必修三概率部分知识点

合集下载

数学必修三概率的知识点及试

数学必修三概率的知识点及试

数学必修三概率的知识点及试————————————————————————————————作者:————————————————————————————————日期:第三章 概率3.1随机事件的概率1.随机事件的概念——在一定的条件下所出现的某种结果叫做事件。

(1)随机事件:在一定条件下可能发生也可能不发生的事件;(2)必然事件:在一定条件下必然要发生的事件;(3)不可能事件:在一定条件下不可能发生的事件。

2. 频数与频率,概率:事件A 的概率 ——在大量重复进行同一试验时,事件A 发生的频率nm总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作P (A )。

——由定义可知0≤P(A )≤13.事件间的关系(1)互斥事件:不能同时发生的两个事件叫做互斥事件;(2)对立事件:不能同时发生,但必有一个发生的两个事件叫做互斥事件;(3)包含:事件A 发生时事件B 一定发生,称事件A 包含于事件B (或事件B 包含事件A );4.事件间的运算(1)并事件()P A B ⋃或)(P B A +(和事件)若某事件发生是事件A 发生或事件B 发生,则此事件称为事件A 与事件B 的并事件。

——P (A+B )=P (A )+P (B )(A.B 互斥);且有P (A+A )=P (A )+P (A =1。

交事件)()(AB P B A P 或I (积事件)若某事件发生是事件A 发生和事件B 同时发生,则此事件称为事件A 与事件B 的交事件。

【典型例题】1、指出下列事件是必然事件,不可能时间,还是随机事件:(1)“天上有云朵,下雨”;(2)“在标准大气压下且温度高于0οC 时,冰融化”;(3)“某人射击一次,不中靶”;(4)“如果b a >,那么0>-b a ”;2、判断下列各对事件是否是互斥事件,并说明道理。

某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,其中:(1)恰有1名男生和恰有2名男生;(2)至少有1名男生和至少有1名女生;(3)至少有1名男生和全是男生;(4)至少有1名男生和全是女生3、给出下列命题,判断对错:(1)互斥事件一定对立;(2)对立事件一定互斥;(3)互斥事件不一定对立。

必修3第三章-概率-知识点总结和强化练习:

必修3第三章-概率-知识点总结和强化练习:

高中数学必修3 第三章 概率 知识点总结及强化训练一、 知识点总结3.1.1 —3.1.2随机事件的概率及概率的意义 1、基本概念:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A出现的次数nA 为事件A 出现的频数;称事件A 出现的比例fn(A)=n n A为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率fn(A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA 与试验总次数n 的比值n n A,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。

我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。

频率在大量重复试验的前提下可以近似地作为这个事件的概率3.1.3 概率的基本性质 1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若A ∩B 为不可能事件,即A ∩B=ф,那么称事件A 与事件B 互斥;(3)若A ∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1; 2)当事件A 与B 互斥时,满足加法公式:P(A ∪B)= P(A)+ P(B);3)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P(A ∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B);4)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B 在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A 发生且事件B 不发生;(2)事件A 不发生且事件B 发生;(3)事件A 与事件B 同时不发生,而对立事件是指事件A 与事件B 有且仅有一个发生,其包括两种情形;(1)事件A 发生B 不发生;(2)事件B 发生事件A 不发生,对立事件互斥事件的特殊情形。

高二数学必修3第三章概率知识点归纳

高二数学必修3第三章概率知识点归纳

高二数学必修3第三章概率知识点归纳聪明出于勤劳,天赋在于积聚。

小编预备了高二数学必修3第三章概率知识点,希望能协助到大家。

一.随机事情的概率及概率的意义1、基本概念:(1)肯定事情:在条件S下,一定会发作的事情,叫相关于条件S的肯定事情; (2)不能够事情:在条件S下,一定不会发作的事情,叫相关于条件S的不能够事情; (3)确定事情:肯定事情和不能够事情统称为相关于条件S确实定事情;(4)随机事情:在条件S下能够发作也能够不发作的事情,叫相关于条件S的随机事情;(5)频数与频率:在相反的条件S下重复n次实验,观察某一事情A能否出现,称n次实验中事情A出现的次数nA为事情A出现的频数;称事情A出现的比例fn(A)=nnA为事情A出现的概率:关于给定的随机事情A,假设随着试验次数的添加,事情A发作的频率fn(A)动摇在某个常数上,把这个常数记作P(A),称为事情A的概率。

