高二数学必修3第三章概率知识点归纳
必修3第三章-概率-知识点总结和强化练习:
高中数学必修3 第三章 概率 知识点总结及强化训练一、 知识点总结3.1.1 —3.1.2随机事件的概率及概率的意义 1、基本概念:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A出现的次数nA 为事件A 出现的频数;称事件A 出现的比例fn(A)=n n A为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率fn(A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。
(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值n n A,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个事件的概率3.1.3 概率的基本性质 1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形;(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件互斥事件的特殊情形。
高二数学第三章概率本章小结新人教A版必修3
( 把钥匙, 其中 2 把钥匙能把门打开. 现每次随机地取 1 把钥匙试着开门, 试 过的钥匙不扔掉,求第二次才能打开门的概率.
知识网络构建
高中数学 第三章 概率本章小结
热点专题聚焦
随机事件的概率
?专题归纳
1.在条件 S 下,可能发生也可能不发生的事件称为相对于条件
S 的随机事件,简称随
机事件. 对它的理解应包含下面两个方面: ①随机事件是指一定条件下出现的某种结果, 随
着条件的改变其结果也会不同, 因此必须强调同一事件必须在相同的条件下研究;
②随机事
件可以重复地进行大量试验, 每次试验结果不一定相同, 且无法预测下一次的结果, 但随着
实验的重复进行,其结果呈现规律性.
2.概率可看做频率在理论上的期望值,随着试验次数的增加,频率可近似
地作为这个
事件的概率,频率本身是随机的;概率是一个确定的常数,是客观存在的,
与每次的试验无
关.概率反映了随机事件发生可能性的大小.对于概率的统计定义,应注意以下几点:
的集合的补集,即满足条件: A∩ B= ?且 A∪ B= I ( I 为全集 ) ,通常事件 A 的对立事件记作
A. 对立事件的性质: P( A∪ A) =P( A) + P( A) = 1,由公式可得 P( A) = 1- P( A) ,当直接求某一
事件的概率较为复杂时, 可先转而求其对立事件的概率, 这样可以大大地简化求某些事件概
古典概型及其概率
?专题归纳
1.古典概型的建立. 如果一个试验同时满足以下两个条件: (1) 有限性: 在一次试验中,
可能出现的结果只有有限个,即只有有限个不同的基本事件; 发生的可能性是均等的.则称这样的试验为古典概型.
高中数学必修三 第三章 概率 第1节 事件与概率
练习:一个盒子中装有 4 个完全相同的球,分别标有号码 1,2,3,5,从中任取两 球,然后不放回. (1)写出这个试验的基本事件空间; (2)求这个试验的基本事件总数; (3)写出“取出的两球上的数字之和是 6”这一事件所包含的基本事件.
1.常见现象的特点及分类
名称
定义
必然现象 在一定条件下必然 发生某种结果的现象.
不可能现 在一定条件下 不可能发生某种结果的现象.
象
在相同的条件下多次观察同一现象,每次观察到
随机现象 的结果 不一定 相同,事先很难预料哪一种
结果会出现的现象.
2.试验 把观察随机现象或为了某种目的而进行的实验统称为试验,把
典型例题:
例 1:判断下列现象是必然现象还是随机现象: (1)掷一枚质地均匀的骰子出现的点数; (2)行人在十字路口看到的交通信号灯的颜色; (3)在 10 个同类产品中,有 8 个正品、2 个次品,从中任意抽出 2 个检验的结果.
[精解详析] (1)掷一枚质地均匀的骰子其点数有可能出现 1~6 点,不能确定, 因此是随机现象. (2)行人在十字路口看到交通信号灯的颜色有可能是红色,有可能是黄色,也有 可能是绿色,故是随机现象. (3)抽出的 2 个产品中有可能全部是正品,也有可能是一个正品一个次品,还有 可能是两个次品,故此现象为随机现象.
件是( )
A.4 个都是正品
B.至少有 1 个是次品
C.4 个都是次品
D.至少有 2 个是正品
解析:A、B 为随机事件,C 为不可能事件,只有 D 为必然事件.答案:D
(完整版)人教版高中数学必修3各章知识点总结,推荐文档
高中数学必修3知识点第一章算法初步i.i.i 算法的概念算法的特点:(i)有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的^(2)确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.(3)顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题^(4)不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法^(5)普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.1.1.2 程序框图1、程序框图基本概念:(一)程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。
一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。
(二)构成程序框的图形符号及其作用学习这部分知识的时候,要掌握各个图形的形状、作用及使用规则,画程序框图的规则如下:1、使用标准的图形符号。
2、框图一般按从上到下、从左到右的方向画。
3、除判断框外,大多数流程图符号只有一个进入点和一个退出点。
判断框具有超过一个退出点的唯一符号。
4、判断框分两大类,一类判断框“是”与“否”两分支的判断,而且有且仅有两个结果;另一类是多分支判断,有几种不同的结果。
5、在图形符号内描述的语言要非常简练清楚。
(三)、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。
1、顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若1个依次执行的处理步骤组成的,它是任何一个算法都离不开的一种基本算法结构。
顺序结构在程序框图中的体现就是用流程线将程序框自上而下地连接起来,按顺序执行算法步骤。
高二数学必修3第三章概率知识点归纳
高二数学必修3第三章概率知识点归纳聪明出于勤劳,天赋在于积聚。
小编预备了高二数学必修3第三章概率知识点,希望能协助到大家。
