积S =1设阴影部分的面积为S ∵随机撒1000粒豆子有380粒落到阴影部分∴由几何槪型的概率公式进行估计得即S =038故答案为:解析:38 【解析】 【分析】根据几何槪型的概率意义,即可得到结论. 【详解】正方形的面积S =1,设阴影部分的面积为S , ∵随机撒1000粒豆子,有380粒落到阴影部分, ∴由几何槪型的概率公式进行估计得38011000S =, 即S =0.38, 故答案为:0.38. 【点睛】本题主要考查几何槪型的概率的计算,利用豆子之间的关系建立比例关系是解决本题的关键,比较基础.20.【分析】根据前几项可知数列的首项为公比为由此求得的值基本事件的总数有和为正数分成两种情况一种是取出的两个数都是正数另一种是一个正数一个负数由此计算出和为正数的方法数根据古典概型概率计算公式求得概率的 解析:47【分析】根据前几项可知,数列的首项为1,公比为2-,由此求得,,,a b c d 的值.基本事件的总数有27C .和为正数分成两种情况,一种是取出的两个数都是正数,另一种是一个正数一个负数,由此计算出和为正数的方法数,根据古典概型概率计算公式求得概率的值. 【详解】由题意得,这7个实数为1,2,48,16,32,64---①所选2个数均为正数:246C =(种);②所选2个数一正一负:2,4-、2,16-、2,64-、8,16-、8,64-、32,64-,共6(种)276647P C +∴==,故填4.7【点睛】本小题主要考查古典概型的概率计算,考查了等比数列的概念.在计算古典概率的过程中,首先求得分母,也即是基本事件的总数,由于抽取时没有顺序,故用组合数来计算.然后考虑分子,分子是符合题意事件的个数,要用分类加法计数原理分成两种情况来求解.中档题.三、解答题21.(1)13(2)1830ˆ77yx =-(3)该小组所得线性回归方程是理想的 【详解】(1)设抽到相邻两个月的数据为事件.因为从6组数据中选取2组数据共有15种情况,每种情况都是等可能出现的, 其中抽到相邻两个月的数据的情况有5种,∴.(2)由数据求得,由公式,得,所以关于的线性回归方程为1830ˆ77yx =-. (3)当时,,有; 同样,当时,,有;所以,该小组所得线性回归方程是理想的. 22.(1)50人,0.04;(2)18【分析】(1)先根据频数计算在[50,60)上的频率,继而求得全班总人数,再根据[70,80)之间的人数求得[70,80)之间的频率与高即可.(2)根据题意求得[50,60)中的人数与[90,100)分数段内的人数,再编号利用枚举法求解即可. 【详解】(1)由茎叶图知分数在[50,60)上的频数为4, 频率为0.008×10=0.08, 故全班的学生人数为40.08=50人, ∵分数在[70,80)间的频数为:50﹣(4+14+8+4)=20, ∴频率是200.450=,∴矩形的高是0.410=0.04. (2)成绩在[50,60)分数段内的人数有4人,记为甲、A 、B 、C , 成绩在[90,100)分数段内的人数有4人,记为乙、a ,b ,c , 则“二帮一”小组有以下24种分组办法:甲乙a ,甲乙b ,甲乙c ,甲ab ,甲ac ,甲bc ,A 乙a ,A 乙b , A 乙c ,Aab ,Aac ,Abc ,B 乙a ,B 乙b ,B 乙c ,Bab , Bac ,Bbc ,C 乙a ,C 乙b ,C 乙c ,Cab ,Cac ,Cbc ,其中,甲、乙两同学被分在同一小组有3种办法:甲乙a ,甲乙b ,甲乙c , ∴甲乙两同学恰好被安排在同一小组的概率为P 31248==. 【点睛】本题主要考查了茎叶图与频率分布直方图的应用,同时也考查了枚举法解决古典概型问题,属于基础题.23.(1)见解析(2)方案二获得奖品的可能性更大. 【分析】。

(好题)高中数学必修三第三章《概率》测试卷(答案解析)

(好题)高中数学必修三第三章《概率》测试卷(答案解析)

一、选择题1.古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:将一线段MN 分为两线段MG ,GN ,使得其中较长的一段MG 是全长MN 与另一段GN GN 的比例中项,即满足512MG NG MN MG -==,后人把这个数称为“黄金分割”数,把点G 称为线段MN 的“黄金分割”点.在矩形ABCD 中,E ,F 是线段AB 的两个“黄金分割”点.在矩形ABCD 内任取一点M ,则该点落在DEF 内的概率为( )A .52- B .51- C .52- D .51- 2.从[]2,3-中任取一个实数a ,则a 的值使函数()sin f x x a x =+在R 上单调递增的概率为( ) A .45B .35C .25D .153.算盘是中国传统的计算工具,其形长方,周为木框,内贯直柱,俗称“档”,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每珠作数一.算珠梁上部分叫上珠,梁下部分叫下珠.例如:在十位档拨上一颗上珠和一颗下珠,个位档拨上一颗上珠,则表示数字65.若在个、十、百位档中随机选择一档拨一颗上珠,再随机选择两个档位各拨一颗下珠,则所拨数字为奇数的概率为( )A .13B .49C .59D .234.如图,一个边长为2的正方形里有一个月牙形的图案,为了估算这个月牙形图案的面积,向这个正方形里随机投入500粒芝麻,经过统计,落在月牙形图案内的芝麻有150粒,则这个月牙图案的面积约为( )A .35B .45C .1D .655.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰好有6个白球的概率为( )A .46801010100C C C ⋅ B .64208001010C C C ⋅ C .46208001010C C C ⋅ D .64801010100C C C ⋅ 6.若函数()201)((1)x lnx e x f x e x e ⎧+<<=⎨≤<⎩在区间()0,e 上随机取一个实数x ,则()f x 的值小于常数2e 的概率是( ) A .1eB .11e-C .2eD .21e-7.甲乙两艘轮船都要在某个泊位停靠,甲停靠的时间为4小时,乙停靠的时间为6小时,假定他们在一昼夜的时间段中随机到达,则这两艘船停靠泊位时都不需要等待的概率为( )A .916B .58C .181288D .5128.某研究机构在对具有线性相关的两个变量x 和y 进行统计分析时,得到如下数据:x 4 6 8 10 12 y12356由表中数据求得y 关于的回归方程为,则在这些样本点中任取一点,该点落在回归直线下方的概率为( ) A .25B .35C .34D .129.图1是我国古代数学家赵爽创制的一幅“勾股圆方图”(又称“赵爽弦图”),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,受其启发,某同学设计了一个图形,它是由三个全等的钝角三角形与中间一个小正三角形拼成一个大正三角形,如图2所示,若5AD =,3BD =,则在整个图形中随机取点,此点来自中间一个小正三角形(阴影部分)的概率为( )A.964B.449C.225D.2710.如图所示,在一个边长为2.的正方形AOBC内,曲2y x=和曲线y x=围成一个叶形图(阴影部分),向正方形AOBC内随机投一点(该点落在正方形AOBC内任何一点是等可能的),则所投的点落在叶形图内部的概率是()A.12B.14C.13D.1611.如图的折线图是某公司2018年1月至12月份的收入与支出数据,若从6月至11月这6个月中任意选2个月的数据进行分析,则这2个月的利润(利润=收入﹣支出)都不高于40万的概率为()A.15B.25C.35D.4512.在二项式42nxx的展开式,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为()A.16B.14C.512D.13二、填空题13.有一个底面半径为2,高为2的圆柱,点1O ,2O 分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P ,则点P 到点1O 或2O 的距离不大于1的概率是________.14.甲乙两艘轮船都要在某个泊位停靠8个小时,假定它们在一昼夜的时间段内随机地到达,则两船中有一艘在停靠泊位时、另一艘船必须等待的概率为______.15.某学校高三年级有A 、B 两个自习教室,甲、乙、丙3名学生各自随机选择其中一个教室自习,则甲、乙两人不在同一教室上自习的概率为________.16.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率:先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7, 8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了 20组随机数:7527 0293 7140 9857 0347 4373 8636 6947 1417 4698 0371 6233 2616 8045 6011 3661 9597 7424 7610 4281根据以上数据估计该射击运动员射击4次至少击中3次的概率为__________.17.有五条线段,长度分别为2,3,5,7,9,从这五条线段中任取三条,则所取三条线段能构成一个三角形的概率为___________.18.在区间[,]22ππ-上随机取一个实数x ,则事件“13sin cos 2x x -≤+≤”发生的概率是__________.19.如图,在半径为1的圆上随机地取两点,B E ,连成一条弦BE ,则弦长超过圆内接正BCD ∆边长的概率是__________.20.某公司的班车在8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是__________三、解答题21.改革开放40年来,体育产业蓬勃发展反映了“健康中国”理念的普及.下图是我国2006年至2016年体育产业年增加值及年增速图.其中条形图为体育产业年增加值(单位:亿元),折线图为体育产业年增长率(%).(Ⅰ)从2007年至2016年随机选择1年,求该年体育产业年增加值比前一年的体育产业年增加值多500亿元以上的概率;(Ⅱ)从2007年至2016年随机选择3年,设X 是选出的三年中体育产业年增长率超过20%的年数,求X 的分布列与数学期望;(Ⅲ)由图判断,从哪年开始连续三年的体育产业年增长率方差最大?从哪年开始连续三年的体育产业年增加值方差最大?(结论不要求证明)22.在这智能手机爆发的时代,大部分高中生都有手机,在手机面前,有些学生无法抵御手机尤其是手机游戏和短视频的诱惑,从而导致无法专心完成学习任务,成绩下滑;但是对于自制力强,能有效管理自己的学生,手机不仅不会对他们的学习造成负面影响,还能成为他们学习的有力助手,我校某研究型学习小组调查研究“中学生使用智能手机对学习的影响部分统计数据如下表:不使用手机 使用手机 合计 学习成绩优秀人数 28 12 40 学习成绩不优秀人数 14 26 40 合计423880参考数据:22()()()()()n ad bc K a c b d a b c d -=++++,其中n a b c d =+++.()20P K k ≥ 0.10 0.05 0.025 0.010 0.005 0.001 0k2.7063.8415.0246.6357.87910.828(1)试根据以上数据,运用独立性检验思想,指出有多大把握认为中学生使用手机对学习有影响?(2)研究小组将该样本中不使用手机且成绩优秀的同学记为A组,使用手机且成绩优秀的同学记为B组,计划从A组推选的4人和B组推选的2人中,随机挑选两人来分享学习经验,求挑选的两人中一人来自A组、另一人来自B组的概率.23.某校某班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图(已知本次测试成绩满分100分,且均为不低于50分的整数),请根据图表中的信息解答下列问题.(1)求全班的学生人数及频率分布直方图中分数在[70,80)之间的矩形的高;(2)为了帮助学生提高数学成绩,决定在班里成立“二帮一”小组,即从成绩[90,100]中选两位同学,共同帮助[50,60)中的某一位同学,已知甲同学的成绩为53分,乙同学的成绩为96分,求甲、乙恰好被安排在同一小组的概率.24.从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)求频率分布直方图中的a,b的值;(2)从阅读时间在[14,18)的学生中任选2人,求恰好有1人阅读时间在[14,16),另1人阅读时间在[16,18)的概率.25.在一次跳绳活动中,某学校从高二年级抽取了100位同学一分钟内跳绳,由测量结果得到如图所示的频率分布直方图,落在区间[140,150),[150,160),[160,170]内的频率之比为4:2:1.(1)求跳绳次数落在区间[150,160)内的频率;(2)用分层抽样的方法在区间[130,160)内抽取6位同学,将该样本看成一个总体,从中任意抽取2位同学,求这2位同学跳绳次数都在区间[130,150)内的概率.26.某消费者协会在3月15号举行了以“携手共治,畅享消费”为主题的大型宣传咨询服务活动,着力提升消费者维权意识.组织方从参加活动的1000名群众中随机抽取n名群众,按他们的年龄分组:第1组[20,30),第2组[30,40),第3组[40,50),第4组[50,60),第5组[60,70],其中第1组[20,30)有6人,得到的频率分布直方图如图所示.(1)求m ,n 的值,并估计抽取的n 名群众中年龄在[40,60)的人数;(2)已知第1组群众中男性有2人,组织方要从第1组中随机抽取3名群众组成维权志愿者服务队,求至少有两名女生的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】分别求出对应的面积,进而求得结论. 【详解】解:设正方形ABCD 的边长为1,则51AF BE -==,∴2152EF AF =-=, ∴所求的概率为21522DEFABCDEF ADSP S AD ⨯⨯-===正方形 故选:C . 【点睛】本题主要考查几何概型,几何概型的概率估算公式中的“几何度量”,可以为线段长度、面积、体积等,而且这个“几何度量”只与“大小”有关,而与形状和位置无关.解决的步骤均为:求出满足条件A 的基本事件对应的“几何度量” ()N A ,再求出总的基本事件对应的“几何度量” N ,最后根据()N A PN求解,属于中档题. 2.C解析:C 【分析】先利用导数求出函数()sin f x x a x =+在R 上单调递增时a 的范围,然后再由几何概型的知识解决问题.【详解】∵()'1cos f x a x =+,要使函数()sin f x x a x =+在R 上单调递增,则1cos 0a x +≥对任意实数x 都成立.∵1cos 1x -≤≤,∴①当0a >时,cos a a x a -≤≤,∴1a -≥-,∴01a <≤;②当0a =时适合;③当0a <时,cos a a x a ≤≤-,∴1a ≥-,∴10a -≤<,综上11a -≤≤,∴函数()sin f x x a x =+在R 上单调递增的概率为25P =.选C . 【点睛】 本题主要考查已知函数的单调性求参数的范围及几何概型问题,属中等难度题.3.C解析:C 【分析】列举法列举出所有可能的情况,利用古典概型的计算方法计算即可. 【详解】解:依题意得所拨数字可能为610,601,511,160,151,115,106,61,16,共9个,其中有5个是奇数,则所拨数字为奇数的概率为59,故选:C. 【点睛】本题考查概率的实际应用问题,考查古典概型的计算方法,同时考查了学生的阅读能力和文化素养,属于中档题.4.D解析:D 【分析】利用与面积有关的几何概型概率计算公式求解即可. 【详解】由题可知,正方形的面积为=22=4S ⨯正,设这个月牙图案的面积为S , 由与面积有关的几何概型概率计算公式可得,向这个正方形里随机投入芝麻,落在月牙形图案内的概率为150=4500S S P S ==正,解得65S =. 故选:D 【点睛】本题考查与面积有关的几何概型概率计算公式;属于基础题、常考题型.5.C解析:C 【分析】根据古典概型的概率公式求解即可. 【详解】从袋中任取10个球,共有10100C 种,其中恰好有6个白球的有468020C C ⋅种即其中恰好有6个白球的概率为46208001010C C C ⋅ 故选:C 【点睛】本题主要考查了计算古典概型的概率,属于中档题.6.C解析:C 【分析】首先求出分段函数在各区间段的值域,然后利用几何概型求其概率. 【详解】 由题意得,当01x <<时,2()ln f x x e =+,则恒有2()f x e <,满足题意; 当1x e ≤<时,()xf x e =,若满足2()xf x e e =<,可得12x ≤<; 所以()f x 的值小于常数2e 的概率是2e. 故选:C. 【点睛】本题主要考查长度比值类型的几何概型,同时考查了分段函数值域的求解,属于基础题.7.C解析:C 【分析】设甲、乙到达的时间分别为,x y ,列出所有基本事件的约束条件,同时列出两艘船停靠泊位时都不需要等待的约束条件,利用线性规划做出平面区域,利用几何概型概率关系转化为面积比. 【详解】设甲、乙到达的时间分别为,x y ,则所有基本事件的构成的区域024{|}024x x y ≤≤⎧Ω=⎨≤≤⎩, 则这两艘船停靠泊位时都不需要等待包含的基本事件构成的区域024024{(,)|}46x y A x y y x x y ≤≤⎧⎪≤≤⎪=⎨≥+⎪⎪≥+⎩,做出Ω构成的区域,其面积为224=576,阴影部分为集合A 构成的区域,面积为221(2018)3622+=,这两艘船停靠泊位时都不需要等待的概率362181()576288P A ==. 故选:C.【点睛】本题考查利用线性规划做出事件对应的平面区域,再利用几何概型概率公式求出事件的概率,属于中档题.8.A解析:A 【分析】求出样本点的中心,求出ˆa的值,得到回归方程得到5个点中落在回归直线下方的有(6,2),(8,3),共2个,求出概率即可.【详解】8x =, 3.4y =,故3.40.658ˆa=⨯+,解得: 1.8a =-, 则0.65.8ˆ1yx =-, 故5个点中落在回归直线下方的有(6,2),(8,3),共2个, 故所求概率是25p =, 故选:A . 【点睛】本题考查回归方程概念、概率的计算以及样本点的中心,考查数据处理能力,是一道基础题.9.B解析:B 【分析】求得120ADB ∠=︒,在ABD 中,运用余弦定理,求得AB ,以及DE ,根据三角形的面积与边长之间的关系即可求解. 【详解】 解:18060120ADB ∠=︒-︒=︒,在ABD 中,可得2222cos AB AD BD AD BD ADB =+-⋅∠, 即为222153253492AB ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,解得7AB =, 2DE AD BD =-=,224()749DEF ABCSS∴==. 故选:B . 【点睛】本题考查三角形的余弦定理,同时也考查了利用几何概型的概率公式计算概率,考查方程思想和运算能力,属于基础题.10.C解析:C 【分析】欲求所投的点落在叶形图内部的概率,须结合定积分计算叶形图(阴影部分)平面区域的面积,再根据几何概型概率计算公式求解.【详解】联立2y y x⎧=⎪⎨=⎪⎩(1,1)C . 由图可知基本事件空间所对应的几何度量1OBCA S =正方形, 满足所投的点落在叶形图内部所对应的几何度量:S(A )3123120021)()|33x dx x x ==-⎰13=. 所以P (A )1()1313OBCAS A S ===正方形. 故选:C . 【点睛】本题综合考查了几何概型及定积分在求面积中的应用,考查定积分的计算,意在考查学生对这些知识的理解掌握水平.11.B解析:B 【分析】从7月至12月这6个月中任意选2个月的数据进行分析,基本事件总数2615n C ==,由折线图得6月至11月这6个月中利润(利润=收入-支出)低于40万的有6月,9月,10月,由此即可得到所求. 【详解】如图的折线图是某公司2017年1月至12月份的收入与支出数据, 从6月至11月这6个月中任意选2个月的数据进行分析,基本事件总数2615n C ==,由折线图得6月至11月这6个月中利润(利润=收入-支出)不高于40万的有6月,8月,9月,10月,∴这2个月的利润(利润=收入-支出)都不高于40万包含的基本事件个数246m C ==, ∴这2个月的利润(利润=收入-支出)都低于40万的概率为62155m P n ===, 故选:B 【点睛】本题主要考查了古典概型,考查了运算求解能力,属于中档题.12.C解析:C 【分析】先根据前三项的系数成等差数列求n ,再根据古典概型概率公式求结果 【详解】因为n前三项的系数为1212111(1)1,,112448n n n n n n C C C C n -⋅⋅∴=+⋅∴-= 163418118,0,1,2,82rr r r n n T C x r -+>∴=∴=⋅=,当0,4,8r =时,为有理项,从而概率为636799512A A A =,选C. 【点睛】本题考查二项式定理以及古典概型概率,考查综合分析求解能力,属中档题.二、填空题13.【分析】本题利用几何概型求解先根据到点的距离等于1的点构成图象特征求出其体积最后利用体积比即可得点到点的距离不大于1的概率;【详解】解:由题意可知点P 到点或的距离都不大于1的点组成的集合分别以为球心解析:16【分析】本题利用几何概型求解.先根据到点的距离等于1的点构成图象特征,求出其体积,最后利用体积比即可得点P 到点1O ,2O 的距离不大于1的概率; 【详解】解:由题意可知,点P 到点1O 或2O 的距离都不大于1的点组成的集合分别以1O 、2O 为球心,1为半径的两个半球,其体积为314421233ππ⨯⨯⨯=,又该圆柱的体积为22228V r h πππ==⨯⨯=,则所求概率为41386P ππ==.故答案为:16【点睛】本题主要考查几何概型、圆柱和球的体积等基础知识,考查运算求解能力,考查空间想象力、化归与转化思想.关键是明确满足题意的测度为体积比.14.【分析】利用几何概型的面积型概率计算作出边长为24的正方形面积求出部分的面积即可求得答案【详解】设甲乙两艘轮船到达的时间分为则记事件为两船中有一艘在停靠泊位时另一艘船必须等待则即∴故答案为:【点睛】解析:59【分析】利用几何概型的面积型概率计算,作出边长为24的正方形面积,求出||8x y -≤部分的面积,即可求得答案. 【详解】设甲乙两艘轮船到达的时间分为,x y ,则024,024x y ≤≤≤≤,记事件A 为两船中有一艘在停靠泊位时、另一艘船必须等待,则||8x y -≤, 即8,8,y x y x ≥-⎧⎨≤+⎩∴2222241625()1()2439S P A S -===-=阴影正方形. 故答案为:59.【点睛】本题考查几何概型,考查转化与化归思想、数形结合思想,考查逻辑推理能力和运算求解能力,求解时注意对概率模型的抽象成面积型.15.【分析】利用乘法计数原理可计算出甲乙丙名学生各自随机选择其中一个教室自习共有种利用分步乘法计数原理计算出甲乙两人不在同一教室上自习的排法种数然后利用古典概型的概率公式可计算出所求事件的概率【详解】由解析:1 2【分析】利用乘法计数原理可计算出甲、乙、丙3名学生各自随机选择其中一个教室自习共有32种,利用分步乘法计数原理计算出甲、乙两人不在同一教室上自习的排法种数,然后利用古典概型的概率公式可计算出所求事件的概率.【详解】由题意可知,甲、乙、丙3名学生各自随机选择其中一个教室自习共有32种,甲、乙两人不在同一教室上自习,可先考虑甲在A、B两个自习教室选一间教室自习,然后乙在另一间教室自习,则丙可在A、B两个自习教室随便选一间自习教室自习,由分步计数原理可知,有224⨯=种选择.因此,甲、乙两人不在同一教室上自习的概率为41 82 =.故答案为:1 2 .【点睛】本题考查利用古典概型的概率公式计算事件的概率,同时也考查了分步计数原理的应用,考查计算能力,属于中等题.16.【分析】根据数据统计击中目标的次数再用古典概型概率公式求解【详解】由数据得射击4次至少击中3次的次数有15所以射击4次至少击中3次的概率为故答案为:【点睛】本题考查古典概型概率公式考查基本分析求解能解析:3 4【分析】根据数据统计击中目标的次数,再用古典概型概率公式求解.【详解】由数据得射击4次至少击中3次的次数有15,所以射击4次至少击中3次的概率为153 204=.故答案为:3 4【点睛】本题考查古典概型概率公式,考查基本分析求解能力,属基础题.17.【解析】【分析】列出所有的基本事件并找出事件所取三条线段能构成一个三角形所包含的基本事件再利用古典概型的概率公式计算出所求事件的概率【详解】所有的基本事件有:共个其中事件所取三条线段能构成一个三角形 解析:310【解析】 【分析】列出所有的基本事件,并找出事件“所取三条线段能构成一个三角形”所包含的基本事件,再利用古典概型的概率公式计算出所求事件的概率. 【详解】所有的基本事件有:()2,3,5、()2,3,7、()2,3,9、()2,5,7、()2,5,9、()2,7,9、()3,5,7、()3,5,9、()3,7,9、()5,7,9,共10个,其中,事件“所取三条线段能构成一个三角形”所包含的基本事件有:()3,5,7、()3,7,9、()5,7,9,共3个,由古典概型的概率公式可知,事件“所取三条线段能构成一个三角形”的概率为310, 故答案为310. 【点睛】本题考查古典概型的概率的计算,解题的关键就是列举基本事件,常见的列举方法有:枚举法和树状图法,列举时应遵循不重不漏的基本原则,考查计算能力,属于中等题.18.【分析】用辅助角公式化简题目所给不等式解三角不等式求得点的取值范围利用几何概型的概率公式求得所求的概率【详解】由得故解得根据几何概型概率计算公式有概率为【点睛】本小题主要考查三角不等式的解法考查三角 解析:512【分析】用辅助角公式化简题目所给不等式,解三角不等式求得x 点的取值范围,利用几何概型的概率公式求得所求的概率. 【详解】由1cos x x -≤+≤π12sin 6x ⎛⎫-≤+≤ ⎪⎝⎭1πsin 262x ⎛⎫-≤+≤⎪⎝⎭,故πππ664x -≤+≤,解得ππ312x -≤≤,根据几何概型概率计算公式有概率为ππ5123ππ1222⎛⎫-- ⎪⎝⎭=⎛⎫-- ⎪⎝⎭.【点睛】本小题主要考查三角不等式的解法,考查三角函数辅助角公式,考查几何概型的计算,属于基础题.19.【解析】【分析】取圆内接等边三角形的顶点为弦的一个端点当另一端点在劣弧上时求出劣弧的长度运用几何概型的计算公式即可得结果【详解】记事件{弦长超过圆内接等边三角形的边长}如图取圆内接等边三角形的顶点为解析:13【解析】 【分析】取圆内接等边三角形BCD 的顶点B 为弦的一个端点,当另一端点在劣弧CD 上时,BE BC >,求出劣弧CD 的长度,运用几何概型的计算公式,即可得结果.【详解】记事件A ={弦长超过圆内接等边三角形的边长},如图,取圆内接等边三角形BCD 的顶点B 为弦的一个端点, 当另一端点在劣弧CD 上时,BE BC >, 设圆的半径为r ,劣弧CD 的长度是23rπ, 圆的周长为2r π,所以()21323rP A r ππ==,故答案为13. 【点睛】本题主要考查“长度型”的几何概型,属于中档题. 解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与长度有关的几何概型问题关鍵是计算问题的总长度以及事件的长度;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误 ;(3)利用几何概型的概率公式时 , 忽视验证事件是否等可能性导致错误.20.【分析】求出小明等车时间不超过10分钟的时间长度代入几何概型概率计算公式可得答案【详解】设小明到达时间为当在7:50至8:00或8:20至8:30时小明等车时间不超过10分钟故故答案为【点睛】本题考解析:12【分析】求出小明等车时间不超过10分钟的时间长度,代入几何概型概率计算公式,可得答案. 【详解】设小明到达时间为y ,当y 在7:50至8:00,或8:20至8:30时, 小明等车时间不超过10分钟, 故201402P ==. 故答案为12. 【点睛】本题考查的知识点是几何概型,难度不大,属于基础题.三、解答题21.(Ⅰ)25;(Ⅱ)详见解析;(Ⅲ)从2008年或2009年开始连续三年的体育产业年增长率方差最大.从2014年开始连续三年的体育产业年增加值方差最大. 【分析】(Ⅰ)由题意利用古典概型计算公式可得满足题意的概率值;(Ⅱ)由题意首先确定X 可能的取值,然后结合超几何概型计算公式得到分布列,然后求解其数学期望即可;(Ⅲ)由题意结合方差的性质和所给的图形确定方差的最大值即可. 【详解】(Ⅰ)设A 表示事件“从2007年至2016年随机选出1年,该年体育产业年增加值比前一年的体育产业年增加值多500亿元以上”.由题意可知,2009年,2011年,2015年,2016年满足要求, 故42()105P A ==. (Ⅱ)由题意可知,X 的所有可能取值为0,1,2,3,且36310C 1(0)=C 6P X ==;1246310C C 1(1)=C 2P X ==;2146310C C 3(2)=C 10P X ==;34310C 1(3)=C 30P X ==.所以X 的分布列为:故X 的期望11316()01236210305E X =⨯+⨯+⨯+⨯=. (Ⅲ)从2008年或2009年开始连续三年的体育产业年增长率方差最大.从2014年开始连续三年的体育产业年增加值方差最大. 【点睛】本题主要考查统计图表的识别,超几何概型计算公式,离散型随机变量的分布列与期望的计算,古典概型计算公式等知识,意在考查学生的转化能力和计算求解能力. 22.(1)99.5%;(2)815. 【分析】(1)根据22⨯列联表中的数据,代入卡方计算,即可求解; (2)根据古典概型,列出基本时间,根据概率公式,即可求解. 【详解】 (1)根据公式得2280(28261412)9.8257.87942384040K ⨯⨯-⨯==≥⨯⨯⨯.所以有99.5%的把握认为中学生使用手机对学习有影响.(2)记A 组推选的4人为a ,b ,c ,d ,B 组推选的2人为e ,f , 则从这6人中任取两人有15种取法:()()()()(),,,,,a b a c a d a e a f ()()()(),,,,b c b d b e b f ()()()c,,,d c e c f ()(),,d e d f(),e f其中一人来自A 组、另一人来自B 组有8种取法, 故概率为815p =. 【点睛】本题考查(1)独立性检验(2)古典概型概率计算,考查计算能力,属于中等题型. 23.(1)50人,0.04;(2)18【分析】(1)先根据频数计算在[50,60)上的频率,继而求得全班总人数,再根据[70,80)之间的人数求得[70,80)之间的频率与高即可.(2)根据题意求得[50,60)中的人数与[90,100)分数段内的人数,再编号利用枚举法求解即可. 【详解】(1)由茎叶图知分数在[50,60)上的频数为4, 频率为0.008×10=0.08, 故全班的学生人数为40.08=50人, ∵分数在[70,80)间的频数为:50﹣(4+14+8+4)=20, ∴频率是200.450=,∴矩形的高是0.410=0.04. (2)成绩在[50,60)分数段内的人数有4人,记为甲、A 、B 、C , 成绩在[90,100)分数段内的人数有4人,记为乙、a ,b ,c , 则“二帮一”小组有以下24种分组办法:甲乙a ,甲乙b ,甲乙c ,甲ab ,甲ac ,甲bc ,A 乙a ,A 乙b , A 乙c ,Aab ,Aac ,Abc ,B 乙a ,B 乙b ,B 乙c ,Bab , Bac ,Bbc ,C 乙a ,C 乙b ,C 乙c ,Cab ,Cac ,Cbc ,其中,甲、乙两同学被分在同一小组有3种办法:甲乙a ,甲乙b ,甲乙c , ∴甲乙两同学恰好被安排在同一小组的概率为P 31248==. 【点睛】本题主要考查了茎叶图与频率分布直方图的应用,同时也考查了枚举法解决古典概型问题,属于基础题.24.(1)a=0.11,b=0.04;(2)23. 【分析】(1)课外阅读时间落在[6,8)的有22人,频率为0.22,由此能求出a ,课外阅读时间落在[2,4)的有8人,频率为0.08,由此能求出b ;(2)课外阅读时间落在[14,16)的有2人,设为m ,n ;课外阅读时间落在[16,18)的有2人为x ,y ,由此利用列举法能求出从课外阅读时间落在[14,18)的学生中任选2人,其中恰好有1人阅读时间在[14,16),另1人阅读时间在[16,18)的概率. 【详解】(1)课外阅读时间落在[6,8)的有22人,频率为0.22,所以0.220.112a == 课外阅读时间落在[2,4)的有8人,频率为0.08, 所以0.080.042b == (2)课外阅读时间落在[14,16)的有2人,设为m ,n ;课外阅读时间落在[16,18)的有2人为x ,y ,。