(6)频率与概率的区别与联络:随机事情的频率,指此事情发作的次数nA与实验总次数n的比值nnA,它具有一定的动摇性,总在某个常数左近摆动,且随着实验次数的不时增多,这种摆动幅度越来越小。

我们把这个常数叫做随机事情的概率,概率从数量上反映了随机事情发作的能够性的大小。

频率在少量重复实验的前提下可以近似地作为这个事情的概率二.概率的基本性质1、基本概念:Page 8 of 8(1)事情的包括、并事情、交事情、相等事情(2)假定AB为不能够事情,即AB=ф,那么称事情A与事情B互斥;(3)假定AB为不能够事情,AB为肯定事情,那么称事情A与事情B互为统一事情;(4)当事情A与B互斥时,满足加法公式:P(AB)= P(A)+ P(B);假定事情A与B为统一事情,那么AB为肯定事情,所以P(AB)= P(A)+ P(B)=1,于是有P(A)=1P(B) 2、概率的基本性质:1)肯定事情概率为1,不能够事情概率为0,因此01; 2)当事情A与B互斥时,满足加法公式:P(AB)= P(A)+ P(B);3)假定事情A与B为统一事情,那么AB为肯定事情,所以P(AB)= P(A)+ P(B)=1,于是有P(A)=14)互斥事情与统一事情的区别与联络,互斥事情是指事情A 与事情B在一次实验中不会同时发作,其详细包括三种不同的情形:(1)事情A发作且事情B不发作; (2)事情A不发作且事情B发作;(3)事情A与事情B同时不发作,而统一事情是指事情A 与事情B有且仅有一个发作,其包括两种情形;(1)事情A发作B不发作;(2)事情B发作事情A不发作,统一事情互斥事情的特殊情形。

高中数学必修三第12章-概率初步-知识点

高中数学必修三第12章-概率初步-知识点

小初高个性化辅导,助你提升学习力! 1 高中数学必修3-第12章:概率初步-知识点
1、①概率:事件发生的 可能性大小 ;②随机现象:具有 不确定性 的现象;③随机试验:可随意重复 的实验。