一.随机事情的概率及概率的意义1、基本概念:(1)肯定事情:在条件S下,一定会发作的事情,叫相关于条件S的肯定事情; (2)不能够事情:在条件S下,一定不会发作的事情,叫相关于条件S的不能够事情; (3)确定事情:肯定事情和不能够事情统称为相关于条件S确实定事情;(4)随机事情:在条件S下能够发作也能够不发作的事情,叫相关于条件S的随机事情;(5)频数与频率:在相反的条件S下重复n次实验,观察某一事情A能否出现,称n次实验中事情A出现的次数nA为事情A出现的频数;称事情A出现的比例fn(A)=nnA为事情A出现的概率:关于给定的随机事情A,假设随着试验次数的添加,事情A发作的频率fn(A)动摇在某个常数上,把这个常数记作P(A),称为事情A的概率。
(6)频率与概率的区别与联络:随机事情的频率,指此事情发作的次数nA与实验总次数n的比值nnA,它具有一定的动摇性,总在某个常数左近摆动,且随着实验次数的不时增多,这种摆动幅度越来越小。
我们把这个常数叫做随机事情的概率,概率从数量上反映了随机事情发作的能够性的大小。
频率在少量重复实验的前提下可以近似地作为这个事情的概率二.概率的基本性质1、基本概念:Page 8 of 8(1)事情的包括、并事情、交事情、相等事情(2)假定AB为不能够事情,即AB=ф,那么称事情A与事情B互斥;(3)假定AB为不能够事情,AB为肯定事情,那么称事情A与事情B互为统一事情;(4)当事情A与B互斥时,满足加法公式:P(AB)= P(A)+ P(B);假定事情A与B为统一事情,那么AB为肯定事情,所以P(AB)= P(A)+ P(B)=1,于是有P(A)=1P(B) 2、概率的基本性质:1)肯定事情概率为1,不能够事情概率为0,因此01; 2)当事情A与B互斥时,满足加法公式:P(AB)= P(A)+ P(B);3)假定事情A与B为统一事情,那么AB为肯定事情,所以P(AB)= P(A)+ P(B)=1,于是有P(A)=14)互斥事情与统一事情的区别与联络,互斥事情是指事情A 与事情B在一次实验中不会同时发作,其详细包括三种不同的情形:(1)事情A发作且事情B不发作; (2)事情A不发作且事情B发作;(3)事情A与事情B同时不发作,而统一事情是指事情A 与事情B有且仅有一个发作,其包括两种情形;(1)事情A发作B不发作;(2)事情B发作事情A不发作,统一事情互斥事情的特殊情形。
(完整版)新课标高中数学必修三《概率》知识点(最新整理)
高中数学必修3(新课标)第三章 概 率(知识点)3.1 随机事件的概率及性质1、基本概念:(1)必然事件:一般地,在条件S 下,一定会发生的事件,叫做相对于条件S 的必然事件,简称必然事件;(2)不可能事件:在条件S 下,一定不会发生的事件,叫做相对于条件S 的不可能事件,简称不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件,简称确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫做相对于条件S 的随机事件,简称随机事件;(5)确定事件与随机事件统称为事件,一般用大写字母表示A 、B 、C……表示.(6)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)=为事件A n n A 出现的频率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。
(7)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数n A 与试验总次数n 的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,nn A 这种摆动幅度越来越小,接近某个常数。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个事件的概率(8)任何事件的概率是0~1之间的一个确定的数,它度量该事件发生的的可能性.2 概率的基本性质1)一般地、对于事件A 与事件B ,如果事件A 发生,则事件B 一定发生,这时称事件B 包含事件A (或称事件A 包含于事件B ),记作 不可能事件记作Ø,B ⊇A (或A ⊆B ).任何事件都包含不可能事件.2)如果事件C 1发生,那么事件D 1一定发生,反过来也对,这时我们说这两个事件相等,记作C 1=D 1.一般地,若,且,那么称事件A 与事件B 相等,记作A=B.B ⊇A A ⊇B 3)若某事件发生当且仅当事件A 发生或事件B 发生,则称此事件为事件A 或事件B 的并事件(或和事件),记作(或A+B).A ∪B 4)若某事件发生当且仅当事件A 发生且事件B 发生,则称此事件为事件A 与事件B 的交事件(或积事件),记作(或AB).A ∩B 5)若为不可能事件(Ø),那么称事件A 与事件B 互斥.不可能同时发生.A ∩B A ∩B =6)若为不可能事件,为必然事件,那么称事件A 与事件B 互为对立事件.A ∩B A ∪B 有且仅有一个发生.任何事件的概率在0~1之间,即0≤P(A)≤1.必然事件的概率为1,不可能事件的概率为0.(4)当事件A 与B 互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A∪B 为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B).3.2 古典概型基本概念:⑴基本事件:一次试验中可能出现的每一个基本结果;基本事件有如下特点:①任何两个基本事件是互斥的;②任何事件(除不可能事件)都可以表示成基本事件的和.⑵古典概型的特点:①试验中所有可能出现的基本事件只有有限个;②每个基本事件出现的可能性相等.我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。
高中数学必修3课件:3.1.3 概率的基本性质
事件为事件A与事件B的交事件(或积事件),记作C=__A_∩__B__
(或C=AB).
类比集合,事件A与事件B的交事件用图
表示.
栏目 导引
第三章 概率
(3)互斥事件、对立事件 若事件A与事件B为__A_∩__B_=__∅__,那么称事件A与事件B互斥, 其含义是:事件A与事件B在任何一次试验中_不__会__同__时__发生. 若A∩B为__不__可__能__事件,A∪B为必__然___事件,那么称事件A与 事件B互为对立事件,其含义是:事件A与事件B在任何一次 试验中_有__且__仅__有___一个发生.
栏目 导引
第三章 概率
互动探究 2.在本例中,设事件E={3个红球},事件F={3个球中至少 有一个白球},那么事件C与A、B、E是什么运算关系?C与F 的交事件是什么? 解:由本例的解答可知, C=A∪B∪E,C∩F=A∪B.
栏目 导引
第三章 概率
题型三 用互斥事件、对立事件求概率
例3 (2012·高考湖南卷)某超市为了解顾客的购物量及结算
栏目 导引
第三章 概率
(2)记 A 为事件“一位顾客一次购物的结算时间不超过 2 分 钟”,将频率视为概率,由互斥事件的概率加法公式得 P(A)=11050+13000+12050=170. 故一位顾客一次购物的结算时间不超过 2 分钟的概率为170.
栏目 导引
第三章 概率
【名师点评】 (1)应用概率加法公式时要保证事件互斥,复 杂事件要拆分成若干个互斥事件,以化繁为简:注意不重不 漏. (2)当事件本身包含的情况较多,而其对立事件包含的结果较 少时,就应该利用对立事件间的关系求解,即贯彻“正难则 反”的思想.