北师大版高二数学必修三第三章概率练习(含解析)

北师大版高二数学必修三第三章概率练习(含解析)

北师大版高二数学必修三第三章概率练习(含解析)数学是应用符号言语研讨数量、结构、变化以及空间模型等概念的一门学科。

查字典数学网为大家引荐了高二数学必修三第三章概率练习,请大家细心阅读,希望你喜欢。

一、选择题1.某人将一枚硬币延续抛掷了10次,正面朝上的情形出现了6次,那么()A.概率为0.6B.频率为0.6C.频率为6D.概率接近于0.6【解析】延续抛掷了10次,正面朝上的情形出现了6次,只能说明频率是0.6,只要停止少量的实验时才可估量概率.【答案】B2.以下说法错误的选项是()A.频率反映事情的频繁水平,概率反映事情发作的能够性大小B.做n次随机实验,事情A发作m次,那么事情A发作的频率mn就是事情A的概率C.频率是不能脱离n次实验的实验值,而概率是具有确定性的不依赖于实验次数的实际值D.频率是概率的近似值,概率是频率的动摇值【解析】依据频率与概率的意义可知,A正确;C、D均正确,B不正确,应选B.【答案】B3.从寄存号码区分为1,2,,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:卡片号码12345678910取到的次数138576131810119那么取到号码为奇数的频率是()A.0.53B.0.5C.0.47D.0.37【解析】mn=13+5+6+18+11100=0.53.【答案】A4.(2021沈阳检测)某彩票的中奖概率为11 000意味着()A.买1 000张彩票就一定能中奖B.买1 000张彩票中一次奖C.买1 000张彩票一次奖也不中D.购置彩票中奖的能够性是11 000【解析】中奖概率为11 000,并不意味着买1 000张彩票就一定中奖,中一次奖或一次也不中,因此A、B、C均不正确.【答案】D5.2021年山东省高考数学试题中,共有12道选择题,每道选择题有4个选项,其中只要1个选项是正确的,那么随机选择其中一个选项正确的概率为14,某家长说:要是都不会做,每题都随机选择其中一个选项,那么一定有3题答对这句话()A.正确B.错误C.不一定D.无法解释【解析】把解答一个选择题作为一次实验,答对的概率是14,说明做对的能够性大小是14.做12道选择题,即停止了12次实验,每个结果都是随机的,那么答对3题的能够性较大,但是并不一定答对3道,也能够都选错,或仅有2,3,4题选对,甚至12个题都选择正确.【答案】B二、填空题6.样本容量为200的频率散布直方图如图3-1-1所示.依据样本的频率散布直方图估量,样本数据落在[6,10)内的频数为________,数据落在[6,10)内的概率约为________.图3-1-1【解析】样本数据落在[6,10)内的频率为0.084=0.32,频数为2021.32=64.由频率与概率的关系知数据落在[6,10)内的概率约为0.32.【答案】64 0.327.在5张不同的彩票中有2张奖票,5团体依次从中各抽取1张,各人抽到奖票的概率________(填相等不相等).【解析】由于每人抽得奖票的概率均为25,与前后的顺序有关.【答案】相等8.假设袋中装有数量差异很大而大小相反的白球和黑球(只是颜色不同),每次从中任取一球,记下颜色后放回并搅匀,取了10次有9次白球,估量袋中数量最多的是________.【解析】取了10次有9次白球,那么取出白球的频率是910,估量其概率约是910,那么取出黑球的概率是110,那么取出白球的概率大于取出黑球的概率,所以估量袋中数量最多的是白球 .【答案】白球三、解答题9.(1)设某厂产品的次品率为2%,问从该厂产品中恣意地抽取100件,其中一定有2件次品这一说法对不对?为什么?(2)假定某次数学检验,全班50人的及格率为90%,假定从该班中恣意抽取10人,其中有5人及格是能够的吗?【解】(1)这种说法不对,由于产品的次品率为2%,是指产品是次品的能够性为2%,所以从该产品中恣意地抽取100件,其中有能够有2件次品,而不是一定有2件次品.(2)这种状况是能够的.10.(2021课标全国卷Ⅱ)经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t盈余300元.依据历史资料,失掉销售季度内市场需求量的频率散布直方图,如图3-1-2所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.图3-1-2(1)将T表示为X的函数;(2)依据直方图估量利润T不少于57 000元的概率.【解】(1)当X[100,130)时,T=500X-300(130-X)=800X-39 000.当X[130,150]时,T=500130=65 000.所以T=800X-39 000,100130,?65 000,130150.(2)由(1)知利润T不少于57 000元当且仅当120210.由直方图知需求量X[120, 150]的频率为0.7,所以下一个销售季度内的利润T不少于57 000元的概率的估量值为0.7.11.在消费进程中,测得纤维产品的纤度(表示纤维粗细的一种量,单位:mm)共有100个数据,将数据分组如下表:分组频数[1.30,1.34)4[1.34,1.38)25[1.38,1.42)30[1.42,1.46)29[1.46,1.50)10[1.50,1.54)2总计100(1)画出频率散布直方图;(2)估量纤度落在[1.38,1.50)mm中的概率及纤度小于1.42的概率是多少.【解】(1)频率散布直方图,如图:(2)纤度落在[1.38,1.50)mm中的频数是30+29+10=69,那么纤度落在[1.38,1.50)mm中的频率是69100=0.69,所以估量纤度落在[1.38,1.50)mm中的概率为0.69.纤度小于1.42 mm的频数是4+25+30=59,那么纤度小于1.42 mm的频率是59100=0.59,所以估量纤度小于1.42 mm的概率为0.59.小编为大家提供的高二数学必修三第三章概率练习,大家细心阅读了吗?最后祝同窗们学习提高。