2、样本空间:一个随机实验中所有可能出现的结果 所组成的集合 ,用Ω 表示。

其中的元素称为 基本事件 或者 样本点 ,事件是样本空间的 子集 。

3、常见的三种事件:①必然发生的 必然 事件,②必然不发生的不可能 事件,③可能发生也可能不发生的 不确定 事件,也叫 随机 事件。

4、古典概率模型:①包含 有限个 基本事件,②每一个事件的发生都 等可能 。

古典概率中,随机事件A 发生的概率P (A )= 总个数样本空间中基本事件的中的基本事件个数
事件A 。

5、事件的相互关系:若事件A 发生,事件B 必发生,则A 是B 的子集 ,表示为
6
7
8
9
10
11
件是否相互独立。

12。

必修三概率部分知识点

必修三概率部分知识点

新课标必修3概率部分知识点总结及典型例题解析◆ 事件:随机事件( random event ),确定性事件: 必然事件( certain event )和不可能事件( impossible event )❖ 随机事件的概率(统计定义):一般的,如果随机事件 A 在n 次实验中发生了m 次,当实验的次数n 很大时,我们称事件A 发生的概率为()nm A P ≈ 说明:① 一个随机事件发生于具有随机性,但又存在统计的规律性,在进行大量的重复事件时某个事件是否发生,具有频率的稳定性 ,而频率的稳定性又是必然的,因此偶然性和必然性对立统一 ② 不可能事件和确定事件可以看成随机事件的极端情况 ③ 随机事件的频率是指事件发生的次数和总的试验次数的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这个摆动的幅度越来越小,而这个接近的某个常数,我们称之为概事件发生的概率 ④ 概率是有巨大的数据统计后得出的结果,讲的是一种大的整体的趋势,而频率是具体的统计的结果 ⑤ 概率是频率的稳定值,频率是概率的近似值♦ 概率必须满足三个基本要求:① 对任意的一个随机事件A ,有()10≤≤A P② ()()0,1,=Φ=ΩΦΩP P 则有可能事件分别表示必然事件和不和用③如果事件()()()B P A P B A P B A +=+:,则有互斥和⌧ 古典概率(Classical probability model ):① 所有基本事件有限个 ② 每个基本事件发生的可能性都相等 满足这两个条件的概率模型成为古典概型如果一次试验的等可能的基本事件的个数为个n ,则每一个基本事件发生的概率都是n1,如果某个事件A 包含了其中的m 个等可能的基本事件,则事件A 发生的概率为 ()nm A P = ⍓ 几何概型(geomegtric probability model ):一般地,一个几何区域D 中随机地取一点,记事件“改点落在其内部的一个区域d 内”为事件A ,则事件A 发生的概率为()的侧度的侧度D d A P = ( 这里要求D 的侧度不为0,其中侧度的意义由D 确定,一般地,线段的侧度为该线段的长度;平面多变形的侧度为该图形的面积;立体图像的侧度为其体积 )几何概型的基本特点:① 基本事件等可性 ② 基本事件无限多颜老师说明:为了便于研究互斥事件,我们所研究的区域都是指的开区域,即不含边界,在区域D 内随机地取点,指的是该点落在区域D 内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的侧度成正比,而与其形状无关。

必修三概率单元知识总结以及重点强化复习

必修三概率单元知识总结以及重点强化复习
(Ⅰ)求取出的3张卡片都标有数字0的概率;
(Ⅱ)求取出的3张卡片数字之积是4的概率;
(Ⅲ)求取出的3张卡片数字之积是0的概率.
解:(I)记“取出的3张卡片都标有数字0”为事件A.
(Ⅱ)记“取出的3张卡片数字之积是4”为事件B,
(Ⅲ)记“取出的3张卡片数字之积是0”为事件C.
例2:甲、乙两人各射击一次,击中目标的概率分别是 和 .假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响.
(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数 为事件A出现的频数;称事件A出现的比例fn(A)= 为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。
(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值 ,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率
3.2.1 —3.2.2古典概型及随机数的产生
1、(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。
(2)古典概型的解题步骤;①求出总的基本事件数;
②求出事件A所包含的基本事件数,然后利用公式P(A)=
3.3.1—3.3.2几何概型及均匀随机数的产生
1、基本概念:
(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;
(2)几何概型的概率公式:

高一数学必修三概率复习总结

高一数学必修三概率复习总结
概率复习总结
知识点:
1、 概率的意义 2、事件的关系和运算 3、概率的性质 4、古典概型 5、几何概型
概率的意义
概率是一个确定的数,与每次试验无 关。是用来度量事件发生可能性大小 的量。
注意:频率与概率联系与区别
频率本身是随机的,在试验前不能确 定。做同样次数的重复试验得到事件 的频率会不同。
频率是概率的近似值,概率是频率的 稳定值。
例5.甲、乙二人约定在 12 点到 5 点之间在某地会面,先到者等 一个小时后即离去设二人在这段 时间内的各时刻到达是等可能的 ,且二人互不影响。求二人能会 面的概率。
解: 以 X , Y 分别表示甲乙二人到
达的时刻,于是 0 X 5, 0 Y 5.
即 点 M 落在图中
的阴影部分。所有的 点构成一个正方形, 即有无穷多个结果。 由于每人在任一时刻 到达都是等可能的, 所以落在正方形内各 点是等可能的。
几何概型
1)几何概型的特点:
(1)试验中所有可能出现的结果(基本事件) 有无限多个. (2)每个基本事件出现的可能性相等.
2)在几何概型中,事件A的概率 的计算公式如下:
A)
构成事件A的区域长度(面积或体积) 试验的全部结果所构成的区域长度(面积或体积)
1、甲乙两人下棋,两人下成和棋
的概率是1/2,乙胜的概率是1/3,
解: 我们用a、b分别记八个队中的两个强队.
令C=“a队与b队分在同一组”,
则 C =“a队与b队不在同一组”.
a队与b队不在同一组,只能分成两种情况:
a队在第一组,b队在第二组,此时有C
3 6
·C
3 3
=C
3 6
种分法;a队在第二组,b队在第一组,此

高二数学必修3第三章概率知识点归纳

高二数学必修3第三章概率知识点归纳

高二数学必修3第三章概率知识点归纳聪明出于勤奋,天才在于积累。

小编准备了高二数学必修3第三章概率知识点,希望能帮助到大家。

一.随机事件的概率及概率的意义1、基本概念:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件; (2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=nnA为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。

(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值nnA,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。

我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。

频率在大量重复试验的前提下可以近似地作为这个事件的概率二.概率的基本性质1、基本概念:Page 8 of 8(1)事件的包含、并事件、交事件、相等事件(2)若AB为不可能事件,即AB=ф,那么称事件A与事件B 互斥;(3)若AB为不可能事件,AB为必然事件,那么称事件A与事件B互为对立事件;(4)当事件A与B互斥时,满足加法公式:P(AB)= P(A)+ P(B);若事件A与B为对立事件,则AB为必然事件,所以P(AB)= P(A)+ P(B)=1,于是有P(A)=1P(B) 2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此01; 2)当事件A与B互斥时,满足加法公式:P(AB)= P(A)+ P(B);3)若事件A与B为对立事件,则AB为必然事件,所以P(AB)= P(A)+ P(B)=1,于是有P(A)=14)互斥事件与对立事件的区别与联系,互斥事件是指事件A 与事件B在一次试验中不会同时发生,其具体包括三种不同的情形:(1)事件A发生且事件B不发生; (2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A 与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A不发生,对立事件互斥事件的特殊情形。

数学必修三概率的知识点及练习讲课讲稿

数学必修三概率的知识点及练习讲课讲稿

第三章 概率3.1随机事件的概率1.随机事件的概念——在一定的条件下所出现的某种结果叫做事件。

(1)随机事件:在一定条件下可能发生也可能不发生的事件;(2)必然事件:在一定条件下必然要发生的事件;(3)不可能事件:在一定条件下不可能发生的事件。

2. 频数与频率,概率:事件A 的概率 ——在大量重复进行同一试验时,事件A 发生的频率nm总接近于某个常数,在它附近摆动,这时就把这个常数叫做事件A 的概率,记作P (A )。

——由定义可知0≤P(A )≤13.事件间的关系(1)互斥事件:不能同时发生的两个事件叫做互斥事件;(2)对立事件:不能同时发生,但必有一个发生的两个事件叫做互斥事件;(3)包含:事件A 发生时事件B 一定发生,称事件A 包含于事件B (或事件B 包含事件A );4.事件间的运算(1)并事件()P A B ⋃或)(P B A +(和事件)若某事件发生是事件A 发生或事件B 发生,则此事件称为事件A 与事件B 的并事件。