栏目 导引
第三章 概率
高二数学人教版必修三第三章知识点梳理:随机事件的概率
高二数学人教版必修三第三章知识点梳理:随机事件的概率在中国古代把数学叫算术,又称算学,最后才改为数学。
小编准备了高二数学人教版必修三第三章知识点,具体请看以下内容。
1.随机事件的概念在一定的条件下所出现的某种结果叫做事件。
(1)随机事件:在一定条件下可能发生也可能不发生的事件;(2)必然事件:在一定条件下必然要发生的事件;(3)不可能事件:在一定条件下不可能发生的事件。
2.随机事件的概率事件A的概率:在大量重复进行同一试验时,事件A发生的频率总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A的概率,记作P(A)。
由定义可知0≤P(A)≤1,显然必然事件的概率是1,不可能事件的概率是0。
3.事件间的关系(1)互斥事件:不能同时发生的两个事件叫做互斥事件;(2)对立事件:不能同时发生,但必有一个发生的两个事件叫做互斥事件;(3)包含:事件A发生时事件B一定发生,称事件A包含于事件B(或事件B包含事件A);4.事件间的运算(1)并事件(和事件)若某事件的发生是事件A发生或事件B发生,则此事件称为事件A与事件B的并事件。
注:当A和B互斥时,事件A+B的概率满足加法公式:P(A+B)=P(A)+P(B)(A、B互斥);且有P(A+)=P(A)+P()=1。
(2)交事件(积事件)若某事件的发生是事件A发生和事件B同时发生,则此事件称为事件A与事件B的交事件。
5.古典概型(1)古典概型的两大特点:1)试验中所有可能出现的基本事件只有有限个;2)每个基本事件出现的可能性相等;(2)古典概型的概率计算公式:P(A)=;一次试验连同其中可能出现的每一个结果称为一个基本事件,通常此试验中的某一事件A由几个基本事件组成.如果一次试验中可能出现的结果有n个,即此试验由n个基本事件组成,而且所有结果出现的可能性都相等,那么每一基本事件的概率都是。
如果某个事件A包含的结果有m个,那么事件A的概率P(A)=。
高中是人生中的关键阶段,大家一定要好好把握高中,小编为大家整理的高二数学人教版必修三第三章知识点,希望大家喜欢。
人教版高中数学必修三 3.1.1《随机事件的概率》要点梳理+跟踪检测
人教版高中数学必修三第三章统计3.1.1《随机事件的概率》要点梳理【学习目标】在具体情境中,了解随机事件发生的不确定性和频率的稳定性,了解概率的意义以及频率与概率的区别.【要点梳理·夯实知识基础】12.频数与频率在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中______________为事件A出现的频数,称______________________为事件A 出现的频率.[答案]事件A出现的次数nA 事件A出现的比例fn(A)=nAn3.概率(1)含义:概率是度量随机事件发生的________的量.(2)与频率联系:对于给定的随机事件A,事件A发生的频率fn(A)随着试验次数的增加稳定于________,因此可以用__________来估计概率P(A).[答案](1)可能性(2)概率P(A) 频率fn(A)【考点探究·突破重点难点】考点一:事件类型的判断1.下列事件:①明天下雨;②3>2;③航天飞机发射成功;④x∈R,x2+2<0;⑤某艘商船遭遇索马里海盗;⑥任给x0∈R,x0+2=0.其中随机事件的个数为()A.1B.2C.3D.4答案:D2.下列说法正确的是()A.某人购买福利彩票一注,中奖500万元,是不可能事件B.三角形的两边之和大于第三边,是随机事件C.没有空气和水,人类可以生存下去,是不可能事件D.科学技术达到一定水平后,不需任何能量的“永动机”将会出现,是必然事件答案:C3.从一副牌中抽出5张红桃、4张梅花、3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事情()A.可能发生B.不可能发生C.很可能发生D.必然发生答案:D解析:∵若这10张牌中抽出了全部的红桃与梅花共9张,一定还有1张黑桃;若抽出了全部的梅花与黑桃共7张,则还会有3张红桃;若抽出了全部的红桃与黑桃共8张,则还会有2张梅花;∴这个事件一定发生,是必然事件.考点而:试验的结果分析4.下列命题中正确的个数是()①先后抛掷两枚质地均匀的硬币的结果为正面,正面;正面,反面;反面,反面,共计3种.②从12个同类产品(其中10个是正品,2个次品)中,任意抽取3个产品的每一个结果中一定含有正品.③某地举行运动会,从来自A学校的a,b志愿者中选一人,从来自B学校的c,d,e志愿者中选一人共2人为体操馆服务,则有ac,ad,ae,bc,bd,be,共6种选法. A.0 B.1 C.2 D.3答案:C解析:①中应该有4个结果,即正面,正面;正面,反面;反面,正面;反面,反面.故①不正确.②③正确.5.先后投掷2枚均匀的一分、二分的硬币,观察落地后硬币的正反面情况,则包含3个试验结果的是()A.至少一枚硬币正面向上B.只有一枚硬币正面向上C.两枚硬币都是正面向上D.两枚硬币一枚正面向上,另一枚反面向上答案:A解析:“至少一枚硬币正面向上”包括“一分正面向上,二分正面向上”,“一分正面向上,二分正面向下”,“一分正面向下,二分正面向上”3种试验结果.6.同时转动如图所示的两个转盘,记转盘①得到的数为x,转盘②得到的数为y,结果为(x,y).(1)写出这个试验的所有结果.(2)“x+y=5”包含的结果有哪些?“x<3且y>1”呢? (3)“xy=4”包含的结果有哪些?“x=y ”呢?解:(1)结果为(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4).(2)“x+y=5”包含的结果为(1,4),(2,3),(3,2),(4,1).“x<3且y>1” 包含的结果为(1,2),(1,3),(1,4),(2,2),(2,3),(2,4). (3)“xy=4”包含的结果为(1,4),(2,2),(4,1). “x=y ”包含的结果为(1,1),(2,2),(3,3),(4,4). 考点三:随机事件的频率与概率7.下列说法:①频率反映的是事件发生的频繁程度.概率反映的是事件发生的可能性大小;②做n 次随机试验,事件A 发生m 次,则事件A 发生的频率nm就是事件A 的概率;③频率是不能脱离具体的n 次的试验值,而概率是确定性的,不依赖于试验次数的理论值;④频率是概率的近似值,概率是频率的稳定值.其中正确说法的序号是 . 答案:①③④解析:由频率及概率的定义可知①是正确的.在②中,nm是事件A 发生的频率,虽然概率是与频率接近的一个常数,但是概率不一定等于频率,故②是错误的.由概率的定义知③④是正确的.8.