人教版高中数学必修三 第三章 概率《概率》专题训练题

人教版高中数学必修三 第三章 概率《概率》专题训练题

《概率》专题训练题公开课学案1、已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球.现从甲、乙两个盒内各任取2个球.(Ⅰ)求取出的4个球均为黑球的概率;(Ⅱ)求取出的4个球中恰有1个红球的概率;2、厂家在产品出厂前,需对产品做检验,厂家将一批产品发给商家时,商家按合同规定也需随机抽取一定数量的产品做检验,以决定是否接收这批产品.(Ⅰ)若厂家库房中的每件产品合格的概率为0.8,从中任意取出4件进行检验.求至少有1件是合格品的概率;(Ⅱ)若厂家发给商家20件产品,其中有3件不合格,按合同规定该商家从中任取2件,都进行检验,只有2件都合格时才接收这批产品,否则拒收.并求该商家拒收这批产品的概率. 3、某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮考试,每一轮均回答正确才过关,否则即被淘汰,已知某选手能正确回答第一、二、三轮的问题的概率分别为54、53、52,且各轮问题能否正确回答互不影响.(Ⅰ)求该选手未进入第三轮就被淘汰的概率;(Ⅱ)求该选手被淘汰的概率.4、某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果按如下方式分成六组:第一组,成绩大于等于13秒且小于14秒;第二组,成绩大于等于14秒且小于15秒;……第六组,成绩大于等于18秒且小于等于19秒.右图是按上述分组方法得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x,成绩大于等于15秒且小于17秒的学生人数为y,(1)则从频率分布直方图中可分析出x和y.(2)若从成绩大于等于13秒且小于16秒的学生中随机抽出4人测身高,求其中恰有2人在第一组和第二组的概率.0 13 14 15 16 17 18 19 秒5、设b 和c 分别是先后抛掷一枚骰子得到的点数,用随机变量ξ表示方程20x bx c ++=实根的个数(重根按一个计). (Ⅰ)求概率)1(=ξP .(Ⅱ)求方程20x bx c ++=有实根的概率.6、某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是0.6,经销一件该商品,若顾客采用一次性付款,商场获得利润200元;若顾客采用分期付款,商场获得利润250元.(Ⅰ)求3位购买该商品的顾客中至少有1位采用一次性付款的概率;(Ⅱ)求3位顾客每人购买1件该商品,商场获得利润不超过650元的概率.7、某公司在过去几年内使用某种型号的灯管1000支,该公司对这些灯管的使用寿命(单位:小时)(I )将各组的频率填入表中;(II )根据上述统计结果,计算灯管使用寿命不足1500小时的频率;(III )该公司某办公室新安装了这种型号的灯管3支,若将上述频率作为概率,试求至少有2支灯管的使用寿命不足1500小时的概率.8、栽培甲、乙两种果树,先要培育成苗..,然后再进行移栽.已知甲、乙两种果树成苗..的概率分别为0.6,0.5,移栽后成活..的概率分别为0.7,0.9. (1)求甲、乙两种果树至少有一种果树成苗..的概率; (2)求恰好有一种果树能培育成苗..且移栽成活..的概率.《概率专题训练题》参考答案1、解:(Ⅰ)设“从甲盒内取出的2个球均为黑球”为事件A ,“从乙盒内取出的2个球均为黑球”为事件B .由于事件A B ,相互独立,且23241()2C P A C ==,24262()5C P B C ==.故取出的4个球均为黑球的概率为121()()()255P AB P A P B ==⨯=··. ………………..6分 (Ⅱ)设“从甲盒内取出的2个球均为黑球;从乙盒内取出的2个球中,1个是红球,1个是黑球”为事件C ,“从甲盒内取出的2个球中,1个是红球,1个是黑球;从乙盒内取出的2个球均为黑球”为事件D .由于事件C D ,互斥,且21132422464()15C C C P C C C ==··,123422461()5C C PD C C ==·. 故取出的4个球中恰有1个红球的概率为417()()()15515P C D P C P D +=+=+=. ………………..12分2、解:(Ⅰ)记“厂家任取4件产品检验,其中至少有1件是合格品”为事件A用对立事件A 来算,有()()4110.20.9984P A P A =-=-= ………………..6分(Ⅱ)记“商家任取2件产品检验,都合格”为事件B ,则商家拒收这批产品的概率()136271119095P P B =-=-=. 所以商家拒收这批产品的概率为2795. …………………………..………………..12分3、解:(Ⅰ)记“该选手未进入第三轮就被淘汰”的事件为A,则2513)531(54)541()(=-⨯+-=A P . ……………….4分(Ⅱ)解法一:记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =, ∴该选手被淘汰的概率112223112123()()()()()()()P P A A A A A A P A P A P A P A P A P A =++=++142433101555555125=+⨯+⨯⨯=. 解法二:(Ⅱ)记“该选手能正确回答第i 轮的问题”的事件为(123)i A i =,,,则14()5P A =,23()5P A =,32()5P A =. ∴该选手被淘汰的概率1231231()1()()()P P A A A P A P A P A =-=-4321011555125=-⨯⨯=.答:该选手被淘汰的概率为125101. …………………………..………………..12分4、解:(1)从频率分布直方图中可分析出%90=x ,3550)36.034.0(=⨯+=y (人). . …………….5分(2)成绩大于等于13秒且小于16秒的学生共28人,第一组有1人,第二组有9人,故其中恰有2人在第一组和第二组的概率为455153428218292181911=+=C C C C C C P (或:455153428218210==C C C P ). 答:从成绩大于等于13秒且小于16秒的学生中随机抽出4人测身高,求其中恰有2人在第一组和第二组的概率为455153.…………………………..………………..12分0 13 14 15 16 17 18 19秒5、解:(Ⅰ)1=ξ时,1,2==c b 或4,4==c b .故181662)1(=⨯==ξP . . ………….4分(Ⅱ)基本事件总数为6636⨯=,若使方程有实根,则240b c ∆=-≥,即b ≥ 当1c =时,2,3,4,5,6b =; 当2c =时,3,4,5,6b =; 当3c =时,4,5,6b =;当4c =时,4,5,6b =; 当5c =时,5,6b =; 当6c =时,5,6b =,目标事件个数为54332219,+++++= 因此方程20x bx c ++= 有实根的概率为19.36……………………………………..12分6、解:(Ⅰ)记A 表示事件:“3位顾客中至少1位采用一次性付款”,则A 表示事件:“3位顾客中无人采用一次性付款”.2()(10.6)0.064P A =-=,()1()10.0640.936P A P A =-=-=. ……………..………4分(Ⅱ)记B 表示事件:“3位顾客每人购买1件该商品,商场获得利润不超过650元”.0B 表示事件:“购买该商品的3位顾客中无人采用分期付款”.1B 表示事件:“购买该商品的3位顾客中恰有1位采用分期付款”.则01B B B =+.30()0.60.216P B ==,1213()0.60.40.432P B C =⨯⨯=.01()()P B P B B =+01()()P B P B =+0.2160.432=+0.648=.答:3位顾客每人购买1件该商品,商场获得利润不超过650元的概率为648.0····················································· 12分…………………………..4分(II )由(I )可得0.0480.1210.2080.2230.6+++=,所以灯管使用寿命不足1500小时的频率为0.6. …………………………. 8分(III )由(II )知,1支灯管使用寿命不足1500小时的概率0.6P =,根据在n 次独立重复试验中事件恰好发生k 次的概率公式可得648.0)6.0(4.0)6.0()3()2(322333=+⨯=+C P P所以至少有2支灯管的使用寿命不足1500小时的概率是0.648. ……………………….12分8、解:分别记甲、乙两种果树成苗为事件1A ,2A ;分别记甲、乙两种果树苗移栽成活为事件1B ,2B ,1()0.6P A =,2()0.5P A =,1()0.7P B =,2()0.9P B =.(1)甲、乙两种果树至少有一种成苗的概率为8.05.04.01)(1)(2121=⨯-=⋅-=+A A P A A P .…………………… ……..4分(2)分别记两种果树培育成苗且移栽成活为事件A B ,, 则11()()0.42P A P A B ==,22()()0.45P B P A B ==.恰好有一种果树培育成苗且移栽成活的概率为+=⨯+⨯=.P AB AB()0.420.550.580.450.492.0. ……………………………….12分答:恰好有一种果树培育成苗且移栽成活的概率为492。

高中数学必修3第三章概率试题训练[1]

高中数学必修3第三章概率试题训练[1]

高中数学必修3第三章概率试题训练1.下列说法正确的是( )A. 任何事件的概率总是在(0,1)之间B. 频率是客观存在的,与试验次数无关C. 随着试验次数的增加,频率一般会越来越接近概率D. 概率是随机的,在试验前不能确定 2.掷一枚骰子,则掷得奇数点的概率是( )A. 61B. 21C. `31 D. 413. 抛掷一枚质地均匀的硬币,如果连续抛掷1000次,那么第999次出现正面朝上的概率是( )A. 9991B. 10001C. 1000999 D. 214.从一批产品中取出三件产品,设A=“三件产品全不是次品”,B=“三件产品全是次品”,C=“三件产品不全是次品”,则下列结论正确的是( )A. A 与C 互斥B. B 与C 互斥C. 任何两个均互斥D. 任何两个均不互斥5.从一批羽毛球产品中任取一个,其质量小于4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[4.8,4.85](g )范围内的概率是( )A. 0.62B. 0.38C. 0.02D. 0.68 6.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是( )A. 21B. 41C. 31D. 817.甲,乙两人随意入住两间空房,则甲乙两人各住一间房的概率是( )A. 31. B. 41 C. 21 D.无法确定8.从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是A. 1B. 21C. 31D. 329.一个袋中装有2个红球和2个白球,现从袋中取出1球,然后放回袋中再取出一球,则取出的两个球同色的概率是( )A. 21B. 31C. 41D. 5210.现有五个球分别记为A 、C 、J 、K 、S ,随机放进三个盒子,每个盒子只能放一个球,则K 或S 在盒中的概率是( )A.101 B. 53 C. 103 D. 10911、对某种产品的5件不同正品和4件不同次品一一进行检测,直到区分出所有次品为止. 若所有次品恰好经过五次检测被全部发现,则这样的检测方法有( )A .20种B .96种C .480种D .600种12、若连掷两次骰子,分别得到的点数是m 、n ,将m 、n 作为点P 的坐标,则点P落在区域2|2||2|≤-+-y x 内的概率是 A.3611B.61C.41D.367 13、要从10名男生和5名女生中选出6人组成啦啦队,若按性别依比例分层抽样且某男生担任队长,则不同的抽样方法数是A.2539C C B . 25310C C C. 25310A A D. 25410C C 14、在500mL 的水中有一个草履虫,现从中随机取出2mL 水样放到显微镜下观察,则发现草履虫的概率是( ) A. 0.5 B. 0.4C. 0.004D. 不能确定15、如图所示,随机在图中撒一把豆子,则它落到阴影部分的概率是( )A.12B.34C.38D.1816、两个事件互斥是两个事件对立的( )条件A. 充分不必要B. 必要不充分C. 充分必要D. 既不充分也不必要17、下列事件中,随机事件的个数是( )①如果a 、b 是实数,那么b+a=a+b ;②某地1月1日刮西北风;③当x 是实数时,x 2≥0;④一个电影院栽天的上座率超过50%。

(典型题)高中数学必修三第三章《概率》测试题(有答案解析)(1)

(典型题)高中数学必修三第三章《概率》测试题(有答案解析)(1)

一、选择题1.七巧板是我们祖先的一项创造,被誉为“东方魔板”,它是由五块等腰直角三角形(两块全等的小三角形、一块中三角形和两块全等的大三角形)、一块正方形和一块平行四边形组成的.如图是一个用七巧板拼成的正方形,现从该正方形中任取一点,则此点取自黑色部分的概率是A .316B .38C .14D .182.福建省第十六届运动会将于2018年在宁德召开,组委会预备在会议期间从3女2男共5名志愿者中任选2名志愿者参考接待工作,则选到的都是女性志愿者的概率为( )A .110B .310C .12D .353.如图是一边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍.若在正方形图案上随机取一点,则该点取自黑色区域的概率为( )A .8πB .16π C .18π-D .116π-4.中国古代十进制的算筹计数法,在数学史上是一个伟大的创造,算筹实际上是一根根同长短的小木棍.如图,是利用算筹表示数1-9的一种方法.例如:3可表示为“≡”,26可表示为“=⊥”,现有6根算筹,据此表示方法,若算筹不能剩余,则可以用1-9这9个数字表示两位数中,能被3整除的概率是( )A .518B .718C .716D .5165.盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,再从盒中取出一个球,则此时取出黄色球的概率为( ) A .35B .79C .715D .31456.据《孙子算经》中记载,中国古代诸侯的等级从低到高分为:男、子、伯、侯、公,共五级,若给获得巨大贡献的7人进行封爵,要求每个等级至少有一人,至多有两人,则伯爵恰有两人的概率为( ) A .310B .25C .825D .357.将一枚质地均匀的硬币连掷三次,设事件A :恰有1次正面向上;事件B :恰有2次正面向上,则()P A B +=( ) A .23B .14C .38D .348.如图,正方形ABNH 、DEFM 的面积相等,23CN NG AB ==,向多边形ABCDEFGH 内投一点,则该点落在阴影部分内的概率为( )A .12B .34C .27D .389.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .41310.已知三棱锥P ﹣ABC 的6条棱中,有2条长为1,有4条长为2,则从中任意取出的两条,这两条棱长度相等的概率为( ) A .815B .715C .45D .3511.从一口袋中有放回地每次摸出1个球,摸出一个白球的概率为0.4,摸出一个黑球的概率为0.5,若摸球3次,则恰好有2次摸出白球的概率为 A .0.24B .0.26C .0.288D .0.29212.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,现在勒洛三角形中随机取一点,则此点取自正三角形外的概率为( )A .()23323ππ-- B .()323π-C .()323π+ D .()23323ππ-+二、填空题13.如图,在边长为1的正方形中随机撒一粒黄豆,则它落在阴影部分的概率为_______.14.2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足,医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援.若某医疗团队从3名男医生和2名女医生志愿者中,随机选取2名医生赴湖北支援,则至少有1名女医生被选中的概率为__________.15.将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.16.五位德国游客与七位英国游客在游船上任意站成一排拍照,则五位德国游客互不相邻的概率为_______.17.在区间[2,4]-上随机地取一个实数x ,若实数x 满足||x m ≤的概率为23,则m =_______.18.已知四棱锥P ABCD -的所有顶点都在球O 的球面上,PA ⊥底面ABCD ,底面ABCD 为正方形, 2.PA AB ==现在球O 的内部任取一点,则该点取自四棱锥P ABCD -的内部的概率为______.19.从1,2,3,4中任取两个不同的数,则取出的2个数之差的绝对值小于或等于2的概率为__________.20.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率是________三、解答题21.某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得10分,回答不正确得0分,第三个问题回答正确得20分,回答不正确得10-分.如果一位挑战者回答前两个问题正确的概率都是23,回答第三个问题正确的概率为12,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题的总分不低于10分就算闯关成功.(1)求至少回答对一个问题的概率.(2)求这位挑战者回答这三个问题的总得分X 的分布列. (3)求这位挑战者闯关成功的概率.22.新冠病毒肆虐全球,尽快结束疫情是人类共同的期待,疫苗是终结新冠疫情最有力的科技武器,为确保疫苗安全性和有效性,任何疫苗在投入使用前都要经过一系列的检测及临床试验,周期较长.我国某院士领衔开发的重组新冠疫苗在动物猕猴身上进行首次临床试验.相关试验数据统计如下:已知从所有参加试验的猕猴中任取一只,取到“注射重组新冠疫苗”猕猴的概率为5 12.(1)根据以上试验数据判断,能否有99.9%以上的把握认为“注射重组新冠疫苗”有效?(2)若从上述已感染新冠病毒的猕猴中任取三只进行病理分析,求至少取到两只注射了重组新冠疫苗的猕猴的概率.附:22(),()()()()n ad bcK n a b c da b a c c d b d-==+++ ++++23.一个盒子里装有m个均匀的红球和n个均匀的白球,每个球被取到的概率相等,已知从盒子里一次随机取出1个球,取到的球是红球的概率为13,从盒子里一次随机取出2个球,取到的球至少有1个是白球的概率为10 11.(1)求m,n的值;(2)若一次从盒子里随机取出3个球,求取到的白球个数不小于红球个数的概率. 24.一次考试结束后,随机抽查了某校高三(1)班5名同学的数学与物理成绩如下表:(Ⅰ)分别求这5名同学数学与物理成绩的平均分与方差,并估计该班数学与物理成绩那科更稳定;(Ⅱ)从以上5名同学中选2人参加一项活动,求选中的学生中至少有一个物理成绩高于90分的概率.25.为了弘扬中华民族传统文化,某中学高二年级举行了“爱我中华,传诵经典”的考试,并从中随机抽取了60名学生的成绩(满分100分)作为样本,其中成绩不低于80分的学生被评为优秀生,得到成绩分布的频率分布直方图如图所示.(1)若该年级共有1000名学生,试利用样本估计该年级这次考试中优秀生人数; (2)试估计这次参加考试的学生的平均成绩(同一组数据用该组区间中点值作代表); (3)若在样本中,利用分层抽样从成绩不低于70分的学生中随机抽取6人,再从中抽取2人赠送一套国学经典典籍,试求恰好抽中2名优秀生的概率.26.2020年寒假期间新冠肺炎肆虐,全国人民众志成城抗疫情.某市要求全体市民在家隔离,同时决定全市所有学校推迟开学.某区教育局为了让学生“停课不停学”,要求学校各科老师每天在网上授课辅导,每天共200分钟.教育局为了了解高三学生网上学习情况,上课几天后在全区高三学生中采取随机抽样的方法抽取了80名学生(其中男女生恰好各占一半)进行问卷调查,按男女生分为两组,再将每组学生在线学习时间(分钟)分为5组[0,40],(40,80],(80,120],(120,160],(160,200]得到如图所示的频率分布直方图.全区高三学生有3000人(男女生人数大致相等),以频率估计概率回答下列问题:(1)估计全区高三学生中网上学习时间不超过40分钟的人数;(2)在调查的80名高三学生且学习时间不超过40分钟的学生中,男女生按分层抽样的方法抽取6人.若从这6人中随机抽取2人进行电话访谈,求至少抽到1名男生的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【解析】设2AB =,则1BC CD DE EF ====.∴1124BCI S ∆==,112242BCI EFGHS S ∆==⨯=平行四边形 ∴所求的概率为113422216P +==⨯ 故选A. 2.B解析:B 【解析】设3名女志愿者为,,A B C ,2名男志愿者为,a b ,任取2人共有,,,,,,,,,Aa Ab Ba Bb Ca Cb AB AC BC ab ,共10种情况,都是女性的情况有,,AB AC BC三种情况,故选到的都是女性志愿者的概率为310,故选B. 3.C解析:C 【分析】设黑色小圆的半径为r ,则黑色大圆的半径为2r ,由题意求得r ,进一步求出黑色区域的面积,由测度比是面积比得答案. 【详解】解:设黑色小圆的半径为r ,则黑色大圆的半径为2r , 由题意可知,88r =,即1r =.∴图中黑色区域的面积为222884412648ππππ⨯-⨯+⨯⨯+⨯=-,又正方形的面积为64.∴在正方形图案上随机取一点,则该点取自黑色区域的概率为6481648ππ-=-. 故选:C . 【点睛】本题考查几何概型的概率的求法,考查数形结合的解题思想方法,属于中档题.4.D解析:D 【分析】根据题意把6根算筹所能表示的两位数列举出来后,计算哪些能被3整除即可得概率. 【详解】1根算筹只能表示1,2根根算筹可以表示2和6,3根算筹可以表示3和7,4根算筹可以表示4和8,5根算筹可以表示5和9,因此6根算筹表示的两位数有15,19,51,91,24,28,64,68,42,82,46,86,37,33,73,77共16个,其中15,51,24,42,33共5个可以被3整除, 所以所求概率为516P =.故选:D.【点睛】本题考查古典概型,考查中国古代数学文化,解题关键是用列举法写出6根算筹所能表示的两位数.5.A解析:A【分析】若取出的是红色球,再从盒中取出一个球,则此时取出黄色球的概率为:139 25P=⨯,若取出的是黄色球,再从盒中取出一个球,则此时取出黄色球的概率为:237 59P=⨯,由此能求出再从盒中取出一个球,则此时取出黄色球的概率.【详解】盒中有形状、大小都相同的2个红色球和3个黄色球,从中取出一个球,观察颜色后放回并往盒中加入同色球4个,若取出的是红色球,再从盒中取出一个球,则此时取出黄色球的概率为:1329 515 2P=⨯=,若取出的是黄色球,再从盒中取出一个球,则此时取出黄色球的概率为:2377 5915P=⨯=,∴再从盒中取出一个球,则此时取出黄色球的概率为:1221573155P P P=+=+=,故选:A.【点睛】本题考查概率的求法,考查相互独立事件概率乘法公式、互斥事件概率计算公式等基础知识,考查运算求解能力,属于中档题.6.B解析:B【分析】根据部分平均分组分配的方法可求得分法总数和伯爵恰有两人的分法数,根据古典概型概率公式可求得结果.【详解】7人进行封爵,每个等级至少一人,至多两人,则共有2211225575327555322322C C C C C C AAA A A⋅=种分法;其中伯爵恰有两人的分法有2211142247532247543232C C C CC A C C AA A⋅=种分法,∴伯爵恰有两人的概率2247542257552225C C A p C C A A ==.故选:B . 【点睛】本题考查数学史与古典概型概率问题的求解,关键是能够利用排列组合中不平均分组分配的方法确定分法总数和符合题意的分法数.7.D解析:D 【分析】根据题意,列举出所有的基本事件,再分别找出满足事件A 与事件B 的事件个数,分别求出其概率,最后再相加即可. 【详解】根据题意,将一枚质地均匀的硬币连掷三次,可能出现的情况有以下8种:(正正正),(正正反),(正反正),(正反反),(反正正),(反正反),(反反正),(反反反).满足事件A :恰有1次正面向上的基本事件有(正反反),(反正反),(反反正)三种,故3()8P A =;满足事件B :恰有2次正面向上的基本事件有(正正反),(正反正),(反正正)三种,故3()8P B =;因此,3()()()4P A B P A P B +=+=. 故选:D. 【点睛】本题主要考查利用列举法计算基本事件的个数以及求解事件发生的概率.8.C解析:C 【分析】由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等,设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2,分别求出阴影部分的面积及多边形ABCDEFGH 的面积,由测度比为面积比得答案. 【详解】如图所示,由正方形ABNH 、DEFM 的面积相等,可得两正方形边长相等, 设边长为3,由23CN NG AB ==,可得正方形MCNG 的边长为2, 则阴影部分的面积为224⨯=,多边形ABCDEFGH 的面积为2332214⨯⨯-⨯=. 则向多边形ABCDEFGH 内投一点,则该点落在阴影部分内的概率为42147=. 故选:C.【点睛】本题主要考查了几何概型的概率的求法,关键是求出多边形ABCDEFGH 的面积,着重考查了推理与运算能力,以及数形结合的应用,属于基础题.9.C解析:C 【分析】 由题意求出7AB BD =,所求概率即为DEF ABCS P S=,即可得解.【详解】由题意易知120ADB ∠=,AF FD BD ==,由余弦定理得22222cos1207AB AD BD AD BD BD =+-⋅⋅=即7AB BD =,所以7AB FD =,则所求概率为217DEF ABCSFD P SAB ⎛⎫=== ⎪⎝⎭. 故选:C. 【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.10.B解析:B 【分析】从中任意取出的两条,基本事件总数2615n C ==,这两条棱长度相等包含的基本事件个数22247m C C =+=,由此能求出这两条棱长度相等的概率. 【详解】解:三棱锥P ABC -的6条棱中,有2条长为1,有4条长为2,从中任意取出的两条,基本事件总数2615n C ==,这两条棱长度相等包含的基本事件个数22247m C C =+=, ∴这两条棱长度相等的概率715m p n ==. 故选:B .【点睛】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题.11.C解析:C 【分析】首先分析可能的情况:(白,非白,白)、(白,白,非白)、(非白,白,白),然后计算相应概率. 【详解】因为摸一次球,是白球的概率是0.4,不是白球的概率是0.6, 所以0.40.60.40.40.40.60.60.40.40.288P =⨯⨯+⨯⨯+⨯⨯=, 故选C. 【点睛】本题考查有放回问题的概率计算,难度一般.12.A解析:A 【分析】设2BC =,将圆心角为3π的扇形面积减去等边三角形的面积可得出弓形的面积,由此计算出图中“勒洛三角形”的面积,然后利用几何概型的概率公式可计算出所求事件的概率. 【详解】如下图所示,设2BC =,则以点B 为圆心的扇形面积为2122=233ππ⨯⨯, 等边ABC ∆的面积为212sin 323π⨯⨯=,其中一个弓形的面积为233π-, 所以,勒洛三角形的面积可视为一个扇形面积加上两个弓形的面积,即222322333πππ⎛⎫+⨯-=- ⎪⎝⎭, ∴在勒洛三角形中随机取一点,此点取自正三角形外部的概率()()323312323πππ--=--,故选A.【点睛】本题考查几何概型概率的计算,解题的关键就是要求出图形相应区域的面积,解题时要熟悉一些常见平面图形的面积计算方法,考查计算能力,属于中等题.二、填空题13.【分析】利用定积分求得阴影部分的面积然后利用几何概型的概率计算公式即可求解【详解】由题意结合定积分可得阴影部分的面积为由几何概型的计算公式可得黄豆在阴影部分的概率为【点睛】本题主要考查了定积分的几何解析:1 3【分析】利用定积分求得阴影部分的面积,然后利用几何概型的概率计算公式,即可求解.【详解】由题意,结合定积分可得阴影部分的面积为311221 (1()|33S dx x x=-=-=⎰,由几何概型的计算公式可得,黄豆在阴影部分的概率为113113 p==⨯.【点睛】本题主要考查了定积分的几何意义求解阴影部分的面积,以及几何概型及其概率的计算问题,其中解答中利用定积分的几何意义求得阴影部分的面积是解答的关键,着重考查了推理与计算能力,属于基础题.14.【分析】基本事件总数选中的都是男医生包含的基本事件个数根据对立事件的概率能求出选中的至少有1名女医生的概率【详解】因为医疗团队从3名男医生和2名女医生志愿者所以随机选取2名医生赴湖北支援共有个基本事解析:7 10【分析】基本事件总数2510n C==,选中的都是男医生包含的基本事件个数233m C==,根据对立事件的概率能求出选中的至少有1名女医生的概率.【详解】因为医疗团队从3名男医生和2名女医生志愿者,所以随机选取2名医生赴湖北支援共有2510n C==个基本事件,又因为选中的都是男医生包含的基本事件个数233m C==,所以至少有1名女医生被选中的概率为3711010 P=-=.故答案为:7 10【点睛】本题主要考查了排列组合,古典概型,对立事件,属于中档题.15.【解析】基本事件总数为36点数之和小于10的基本事件共有30种所以所求概率为【考点】古典概型【名师点睛】概率问题的考查侧重于对古典概型和对立事件的概率的考查属于简单题江苏对古典概型概率的考查注重事件解析:56【解析】基本事件总数为36,点数之和小于10的基本事件共有30种,所以所求概率为305.366= 【考点】古典概型【名师点睛】概率问题的考查,侧重于对古典概型和对立事件的概率的考查,属于简单题.江苏对古典概型概率的考查,注重事件本身的理解,淡化计数方法.因此先明确所求事件本身的含义,然后一般利用枚举法、树形图解决计数问题,而当正面问题比较复杂时,往往利用对立事件的概率公式进行求解.16.【分析】基本事件总数五位德国游客互不相邻包含的基本事件个数为:由此能求出五位德国游客互不相邻的概率【详解】解:五位德国游客与七位英国游客在游船上任意站成一排拍照基本事件总数五位德国游客互不相邻包含的 解析:799【分析】基本事件总数1212n A =,五位德国游客互不相邻包含的基本事件个数为:7578m A A =,由此能求出五位德国游客互不相邻的概率. 【详解】解:五位德国游客与七位英国游客在游船上任意站成一排拍照,基本事件总数1212n A =,五位德国游客互不相邻包含的基本事件个数为:7578m A A =, ∴五位德国游客互不相邻的概率为75781212799A A m p n A ===.故答案为:799.【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题.17.2【分析】画出数轴利用满足的概率可以求出的值即可【详解】如图所示区间的长度是6在区间上随机地取一个数若满足的概率为则有解得故答案是:2【点睛】该题考查的是有关长度型几何概型的问题涉及到的知识点有长度解析:2 【分析】画出数轴,利用x 满足||x m ≤的概率,可以求出m 的值即可.【详解】 如图所示,区间[2,4]-的长度是6,在区间[2,4]-上随机地取一个数x , 若x 满足||x m ≤的概率为23, 则有2263m =,解得2m =, 故答案是:2. 【点睛】该题考查的是有关长度型几何概型的问题,涉及到的知识点有长度型几何概型的概率公式,属于简单题目.18.【分析】根据条件求出四棱锥的条件和球的体积结合几何概型的概率公式进行求解即可【详解】四棱锥扩展为正方体则正方体的对角线的长是外接球的直径即即则四棱锥的条件球的体积为则该点取自四棱锥的内部的概率故答案 23【分析】根据条件求出四棱锥的条件和球的体积,结合几何概型的概率公式进行求解即可. 【详解】四棱锥P ABCD -扩展为正方体, 则正方体的对角线的长是外接球的直径, 即32R =,即3R =则四棱锥的条件1822233V =⨯⨯⨯=,球的体积为34(3)433ππ⨯=, 则该点取自四棱锥P ABCD -的内部的概率823343P π==, 故答案为239π【点睛】本题主要考查几何概型的概率的计算,结合条件求出四棱锥和球的体积是解决本题的关键.本题考查了几何概型概率的求法;在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域Ω上任置都是等可能的,而对于角度而言,则是过角的顶点的一条射线落在Ω的区域(事实也是角)任一位置是等可能的.19.【解析】【分析】由题意从中任取两个不同的数共有中不同的取法再找出取出的2个数之差的绝对值大于2的只有取得到两个数只有一种取法利用对立事件的概率计算公式即可求解【详解】由题意从中任取两个不同的数共有中解析:5 6【解析】【分析】由题意,从1,2,3,4中任取两个不同的数,共有246C=中不同的取法,再找出取出的2个数之差的绝对值大于2的只有取得到两个数只有一种取法,利用对立事件的概率计算公式,即可求解.【详解】由题意,从1,2,3,4中任取两个不同的数,共有246C=中不同的取法,其中取出的2个数之差的绝对值大于2的只有取得到两个数为1,4时,只有一种取法,所以取出的2个数之差的绝对值小于或等于2的概率为15166 P=-=.【点睛】本题主要考查了古典概型及其概率的计算问题,其中解答中认真审题,找出基本时间的总数和所求事件的对立事件的个数,利用对立时间的概率计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力.20.78【分析】求得4位同学各自在周六周日两天中任选一天参加公益活动周六周日都有同学参加公益活动的情况利用古典概型概率公式求解即可【详解】4位同学各自在周六周日两天中任选一天参加公益活动共有24=16种解析:【分析】求得4位同学各自在周六、周日两天中任选一天参加公益活动、周六、周日都有同学参加公益活动的情况,利用古典概型概率公式求解即可.【详解】4位同学各自在周六、周日两天中任选一天参加公益活动,共有24=16种情况,周六、周日都有同学参加公益活动,共有24﹣2=16﹣2=14种情况,∴所求概率为=.故答案为:.【点睛】有关古典概型的概率问题,关键是正确求出基本事件总数和所求事件包含的基本事件数:1.基本事件总数较少时,用列举法把所有基本事件一一列出时,要做到不重复、不遗漏,可借助“树状图”列举;2.注意区分排列与组合,以及计数原理的正确使用.三、解答题21.(Ⅰ)1718;(Ⅱ)见解析;(Ⅲ)1318.【解析】试题分析:(Ⅰ)由题意结合对立事件概率公式可得至少回答对一个问题的概率为17 18.(Ⅱ)这位挑战者回答这三个问题的总得分X的所有可能取值为10,0,10,20,30,40-.计算各个分值相应的概率值即可求得总得分X的分布列;(Ⅲ)结合(Ⅱ)中计算得出的概率值可得这位挑战者闯关成功的概率值为13 18.试题(Ⅰ)设至少回答对一个问题为事件A,则()11117 133218P A=-⨯⨯=.(Ⅱ)这位挑战者回答这三个问题的总得分X的所有可能取值为10,0,10,20,30,40-.根据题意,()11111033218P X=-=⨯⨯=, ()2112023329P X==⨯⨯⨯=,()2212103329P X==⨯⨯=,()11112033218P X==⨯⨯=,()21123023329P X==⨯⨯⨯=,()2212403329P X==⨯⨯=.随机变量X的分布列是:(Ⅲ)设这位挑战者闯关成功为事件B ,则()2122139189918P B =+++=. 22.(1)有99.9%以上的把握认为“注射重组新冠疫苗”有效;(2)13203. 【分析】(1)先求出,x y ,再根据独立性检验可得结论; (2)由组合的应用和古典概率公式可求得其概率. 【详解】 (1)由题知2056012y +=,即5y =,∴25x =,35A =,25B =, ∴2260(1052520)10815.42910.828352530307K ⨯⨯-⨯==≈>⨯⨯⨯,故有99.9%以上的把握认为“注射重组新冠疫苗”有效;(2)由题知试验样本中已感染新冠病毒的猕猴有30只,其中注射了重组新冠疫苗的猕猴有5只,则213525533013203C C C P C +==. 【点睛】本题考查补全列联表,独立性检验,以及组合的应用和古典概率公式,求解时注意“至少”,“至多”等,属于中档题. 23.(1)4m =,8n =(2)4255【分析】(1)设该盒子里有红球m 个,白球n 个,利用古典概型、对立事件概率计算公式列出方程组,能求出m ,n .(2) “一次从盒子里任取3个球,取到的白球个数不少于红球个数”分为“一次从盒子里任取3个球,取到的白球个数为3个”和“一次从盒子里任取3个球,取到的白球个数为2个,红球数为1个”,由此能求出取到的白球个数不小于红球个数的概率. 【详解】解:(1)设该盒子里有红球m 个,白球n 个.根据题意得221310111m m n m m n C C +⎧=⎪+⎪⎨⎪-=⎪⎩, 解方程组得4m =,8n =, 故红球有4个,白球有8个.(2)设“一次从盒子里任取3个球,取到的白球个数不少于红球个数”为事件A .设“一次从盒子里任取3个球,取到的白球个数为3个”为事件B ,则3831214()55C P B C ==设“一次从盒子里任取3个球,取到的白球个数为2个,红球个数为1个”为事件C ,则。