——P (A+B )=P (A )+P (B )(A.B 互斥);且有P (A+A )=P (A )+P (A =1。

交事件)()(AB P B A P 或I (积事件)若某事件发生是事件A 发生和事件B 同时发生,则此事件称为事件A 与事件B 的交事件。

【典型例题】1、指出下列事件是必然事件,不可能时间,还是随机事件:(1)“天上有云朵,下雨”;(2)“在标准大气压下且温度高于0οC 时,冰融化”;(3)“某人射击一次,不中靶”;(4)“如果b a >,那么0>-b a ”;2、判断下列各对事件是否是互斥事件,并说明道理。

某小组有3名男生和2名女生,从中任选2名同学去参加演讲比赛,其中:(1)恰有1名男生和恰有2名男生;(2)至少有1名男生和至少有1名女生;(3)至少有1名男生和全是男生;(4)至少有1名男生和全是女生3、给出下列命题,判断对错:(1)互斥事件一定对立;(2)对立事件一定互斥;(3)互斥事件不一定对立。

高二数学必修三概率知识点

高二数学必修三概率知识点

高二数学必修三概率知识点概率是数学中的一个重要分支,它研究的是不确定性事件的可能性。

在高二数学必修三中,我们将学习概率的相关概念、性质和计算方法。

本篇文章将围绕高二数学必修三概率知识点展开讲解。

一、概率的基本概念概率是描述一个事件发生可能性的数值,通常用一个介于0到1之间的数表示。

0表示不可能事件,1表示必然事件。

在概率的计算中,我们利用概率公式来计算事件的概率。

概率公式为:P(A) = n(A) / n(S),其中P(A)表示事件A发生的概率,n(A)表示事件A 的样本点个数,n(S)表示样本空间中的样本点个数。

二、事件的依赖与独立在概率的计算中,我们需要考虑事件之间的依赖关系。

如果两个事件相互独立,即一个事件的发生不影响另一个事件的发生,则它们的概率相乘。

如果两个事件不独立,即一个事件的发生会影响另一个事件的发生,则需要考虑条件概率的计算。

三、排列与组合在概率的计算中,经常会涉及到排列与组合的问题。

排列是指从n个元素中取出m个元素进行排列的方法数,符号表示为A(n,m)。

组合是指从n个元素中取出m个元素进行组合的方法数,符号表示为C(n,m)。

在计算概率时,我们需要利用排列与组合的方法来确定样本空间和事件的个数,从而计算事件的概率。

四、加法与乘法法则在概率的计算中,我们可以利用加法法则和乘法法则来计算复杂事件的概率。

加法法则适用于两个事件之一发生的情况,乘法法则适用于两个事件同时发生的情况。

根据事件的情况,我们可以灵活运用这两个法则进行概率计算,从而得到准确的结果。

五、贝叶斯定理贝叶斯定理是概率论中的重要定理,它用于在已知一些先验概率的情况下,根据新的观察结果来更新概率。

贝叶斯定理的公式为:P(A|B) = P(B|A) * P(A) / P(B),其中P(A|B)表示在事件B发生的条件下,事件A发生的概率,P(B|A)表示在事件A发生的条件下,事件B发生的概率,P(A)和P(B)分别表示事件A和事件B的概率。

高中数学必修三第三章概率知识要点

高中数学必修三第三章概率知识要点

一、随机事件的概率1.事件与随机事件在一定条件下必然发生的事件叫;在一定条件下不可能发生的事件叫;在一定条件下可能发生也可能不发生的事件叫。

2.事件的频率与概率⑴若在n次试验中事件A发生了m次, 则称为事件A的频率。

记做。

二、⑵若随着试验次数n的增大, 事件A的频率总接近某个常数p, 在它的附近作微小摆动, 则称为事件A的概率, 记做, 显然。

三、 3.概率从数量上反映了一个事件的大小。

四、概率的基本性质1.事件的关系与运算:(1)互斥事件:若为, 则称事件与事件互斥。

(2)对立事件:若为, 为, 则称事件与事件互为对立事件。

2.概率的几个基本性质:(1)概率的取值范围是: 。

(2)的概率为1;的概率为0。

五、(3)如果事件与事件互斥, 那么。

六、(4)如果事件与事件对立, 那么;;。

七、古典概型1.古典概型的特征:(1):一次试验中, 基本事件只有有限个;八、(2): 每个基本事件发生的可能性都相等。

九、2、求古典概率的常用方法: 列举法与列表法。

十、几何概型1.几何概型的特征:(1)几何概型的基本事件有无穷多个;(2)每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例。