在抛掷骰子的游戏中,将一枚质地均匀的骰子抛掷6次,对于点数4的出现有下列说法:①一定会出现;②出现的频率为61;③出现的概率是61;④出现的频率是32.其中正确的是 . 答案:③9.李老师在某大学连续3年主讲经济学院的高等数学,下表是李老师这门课3年来学生的考试成绩分布:经济学院一年级的学生王小慧下学期将修李老师的高等数学课,用已有的信息估计她得以下分数的概率(结果保留到小数点后三位):(1)90分以上;(2)60~69分;(3)60分以下.解:由题意知总人数为40+200+400+100+40+20=800.则选修李老师高等数学的学生考试成绩在90分以上,60~69分,60分以下的频率分别为80040=201;800100=81;80060=403.用以上信息估计王小慧得分的概率情况如下:(1)“得90分以上”的概率为201,(2)“得60~69分”的概率为81,(3)“得60分以下”的概率为403.[3.1.1《随机事件的概率》跟踪检测一、选择题1.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =73; ③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数 是( ) A.0B.1C.2D.32.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.① B.② C.③ D.④ 3.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件B.随机事件C.不可能事件D.无法确定4.已知下列事件:①向区间(0,2)内投点,点落在(0,2)区间;②将一根长为a 的铁丝随意截成三段,构成一个三角形;③函数y=a x (a>0,且a ≠1)在R 上为增函数;④解方程x 2-1=0的根为2.其中是随机事件的个数是( ) A .1 B .2 C .3 D .45.下列事件中,不可能事件为( ) A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A.49B.51C.0.49D.0.517.某班计划从A ,B ,C ,D ,E 这五名班干部中选两人代表班级参加一次活动,则可能的结果有( ) A .5种 B .10种 C .15种 D .20种 8.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( ) A.64个B.640个C.16个D.160个9.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. A.0 B.1 C.2 D.3 10.一个家庭有两个小孩儿,则可能的结果为( ) A.{(男,女),(男,男),(女,女)} B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}11.从一批即将出厂的螺丝中抽查了100颗,仅有2颗是次品.下列说法正确的是( )A .从这批螺丝中随机抽取1颗,恰为次品的概率一定是2%B .从这批螺丝中随机抽取1颗,一定不是次品C .从这批螺丝中随机抽取100颗,必有2颗是次品D .从这批螺丝中随机抽取1颗,恰为次品的概率约是2%12.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是41,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( ) A.正确B.错误C.不一定D.无法解释二、填空题13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一位同学,估计该同学的身高在155.5~170.5 cm 范围内的概率为 (用分数表示).14.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A 出现的频数为 ,事件A 出现的频率为 .15.设集合A={x|x 2≤4,x ∈Z },a ,b ∈A ,设直线3x+4y=0与圆(x-a )2+(y-b )2=1相切为事件M ,用(a ,b )表示每一个基本事件,则事件M 所包含的结果为 . 16.则a= ,b= ,c= .据此可估计若掷硬币一次,正面向上的概率为.17.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为 .18.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是 .三、解答题19.从含有两个正品a1,a2和一件次品b1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A为“取出两件产品中恰有一件次品”,写出事件A对应的结果.20.对一批U盘进行抽检,结果如下表:(1)计算表中各个次品频率.(2)从这批U盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U盘,至少需进货多少个U盘?21.:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.22.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.3.1.1《随机事件的概率》跟踪检测解答一、选择题1.给出下列3种说法:①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛掷硬币的试验,结果3次出现正面,因此,出现正面的概率是m n =73; ③随机事件发生的频率就是这个随机事件发生的概率.其中正确说法的个数 是( ) A.0B.1C.2D.3答案:A2.下面事件:①某项体育比赛出现平局;②抛掷一枚硬币,出现反面;③全球变暖会导致海平面上升;④一个三角形的三边长分别为1,2,3.其中是不可能事件的是( ) A.① B.② C.③ D.④ 答案:D解析:三角形的三条边必须满足两边之和大于第三边.3.将一枚硬币向上抛掷10次,其中正面向上恰有5次是( ) A.必然事件B.随机事件C.不可能事件D.无法确定答案:B4.已知下列事件:①向区间(0,2)内投点,点落在(0,2)区间;②将一根长为a 的铁丝随意截成三段,构成一个三角形;③函数y=a x (a>0,且a ≠1)在R 上为增函数;④解方程x 2-1=0的根为2.其中是随机事件的个数是( ) A .1 B .2 C .3 D .4 答案:B解析:①为必然事件;④为不可能事件. 5.下列事件中,不可能事件为( ) A.