高中数学必修三第三章《概率》单元测试卷及答案

高中数学必修三第三章《概率》单元测试卷及答案

高中数学必修三第三章《概率》单元测试卷及答案高中数学必修三第三章《概率》单元测试卷及答案(2套)一、选择题1.下列说法正确的是()A。

甲、乙二人比赛,甲胜的概率为3/5,则比赛5场,甲胜3场B。

某医院治疗一种疾病的治愈率为10%,前9个病人没有治愈,则第10个病人一定治愈C。

随机试验的频率与概率相等D。

天气预报中,预报明天降水概率为90%,是指降水的可能性是90%2.某班有男生25人,其中1人为班长,女生15人,现从该班选出1人,作为该班的代表参加座谈会,下列说法中正确的是()A。

选出1人是班长的概率为1/40B。

选出1人是男生的概率是1/25C。

选出1人是女生的概率是1/15D。

在女生中选出1人是班长的概率是03.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是()A。

1/2B。

1/3C。

1/4D。

1/84.把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、XXX四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是()A。

对立事件B。

不可能事件C。

互斥但不是对立事件D。

以上答案都不对5.在2010年广州亚运会火炬传递活动中,在编号为1,2,3,4,5的5名火炬手.若从中任选3人,则选出的火炬手的编号相连的概率为()A。

1/10B。

3/10C。

7/10D。

9/106.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件“①两球都不是白球;②两球恰有一白球;③两球至少有一个白球”中的哪几个?()A。

①②B。

①③C。

②③D。

①②③7.矩形长为6,宽为4,在矩形内随机地撒300颗黄豆,数得落在阴影部分内的黄豆数为204颗,以此实验数据为依据可以估计出阴影部分的面积约为()A。

16B。

16.32C。

16.34D。

15.9688.在区间(15,25]内的所有实数中随机取一个实数a,则这个实数满足17<a<20的概率是()A。

3/10B。

必修三第三章概率典型检测题附答案

必修三第三章概率典型检测题附答案

B. 1 5
D. 1 12
5.从数字 1,2,3,4,5 中,随机抽取 3 个数字(允许重复)组成一个三位数,其各位
数字之和等于 9 的概率为( ).
A. 13 125
C. 18 125
B. 16 125
D. 19 125
6.若在圆(x-2)2+(y+1)2=16 内任取一点 P,则点 P 落在单位圆 x2+y2=1 内的概率
第三章 概率
一、选择题
1.任取两个不同的 1 位正整数,它们的和是 8 的概率是( ).
A. 1 24
B. 1 6
C. 3 8
D. 1 12
2.在区间

π 2
,π 2
上随机取一个数
x,cos
x
的值介于
0

1 2
之间的概率为(
).
A. 1 3
B. 2 π
C. 1 2
D. 2 3
3.从集合{1,2,3,4,5}中,选出由 3 个数组成子集,使得这 3 个数中任何两个数的
6 解析:因为电台每小时报时一次,我们自然认为这个人打开收音机时处于两次报时之间,
例如(13∶00,14∶00),而且取各点的可能性一样,要遇到等待时间短于 10 分钟,只有当
他打开收音机的时间正好处于 13∶50 至 14∶00 之间才有可能,相应的概率是 10 = 1 . 60 6
11. 1 . 3
和不等于 6,则取出这样的子集的概率为( ).
A.3 10
C. 3 5
B. 7 10
D. 2 5
4.在一个袋子中装有分别标注数字 1,2,3,4,5 的五个小球,这些小球除标注的数
字外完全相同.现从中随机取出 2 个小球,则取出的小球标注的数字之和为 3 或 6 的概率是

高一数学必修3第三章《概率》测试题(北师

高一数学必修3第三章《概率》测试题(北师

高一数学必修3第三章《概率》测试题(北师一、选择题(每小题5分,共计50分)1、下列说法正确的是()A、任何事件的概率总是在(0,1)之间B、频率是客观存在的,与试验次数无关C、随着试验次数的增加,频率一般会越来越接近概率D、概率是随机的,在试验前不能确定2、掷一枚骰子,则掷得奇数点的概率是()A、B、C、D、3、从装有个红球和个黒球的口袋内任取个球,那么互斥而不对立的两个事件是()A、至少有一个黒球与都是黒球B、至少有一个黒球与都是黒球C、至少有一个黒球与至少有个红球D、恰有个黒球与恰有个黒球4、在根纤维中,有根的长度超过,从中任取一根,取到长度超过的纤维的概率是()A、B、C、D、以上都不对5、从一批羽毛球产品中任取一个,其质量小于4、8g的概率为0、3,质量小于4、85g的概率为0、32,那么质量在[4、8,4、85]( g )范围内的概率是()A、0、62B、0、38C、0、02D、0、686、同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是()A、B、C、D、7、甲,乙两人随意入住两间空房,则甲乙两人各住一间房的概率是()A、B、C、D、无法确定8、从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是()A、 1B、C、D、9、一个袋中装有2个红球和2个白球,现从袋中取出1球,然后放回袋中再取出一球,则取出的两个球同色的概率是()A、B、C、D、10、现有五个球分别记为A,C,J,K,S,随机放进三个盒子,每个盒子只能放一个球,则K或S在盒中的概率是()A、B、C、D、二、填空题(每小题5分,共计20分)11、在件产品中,有件一级品,件二级品,则下列事件:①在这件产品中任意选出件,全部是一级品;②在这件产品中任意选出件,全部是二级品;③在这件产品中任意选出件,不全是一级品;④在这件产品中任意选出件,其中不是一级品的件数小于,其中是必然事件;是不可能事件;是随机事件。

人教版高中数学必修三第三章概率《概率》练习题

人教版高中数学必修三第三章概率《概率》练习题

人教版高中数学必修三第三章概率《概率》练习题一、选择题1.下列说法正确的是()A.如果一事件发生的概率为十万分之一,说明此事件不可能发生B.如果一事件不是不可能事件,说明此事件是必然事件C.概率的大小与不确定事件有关D.如果一事件发生的概率为99.999%,说明此事件必然发生A。

5个B。

8个C。

10个D。

15个3.下列事件为确定性事件的有()1)在1个标准大气压下,20摄氏度的纯水结冰;(2)平时的百分制考试中,XXX的考试成绩为105分;(3)抛一枚硬币,落下后下面朝上;(4)连长为a,b的长方形的面积为ab.A。

1个B。

2个C。

3个D。

4个4.从装有2个红球和2个白球的口袋内任取2个球,那么互斥而纰谬立的两个事件()A.至少有1个白球,都是白球B.至少有1个白球,至少有1个红球C.恰有1个白球,恰有2个白球D.最少有1个白球,都是红球5.从一副扑克牌(54张)中抽取一张牌,抽到牌“K”的概率是()6.同时掷两颗骰子,所得点数之和为5的概率为()7.根据多年气象资料,某地6月1日下雨的概率为0.45,阴天的概率为0.20,则该日晴天的概率为()A。

0.65B。

0.55C。

0.35D。

0.758.下列关于频率与概率关系中正确的是()A.频率就是概率B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,频率一般会越来越接近概率D.几率是随机的,在试验前不克不及确定9.从一批产物中取出三件产物,设A=“三件产物全不是次品”,B=“三件产物全是次品”,C=“三件产物不全是次品”,则下列结论精确的是()A)。

A与C互斥(B)B与C互斥(C)任何两个均互斥(D)任何两个均不互斥10.同时向上抛100个铜板,结果落地时100个铜板朝上的面都相同,你以为这100个铜板更可能是下面情况()A.这100个铜板两面是一样的B.这100个铜板两面是不同的C.这100个铜板中有50个两面是一位的,另外50个两面是不相同的D.这100个铜板中有20个两面是一样的,另外80个两面是不相同的11.密码锁上的密码是一种四位数字号码,每位上的数字可在到9这10个数字中选取,某人忘记密码的最后一位数字,如果随意按下密码的最后一位数字,则正好按对密码的概率()12.某个地区从某年起几年内的新生婴儿数及其中男婴儿如下表:时间范围1年内2年内3年内4年内xxxxxxxxxxxxxxxx91新生婴儿数xxxxxxxxxxxxxxxx男婴儿数这一地区男婴儿出生的几率约是()A。

(好题)高中数学必修三第三章《概率》测试(有答案解析)

(好题)高中数学必修三第三章《概率》测试(有答案解析)