2.求几何概率用到的一个方法: 线性规划。

练习题:1.甲盒中有红, 黑, 白三种颜色的球各3个, 乙盒子中有黄, 黑, 白, 三种颜色的球各2个, 从两个盒子中各取1个球, 求取出的两个球是不同颜色的概率.2.设关于的一元二次方程, 若是从区间任取的一个数, 是从区间任取的一个数,求上述方程有实数根的概率.3.将一颗质地均匀的正方体骰子(六个面的点数分别为1, 2, 3, 4, 5, 6)先后抛掷两次, 将得到的点数分别记为.将的值分别作为三条线段的长, 求这三条线段能围成等腰三角形的概率.1 / 1。

高中数学必修三概率知识点

高中数学必修三概率知识点

I am a slow walker,but I never walk backwards. 同学互助一起进步(页眉可删)高中数学必修三概率知识点高中数学必修三概率知识点的总结就在下面,条件概率是高中数学必修三课程的内容,下面就为大家整理了相关的知识点供大家阅读!高中数学必修三概率知识点【1】条件概率的定义:(1)条件概率的定义:对于任何两个事件A和B,在已知事件A发生的条件下,事件B发生的概率叫做条件概率,用符号P(B|A)来表示.(2)条件概率公式:称为事件A与B的交(或积).(3)条件概率的求法:①利用条件概率公式,分别求出P(A)和P(AB),得P(B|A)=②借助古典概型概率公式,先求出事件A包含的基本事件数n(A),再在事件A发生的条件下求出事件B包含的基本事件数,即n(AB),得P(B|A)=P(B|A)的性质:(1)非负性:对任意的A,; (2)规范性:P(|B)=1;(3)可列可加性:如果是两个互斥事件,则P(B|A)概率和P(AB)的区别与联系:(1)联系:事件A和B都发生了;(2)区别:a、P(B|A)中,事件A和B发生有时间差异,A先B后;在P(AB)中,事件A、B同时发生。

b、样本空间不同,在P(B|A)中,样本空间为A,事件P(AB)中,样本空间仍为。

高中数学必修三概率知识点【2】互斥事件:事件A和事件B不可能同时发生,这种不可能同时发生的两个事件叫做互斥事件。

如果A1,A2,…,An中任何两个都不可能同时发生,那么就说事件A1,A2,…An彼此互斥。

对立事件:两个事件中必有一个发生的互斥事件叫做对立事件,事件A 的对立事件记做注:两个对立事件必是互斥事件,但两个互斥事件不一定是对立事件。

事件A+B的意义及其计算公式:(1)事件A+B:如果事件A,B中有一个发生发生。

(2)如果事件A,B互斥时,P(A+B)=P(A)+P(B),如果事件A1,A2,…An彼此互斥时,那么P(A1+A2+…+An)=P(A1)+P(A2)+…+P(An)。

人教版高三数学复习必修三知识点:数学概率

人教版高三数学复习必修三知识点:数学概率

1、基本概念:(1)必然事件:在條件S下,一定會發生的事件,叫相對於條件S的必然事件;(2)不可能事件:在條件S下,一定不會發生的事件,叫相對於條件S 的不可能事件;(3)確定事件:必然事件和不可能事件統稱為相對於條件S的確定事件;(4)隨機事件:在條件S下可能發生也可能不發生的事件,叫相對於條件S的隨機事件;(5)頻數與頻率:在相同的條件S下重複n次試驗,觀察某一事件A 是否出現,稱n次試驗中事件A出現的次數nA為事件A出現的頻數;稱事件A出現的比例fn(A)=為事件A出現的概率:對於給定的隨機事件A,如果隨著試驗次數的增加,事件A發生的頻率fn(A)穩定在某個常數上,把這個常數記作P(A),稱為事件A的概率。