三角形内角和为180°B.三角形中大边对大角,大角对大边C.锐角三角形中两个内角和小于90°D.三角形中任意两边的和大于第三边 答案: C6.袋内装有一个黑球与一个白球,从袋中取出一球,在100次摸球中,摸到黑球的频率为0.49,则摸到白球的次数为( ) A.49B.51C.0.49D.0.51答案:B7.某班计划从A ,B ,C ,D ,E 这五名班干部中选两人代表班级参加一次活动,则可能的结果有( ) A .5种 B .10种 C .15种 D .20种 答案:B解析:从A ,B ,C ,D ,E 五人中选2人,不同的选法有:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(B ,C ),(B ,D ),(B ,E ),(C ,D ),(C ,E ),(D ,E )共10种.8.经过市场抽检,质检部门得知市场上食用油合格率为80%,经调查,某市市场上的食用油大约有80个品牌,则不合格的食用油品牌大约有 ( ) A.64个B.640个C.16个D.160个答案: C9.给出下列三个命题,其中正确命题的个数是( )①设有一大批产品,已知其次品率为0.1,则从中任取100件,必有10件是次品;②做7次抛硬币的试验,结果3次出现正面,因此,出现正面的概率是73;③随机事件发生的频率就是这个随机事件发生的概率. A.0 B.1 C.2 D.3 答案:A解析:①错误;②出现正面的概率为21,故错误;③频率与概率不是一回事,故错误. 10.一个家庭有两个小孩儿,则可能的结果为( ) A.{(男,女),(男,男),(女,女)} B.{(男,女),(女,男)}C.{(男,男),(男,女),(女,男),(女,女)}D.{(男,男),(女,女)}答案: C11.从一批即将出厂的螺丝中抽查了100颗,仅有2颗是次品.下列说法正确的是( )A .从这批螺丝中随机抽取1颗,恰为次品的概率一定是2%B .从这批螺丝中随机抽取1颗,一定不是次品C .从这批螺丝中随机抽取100颗,必有2颗是次品D .从这批螺丝中随机抽取1颗,恰为次品的概率约是2% 答案: D解析:抽取出次品的频率是1002=2%,用频率估计概率,抽出次品的概率大约是2%. 12.每道选择题有4个选项,其中只有1个选项是正确的.某次考试共有12道选择题,某人说:“每个选项正确的概率是41,我每题都选择第一个选项,则一定有3个题选择结果正确”这句话( ) A.正确 B.错误 C.不一定D.无法解释答案: B 二、填空题13.从某校高二年级的所有学生中,随机抽取20人,测得他们的身高(单位:cm)分别为:162,153,148,154,165,168,172,171,173,150,151,152,160,165,164,179,149,158,159,175.根据样本频率分布估计总体分布的原理,在该校高二年级的所有学生中任抽一位同学,估计该同学的身高在155.5~170.5 cm 范围内的概率为 (用分数表示).答案:52解析:数据在155.5~170.5之间有8名学生,则身高在此范围内的频率为208=52,所以概率约为52.14.在一次掷硬币试验中,掷100次,其中有48次正面朝上,设反面朝上为事件A,则事件A 出现的频数为 ,事件A 出现的频率为 .答案: 52 0.5215.设集合A={x|x 2≤4,x ∈Z },a ,b ∈A ,设直线3x+4y=0与圆(x-a )2+(y-b )2=1相切为事件M ,用(a ,b )表示每一个基本事件,则事件M 所包含的结果为 . 答案:(-1,2),(1,-2) 解析:由直线与圆相切知,543b a +=1,所以3a+4b=±5,依次取a=-2,-1,0,1,2,验证知,只有⎩⎨⎧=-=21b a ,⎩⎨⎧==2-1b a 满足等式.16.则a= ,b= ,c= .据此可估计若掷硬币一次,正面向上的概率为 . 答案: 0.51 241 800 0.5解析:a=200102=0.51,b=500×0.482=241;c=505.0404=800. 易知正面向上的频率在0.5附近,所以若掷硬币一次,正面向上的概率应为0.5.17.某人捡到不规则形状的五面体石块,他在每个面上用数字1~5进行了标记,投掷100次,记录下落在桌面上的数字,得到如下频数表:则落在桌面的数字不小于4的频率为 . 答案: 0.3518.一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是 . 答案: 0.03 三、解答题19.从含有两个正品a 1,a 2和一件次品b 1的三件产品中,每次任取一件,每次取出后不放回,连续取两次.(1)写出这个试验的所有可能结果.(2)设A 为“取出两件产品中恰有一件次品”,写出事件A 对应的结果. [解析](1)试验所有结果:a 1,a 2;a 1,b 1;a 2,b 1;a 2,a 1;b 1,a 1;b 1,a 2.共6种. (2)事件A 对应的结果为:a 1,b 1;a 2,b 1;b 1,a 1;b 1,a 2. 20.对一批U 盘进行抽检,结果如下表:(1)计算表中各个次品频率.(2)从这批U 盘中任抽一个是次品的概率是多少?(3)为保证买到次品的顾客能够及时更换,则销售2 000个U 盘,至少需进货多少个U 盘?[解析](1)表中各个次品频率分别为0.06,0.04,0.025,0.017,0.02,0.018. (2)当抽取件数a 越来越大时,出现次品的频率在0.02附近摆动,所以从这批U 盘中任抽一个是次品的概率是0.02.(3)设需要进货x 个U 盘,为保证其中有2 000个正品U 盘,则x(1-0.02)≥2 000,因为x 是正整数,所以x ≥2 041,即至少需进货2 041个U 盘.21.:(1)在4月份任取一天,估计西安市在该天不下雨的概率;(2)西安市某学校拟从4月份的一个晴天开始举行连续2天的运动会,估计运动会期间不下雨的概率.解:(1)在容量为30的样本中,不下雨的天数是26,以频率估计概率,4月份任选一天,西安市不下雨的概率为1513.(2)称相邻的两个日期为“互邻日期对”(如,1日与2日,2日与3日等).这样,在4月份中,前一天为晴天的互邻日期对有16个,其中后一天不下雨的有14个,所以晴天的次日不下雨的频率为87.以频率估计概率,运动会期间不下雨的概率为87.22.为了估计水库中的鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾.试根据上述数据,估计水库内鱼的尾数.[解析] 设水库中鱼的尾数为n,从水库中任捕一尾,每尾鱼被捕的频率(代替概率)为n2000,第二次从水库中捕出500尾,带有记号的鱼有40尾,则带记号的鱼被捕 的频率(代替概率)为50040,由n 2000=50040,得n=25 000.所以水库中约有25 000尾.。