一、选择题1.如图,在菱形ABCD 中,3AB =,60BAD ∠=,以4个顶点为圆心的扇形的半径为1,若在该菱形中任意选取一点,该点落在阴影部分的概率为0p ,则圆周率π的近似值为( )A .07.74pB .07.76pC .07.79pD .07.81p2.2020年新型肺炎疫情期间,山东省某市派遣包含甲,乙两人的12名医护人员支援湖北省黄冈市,现将这12人平均分成两组,分别分配到黄冈市区定点医院和黄冈市英山县医院,则甲、乙不在同一组的概率为( ) A .511B .611C .12D .233.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰好有6个白球的概率为( )A .46801010100C C C ⋅ B .64208001010C C C ⋅ C .46208001010C C C ⋅ D .64801010100C C C ⋅ 4.已知边长为2的正方形ABCD ,在正方形ABCD 内随机取一点,则取到的点到正方形四个顶点A B C D ,,,的距离都大于1的概率为( ) A .16πB .4π C 322- D .14π-5.若函数()201)((1)x lnx e x f x e x e ⎧+<<=⎨≤<⎩在区间()0,e 上随机取一个实数x ,则()f x 的值小于常数2e 的概率是( ) A .1eB .11e-C .2eD .21e-6.从含有2件正品和1件次品的产品中任取2件,恰有1件次品的概率是( ) A .16B .13C .12D .237.从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数不小于第二张卡片上的数的概率为 A .25B .35C .38D .588.在一个棱长为3cm 的正方体的表面涂上颜色,将其适当分割成棱长为1cm 的小正方体,全部放入不透明的口袋中,搅拌均匀后,从中任取一个,取出的小正方体表面仅有一个面涂有颜色的概率是() A .49B .827C .29D .1279.先后抛掷两枚均匀的正方体骰子,骰子朝上的面的点数分别为x ,y ,则满足()()22lg 2lg 3lg x y x y +=+的概率为( )A .18B .14C .13D .1210.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形,现在勒洛三角形中随机取一点,则此点取自正三角形外的概率为( )A ()23323ππ-- B ()323π-C ()323π+ D ()3323π+11.关于圆周率π,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计π的值:先请120名同学每人随机写下一个x ,y 都小于1的正实数对()x y ,,再统计其中x ,y 能与1构成钝角三角形三边的数对()x y ,的个数m ,最后根据统计个数m 估计π的值.如果统计结果是34m =,那么可以估计π的值为( ) A .237B .4715C .1715D .531712.斐波那契螺旋线,也称“黄金螺旋线”,是根据斐波那契数列(1,1,2,3,5,8…)画出来的螺旋曲线,由中世纪意大利数学家列奥纳多•斐波那契最先提出.如图,矩形ABCD 是以斐波那契数为边长的正方形拼接而成的,在每个正方形中作一个圆心角为90°的圆弧,这些圆弧所连成的弧线就是斐波那契螺旋线的一部分.在矩形ABCD 内任取一点,该点取自阴影部分的概率为( )A .14B .8π C .34D .4π 二、填空题13.辛普森悖论(Simpson’sParadox)有人译为辛普森诡论,在统计学中亦有人称为“逆论”,甚至有人视之为“魔术”.辛普森悖论为英国统计学家E .H .辛普森(E.H.Simpson)于1951年提出的,辛普森悖论的内容大意是“在某个条件下的两组数据,分别讨论时都会满足某种性质,可是一旦合并考虑,却可能导致相反的结论.”下面这个案例可以让我们感受到这个悖论:关于某高校法学院和商学院新学期已完成的招生情况,现有如下数据: 某高校申请人数性别 录取率 法学院200人男50%女 70% 商学院300人男60% 女90% ①法学院的录取率小于商学院的录取率;②这两个学院所有男生的录取率小于这两个学院所有女生的录取率; ③这两个学院所有男生的录取率不一定小于这两个学院所有女生的录取率; ④法学院的录取率不一定小于这两个学院所有学生的录取率. 其中,所有正确结论的序号是___________.14.五位德国游客与七位英国游客在游船上任意站成一排拍照,则五位德国游客互不相邻的概率为_______.15.在区间[]0,2上分别任取两个数m ,n ,若向量(),a m n =,()1,1b =,则满足1a b -≤的概率是______ .16.一个袋子里装有大小形状完全相同的5个小球,其编号分别为1,2,3,4,5,甲、乙两人进行取球,甲先从袋子中随机取出一个小球,若编号为1,则停止取球;若编号不为1,则将该球放回袋子中.由乙随机取出2个小球后甲再从袋子中剩下的3个小球随机取出一个,然后停止取球,则甲能取到1号球的概率为__________.17.在古代三国时期吴国的数学家赵爽创制了一幅“赵爽弦图”,由四个全等的直角三角形围成一个大正方形,中间空出一个小正方形(如图阴影部分).若直角三角形中较小的锐角为a .现向大正方形区城内随机投掷一枚飞镖,要使飞镖落在小正方形内的概率为14,则cos α=_____________.18.农历戊戌年即将结束,为了迎接新年,小康、小梁、小谭、小刘、小林每人写了一张心愿卡,设计了一个与此心愿卡对应的漂流瓶.现每人随机的选择一个漂流瓶将心愿卡放入,则事件“至少有两张心愿卡放入对应的漂流瓶”的概率为___19.若从甲、乙、丙、丁4位同学中选出2名代表参加学校会议,则甲、乙两人至少有一人被选中的概率为____.20.现有编号为1,2,3,…,100的100把锁,利用中国剩余定理的原理设置开锁密码,规则为:将锁的编号依次除以3,5,7所得的三个余数作为该锁的开锁密码,这样,每把锁都有一个三位数字的开锁密码.例如,编号为52的锁所对应的开锁密码是123,开锁密码为232所对应的锁的编号是23.若一把锁的开锁密码为203,则这把锁的编号是__________.三、解答题21.在全国第五个“扶贫日”到来之前,某省开展“精准扶贫,携手同行”的主题活动,某贫困县调查基层干部走访贫困户数量.甲镇有基层干部60人,乙镇有基层干部60人,丙镇有基层干部80人,每人都走访了若干贫困户,按照分层抽样,从甲、乙、丙三镇共选20名基层干部,统计他们走访贫困户的数量,并将走访数量分成[)5,15,[)15,25,[)25,35,[)35,45,[]45,555组,绘制成如图所示的频率分布直方图.(1)求这20人中有多少人来自丙镇,并估计甲、乙、丙三镇的基层干部走访贫困户户数的中位数(精确到整数位);(2)如果把走访贫困户达到或超过35户视为工作出色,求选出的20名基层干部中工作出色的人数,并从中选2人做交流发言,求这2人中至少有一人走访的贫困户在[]45,55的概率.22.一汽车厂生产A ,B ,C 三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆):按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A 类轿车10辆.轿车A 轿车B 轿车C 舒适型 100 150 z标准型300450600(1)求z 的值;(2)用分层抽样的方法在C 类轿车中抽取一个容量为5的样本.将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;(3)用随机抽样的方法从B 类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2 把这8辆轿车的得分看作一个总体,从中任取一个得分数a , 记这8辆轿车的得分的平均数为x ,定义事件{|0.5E a a x =-≤,且函数2() 2.31f x ax ax =-+没有零点},求事件E 发生的概率.23.为了响应市政府迎接全国文明城市创建活动的号召,某学校组织学生举行了文明城市创建知识类竞赛,为了了解本次竞赛中学生的成绩情况,从中抽取50名学生的分数(满分为100分,得分取正整数,抽取学生的分数均在[]50,100之内)作为样本进行统计,按照[)[)[)[)[]50,6060,7070,8080,9090,100,,,,分成5组,并作出如下频率分布直方图,已知得分在[)80,90的学生有5人.()1求频率分布直方图中的的, x y 值,并估计学生分数的众数、平均数和中位数: ()2如果从[)[)[)60,7070,8080,90,,三个分数段的学生中,按分层抽样的方法抽取8人参与座谈会,然后再从[)[)70,8080,90,两组选取的人中随机抽取2人作进一步的测试,求这2人中恰有一人得分在[)80,90的概率.24.在这智能手机爆发的时代,大部分高中生都有手机,在手机面前,有些学生无法抵御手机尤其是手机游戏和短视频的诱惑,从而导致无法专心完成学习任务,成绩下滑;但是对于自制力强,能有效管理自己的学生,手机不仅不会对他们的学习造成负面影响,还能成为他们学习的有力助手,我校某研究型学习小组调查研究“中学生使用智能手机对学习的影响部分统计数据如下表:不使用手机 使用手机 合计 学习成绩优秀人数 28 12 40 学习成绩不优秀人数 14 26 40 合计423880参考数据:22()()()()()n ad bc K a c b d a b c d -=++++,其中n a b c d =+++.()20P K k ≥ 0.10 0.05 0.025 0.010 0.005 0.001 0k2.7063.8415.0246.6357.87910.828(1)试根据以上数据,运用独立性检验思想,指出有多大把握认为中学生使用手机对学习有影响?(2)研究小组将该样本中不使用手机且成绩优秀的同学记为A 组,使用手机且成绩优秀的同学记为B 组,计划从A 组推选的4人和B 组推选的2人中,随机挑选两人来分享学习经验,求挑选的两人中一人来自A 组、另一人来自B 组的概率.25.为降低汽车尾气的排放量,某厂生产甲乙两种不同型号的节排器,分别从甲乙两种节排器中各自抽取100件进行性能质量评估检测,综合得分情况的频率分布直方图如图所示.节排器等级及利润如表格表示,其中11107a << 综合得分k 的范围节排器等级 节排器利润率85k ≥一级品a(1)若从这100件甲型号节排器按节排器等级分层抽样的方法抽取10件,再从这10件节排器中随机抽取3件,求至少有2件一级品的概率; (2)视频率分布直方图中的频率为概率,用样本估计总体,则①若从乙型号节排器中随机抽取3件,求二级品数ξ的分布列及数学期望()E ξ; ②从长期来看,骰子哪种型号的节排器平均利润较大?26.在一个盒子中装有6支圆珠笔,其中3支一等品,2支二等品和1支三等品,从中任取3支.求(1)恰有1支一等品的概率; (2)恰有两支一等品的概率; (3)没有三等品的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】因为菱形的内角和为360°,所以阴影部分的面积为半径为1的圆的面积, 故由几何概型可知20p =, 解得0004.5 1.7327.7912p p p π=≈⨯=.选C . 2.B解析:B 【分析】设“甲、乙不在同一组”为事件M ,12名医护人员平均分配到两所医院的基本事件总数为n 612C ==924,甲、乙在同一组包含的基本事件个数m 4102C ==420,由此能求出甲、乙不在同一组的概率. 【详解】解:设“甲、乙不在同一组”为事件M ,12名医护人员平均分配到两所医院的基本事件总数为n 612C ==924, 甲、乙在同一组包含的基本事件个数m 4102C ==420,∴甲、乙不在同一组的概率P =14206192411m n -=-=. 故选:B 【点睛】本题考查古典概型的应用问题,重点考查分组分配题型,属于基础题型,本题的关键善于用所求事件的对立事件求概率.3.C解析:C 【分析】根据古典概型的概率公式求解即可. 【详解】从袋中任取10个球,共有10100C 种,其中恰好有6个白球的有468020C C ⋅种即其中恰好有6个白球的概率为46208001010C C C ⋅ 故选:C 【点睛】本题主要考查了计算古典概型的概率,属于中档题.4.D解析:D 【分析】根据题意,作出满足题意的图像,利用面积测度的几何概型,即得解. 【详解】分别以A ,B ,C ,D 四点为圆心,1为半径作圆,由题意满足条件的点在图中的阴影部分224ABCD S =⨯=,214144ABCD S S ππ=-⨯⨯=-阴影由几何测度的古典概型,14ABCD S P S π==-阴影 故选:D 【点睛】本题考查了面积测度的几何概型,考查了学生综合分析,数形结合,数学运算的能力,属于中档题.5.C解析:C 【分析】首先求出分段函数在各区间段的值域,然后利用几何概型求其概率. 【详解】 由题意得,当01x <<时,2()ln f x x e =+,则恒有2()f x e <,满足题意; 当1x e ≤<时,()xf x e =,若满足2()xf x e e =<,可得12x ≤<; 所以()f x 的值小于常数2e 的概率是2e. 故选:C. 【点睛】本题主要考查长度比值类型的几何概型,同时考查了分段函数值域的求解,属于基础题.6.D解析:D 【分析】设正品为12,a a ,次品为b ,列出所有的基本事件,根据古典概型求解即可. 【详解】设正品为12,a a ,次品为b ,任取两件所有的基本事件为12(,)a a ,1(,)a b ,2(,)a b 共3个基本事件, 其中恰有1件次品的基本事件为1(,)a b ,2(,)a b ,共2个, 所以23P =, 故选:D 【点睛】本题主要考查了古典概型,基本事件的概念,属于容易题.7.D解析:D 【分析】直接列举出所有的抽取情况,再列举出符合题意的事件数,即可计算出概率。

高中数学必修三第三章《概率》章节练习题(含答案)

高中数学必修三第三章《概率》章节练习题(含答案)

高中数学必修三第三章《概率》章节练习题(含答案)高中数学必修三第三章《概率》章节练题一、选择题(每小题3分,共18分)1.下列试验属于古典概型的有()。

A.1个B.2个C.3个D.4个2.任取两个不同的1位正整数,它们的和是8的概率是()。

A。

B。

C。

D。

补偿训练】一袋中装有大小相同,编号分别为1,2,3,4,5,6,7,8的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为()。

A。

B。

C。

D。

3.在全运会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手。

若从中任选3人,则选出的火炬手的编号相连的概率为()。

A。

B。

C。

D。

4.任意抛掷两颗骰子,得到的点数分别为a,b,则点P(a,b)落在区域|x|+|y|≤3中的概率为()。

A。

B。

C。

D。

5.在棱长为a的正方体ABCD-A1B1C1D1中随机地取一点P,则点P与正方体各表面的距离都大于的概率为()。

A。

B。

C。

D。

6.如图,两个正方形的边长均为2a,左边正方形内四个半径为的圆依次相切,右边正方形内有一个半径为a的内切圆,在这两个图形上各随机撒一粒黄豆,落在阴影内的概率分别为P1,P2,则P1,P2的大小关系是()。

A。

P1=P2 B。

P1>P2 C。

P1<P2 D。

无法比较二、填空题(每小题4分,共12分)7.一颗骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b,则a+b能被3整除的概率为()。

8.已知函数f(x)=log2x,x∈R。

在区间[1,8]上任取一点x,使f(x)≥-2的概率为()。

补偿训练】已知直线y=x+b,b∈[-2,3],则该直线在y轴上的截距大于1的概率是()。

A。

B。

C。

D。

9.如图,利用随机模拟的方法可以估计图中由曲线y=√(x)与两直线x=2及y=0所围成的阴影部分的面积S:①先产生两组[0,1]的均匀随机数,a=RAND,b=RAND;②做变换,令x=4a,y=√(b);③判断(x,y)是否在阴影部分中,若是则计数器加1;④重复上述步骤n次,估计S≈n×计数器/.则利用上述方法,当n=时,估计得到的阴影部分的面积S≈()。

高中数学人教A版必修三习题第三章-概率的基本性质含答案

高中数学人教A版必修三习题第三章-概率的基本性质含答案

第三章 概率3.1 随机事件的概率3.1.3 概率的基本性质A 级 基础巩固一、选择题1.下列各组事件中,不是互斥事件的是( )A .一个射手进行一次射击,命中环数大于8与命中环数小于6B .统计一个班级数学期中考试成绩,平均分数低于90分与平均分数高于90分C .播种菜籽100粒,发芽90粒与至少发芽80粒D .检查某种产品,合格率高于70%与合格率为70%答案:C2.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,已知事件“2张全是移动卡”的概率是,那么概率是的事件是( ) 310710A .至多有一张移动卡B .恰有一张移动卡C .都不是移动卡D .至少有一张移动卡解析:结合对立事件可知所求事件是“2张全是移动卡”的对立事件,即至多有一张移动卡.答案:A3.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率为90%,则甲、乙两人下成和棋的概率为( )A .60%B .30%C .10%D .50%解析:甲不输棋包含甲获胜或甲、乙两人下成和棋,则甲、乙两人下成和棋的概率为90%-40%=50%.答案:D4.对空中飞行的飞机连续射击两次,每次发射一枚炮弹,设A ={两次都击中飞机},B ={两次都没击中飞机},C ={恰有一弹击中飞机},D ={至少有一弹击中飞机},下列关系不正确的是( )A .A ⊆DB .B ∩D =∅C .A ∪C =D D .A ∪C =B ∪D解析:“恰有一弹击中飞机”指第一枚击中第二枚没中或第一枚没中第二枚击中,A ∪C =D =(至少有一弹击中飞机),不是必然事件;“至少有一弹击中”包含两种情况:一种是恰有一弹击中,一种是两弹都击中,B ∪D 为必然事件,所以A ∪C ≠B ∪D .答案:D5.现有语文、数学、英语、物理和化学共5本书,从中任取1本,取出的是理科书的概率为( )A. B. C. D. 15253545解析:记“取到语文、数学、英语、物理、化学书”分别为事件A 、B 、C 、D 、E ,则A 、B 、C 、D 、E 彼此互斥,取到理科书的概率为事件B 、D 、E 概率的和.所以P (B ∪D ∪E )=P (B )+P (D )+P (E )=++=. 15151535答案:C二、填空题6.在掷骰子的游戏中,向上的点数为5或6的概率为______.解析:记事件A 为“向上的点数为5”,事件B 为“向上的点数为6”,则A 与B 互斥.所以P (A ∪B )=P (A )+P (B )=×2=. 1613答案: 137.从4名男生和2名女生中任选3人去参加演讲比赛,所选3人中至少有1名女生的概率为,那么所选3人中都是男生的概率为________. 45解析:设A ={3人中至少有1名女生},B ={3人都为男生},则A ,B 为对立事件,所以P (B )=1-P (A )=. 15答案: 158.如图所示,靶子由一个中心圆面Ⅰ和两个同心圆环Ⅱ、Ⅲ构成,射手命中Ⅰ、Ⅱ、Ⅲ的概率分别为0.35、0.30、0.25,则不命中靶的概率是________.解析:“射手命中圆面Ⅰ”为事件A ,“命中圆环Ⅱ”为事件B ,“命中圆环Ⅲ”为事件C ,“不中靶”为事件D ,则A 、B 、C 彼此互斥,故射手中靶的概率为P (A ∪B ∪C )=P (A )+P (B )+P (C )=0.35+0.30+0.25=0.90.因为中靶和不中靶是对立事件,故不命中靶的概率为P (D )=1-P (A ∪B ∪C )=1-0.90=0.10.答案:0.10三、解答题9.某医院一天派出医生下乡医疗,派出医生人数及其概率如下表所示. 医生人数0 1 2 3 4 ≥5 概率 0.1 0.16 x y 0.2 z(1)若派出医生不超过2人的概率为0.56,求x 的值;(2)若派出医生最多4人的概率为0.96,至少3人的概率为0.44,求y ,z 的值. 解:(1)由派出医生不超过2人的概率为0.56,得0.1+0.16+x =0.56,所以x =0.3.(2)由派出医生最多4人的概率为0.96,得0.96+z =1,所以z =0.04.由派出医生至少3人的概率为0.44, 得y +0.2+z =0.44,所以y =0.44-0.2-0.04=0.2.10.如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A )的概率是,取到方块(事件B )的概率是,问: 1414(1)取到红色牌(事件C )的概率是多少?(2)取到黑色牌(事件D )的概率是多少?解:(1)因为C =A ∪B ,且A 与B 不会同时发生,所以事件A 与事件B 互斥,根据概率的加法公式得P (C )=P (A )+P (B )=.12(2)事件C 与事件D 互斥,且C ∪D 为必然事件,因此事件C 与事件D 是对立事件,P (D )=1-P (C )=. 12B 级 能力提升1.从1,2,…,9中任取两数:①恰有一个偶数和恰有一个奇数;②至少有一个奇数和两个数都是奇数;③至少有一个奇数和两个都是偶数;④至少有一个奇数和至少有一个偶数.在上述事件中,是对立事件的是( )A .①B .②④C .③D .①③ 解析:从1,2,…,9中任取两数,有以下三种情况:(1)两个奇数;(2)两个偶数;(3)一个奇数和一个偶数.至少有一个奇数是(1)和(3),其对立事件显然是(2).答案:C2.事件A ,B 互斥,它们都不发生的概率为,且P (A )=2P (B ),则P ()=________. 25A -解析:P (A )+P (B )=1-=, 2535又P (A )=2P (B ),所以P (A )=,P (B )=. 2515所以P ()=1-P (A )=. A -35答案: 353.三个臭皮匠顶上一个诸葛亮,能顶得上吗?在一次有关“三国演义”的知识竞赛中,三个臭皮匠A 、B 、C 能答对题目的概率分别为P (A )=,P (B )=,P (C )=,诸葛亮D 能答131415对题目的概率为P (D )=,如果将三个臭皮匠A 、B 、C 组成一组与诸葛亮D 比赛,答对题目23多者为胜方,问哪方胜?解:如果三个臭皮匠A 、B 、C 能答对的题目彼此互斥(他们能答对的题目不重复),则P (A +B +C )=P (A )+P (B )+P (C )=>P (D )=,故三个臭皮匠方为胜方,即三个臭皮匠能顶上476023一个诸葛亮;如果三个臭皮匠A 、B 、C 能答对的题目不互斥,则三个臭皮匠未必能顶上一个诸葛亮.。