(6)頻率與概率的區別與聯繫:隨機事件的頻率,指此事件發生的次數nA與試驗總次數n的比值,它具有一定的穩定性,總在某個常數附近擺動,且隨著試驗次數的不斷增多,這種擺動幅度越來越小。

我們把這個常數叫做隨機事件的概率,概率從數量上反映了隨機事件發生的可能性的大小。

頻率在大量重複試驗的前提下可以近似地作為這個事件的概率3.1.3概率的基本性質1、基本概念:(1)事件的包含、並事件、交事件、相等事件(2)若A∩B為不可能事件,即A∩B=ф,那麼稱事件A與事件B互斥;(3)若A∩B為不可能事件,A∪B為必然事件,那麼稱事件A與事件B互為對立事件;(4)當事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,於是有P(A)=1—P(B)2、概率的基本性質:1)必然事件概率為1,不可能事件概率為0,因此0≤P(A)≤1;2)當事件A與B互斥時,滿足加法公式:P(A∪B)=P(A)+P(B);3)若事件A與B為對立事件,則A∪B為必然事件,所以P(A∪B)=P(A)+P(B)=1,於是有P(A)=1—P(B);4)互斥事件與對立事件的區別與聯繫,互斥事件是指事件A與事件B 在一次試驗中不會同時發生,其具體包括三種不同的情形:(1)事件A發生且事件B不發生;(2)事件A不發生且事件B發生;(3)事件A與事件B同時不發生,而對立事件是指事件A與事件B有且僅有一個發生,其包括兩種情形;(1)事件A發生B不發生;(2)事件B發生事件A不發生,對立事件互斥事件的特殊情形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标必修3概率部分知识点总结及典型例题解析◆ 事件:随机事件( random event ),确定性事件: 必然事件( certain event )和不可能事件( impossible event )❖ 随机事件的概率(统计定义):一般的,如果随机事件 A 在n 次实验中发生了m 次,当实验的次数n 很大时,我们称事件A 发生的概率为()nm A P ≈ 说明:① 一个随机事件发生于具有随机性,但又存在统计的规律性,在进行大量的重复事件时某个事件是否发生,具有频率的稳定性 ,而频率的稳定性又是必然的,因此偶然性和必然性对立统一 ② 不可能事件和确定事件可以看成随机事件的极端情况 ③ 随机事件的频率是指事件发生的次数和总的试验次数的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这个摆动的幅度越来越小,而这个接近的某个常数,我们称之为概事件发生的概率 ④ 概率是有巨大的数据统计后得出的结果,讲的是一种大的整体的趋势,而频率是具体的统计的结果 ⑤ 概率是频率的稳定值,频率是概率的近似值♦ 概率必须满足三个基本要求:① 对任意的一个随机事件A ,有()10≤≤A P② ()()0,1,=Φ=ΩΦΩP P 则有可能事件分别表示必然事件和不和用③如果事件()()()B P A P B A P B A +=+:,则有互斥和⌧ 古典概率(Classical probability model ):① 所有基本事件有限个 ② 每个基本事件发生的可能性都相等 满足这两个条件的概率模型成为古典概型如果一次试验的等可能的基本事件的个数为个n ,则每一个基本事件发生的概率都是n1,如果某个事件A 包含了其中的m 个等可能的基本事件,则事件A 发生的概率为 ()nm A P = ⍓ 几何概型(geomegtric probability model ):一般地,一个几何区域D 中随机地取一点,记事件“改点落在其内部的一个区域d 内”为事件A ,则事件A 发生的概率为()的侧度的侧度D d A P = ( 这里要求D 的侧度不为0,其中侧度的意义由D 确定,一般地,线段的侧度为该线段的长度;平面多变形的侧度为该图形的面积;立体图像的侧度为其体积 )几何概型的基本特点:① 基本事件等可性 ② 基本事件无限多颜老师说明:为了便于研究互斥事件,我们所研究的区域都是指的开区域,即不含边界,在区域D 内随机地取点,指的是该点落在区域D 内任何一处都是等可能的,落在任何部分的可能性大小只与该部分的侧度成正比,而与其形状无关。