高中数学必修3第三章概率全章复习
⾼中数学必修3第三章概率全章复习概率全章复习⼀、基础知识梳理(⼀)随机事件的概率随机事件的概率及概率的意义 1、基本概念:(1)必然事件:在条件S 下,⼀定会发⽣的事件,叫相对于条件S 的必然事件;(2)不可能事件:在条件S 下,⼀定不会发⽣的事件,叫相对于条件S 的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发⽣也可能不发⽣的事件,叫相对于条件S 的随机事件;(5)频数与频率:在相同的条件S 下重复n 次试验,观察某⼀事件A 是否出现,称n 次试验中事件A 出现的次数A n 为事件A 出现的频数;称事件A 出现的⽐例nn A f An)(为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发⽣的频率)(A f n 稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。
(6)频率与概率的区别与联系:随机事件的频率,指此事件发⽣的次数A n 与试验总次数n 的⽐值nn A,它具有⼀定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越⼩。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发⽣的可能性的⼤⼩。
频率在⼤量重复试验的前提下可以近似地作为这个事件的概率概率的基本性质 1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A∩B 为不可能事件,即A∩B=ф,那么称事件A 与事件B 互斥;(3)若A∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对⽴事件;(4)当事件A 与B 互斥时,满⾜加法公式:P(A ∪B)=P(A)+P(B);若事件A 与B 为对⽴事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+P(B)=1,于是有P(A)=1—P(B) 2、概率的基本性质:(1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; (2)当事件A 与B 互斥时,满⾜加法公式:P(A ∪B)=P(A)+P(B);(3)若事件A 与B 为对⽴事件,则A ∪B 为必然事件,所以P(A ∪B)=P(A)+ P(B)=1,于是有P(A)=1—P(B); (4)互斥事件与对⽴事件的区别与联系,互斥事件是指事件A 与事件B 在⼀次试验中不会同时发⽣,其具体包括三种不同的情形:(1)事件A 发⽣且事件B 不发⽣;(2)事件A 不发⽣且事件B 发⽣;(3)事件A 与事件B 同时不发⽣,⽽对⽴事件是指事件A 与事件B 有且仅有⼀个发⽣,其包括两种情形;(1)事件A 发⽣B 不发⽣;(2)事件B 发⽣事件A 不发⽣,对⽴事件互斥事件的特殊情形。
高中数学必修三概率知识点
高中数学必修三概率知识点一、概述高中数学必修三中的概率知识点是数学学科的重要组成部分,也是日常生活和工作中经常涉及的重要内容之一。
概率论是研究随机现象的数学学科,通过对随机事件的分析和推断,揭示其内在规律和特点。
概率知识点作为高中数学必修三的重要内容,涉及概率的基本概念、事件的关系和运算、古典概型、几何概型以及离散型随机变量等知识点。
掌握这些知识点对于理解现实生活中的各种随机现象,进行科学合理的决策和风险评估具有重要意义。
在学习概率知识点时,需要掌握其基本概念和原理,学会运用概率思维解决实际问题,培养逻辑思维能力和数据处理能力。
概率知识点也是后续学习统计学、金融数学等学科的基础,对于提高数学素养和综合能力具有不可替代的作用。
1. 概率论的重要性概率论是数学的一个分支,用于研究随机现象的数量规律。
在高中数学必修三的学习中,概率知识点的重要性不容忽视。
它不仅仅是一门学科的核心内容,更是理解现实世界的一把钥匙。
在我们的日常生活中,无论是天气预测、金融投资、医学研究,还是游戏设计、风险评估等各个领域,概率知识都有着广泛的应用。
学习概率论不仅能够提高学生解决实际问题的能力,更能培养他们的逻辑思维和决策能力。
概率论是理解和预测随机事件的重要工具。
在日常生活和工作中,我们经常会遇到各种随机事件,比如抛硬币、抽奖等。
通过学习概率,我们可以知道这些随机事件的规律和趋势,从而更好地做出预测和决策。
其次val 序列深入式学习,概率论对于决策制定具有指导意义。
在金融投资领域,投资者可以通过学习概率知识,分析股票市场的走势和风险,从而做出更明智的投资决策。
在医学领域,医生可以根据疾病的发病率和患者的症状概率来做出诊断。
掌握概率知识对于个人和社会都具有重要意义。
它使我们能够更好地理解世界,做出明智的决策。
对于现代社会的发展,人们更需要有利用数学方法来理解世界的技能,这已成为我们教育的一大目标。
通过学习概率知识,学生可以为他们的未来生涯发展打下坚实的基础。
高中数学必修3第三章:概率3.2古典概型
验,如果这2个元素没有顺序,那么这次试验共有
nn-1 2
个
基本事件;如果这2个元素有顺序,那么这次试验有n(n-1)
个基本事件.可以作为结论记住(不要求证明),在选择题或
填空题中可以直接应用.
计算基本事件个数的常用法
1.列举法 列举法也称枚举法.对于一些情境比较简单,基本事件 个数不是很多的概率问题,计算时只需一一列举即可得出随 机事件所含的基本事件数.但列举时必须按一定顺序,做到 不重不漏.
球,d,e为黑球.
列表如下:
a
b
c
d
e
a
(a,b) (a,c) (a,d) (a,e)
b (b,a)
(b,c) (b,d) (b,e)
c (c,a) (c,b)
(c,d) (c,e)
d (d,a) (d,b) (d,c)
(d,e)
e (e,a) (e,b) (e,c) (e,d)
由于每次取两个球,每次所取两个球不相同,而摸(b,a) 与(a,b)是相同的事件,故共有10个基本事件.
新课引入 “三门问题”是美国一个经典的电视游戏节目,内容如 下:现有三扇门,其中一扇后面有一辆汽车,另外两扇门后 各有一只羊,参赛者选中车门就得车,选中羊门就得羊,首 先参赛者选一扇门,然.后主持人故意打开剩下两门中的一 扇羊门(主持人知道车在何处),接着主持人给参赛者选择机 会,是坚持原门还是换另一扇门?
[解析] 第1个概率模型不是古典概型,因为从区间[1,10] 内任意取出一个数,有无数个对象可取,所以不满足“有限 性”.