高中数学必修三第三章概率综合训练(含答案)

高中数学必修三第三章概率综合训练(含答案)

高中数学必修三概率综合训练一、单选题1.下列事件中,是随机事件的是()①从10个玻璃杯(其中8个正品,2个次品)中任取3个,3个都是正品;②同一门炮向同一个目标发射多发炮弹,其中50%的炮弹击中目标;③某人给其朋友打电话,却忘记了朋友电话号码的最后一个数字,就随意在键盘上按了一个数字,恰巧是朋友的电话号码;④异性电荷,相互吸引;⑤某人购买体育彩票中一等奖.A. ②③④B. ①③⑤C. ①②③⑤D. ②③⑤2.下列说法正确的是()A. 任何事件的概率总是在(0,1)之间B. 频率是客观存在的,与试验次数无关C. 随着试验次数的增加,频率一般会越来越接近概率D. 概率是随机的,在试验前不能确定3.气象台预报“本市明天降雨概率是70%”,下列说法正确的是()A. 本市明天将有70%的地区降雨B. 本市明天将有70%的时间降雨C. 明天出行带雨具的可能性很大D. 明天出行不带雨具肯定要淋雨4.从装有2个红球和2个黑球的口袋内任取2个球,那么互斥而不对立的两个事件是()A. “至少有一个红球”与“都是黑球”B. “至少有一个黑球”与“都是黑球”C. “至少有一个黑球”与“至少有1个红球”D. “恰有1个黑球”与“恰有2个黑球”5.已知事件A与事件B发生的概率分别为、,有下列命题:①若A为必然事件,则;②若A与B互斥,则;③若A与B互斥,则.其中真命题有()个A. 0B. 1C. 2D. 36.设函数,若从区间内随机选取一个实数,则所选取的实数满足的概率为()A. 0.5B. 0.4C. 0.3D. 0.27.如图,在矩形中,AB=4cm,BC=2cm,在图形上随机撒一粒黄豆,则黄豆落到阴影部分的概率是()A. B. C. D.8.掷一个骰子,出现“点数是质数”的概率是()A. B. C. D.9.抽查10件产品,设事件A:至少有2件次品,则A的对立事件为()A. 至多有2件次品B. 至多有1件次品C. 至多有2件正品D. 至多有1件正品10.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续的时间为50秒,若一行人来到该路口遇到红灯,则至少需要等待20秒才出现绿灯的概率为()A. B. C. D.11.在边长为4的正方形内随机取一点,该点到正方形的四条边的距离都大于1的概率是()A. B. C. D.12.掷一枚均匀的硬币两次,事件M:一次正面朝上,一次反面朝上;事件N:至少一次正面朝上,则下列结果正确的是()A. P(M)=,P(N)=B. P(M)=,P(N)=C. P(M)=,P(N)=D. P(M)=,P(N)=13.从12个同类产品(其中10个是正品,2个是次品)中任意抽取3个的必然事件是()A. 3个都是正品B. 至少有1个是次品C. 3个都是次品D. 至少有1个是正品14.设实数p在[0,5]上随机地取值,使方程x2+px+1=0有实根的概率为()A. 0.6B. 0.5C. 0.4D. 0.315.在区间[0,1]上随机取两个数x,y,记P为事件“x+y≤”的概率,则P=()A. B. C. D.16.在标准化的考试中既有单选题又有多选题,多选题是从A,B,C,D四个选项中选出所有正确的答案(正确答案可能是一个或多个选项),有一道多选题考生不会做,若他随机作答,则他答对的概率是()A. B. C. D.17.甲、乙两歼击机的飞行员向同一架敌机射击,设击中的概率分别为0.4,0.5,则恰有一人击中敌机的概率为()A. 0.9B. 0.2C. 0.7D. 0.518.某同学先后投掷一枚骰子两次,第一次向上的点数记为x,第二次向上的点数记为y,在直角坐标系xoy中,以(x,y)为坐标的点落在直线2x﹣y=1上的概率为()A. B. C. D.19.已知正方形ABCD的边长为2,H是边DA的中点.在正方形ABCD内部随机取一点P,则满足的概率为()A. B. C. D.20.袋中共有5个除颜色外完全相同的小球,其中1个红球,2个白球和2个黑球,从袋中任取两球,两球颜色为一白一黑的概率等于( )A. B. C. D.21.甲乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,且。

(典型题)高中数学必修三第三章《概率》测试卷(含答案解析)

(典型题)高中数学必修三第三章《概率》测试卷(含答案解析)

一、选择题1.如图是一边长为8的正方形苗圃图案,中间黑色大圆与正方形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍.若在正方形图案上随机取一点,则该点取自黑色区域的概率为( )A .8π B .16πC .18π-D .116π-2.一个不透明的袋中装有6个白球,4个红球球除颜色外,无任何差异.从袋中往外取球,每次任取1个,取出后记下颜色不放回,若为红色则停止,若为白色则继续抽取,停止时从袋中抽取的白球的个数为随机变量X ,则(22)P X ≤=( ). A .2 B .512C .56D .5183.如图所示,已知圆1C 和2C 的半径都为2,且1223C C =,若在圆1C 或2C 中任取一点,则该点取自阴影部分的概率为( )A 33533π+B 33533π+C 331033π+D 331033π+4.设袋中有80个红球,20个白球,若从袋中任取10个球,则其中恰好有6个白球的概率为( )A .46801010100C C C ⋅ B .64208001010C C C ⋅ C .46208001010C C C ⋅ D .64801010100C C C ⋅ 5.某市委积极响应十九大报告提出的“到2020年全面建成小康社会”的目标,鼓励各县积极脱贫,计划表彰在农村脱贫攻坚战中的杰出村代表,已知A ,B 两个贫困县各有15名村代表,最终A 县有5人表现突出,B 县有3人表现突出,现分别从A ,B 两个县的15人中各选1人,已知有人表现突出,则B 县选取的人表现不突出的概率是( ) A .13B .47C .23D .566.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设2AD BD =,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .14B .13C .17D .4137.甲乙两艘轮船都要在某个泊位停靠,甲停靠的时间为4小时,乙停靠的时间为6小时,假定他们在一昼夜的时间段中随机到达,则这两艘船停靠泊位时都不需要等待的概率为( ) A .916B .58C .181288D .5128.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥.如图,半球内有一内接正四棱锥S ABCD -,该四棱锥的体积为423,现在半球内任取一点,则该点在正四棱锥内的概率为( )A .1πB .2πC .3πD .2π9.某研究机构在对具有线性相关的两个变量x 和y 进行统计分析时,得到如下数据:x 4 6 8 10 12 y12356由表中数据求得y 关于的回归方程为落在回归直线下方的概率为( ) A .25B .35C .34D .1210.从分别写有1,2,3,4的4张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数不小于第二张卡片上的数的概率为A.25B.35C.38D.5811.在二项式42nxx⎛+⎪⎝⎭的展开式,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为()A.16B.14C.512D.1312.从2017年到2019年的3年高考中,针对地区差异,理科数学全国卷每年都命了3套卷,即:全国I卷,全国II卷,全国III卷.小明同学马上进入高三了,打算从这9套题中选出3套体验一下,则选出的3套题年份和编号都各不相同的概率为()A.184B.142C.128D.114二、填空题13.现有五个分别标有A、B、C、D、E的小球,随机取出三个小球放进三个盒子,每个盒子只能放一个小球,则D、E至少有一个在盒子中的概率为______.14.采用简单随机抽样从含10个个体的总体中抽取一个容量为4的样本,若个体a前两次未被抽到,则第三次被抽到的概率为_____.15.如图,在长方形OABC内任取一点(,)P x y,则点P落在阴影部分BCD内的概率为________.16.已知两个事件A和B互斥,记事件B是事件B的对立事件,且()0.3P A=,0(.)6P B=,则()P A B=_____________.17.已知甲箱子里装有3个白球、2个黑球,乙箱子里装有2个白球、2个黑球,从这两个箱子里分别随机摸出1个球,则恰有一个白球的概率为__________.18.在区间[,]22ππ-上随机取一个实数x,则事件“13cos2x x-≤+≤发生的概率是__________.19.从1,2,3,4中任取两个不同的数,则取出的2个数之差的绝对值小于或等于2的概率为__________.20.在边长为2的正△ABC所在平面内,以A3AB,AC于D,E.若在△ABC内任丢一粒豆子,则豆子落在扇形ADE内的概率是________.三、解答题21.袋中有9个大小相同颜色不全相同的小球,分别为黑球、黄球、绿球,从中任意取一球,得到黑球或黄球的概率是59,得到黄球或绿球的概率是23,试求:(1)从中任取一球,得到黑球、黄球、绿球的概率各是多少?(2)从中任取两个球,得到的两个球颜色不相同的概率是多少?22.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.已知这100位顾客中一次购物量超过10件的顾客占40%.一次购物量1至5件6至10件11至15件16至20件21件及以上顾客数(人)x3025y5结算时间(分钟/人)12345(1)确定,x y的值,并估计顾客一次购物的结算时间的平均值;(2)求一位顾客一次购物的结算时间不超过3分钟的概率.(将频率视为概率)23.手机支付也称为移动支付(Mobile Payment),是当今社会比较流行的一种付款方式.某金融机构为了了解移动支付在大众中的熟知度,对15—65岁的人群作了问题为“你会使用移动支付吗?”的随机抽样调查,把回答“会”的100个人按照年龄分成5组,绘制成如图所示的频数分布表和频率分布直方图.(1)求x,a的值;(2)若从第1,3组中用分层抽样的方法抽取5人,求两组中分别抽取的人数;(3)在(2)抽取的5人中再随机抽取2人,求所抽取的2人来自同一个组的概率. 24.一个盒子里装有m个均匀的红球和n个均匀的白球,每个球被取到的概率相等,已知从盒子里一次随机取出1个球,取到的球是红球的概率为13,从盒子里一次随机取出2个球,取到的球至少有1个是白球的概率为10 11.(1)求m,n的值;(2)若一次从盒子里随机取出3个球,求取到的白球个数不小于红球个数的概率.25.高考的成绩不仅需要平时的积累,还与考试时的状态有关系.为了了解考前学生的紧张程度与性别是否有关系,现随机抽取某校500名学生进行了调查,结果如表所示:(1)根据该校调查数据,能否在犯错误的概率不超过0.01的前提下,认为“该学校学生的考前焦虑情况与性别有关”?(2)若从考前心情正常的学生中按性别用分层抽样的方法抽取7人,再从被抽取的7人中随机抽取2人,求这两人中有女生的概率.附:22()()()()()n ad bcKa b c d a c b d-=++++,n a b c d+++=.26.从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)求频率分布直方图中的a,b的值;(2)从阅读时间在[14,18)的学生中任选2人,求恰好有1人阅读时间在[14,16),另1人阅读时间在[16,18)的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】设黑色小圆的半径为r,则黑色大圆的半径为2r,由题意求得r,进一步求出黑色区域的面积,由测度比是面积比得答案.【详解】解:设黑色小圆的半径为r,则黑色大圆的半径为2r,由题意可知,88r =,即1r =.∴图中黑色区域的面积为222884412648ππππ⨯-⨯+⨯⨯+⨯=-,又正方形的面积为64.∴在正方形图案上随机取一点,则该点取自黑色区域的概率为6481648ππ-=-. 故选:C . 【点睛】本题考查几何概型的概率的求法,考查数形结合的解题思想方法,属于中档题.2.C解析:C 【分析】X k =表示前k 个球为白球,第1k +个球为红球,则((0)(1)(2)P X P X P X P X ≤==+=+=.由此计算可得结论.【详解】X k =表示前k 个球为白球,第1k +个球为红球,42(0)105P X ===,644(1)10915P X ⨯===⨯,21643101(2)6A A P X A ===,所以2415((0)(1)(2)51566P X P X P X P X ≤==+=+==++=, 故选:C . 【点睛】本题考查古典概型概率计算,属于基础题,解题时要认真审题,注意列举法的合理运用.3.D解析:D 【分析】设两圆交于点,A B ,连接11,AC BC ,12,AB C C ,设12,AB C C 交于点D ,由已知的数据可得1AC B △为等边三角形,从而可求出阴影部分的面积,进而求出总面积,即可求出概率. 【详解】设两圆交于点,A B ,连接11,AC BC ,12,AB C C ,设12,AB C C 交于点D ,则11212C D C C ==190ADC ∠=︒,所以111cos C D AC D AC ∠==,所以130AC D ∠=︒,则160AC B ∠=︒,所以1AC B △为等边三角形, 所以604342(4)2336043S ππ⨯=-⨯=-阴, 图形的总面积42024(23)2333S πππ=⨯--=+总, 所以求概率为4232333201033233ππππ--=++,故选:D【点睛】此题考查几何概型概率的求法,关键是求阴影部分的面积,属于中档题.4.C解析:C 【分析】根据古典概型的概率公式求解即可. 【详解】从袋中任取10个球,共有10100C 种,其中恰好有6个白球的有468020C C ⋅种即其中恰好有6个白球的概率为46208001010C C C ⋅ 故选:C 【点睛】本题主要考查了计算古典概型的概率,属于中档题.5.B解析:B 【分析】由古典概型及其概率计算公式得:有人表现突出,则B 县选取的人表现不突出的概率是6041057=,得解. 【详解】由已知有分别从A ,B 两个县的15人中各选1人,已知有人表现突出,则共有111115*********C C C C ⋅-⋅=种不同的选法,又已知有人表现突出,且B 县选取的人表现不突出,则共有1151260C C ⋅=种不同的选法,已知有人表现突出,则B 县选取的人表现不突出的概率是6041057=. 故选:B . 【点睛】本题考查条件概率的计算,考查运算求解能力,求解时注意与古典概率模型的联系.6.C解析:C 【分析】由题意求出AB =,所求概率即为DEF ABCS P S=,即可得解.【详解】由题意易知120ADB ∠=,AF FD BD ==,由余弦定理得22222cos1207AB AD BD AD BD BD =+-⋅⋅=即AB =,所以AB =,则所求概率为217DEF ABCSFD P SAB ⎛⎫=== ⎪⎝⎭. 故选:C. 【点睛】本题考查了几何概型概率的求法和余弦定理的应用,属于中档题.7.C解析:C 【分析】设甲、乙到达的时间分别为,x y ,列出所有基本事件的约束条件,同时列出两艘船停靠泊位时都不需要等待的约束条件,利用线性规划做出平面区域,利用几何概型概率关系转化为面积比. 【详解】设甲、乙到达的时间分别为,x y ,则所有基本事件的构成的区域024{|}024x x y ≤≤⎧Ω=⎨≤≤⎩, 则这两艘船停靠泊位时都不需要等待包含的基本事件构成的区域024024{(,)|}46x y A x y y x x y ≤≤⎧⎪≤≤⎪=⎨≥+⎪⎪≥+⎩,做出Ω构成的区域,其面积为224=576,阴影部分为集合A 构成的区域,面积为221(2018)3622+=,这两艘船停靠泊位时都不需要等待的概率362181()576288P A ==. 故选:C.【点睛】本题考查利用线性规划做出事件对应的平面区域,再利用几何概型概率公式求出事件的概率,属于中档题.8.A解析:A 【分析】先根据四棱锥的体积求出球的半径,再根据几何概型概率公式求结果. 【详解】因为四棱锥的体积为423,设球半径为R ,则4211222332R R R R =⨯⨯⨯⨯∴=因此所求概率为34213142)23ππ=⨯,故选:A 【点睛】本题考查四棱锥体积、球体积以及几何概型概率公式,考查综合分析求解能力,属中档题.9.A解析:A 【分析】求出样本点的中心,求出ˆa的值,得到回归方程得到5个点中落在回归直线下方的有(6,2),(8,3),共2个,求出概率即可.【详解】8x=, 3.4y=,故3.40.658ˆa=⨯+,解得: 1.8a=-,则0.65.8ˆ1y x=-,故5个点中落在回归直线下方的有(6,2),(8,3),共2个,故所求概率是25p=,故选:A.【点睛】本题考查回归方程概念、概率的计算以及样本点的中心,考查数据处理能力,是一道基础题.10.D解析:D【分析】直接列举出所有的抽取情况,再列举出符合题意的事件数,即可计算出概率。