第2个概率模型是古典概型,因为试验结果只有10个, 而且每个数被抽到的可能性相等,即满足有限性和等可能 性;
第3个概率模型不是古典概型,而是以后将学的几何概 型;
高中数学必修三第三章概率知识要点
一、随机事件的概率1.事件与随机事件在一定条件下必然发生的事件叫;在一定条件下不可能发生的事件叫;在一定条件下可能发生也可能不发生的事件叫。
2.事件的频率与概率⑴若在n次试验中事件A发生了m次, 则称为事件A的频率。
记做。
二、⑵若随着试验次数n的增大, 事件A的频率总接近某个常数p, 在它的附近作微小摆动, 则称为事件A的概率, 记做, 显然。
三、 3.概率从数量上反映了一个事件的大小。
四、概率的基本性质1.事件的关系与运算:(1)互斥事件:若为, 则称事件与事件互斥。
(2)对立事件:若为, 为, 则称事件与事件互为对立事件。
2.概率的几个基本性质:(1)概率的取值范围是: 。
(2)的概率为1;的概率为0。
五、(3)如果事件与事件互斥, 那么。
六、(4)如果事件与事件对立, 那么;;。
七、古典概型1.古典概型的特征:(1):一次试验中, 基本事件只有有限个;八、(2): 每个基本事件发生的可能性都相等。
九、2、求古典概率的常用方法: 列举法与列表法。
十、几何概型1.几何概型的特征:(1)几何概型的基本事件有无穷多个;(2)每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例。
2.求几何概率用到的一个方法: 线性规划。
练习题:1.甲盒中有红, 黑, 白三种颜色的球各3个, 乙盒子中有黄, 黑, 白, 三种颜色的球各2个, 从两个盒子中各取1个球, 求取出的两个球是不同颜色的概率.2.设关于的一元二次方程, 若是从区间任取的一个数, 是从区间任取的一个数,求上述方程有实数根的概率.3.将一颗质地均匀的正方体骰子(六个面的点数分别为1, 2, 3, 4, 5, 6)先后抛掷两次, 将得到的点数分别记为.将的值分别作为三条线段的长, 求这三条线段能围成等腰三角形的概率.1 / 1。
新课标高中数学必修三《概率》知识点
高中数学必修3(新课标)第三章 概 率(知识点)3.1 随机事件的概率及性质1、 基本概念:(1)必然事件:一般地,在条件S 下,一定会发生的事件,叫做相对于条件S 的必然事件,简称必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件,简称不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件,简称确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫做相对于条件S的随机事件,简称随机事件;(5)确定事件与随机事件统称为事件,一般用大写字母表示A 、B 、C ……表示.(6)频数与频率:在相同的条件S下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A出现的次数n A 为事件A 出现的频数;称事件A出现的比例fn (A )=n n A 为事件A 出现的频率:对于给定的随机事件A,如果随着试验次数的增加,事件A 发生的频率f n (A )稳定在某个常数上,把这个常数记作P (A),称为事件A的概率。
(7)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n 的比值nn A ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小,接近某个常数。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个事件的概率(8)任何事件的概率是0~1之间的一个确定的数,它度量该事件发生的的可能性.2 概率的基本性质1)一般地、对于事件A与事件B,如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B),记作B⊇A(或A⊆B).不可能事件记作Ø,任何事件都包含不可能事件.2)如果事件C1发生,那么事件D1一定发生,反过来也对,这时我们说这两个事件相等,记作C1=D1.一般地,若B⊇A,且A⊇B,那么称事件A与事件B相等,记作A=B.3)若某事件发生当且仅当事件A发生或事件B发生,则称此事件为事件A或事件B的并事件(或和事件),记作A∪B(或A+B).4)若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件),记作A∩B(或AB).5)若A∩B为不可能事件(A∩B=Ø),那么称事件A与事件B互斥.不可能同时发生.6)若A∩B为不可能事件,A∪B为必然事件,那么称事件A与事件B互为对立事件.有且仅有一个发生.任何事件的概率在0~1之间,即0≤P(A)≤1.必然事件的概率为1,不可能事件的概率为0.(4)当事件A与B互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B).3.2 古典概型基本概念:⑴基本事件:一次试验中可能出现的每一个基本结果;基本事件有如下特点:① 任何两个基本事件是互斥的;② 任何事件(除不可能事件)都可以表示成基本事件的和.⑵古典概型的特点:① 试验中所有可能出现的基本事件只有有限个;② 每个基本事件出现的可能性相等.我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。
高中二年级必修3数学第三章知识点概率-学习文档
高中二年级必修3数学第三章知识点——概率数学是学习和研究现代科学技术必不可少的基本工具。
查字典数学网为大家推荐了高中二年级必修3数学第三章知识点,请大家仔细阅读,希望你喜欢。
1、概率的定义:对随机事件发生的可能性的大小即计算其概率.一方面要评判一些游戏规则对参与游戏者是否公平,就是要看各事件发生概率.另一方面通过对概率的学习让我们更加理智的对待一些买彩票抽奖活动.2、利用频率估计概率在同样条件下,做大量的重复试验,利用一个随机事件发生的频率逐渐稳定到某个常数,可以估计这个事件发生的概率。
3、在统计学中,常用较为简单的试验方法代替实际操作中复杂的试验来完成概率估计,这样的试验称为模拟实验。
4、随机数在随机事件中,需要用大量重复试验产生一串随机的数据来开展统计工作。
把这些随机产生的数据称为随机数。
5、古典概型的定义某个试验若具有:①在一次试验中,可能出现的结构有有限多个;②在一次试验中,各种结果发生的可能性相等。
我们把具有这两个特点的试验称为古典概型。
6、利用频率估算法:大量重复试验中,事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(有些时候用计算出A发生的所有频率的平均值作为其概率).狭义定义法:如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,考察事件A包含其中的m中结果,那么事件A发生的概率为P(A)=M/N列表法:当一次试验要设计两个因素,可能出现的结果数目较多时,为不重不漏地列出所有可能的结果,通常采用列表法.其中一个因素作为行标,另一个因素作为列标.7、事件的分类①确定事件必然发生的事件:当A是必然发生的事件时,P(A)=1不可能发生的事件:当A是不可能发生的事件时,P(A)=0 随机事件:当A是可能发生的事件时,0②概率的意义一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率。