必修3第三章概率集中处理1234

必修3第三章概率集中处理1234

必修3第三章概率复习题一、 选择题1. 1.从12个同类产品(其中10个正品,2个次品)中任意抽取3个,下列事件是必然事件的是( )A.3个都是正品B.至少有一个是次品C.3个都是次品D.至少有一个是正品 2.下列事件中,不可能发生的事件是 ( )A.三角形的内角和为180°B.三角形中大边对的角也较大C.锐角三角形中两个锐角的和小于90°D.三角形中任意两边之和大于第三边3.下面四个事件: ①明天天晴;②常温下,锡条能够熔化;③自由落下的物体作匀加速直线运动;④函数 xy a =(0a >,且1a ≠)在定义域上为增函数.其中随机事件的个数为 ( )A. 0B. 1C. 2D. 34.4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的所有基本事件数为( ) A .2 B .3 C .4 D .65. 某人在打靶中,连续射击2次,事件“至少有一次中靶”的互斥事件是 ( ) A.至多有一次中靶 B.两次都中靶 C.两次都不中靶 D.只有一次中靶6.从装有2个红球和2个白球的口袋中任取两球,那么下列事件中是互斥事件 :⑴至少有一个白球,都是白球;⑵至少有一个白球,至少有一个红球;⑶恰有一个白球,恰有2个白球;⑷至少有一个白球,都是红球. 的个数为( ) A.0 B.1 C.2 D.3 7.下列说法中正确的是( )A.事件A 、B 至少有一个发生的概率一定比A 、B 中恰有一个发生的概率大B.事件A 、B 同时发生的概率一定比A 、B 中恰有一个发生的概率小C.互斥事件一定是对立事件,对立事件也是互斥事件D.互斥事件不一定是对立事件,而对立事件一定是互斥事件8. 从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,下列既是互斥事件又是对立事件的是 ( )A 、恰好有1件次品和恰好有2件次品B 、至少有1件次品和全是次品C 、至少有1件正品和至少有1件次品D 、至少有1件次品和全是正品 9.同时掷3枚硬币,那么互为对立事件的是( )A.至少有1枚正面和最多有1枚正面B.最多1枚正面和恰有2枚正面C.至多1枚正面和至少有2枚正面D.至少有2枚正面和恰有1枚正面6.有两双不同的袜子,任取2只恰好成双的概率是( )A.16B.14C.13D.127.从1,2,3,4这四个数字中,任取两个不同的数字构成一个两位数,则这个两位数大于30的概率为( )A.12B.13C.14D.158. 用1,2,3组成无重复数字的三位数,且这些数被2整除的概率为 ( )A. 15B. 14C. 13D. 359. 袋中有3个白球和2个黑球,从中任意摸出2个球,则至少摸出1个黑球的概率为A. 37B. 710C. 110D. 310( )4.人向圆内投镖,如果他每次都投入圆内,那么他投中正方形区域的概率为( ) A.2π B.1πC.23D.135.若以连续掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆x 2+y 2=25外的概率是 ( ) A.536B.712C.512D.137.在棱长为a 的正方体ABCD -A 1B 1C 1D 1内任取一点P ,则点P 到点A 的距离小于等于a的概率为 ( )A.22 B.22π C.16D.16π 8.从一箱产品中随机地抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1.则事件“抽到的不是一等品”的概率为( )A .0.7B .0.65C .0.35D .0.39.一枚伍分硬币连掷3次,只有1次正面向上的概率为 ( ) A.38 B.25 C. 13 D.1410.袋中有5个球,其中3个是红球,2个是白球.从中任取2个球,这2个球都是红球的概率为 A. 1120 B. 310 C. 710 D. 37( )1、从一堆产品(其中正品与次品都多于2件)中任取2件,观察正品件数与次品件数,下列既是互斥事件又是对立事件的是 ( )A 、恰好有1件次品和恰好有2件次品B 、至少有1件次品和全是次品C 、至少有1件正品和至少有1件次品D 、至少有1件次品和全是正品 2、甲、乙二人下棋,甲获胜的概率是30%,两人下成和棋的概率为50%,则甲不输的概率是( ) A. 30% B. 20% C. 80% D. 以上都不对3、在500mL 的水中有一个草履虫,现从中随机取出2mL 水样放到显微镜下观察,则发现草履虫的概率是( ) A. 0.5 B. 0.4 C. 0.004 D. 不能确定4、同时掷3枚硬币,那么互为对立事件的是( )A.至少有1枚正面和最多有1枚正面B.最多1枚正面和恰有2枚正面C.至多1枚正面和至少有2枚正面D.至少有2枚正面和恰有1枚正面 5、平面上画有等距的平行线组,间距为(0)a a >,把一枚半径为(2)r r a <的硬币随机掷在平面上,硬币与平行线相交的概率 [ ] A 、2a r a - B 、2a r a - C 、a r a - D 、2ra 6、从1、2、3、4、5、6这6个数字中,不放回地任取两数,两数都是偶数的概率是[ ]A.12B.13C.14D.157、在区间(0,1)中,随机的取出两数,其和小于12的概率 [ ] A 、18 B 、14 C 、34 D 、788、现有五个球分别记为A 、C 、J 、K 、S ,随机放进三个盒子,每个盒子只能放一个球,则K 或S 在盒中的概率是( )A.101B.53C.103D.109 9、盒中有10个大小、形状完全相同的小球,其中8个白球、2个红球,则从中任取2球,至少有1个白球的概率是( ) A.4445B.15C.145D.899010、在面积为S 的△ABC 的边AB 上任取一点P ,则△PBC 的面积大于4S的概率是( ) A.21B.34C.41D. 2311、若以连续掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆x 2+y 2=25外的概率是 ( ) A.536B.712C.512D.131.任取两个不同的1位正整数,它们的和是8的概率是( ).A .241 B .61 C .83D .1212.在区间⎥⎦⎤⎢⎣⎡2π2π ,-上随机取一个数x ,cos x 的值介于0到21之间的概率为( ). A .31 B .π2C .21D .323.从集合{1,2,3,4,5}中,选出由3个数组成子集,使得这3个数中任何两个数的和不等于6,则取出这样的子集的概率为( ).A .103B .107C .53D .52 4.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( ).A .103 B .51 C .101 D .1215.从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于9的概率为( ).A .12513 B .12516 C .12518 D .125196.若在圆(x -2)2+(y +1)2=16内任取一点P ,则点P 落在单位圆x 2+y 2=1内的概率为( ).A .21 B .31 C .41 D .1617.已知直线y =x +b ,b ∈[-2,3],则该直线在y 轴上的截距大于1的概率是( ). A .51B .52 C .53D .54 8.在正方体ABCD -A 1B 1C 1D 1中随机取点,则点落在四棱锥O -ABCD (O 为正方体体对角线的交点)内的概率是( ).A .61B .31 C .21 D .329.抛掷一骰子,观察出现的点数,设事件A 为“出现1点”,事件B 为“出现2点”.已知P (A )=P (B )=61,则“出现1点或2点”的概率为( ). A .21 B .31C .61 D .121二、填空题1.下列事件中:①若x R ∈,则20x <;②没有水分,种子不会发芽; ③刘翔在2008年奥运会,力挫群雄,荣获男子110米栏冠军; ④若两平面//αβ,m α⊂且n β⊂,则//m n .其中_________是必然事件,_________是随机事件.2.若事件A 、B 是对立事件,则P(A)+P(B)=________________.3..在放有5个红球,4个黑球和3个白球的袋中.任意取出3球,取出的球全是同色球的概率为________.1.先后抛掷两枚骰子,骰子朝上的面的点数分别为x ,y ,则满足log2xy =1的概率为________.2.盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于________.3.一个投针实验的模板如图所示,AB 为半圆O 的直径,点C 在半圆上 且CA =CB.现向模板内任投一针, 则该针恰好落在△ABC 内(图中的阴影区域)的概率是________.4.某同学军训时打靶一次击中10环、9环、8环的概率分别是0.3,0.3,0.2,那么他射击一次不够8环的概率是___2、在区间(0,1)中随机地取出两个数,则两数之和大于23的概率是______________13、向面积为S 的△ABC 内任投一点P ,则△PBC 的面积小于2S的概率是_________10.某人午觉醒来,发觉表停了,他打开收音机想听电台报时,假定电台每小时报时一次,则他等待的时间短于10分钟的概率为___________.11.有A ,B ,C 三台机床,一个工人一分钟内可照看其中任意两台,在一分钟内A 未被照看的概率是 .12.抛掷一枚均匀的骰子(每面分别有1~6点),设事件A 为“出现1点”,事件B 为“出现2点”,则“出现的点数大于2”的概率为.13.已知函数f (x )=log 2x , x ∈⎥⎦⎤⎢⎣⎡221 ,,在区间⎥⎦⎤⎢⎣⎡221 ,上任取一点x 0,使f (x 0)≥0的概率为.14.从长度分别为2,3,4,5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是.15.一颗骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a,第二次出现的点数为b.则a+b能被3整除的概率为.三、解答题1.如图,墙上挂着一块边长为16cm的正方形木板,上面画了大、中、小三个同心圆,半径分别为2cm,4cm,6cm,某人站在3m处向木板投镖,射击到边线上或没射中木板都不算,可重新投一次,问:(1)投中大圆的概率是多少?(2)投中小圆和中圆形成的圆环的概率是多少?(3)投中大圆之外的概率是多少?2.一个不透明的口袋中装有大小形状相同的1个白球和3个编有不同号码的黑球,从中任意摸出2个球.(1)写出所有的基本事件;(2)求事件“摸出的2个球是黑球”包括多少个基本事件?3.先后抛掷两枚质地均匀的骰子,求:(1)点数之和是4的倍数的概率;(2)点数之和大于5且小于10的概率.4.一个盒子中放有5个完全相同的小球,其上分别标有号码1,2,3,4,5.从中任取一个,记下号码后放回.再取出1个,记下号码后放回,按顺序记录为(x,y),求所得两球的和为6的概率.5.袋中有6个球,其中4个白球,2个红球,从袋中任意取出两球,求下列事件的概率:(1)A:取出的两球都是白球;(2)B:取出的两球1个是白球,另1个是红球;(3)C:取出的两球中至少有一个白球.6.从装有编号分别为a,b的2个黄球和编号分别为c,d的2个红球的袋中无放回地摸球,每次任摸一球,求:(1)第1次摸到黄球的概率;(2)第2摸到黄球的概率.(1)求至多2人排队等候的概率;(2)求至少2人排队等候的概率.在一个口袋内装有10个相同的球,其中5个球标有数字0,5个球标有数字1.若从袋中摸出5个球,那么摸出的五个球所标数字之和小于2或大于的概率是多少?18.盒中有6只灯泡,其中有2只是次品,4只是正品.从中任取2只,试求下列事件的概率, ⑴取到的2只都是次品; ⑵取到的2只中恰有一只次品.19.5位同学参加百米赛跑,赛场共有5条跑道.其中甲同学恰有第一道,乙同学恰好排在第二道的概率是多少?20在1万张有奖储蓄的奖券中,设有一等奖1个,二等奖5个,三等奖10个.从中购买一张奖券.⑴求分别获得一等奖、二等奖、三等奖的概率; ⑵求购买一张奖券就中奖的概率.21.一个箱子中有红、黄、白三色球各一只,从中每次任取一只,有放回地抽取3次.求: ⑴3只全是红球的概率; (2)3只颜色全相同的概率; (3)3只颜色不全相同的概率; (4)3只颜色全不相同的概率.5、设b 和c 分别是先后抛掷一枚骰子得到的点数,求方程x²+bx +c =0有实数根的概率16、将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次,记第一次出现的点数为x ,第二次出现的点数为y .(1)求事件“3x y +≤”的概率; (2)求事件“2x y -=”的概率.17、甲盒中有红,黑,白三种颜色的球各3个,乙盒子中有黄,黑,白三种颜色的球各2个,从两个盒子中各取1个球。

(好题)高中数学必修三第三章《概率》测试题(包含答案解析)

(好题)高中数学必修三第三章《概率》测试题(包含答案解析)