③概率的表示方法一般地,事件用英文大写字母A,B,C,,表示事件A的概率p,可记为P(A)=M/N小编为大家提供的高中二年级必修3数学第三章知识点,大家仔细阅读了吗?最后祝同学们学习进步。
高二数学必修三期中必备知识点:第三章概率
高二数学必修三期中必备知识点:第三章概率历史令人聪慧,诗歌令人机智,数学令人精美,哲学使人深沉,道德令人严肃,逻辑与修辞令人善辩。
小编准备了高二数学必修三期中必备知识点,希望你喜爱。
3.1.1 3.1.2 随机事件的概率及概率的意义1、基本观点:(1)必定事件:在条件S 下,必定会发生的事件,叫相关于条件 S 的必定事件 ;(2)不行能事件:在条件 S 下,必定不会发生的事件,叫相关于条件 S 的不行能事件 ;(3)确立事件:必定事件和不行能事件统称为相关于条件S 的确立事件 ;(4)随机事件:在条件 S 下可能发生也可能不发生的事件,叫相关于条件 S 的随机事件 ;(5)频数与频次:在同样的条件 S 下重复 n 次试验,察看某一事件 A 能否出现,称 n 次试验中事件 A 出现的次数 nA 为事件 A 出现的频数 ;称事件 A 出现的比率 fn(A)= 为事件 A 出现的概率:关于给定的随机事件 A ,假如跟着试验次数的增添,事件 A 发生的频次 fn(A) 稳固在某个常数上,把这个常数记作 P(A) ,称为事件 A 的概率。
(6)频次与概率的差别与联系:随机事件的频次,指此事件发生的次数 nA 与试验总次数n 的比值,它拥有必定的稳固性,总在某个常数邻近摇动,且跟着试验次数的不停增加,这类摇动幅度愈来愈小。
我们把这个常数叫做随机事件的概率,概率从数目上反应了随机事件发生的可能性的大小。
频次在大批重复试验的前提下能够近似地作为这个事件的概率3.1.3 概率的基天性质1、基本观点:(1)事件的包含、并事件、交事件、相等事件(2)若 AB 为不行能事件,即AB=ф,那么称事件 A 与事件 B 互斥 ;(3)若 AB 为不行能事件,AB 为必定事件,那么称事件 A 与事件 B 互为对峙事件 ;(4)当事件 A 与 B 互斥时,知足加法公式: P(AB)= P(A)+ P(B); 若事件 A 与 B 为对峙事件,则 AB 为必定事件,所以 P(AB)=P(A)+ P(B)=1 ,于是有P(A)=1P(B)2、概率的基天性质:1)必定事件概率为1,不行能事件概率为0,所以 01;2)当事件 A 与 B 互斥时,知足加法公式: P(AB)= P(A)+ P(B);3)若事件 A 与 B 为对峙事件,则 AB 为必定事件,所以 P(AB)= P(A)+ P(B)=1 ,于是有P(A)=14)互斥事件与对峙事件的差别与联系,互斥事件是指事件A 与事件 B 在一次试验中不会同时发生,其详细包含三种不一样的情况: (1)事件 A 发生且事件 B 不发生 ;(2)事件 A 不发生且事件 B 发生 ;(3) 事件 A 与事件 B 同时不发生,而对峙事件是指事件 A 与事件 B 有且仅有一个发生,其包含两种情况 ;(1) 事件 A 发生 B 不发生 ;(2)事件 B 发惹祸件 A 不发生,对峙事件互斥事件的特别情况。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019高二数学必修3第三章概率知识点归
纳
聪明出于勤奋,天才在于积累。
小编准备了高二数学必修3第三章概率知识点,希望能帮助到大家。
一.随机事件的概率及概率的意义
1、基本概念:
(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;
(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A
出现的频数;称事件A出现的比例fn(A)=nnA为事件A出现的概率:对于给定的随机事件A,如果随着试
验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。
(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值nn
A,它具有一定的稳定
性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个事件的概
率
二.概率的基本性质
1、基本概念:
Page 8 of 8
(1)事件的包含、并事件、交事件、相等事件
(2)若AB为不可能事件,即AB=ф,那么称事件A与事件B 互斥;
(3)若AB为不可能事件,AB为必然事件,那么称事件A与事件B互为对立事件;
(4)当事件A与B互斥时,满足加法公式:P(AB)= P(A)+ P(B);若事件A与B为对立事件,则AB为必然事件,所以
P(AB)= P(A)+ P(B)=1,于是有P(A)=1P(B) 2、概率的基本性质:
1)必然事件概率为1,不可能事件概率为0,因此01;2)当事件A与B互斥时,满足加法公式:P(AB)= P(A)+ P(B);
3)若事件A与B为对立事件,则AB为必然事件,所以P(AB)= P(A)+ P(B)=1,于是有P(A)=1
4)互斥事件与对立事件的区别与联系,互斥事件是指事件A
与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;
(3)事件A与事件B同时不发生,而对立事件是指事件A 与事件B有且仅有一个发生,其包括两种情形;
(1)事件A发生B不发生;
(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。
三.古典概型及随机数的产生
(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。
(2)古典概型的解题步骤;①求出总的基本事件数;
②求出事件A所包含的基本事件数,然后利用公式P(A)= 四.几何概型及均匀随机数的产生
基本概念:(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率
模型为几何概率模型;
(2)几何概型的概率公式:P(A)=;
这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。
要求学生抽空抄录并且阅读成诵。
其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责
任、友谊、爱心、探索、环保等多方面。
如此下去,除假期外,一年便可以积累40多则材料。
如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗? (3)几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;
“教书先生”恐怕是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当怎么说也算是让国人景仰甚或敬畏的一种社会职业。
只是更早的“先生”概念并非源于教书,最初出现的“先生”一词也并非有传授知识那般的含义。
《孟子》中的“先生何为出此言也?”;《论语》中的“有酒食,先生馔”;《国策》中的“先生坐,何至于此?”等等,均指“先生”为父兄或有学问、有德行的长辈。
其实《国策》中本身就有“先生长者,有德之称”的说法。
可见“先生”之原意非真正的“教师”之意,倒是与当今“先生”的称呼更接近。
看来,“先生”之本源含义在于礼貌和尊称,并非具学问者的专称。
称“老师”为“先生”的记载,首见于《礼记?曲礼》,有“从于先生,不越礼而与人言”,其中之“先生”意为“年长、资深之传授知识者”,与教师、老师之意基本一致。
2)每个基本事件出现的可能性相等.
以上是高二数学必修3第三章概率知识点的全部内容,更多精彩内容请持续关注查字典数学网。