一、选择题1.《九章算术》勾股章有一“引葭 [jiā] 赴岸”问题:“今有池方一丈, 葭生其中央,出水两尺,引葭赴岸,适与岸齐.问水深、葭长各几何.”其意思是:有一水池一丈见方,池中心生有一颗类似芦苇的植物,露出水面两尺,若把它引向岸边,正好与岸边齐(如图所示),问水有多深,该植物有多长?其中一丈为十尺.若从该葭上随机取一点,则该点取自水下的概率为( )A .2129B .2329C .1112D .12132.已知边长为2的正方形ABCD ,在正方形ABCD 内随机取一点,则取到的点到正方形四个顶点A B C D ,,,的距离都大于1的概率为( ) A .16πB .4π C .322π- D .14π-3.如图,长方形的四个顶点为(0,0)O ,(4,0)A ,(4,2)B ,(0,2)C ,曲线y x =经过点B .现将一质点随机投入长方形OABC 中,则质点落在图中阴影区域外的概率是( )A .13B .12C .23D .344.在下列命题中,①从分别标有1,2,……,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是518; ②341()2x x+的展开式中的常数项为2;③设随机变量~(0,1)N ξ,若(1)P p ξ≥=,则1(10)2P p ξ-<<=-. 其中所有正确命题的序号是( )A.②B.①③C.②③D.①②③5.4名同学参加4项不同的课外活动,若每名同学可自由选择参加其中一项,则每项活动至少一名同学参加的概率为()A.49B.427C.364D.3326.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫正棱锥.如图,半球内有一内接正四棱锥S ABCD-,该四棱锥的体积为423,现在半球内任取一点,则该点在正四棱锥内的概率为()A.1πB.2πC.3πD.2π7.图1是我国古代数学家赵爽创制的一幅“勾股圆方图”(又称“赵爽弦图”),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,受其启发,某同学设计了一个图形,它是由三个全等的钝角三角形与中间一个小正三角形拼成一个大正三角形,如图2所示,若5AD=,3BD=,则在整个图形中随机取点,此点来自中间一个小正三角形(阴影部分)的概率为()A.964B.449C.225D.278.从含有2件正品和1件次品的产品中任取2件,恰有1件次品的概率是()A.16B.13C.12D.239.假设△ABC为圆的内接正三角形,向该圆内投一点,则点落在△ABC内的概率为() A33B.2πC.4πD.334π10.在二项式42nxx的展开式,前三项的系数成等差数列,把展开式中所有的项重新排成一列,有理项都互不相邻的概率为()A.16B.14C.512D.1311.甲射击时命中目标的概率为0.75,乙射击时命中目标的概率为23,则甲乙两人各自射击同一目标一次,则该目标被击中的概率为()A.12B.1C.56D.111212.斐波那契螺旋线,也称“黄金螺旋线”,是根据斐波那契数列(1,1,2,3,5,8…)画出来的螺旋曲线,由中世纪意大利数学家列奥纳多•斐波那契最先提出.如图,矩形ABCD是以斐波那契数为边长的正方形拼接而成的,在每个正方形中作一个圆心角为90°的圆弧,这些圆弧所连成的弧线就是斐波那契螺旋线的一部分.在矩形ABCD内任取一点,该点取自阴影部分的概率为()A.14B.8πC.34D.4π二、填空题13.如图,在边长为1的正方形中随机撒一粒黄豆,则它落在阴影部分的概率为_______.14.2020年初,湖北成为全国新冠疫情最严重的省份,面临医务人员不足,医疗物资紧缺等诸多困难,全国人民心系湖北,志愿者纷纷驰援.若某医疗团队从3名男医生和2名女医生志愿者中,随机选取2名医生赴湖北支援,则至少有1名女医生被选中的概率为__________.15.五位德国游客与七位英国游客在游船上任意站成一排拍照,则五位德国游客互不相邻的概率为_______.16.十六个图钉组成如图所示的四行四列的方阵,从中任取三个图钉,则至少有两个位于同行或同列的概率为______.17.如图所示,分别以,,A B C为圆心,在ABC内作半径为2的三个扇形,在ABC内任取一点P,如果点P落在这三个扇形内的概率为13,那么图中阴影部分的面积是____________.18.北京市某银行营业点在银行大厅悬挂着不同营业时间段服务窗口个数的提示牌,如图所示. 设某人到达银行的时间是随机的,记其到达银行时服务窗口的个数为X,则()E X ______________.19.如图,M是半径为R的圆周上一个定点,在圆周上等可能的任取一点N,连接MN,则弦MN的长度不超过3R的概率是__________.20.如图,圆柱12O O内接于球O,且圆柱的高等于球O的半径,则从球O内任取一点,此点取自圆柱12O O的概率为______;三、解答题21.在流行病学调查中,潜伏期指自病原体侵入机体至最早临床症状出现之间的一段时间.某地区一研究团队从该地区500名A病毒患者中,按照年龄是否超过60岁进行分层抽样,抽取50人的相关数据,得到如下表格:(2)以各组的区间中点值为代表,计算50名患者的平均潜伏期(精确到0.1);(3)从样本潜伏期超过10天的患者中随机抽取两人,求这两人中恰好一人潜伏期超过12天的概率.22.某大学综合评价面试测试中,共设置两类考题:A类题有4个不同的小题,B类题有3个不同的小题.某考生从中任抽取3个不同的小题解答.(1)求该考生至少抽取到2个A类题的概率;(2)设所抽取的3个小题中B类题的个数为X,求随机变量X的分布列与均值. 23.随着共享单车的成功运营,更多的共享产品逐步走入大家的世界,共享汽车、共享篮球、共享充电宝等各种共享产品层出不穷.广元某景点设有共享电动车租车点,共享电动车的收费标准是每小时2元(不足1小时的部分按1小时计算).甲、乙两人各租一辆电动车,若甲、乙不超过一小时还车的概率分别为14,12;一小时以上且不超过两小时还车的概率分别为12,14;两人租车时间都不会超过三小时.(1)求甲、乙两人所付租车费用相同的概率;(2)求甲、乙两人所付的租车费用之和大于或等于8的概率.24.为了响应市政府迎接全国文明城市创建活动的号召,某学校组织学生举行了文明城市创建知识类竞赛,为了了解本次竞赛中学生的成绩情况,从中抽取50名学生的分数(满分为100分,得分取正整数,抽取学生的分数均在[]50,100之内)作为样本进行统计,按照[)[)[)[)[]50,6060,7070,8080,9090,100,,,,分成5组,并作出如下频率分布直方图,已知得分在[)80,90的学生有5人.()1求频率分布直方图中的的, x y 值,并估计学生分数的众数、平均数和中位数: ()2如果从[)[)[)60,7070,8080,90,,三个分数段的学生中,按分层抽样的方法抽取8人参与座谈会,然后再从[)[)70,8080,90,两组选取的人中随机抽取2人作进一步的测试,求这2人中恰有一人得分在[)80,90的概率.25.某高校在2019的自主招生考试中,考生笔试成绩分布在[]160,185,随机抽取200名考生成绩作为样本研究,按照笔试成绩分成5组,第1组成绩为[)160165,,第2组成绩为[)165170,,第3组成绩为[)170175,,第4组成绩为[)175,180,第5组成绩为[]180,185,样本频率分布直方图如下:(1)估计全体考生成绩的中位数;(2)为了能选拨出最优秀的学生,该校决定在笔试成绩高的第3,4,5组中用分层抽样抽取6名学生进入第二轮面试,从这6名学生中随机抽取2名学生进行外语交流面试,求这2名学生均来自同一组的概率.26.从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下: 分组(重量)[80,85)[85,90)[90,95)[95,100)频数(个)5102015(1) 根据频数分布表计算苹果的重量在[90,95)的频率;(2) 用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3) 在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题分析:设水深为x尺,利用勾股定理求出水深,结合葭长13尺,代入几何概型概率计算公式,可得答案.详解:设水深为x尺,则(x+2)2=x2+52,解得x=214,即水深214尺.又葭长294尺,则所求概率为21 29.故选A.点睛:本题考查了几何概型概率的求法;在利用几何概型的概率公式来求其概率时,几何“测度”可以是长度、面积、体积、角度等,其中对于几何度量为长度,面积、体积时的等可能性主要体现在点落在区域Ω上任置都是等可能的,而对于角度而言,则是过角的顶点的一条射线落在Ω的区域(事实也是角)任一位置是等可能的.2.D解析:D【分析】根据题意,作出满足题意的图像,利用面积测度的几何概型,即得解.【详解】分别以A ,B ,C ,D 四点为圆心,1为半径作圆,由题意满足条件的点在图中的阴影部分224ABCD S =⨯=,214144ABCD S S ππ=-⨯⨯=-阴影由几何测度的古典概型,14ABCD S P S π==-阴影 故选:D 【点睛】本题考查了面积测度的几何概型,考查了学生综合分析,数形结合,数学运算的能力,属于中档题.3.A解析:A 【分析】计算长方形面积,利用定积分计算阴影部分面积,由面积测度的几何概型计算概率即可. 【详解】由已知易得:34200216=42=8=[]|33S S xdx x ⨯==⎰阴影长方形,,由面积测度的几何概型:质点落在图中阴影区域外的概率11=3S P S =-阴影长方形 故选:A 【点睛】本题考查了面积测度的几何概型,考查了学生转化划归,数学运算的能力,属于基础题.4.C解析:C 【解析】 【分析】根据二项式定理,古典概型,以及正态分布的概率计算,对选项进行逐一判断,即可判断. 【详解】对①:从9张卡片中不放回地随机抽取2次,共有9872⨯=种可能; 满足2张卡片上的数奇偶性不同,共有54240⨯⨯=种可能; 根据古典概型的概率计算公式可得,其概率为405729P ==,故①错误; 对②:对341()2x x +写出通项公式可得434124144122rrr r r rr x T C C xx ---+⎛⎫⎛⎫==⋅⋅ ⎪ ⎪⎝⎭⎝⎭,令1240r -=,解得3r =,即可得常数项为31422C -⋅=,故②正确;对③:由正态分布的特点可知11(10)(1)22P P p ξξ-<<=-≥=-,故③正确. 综上所述,正确的有②③. 故选:C. 【点睛】本题考查古典概型的概率计算,二项式定理求常数项,以及正态分布的概率计算,属综合性基础题.5.D解析:D 【分析】先求出基本事件总数n ,再求出每项活动至少有一名同学参加,包含的基本事件个数,由此能求出每项活动至少有一名同学参加的概率. 【详解】因为4名同学参加4项不同的课外活动,若每名同学可自由选择参加其中一项,所以基本事件总数n =44,每项活动至少有一名同学参加,因此4名同学分别参加一项活动,共有44A 种不同的情况.因此:每项活动至少一名同学参加的概率为:4443432A p ==. 【点睛】本题考查了排列组合在古典概型中的应用,考查了学生综合分析,转化与划归的能力,属于中档题.6.A解析:A 【分析】先根据四棱锥的体积求出球的半径,再根据几何概型概率公式求结果. 【详解】,设球半径为R112232R R R R =⨯⨯⨯⨯∴=因此所求概率为3131423ππ=⨯,故选:A 【点睛】本题考查四棱锥体积、球体积以及几何概型概率公式,考查综合分析求解能力,属中档题.7.B解析:B 【分析】求得120ADB ∠=︒,在ABD 中,运用余弦定理,求得AB ,以及DE ,根据三角形的面积与边长之间的关系即可求解. 【详解】 解:18060120ADB ∠=︒-︒=︒,在ABD 中,可得2222cos AB AD BD AD BD ADB =+-⋅∠, 即为222153253492AB ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,解得7AB =, 2DE AD BD =-=,224()749DEF ABCSS∴==. 故选:B . 【点睛】本题考查三角形的余弦定理,同时也考查了利用几何概型的概率公式计算概率,考查方程思想和运算能力,属于基础题.8.D解析:D 【分析】设正品为12,a a ,次品为b ,列出所有的基本事件,根据古典概型求解即可. 【详解】设正品为12,a a ,次品为b ,任取两件所有的基本事件为12(,)a a ,1(,)a b ,2(,)a b 共3个基本事件, 其中恰有1件次品的基本事件为1(,)a b ,2(,)a b ,共2个, 所以23P =, 故选:D 【点睛】本题主要考查了古典概型,基本事件的概念,属于容易题.9.A解析:A 【分析】设圆的半径为R ,且由题意可得是与面积有关的几何概率构成试验的全部区域的面积及正三角形的面积代入几何概率的计算公式可求. 【详解】解:设圆的半径为R 构成试验的全部区域的面积:2S R π=记“向圆O 内随机投一点,则该点落在正三角形内”为事件A ,则构成A22) 由几何概率的计算公式可得, ()224P A R π==故选:A . 【点睛】本题主要考查了与面积有关的几何概型概率的计算公式的简单运用,关键是明确满足条件的区域面积,属于基础试题.10.C解析:C 【分析】先根据前三项的系数成等差数列求n ,再根据古典概型概率公式求结果 【详解】因为n前三项的系数为1212111(1)1,,112448n n n n n n C C C C n -⋅⋅∴=+⋅∴-= 163418118,0,1,2,82rr r r n n T C x r -+>∴=∴=⋅=,当0,4,8r =时,为有理项,从而概率为636799512A A A =,选C. 【点睛】本题考查二项式定理以及古典概型概率,考查综合分析求解能力,属中档题.11.D解析:D 【分析】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中,利用独立事件的概率乘法公式计算出事件A 的对立事件的概率,再利用对立事件的概率公式可得出事件A 的概率. 【详解】记事件:A 甲乙两人各自射击同一目标一次,该目标被击中, 则事件:A 甲乙两人各自射击同一目标一次,两人都未击中目标, 由独立事件的概率乘法公式得()321114312P A ⎛⎫⎛⎫=--= ⎪⎪⎝⎭⎝⎭, ()()111111212P A P A ∴=-=-=,故选D. 【点睛】本题考查独立事件的概率乘法公式,解题时要弄清楚各事件之间的关系,可以采用分类讨论,本题采用对立事件求解,可简化分类讨论,属于中等题.12.D解析:D【解析】【分析】利用圆的面积公式及几何概型中的面积型直接得解.【详解】由已知可得:矩形ABCD的面积为(3+5)×(2+3+8)=104,又阴影部分的面积为14π(12+12+22+32+52+82)=26π,即点取自阴影部分的概率为261044ππ=,故选D.【点睛】本题考查了圆的面积公式及几何概型中的面积型,属于中档题.二、填空题13.【分析】利用定积分求得阴影部分的面积然后利用几何概型的概率计算公式即可求解【详解】由题意结合定积分可得阴影部分的面积为由几何概型的计算公式可得黄豆在阴影部分的概率为【点睛】本题主要考查了定积分的几何解析:1 3【分析】利用定积分求得阴影部分的面积,然后利用几何概型的概率计算公式,即可求解.【详解】由题意,结合定积分可得阴影部分的面积为311221 (1()|33S dx x x=-=-=⎰,由几何概型的计算公式可得,黄豆在阴影部分的概率为113113 p==⨯.【点睛】本题主要考查了定积分的几何意义求解阴影部分的面积,以及几何概型及其概率的计算问题,其中解答中利用定积分的几何意义求得阴影部分的面积是解答的关键,着重考查了推理与计算能力,属于基础题.14.【分析】基本事件总数选中的都是男医生包含的基本事件个数根据对立事件的概率能求出选中的至少有1名女医生的概率【详解】因为医疗团队从3名男医生和2名女医生志愿者所以随机选取2名医生赴湖北支援共有个基本事解析:7 10【分析】基本事件总数2510n C ==,选中的都是男医生包含的基本事件个数233m C ==,根据对立事件的概率能求出选中的至少有1名女医生的概率. 【详解】因为医疗团队从3名男医生和2名女医生志愿者, 所以随机选取2名医生赴湖北支援共有2510n C ==个基本事件,又因为选中的都是男医生包含的基本事件个数233m C ==,所以至少有1名女医生被选中的概率为3711010P =-=. 故答案为:710【点睛】本题主要考查了排列组合,古典概型,对立事件,属于中档题.15.【分析】基本事件总数五位德国游客互不相邻包含的基本事件个数为:由此能求出五位德国游客互不相邻的概率【详解】解:五位德国游客与七位英国游客在游船上任意站成一排拍照基本事件总数五位德国游客互不相邻包含的 解析:799【分析】基本事件总数1212n A =,五位德国游客互不相邻包含的基本事件个数为:7578m A A =,由此能求出五位德国游客互不相邻的概率. 【详解】解:五位德国游客与七位英国游客在游船上任意站成一排拍照,基本事件总数1212n A =,五位德国游客互不相邻包含的基本事件个数为:7578m A A =, ∴五位德国游客互不相邻的概率为75781212799A A m p n A ===.故答案为:799.【点睛】本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题.16.【分析】先求出从16个图钉中任取3个的所有方法数再求出三个图钉分别位于三行或三列的情况的数量利用排除法即得解【详解】从16个图钉中任取3个共有种取法;三个图钉分别位于三行或三列的情况的数量:种至少有 解析:2935【分析】先求出从16个图钉中任取3个的所有方法数,再求出三个图钉分别位于三行或三列的情况的数量,利用排除法,即得解. 【详解】从16个图钉中任取3个共有316560C =种取法;三个图钉分别位于三行或三列的情况的数量:34432=96C ⨯⨯⨯种 至少有两个位于同行或者同列的情况的数量:56096464-=种. 所以至少有两个位于同行或同列的概率为2935. 故答案为:2935【点睛】本题考查了排列组合在古典概型中的应用,考查了学生综合分析,转化与划归,数学运算的能力,属于中档题.17.【分析】先求出三块扇形的面积再由概率计算公式求出的面积进而求出阴影部分的面积【详解】∵∴三块扇形的面积为:设的面积为∵在内任取一点点落在这三个扇形内的概率为∴图中阴影部分的面积为:故答案为:【点睛】 解析:4π【分析】先求出三块扇形的面积,再由概率计算公式求出ABC ∆的面积,进而求出阴影部分的面积. 【详解】∵180A B C ︒++=, ∴三块扇形的面积为:21222ππ⨯⨯=, 设ABC 的面积为S ,∵在ABC 内任取一点P ,点P 落在这三个扇形内的概率为13, 2163S S ππ∴=⇒=, ∴图中阴影部分的面积为:624πππ-=, 故答案为:4π. 【点睛】本题主要考查几何概型的应用,属于几何概型中的面积问题,难度不大.18.【解析】【分析】列出随机变量的分布列求解【详解】由题意知某人到达银行的概率为几何概型所以:其到达银行时服务窗口的个数为的分布列为: 5 4 3 4 2 则【点睛】本题考查几何概型及随 解析:3.5625【解析】【分析】列出随机变量的分布列求解. 【详解】由题意知某人到达银行的概率为几何概型,所以: 其到达银行时服务窗口的个数为的分布列为:则()54342 3.56258161648E X =⨯+⨯+⨯+⨯+⨯=. 【点睛】本题考查几何概型及随机变量的分布列.19.【分析】先根据题意先找出弦的长度不超过对应的点其构成的区域是点M 两侧各圆周既而求得概率【详解】根据题意满足条件弦的长度不超过对应的点其构成的区域是点M 两侧各圆周所以弦MN 的长度不超过的概率是故答案为解析:23【分析】先根据题意,先找出弦MN 对应的点,其构成的区域是点M 两侧各13圆周,既而求得概率. 【详解】根据题意,满足条件“弦MN ”对应的点,其构成的区域是点M 两侧各13圆周,所以弦MN 的概率是23P = 故答案为23【点睛】本题主要考查了几何概型的意义,关键是找出满足条件弦MN 的图形测度,再带入公式求解.20.【分析】设出球的半径利用勾股定理求得圆柱的底面半径分别计算圆柱和球的体积然后利用几何概型的概率计算公式求得所求的概率【详解】设球的半径为依题意可知圆柱底面半径故圆柱的体积为而球的体积为故所求概率为【 解析:916【分析】设出球的半径,利用勾股定理求得圆柱的底面半径,分别计算圆柱和球的体积,然后利用几何概型的概率计算公式,求得所求的概率. 【详解】设球的半径为r,依题意可知,圆柱底面半径r ==',故圆柱的体积为22333πππ44r r r r r ⋅=⋅⋅=',而球的体积为34π3r ,故所求概率为333π944π163rr =. 【点睛】本小题主要考查有关球的内接几何体的问题,考查体积型的集合概型概率计算,属于基础题.对于与体积有关的几何概型问题,关键是计算问题的总体积(总空间)以及事件的体积(事件空间).有关球内接几何体的问题,主要是构造直角三角形,利用勾股定理来计算长度.三、解答题21.(1)200(2)10.4(天)(3)815【分析】(1)求出调查的50名A 病毒患者中,年龄在60岁以下的有20人,即得解; (2)利用平均数公式计算即得解;(3)利用古典概型的概率公式求解即可. 【详解】(1)调查的50名A 病毒患者中,年龄在60岁以下的有20人, 因此该地区A 病毒患者中,60岁以下的人数估计有2050020050⨯=人. (2)()11123751071191411413251810.45050x =⨯+⨯+⨯+⨯+⨯+⨯+⨯=⨯=(天)(3)样本潜伏期超过10天的患者共六人,其中潜伏期在10~12天的四人编号为:1,2,3,4,潜伏期超过12天的两人编号为:5,6,从六人中抽取两人包括15个基本事件:1,2;1,3;1,4;1,5;1,6;2,3;2,4;2,5;2,6;3,4;3,5;3,6;4,5;4,6;5,6.记事件“恰好一人潜伏期超过12天”为事件A ,则事件A 包括8个, 所以8()15P A =. 【点睛】本题主要考查古典概型的概率公式,考查平均数的计算,意在考查学生对这些知识的理解掌握水平. 22.(1)2235;(2)分布列见解析,97EX = 【分析】(1)利用古典概率与互斥事件概率计算公式即可得出.(2)设所抽取的3个小题中B 类题的个数为X ,则X 的取值为0,1,2,3.利用超几何分布列计算公式即可得出. 【详解】(1)该考生至少抽取到2个A 类题的概率213434372235P +==. (2)设所抽取的3个小题中B 类题的个数为X ,则X 的取值为0,1,2,3.34374(0)35P X ===, 21433718(1)35P X ===, 12433712(2)35P X ===, 33371(3)35P X ===, ∴随机变量X 的分布列为:均值0123353535357EX =⨯+⨯+⨯+⨯=. 【点睛】本题考查古典概率与互斥事件概率计算公式、超几何分布列计算公式及其数学期望计算公式,考查推理能力与计算能力. 23.(1)516;(2)916【分析】(1)甲、乙两人所付费用相同即同为2,4,6元,都付2元的概率1111428P =⨯=,都付4元的概率2111248P =⨯=,都付6元的概率31114416P =⨯=,由此利用互斥事件概率加法公式能求出所付费用相同的概率.(2)设两人费用之和8、10、12的事件分别为A 、B 、C ,()111111544242416P A =⨯+⨯+⨯=, ()11113442416P B =⨯+⨯=, ()1114416P C =⨯=,设两人费用之和大于或等于8的事件为W ,则W A B C =++,由此能求出两人费用之和大于或等于8的概率. 【详解】解:(1)甲、乙两人所付费用相同即同为2,4,6元. 都付2元的概率为1111428P =⨯=; 都付4元的概率为2111248P =⨯=; 都付6元的概率为31114416P =⨯=; 故所付费用相同的概率为1231115881616P P P P =++=++=. (2)设两人费用之和为8、10、12的事件分别为A 、B 、C()111111544242416P A =⨯+⨯+⨯=; ()11113442416P B =⨯+⨯=;()1114416P C =⨯=. 设两人费用之和大于或等于8的事件为W ,则W A B C =++ 所以,两人费用之和大于或等于8的概率()()()()531916161616P W P A P B P C =++=++= 【点睛】本题考查概率的求法,考查互斥事件概率加法公式、相互独立事件概率乘法公式等基础知识,考查运算求解能力,属于基础题.24.(1)0.04,?0.010x y ==,众数为75,平均数为70.6,中位数为71;(2)25. 【分析】(1)根据长方形面积之和为1,频率的计算,求得,x y ;再根据直方图中众数、平均数和中位数的计算方法即可求得对应的值;(2)先计算出[)[)70,8080,90,分数段的学生人数,再根据古典概型的概率计算公式求解即可. 【详解】(1)根据频率分布直方图可得51050y ⨯=,解得0.010y =; 由所有长方形的面积之和为1,则()100.0160.0300.0100.0041x ⨯++++=,解得0.04x =; 由最高的长方形所对区间的中点值为75,可得众数为75;设平均数为x ,则550.16650.3750.4850.1950.0470.6x =⨯+⨯+⨯+⨯+⨯=; 设中位数为0x ,则()00.160.3700.040.5x ++-⨯=,解得071x =.综上所述:0.04,?0.010x y ==,众数为75,平均数为70.6,中位数为71. (2)因为[)[)[)60,7070,8080,90,,三个分数段的学生 分别有500.315⨯=人,500.420⨯=人,500.15⨯=人. 要从中抽取8人,则从[)[)[)60,7070,8080,90,,分数段抽取的人数分别为:3人,4人,1人. 设分数在[)70,80的学生为1234,,,A A A A ,分数在[)80,90的学生为B , 则从中抽取2人的所有可能合计10种,具体如下:1213141232423434,,,,,,,,,A A A A A A A B A A A A A B A A A B A B则满足题意的共有1234,,,A B A B A B A B 共计4种. 故这2人中恰有一人得分在[)80,90的概率42105P ==. 【点睛】本题考查频率分布直方图中参数的求解,以及由频率分布直方图计算众数,中位数,平均数,以及古典概型的概率计算,涉及分层抽样,属综合性中档题. 25.(1)17250;(2)415. 【分析】(1)由频率分布直方图中把频率(矩形面积)等分的点对应的成绩为中位数.(2)由频率分布直方图中的频率求出从三组中各抽取的人数,并编号,用列举法写出任取2人的事件,并列出来自同一组的事件,计算个数后可求概率. 【详解】(1)样本中位数为0x ,从频率分布直方图可知[)0170,175x ∈, 从而有()00.050.351700.040.5x ++-⨯=,解得0172.50x = 故全体考生成绩的中位数约为17250.(2)记A 为事件“这两名学生均来自同一组”,用分层抽样第3组抽取2人,第4组抽取3人,第5组抽取1人, 记第3组学生为12,a a ,第4组学生为123,,b b b ,第5组学生为c ; 从这6人中抽取2人有15种方法,分别为:()()()()()()()()()()()()()()()1211121312122232121312323,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,a a a b a b a b a c a b a b a b a c b b b b b c b b b c b c其中事件A 共有4种,为()()()()12121323,,,,,,,a a b b b b b b 由古典概型公式得()415P A =故这两名学生均来自同一组的概率为415. 【点睛】本题考查频率分布直方图,考查古典概型,解决古典概型的基本方法是列举法.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章:概率
[基础训练A 组]
一、选择题
1.下列叙述错误的是( )
A . 频率是随机的,在试验前不能确定,随着试验次数的增加,频率一般会越来越接近概率
B . 若随机事件A 发生的概率为()A p ,则()10≤≤A p
C . 互斥事件不一定是对立事件,但是对立事件一定是互斥事件
D .5张奖券中有一张有奖,甲先抽,乙后抽,那么乙与甲抽到有奖奖券的可能性相同
2.从三件正品、一件次品中随机取出两件,则取出的产品全是正品的概率是( )
A .41
B .21
C .8
1 D .无法确定 3.有五条线段长度分别为1,3,5,7,9,从这5条线段中任取3条,则所取3条线段能构成一个三角形的概率为( )
A .101
B .103
C .21
D .10
7 4.从12个同类产品(其中10个是正品,2个是次品)中任意抽取3个的必然事件是( )
A. 3个都是正品
B.至少有1个是次品
C. 3个都是次品
D.至少有1个是正品
5.某产品分为甲、乙、丙三级,其中乙、丙两级均属次品,若生产中出现乙级品的概率为03.0,出现丙级品的概率为01.0,则对产品抽查一次抽得正品的概率是( )
A .09.0
B .98.0
C .97.0
D .96.0
6.从一批羽毛球产品中任取一个,其质量小于4.8g 的概率为0.3,质量小于4.85g 的概率为0.32,那么质量在[)85.4,8.4( g )范围内的概率是( )
A .0.62
B .0.38
C .0.02
D .0.68
二、填空题
1.有一种电子产品,它可以正常使用的概率为0.992,则它不能正常使用的概率是 。

2.一个三位数字的密码键,每位上的数字都在0到9这十个数字中任选,某人忘记后一个号码,那么此人开锁时,在对好前两位数码后,随意拨动最后一个数字恰好能开锁的概率为___
3.同时抛掷两枚质地均匀的硬币,则出现两个正面朝上的概率是 。

4.从五件正品,一件次品中随机取出两件,则取出的两件产品中恰好是一件正品,一件次品的概率是 。

5.在5张卡片上分别写有数字,5,4,3,2,1然后将它们混合,再任意排列成一行,则得到的数能被2或5整除的概率是。

三、解答题
1.从甲、乙、丙、丁四个人中选两名代表,求:
(1)甲被选中的概率;(2)丁没被选中的概率.
2.现有一批产品共有10件,其中8件为正品,2件为次品:
(1)如果从中取出一件,然后放回,再取一件,求连续3次取出的都是正品的概率;
(2)如果从中一次取3件,求3件都是正品的概率.
3.某路公共汽车5分钟一班准时到达某车站,求任一人在该车站等车时间少于3分钟的概率(假定车到来后每人都能上).
4.一个路口的红绿灯,红灯的时间为30秒,黄灯的时间为5秒,绿灯的时间为
40秒,当你到达路口时看见下列三种情况的概率各是多少?
(1) 红灯(2) 黄灯(3) 不是红灯
[综合训练B 组]
一、选择题
1.同时向上抛100个铜板,落地时100个铜板朝上的面都相同,你认为对这100个铜板下面情况更可能正确的是( )
A.这100个铜板两面是一样的
B.这100个铜板两面是不同的
C.这100个铜板中有50个两面是一样的,另外50个两面是不相同的
D.这100个铜板中有20个两面是一样的,另外80个两面是不相同的
2.口袋内装有一些大小相同的红球、白球和黒球,从中摸出1个球,摸出红球的概率是0.42,摸出白球的概率是0.28,那么摸出黒球的概率是( )
A .0.42
B .0.28
C .0.3
D .0.7
3.从装有2个红球和2个黒球的口袋内任取2个球,那么互斥而不对立的两个事件是( )
A .至少有一个黒球与都是黒球
B .至少有一个黒球与都是黒球
C .至少有一个黒球与至少有1个红球
D .恰有1个黒球与恰有2个黒球
4.在40根纤维中,有12根的长度超过30mm ,从中任取一根,取到长度超过30mm 的纤维的概率是( )
A .4030
B .4012
C .30
12 D .以上都不对 5.先后抛掷骰子三次,则至少一次正面朝上的概率是( ) A .
81 B . 83 C . 85 D . 87 6.设,A B 为两个事件,且()3.0=A P ,则当( )时一定有()7.0=B P
A .A 与
B 互斥 B .A 与B 对立 C.B A ⊆ D. A 不包含B
二、填空题
1.在200件产品中,192有件一级品,8件二级品,则下列事件:
①在这200件产品中任意选出9件,全部是一级品;
②在这200件产品中任意选出9件,全部是二级品;
③在这200件产品中任意选出9件,不全是一级品;
④在这200件产品中任意选出9件,其中不是一级品的件数小于100,
其中 是必然事件; 是不可能事件; 是随机事件。

2.投掷红、蓝两颗均匀的骰子,观察出现的点数,至多一颗骰子出现偶数点的概率是_____。

3.在区间(0,1)中随机地取出两个数,则两数之和小于6
5的概率是______________。

4.在500ml 的水中有一个草履虫,现从中随机取出2ml 水样放到显微镜下观察,则发现草履虫的概率是_____________。

三、解答题
1.袋中有大小相同的红、黄两种颜色的球各1个,从中任取1只,有放回地抽取3次.求:
① 3只全是红球的概率;
② 3只颜色全相同的概率;
③ 3只颜色不全相同的概率.
2.抛掷2颗质地均匀的骰子,求点数和为8的概率。

3.从4名男生和2名女生中任选3人参加演讲比赛,
①求所选3人都是男生的概率;
②求所选3人恰有1名女生的概率;
③求所选3人中至少有1名女生的概率。

4.平面上画了一些彼此相距2a 的平行线,把一枚半径r a 的硬币任意掷在这个平面上,求硬币不与任何一条平行线相碰的概率.。

相关文档
最新文档