互斥事件(exclusive events):不能同时发生的两个事件称为互斥事件对立事件(complementary events ):两个互斥事件中必有一个发生,则称两个事件为对立事件 ,事件A 的对立事件 记为:A独立事件的概率:()()()B P A P A =AB P , B , 则为相互独立的事件事件若,若()()()()n 21n 2121A ...A A ...A A A P , , ... , , P P P A A A n =则为两两独立的事件 颜老师说明:① 若, B , , B , 中最多有一个发生则为互斥事件A A 可能都不发生,但不可能同时发生 ,从集合的关来看两个事件互斥,即指两个事件的集合的交集是空集 ② 对立事件是指的两个事件,而且必须有一个发生,而互斥事件可能指的很多事件,但最多只有一个发生,可能都不发生 ③ 对立事件一定是互斥事件 ④ 从集合论来看:表示互斥事件和对立事件的集合的交集都是空集,但两个对立事件的并集是全集 ,而两个互斥事件的并集不一定是全集 ⑤ 两个对立事件的概率之和一定是1 ,而两个互斥事件的概率之和小于或者等于 1 ⑥ 若事件B A ,是互斥事件,则有()()()B P A P B A P +=+ ⑦ 一般地,如果 n A A A ,...,,21 两两互斥,则有()()()()n n A P A P A P A A A P +++=+++......2121 ⑧ ()()A P A P -=1 ⑨ 在本教材中n A A A +++...21 指的是n A A A ,...,,21 中至少发生一个 ⑩ ★ 在具体做题中,希望大家一定要注意书写过程,设处事件来,利用哪种概型解题,就按照那种概型的书写格式,最重要的是要设出所求的事件来 ,具体的格式请参照我们课本上(新课标试验教科书-苏教版)的例题例题选讲:例1. 在大小相同的6个球中,4个是红球,若从中任意选2个,求所选的2个球至少有一个是红球的概率?【分析】题目所给的6个球中有4个红球,2个其它颜色的球,我们可以根据不同的思路有不同的解法解法1:(互斥事件)设事件 A 为“选取2个球至少有1个是红球” ,则其互斥事件为A意义为“选取2个球都是其它颜色球”()()()1514 151 - 1A P - 1 A P 151 2)56(1A P ===∴=⨯=Θ 答:所选的2个球至少有一个是红球的概率为 1514 . 解法2:(古典概型)由题意知,所有的基本事件有15256=⨯种情况,设事件 A 为“选取2个球至少有1个是红球” ,而事件A 所含有的基本事件数有1423424=⨯+⨯所以()1514=A P 答:所选的2个球至少有一个是红球的概率为1514 . 解法3:(独立事件概率)不妨把其它颜色的球设为白色求,设事件 A 为“选取2个球至少有1个是红球” ,事件A 有三种可能的情况:1红1白;1白1红;2红,对应的概率分别为:5364 , 5462 , 5264⨯⨯⨯, 则有 ()15145364 5462 5264=⨯+⨯+⨯=A P 答:所选的2个球至少有一个是红球的概率为 1514 . 评价:本题重点考察我们对于概率基本知识的理解,综合所学的方法,根据自己的理解用不同的方法,但是基本的解题步骤不能少!变式训练1: 在大小相同的6个球中,2个是红球,4 个是白球,若从中任意选取3个,求至少有1个是红球的概率?解法1:(互斥事件)设事件 A 为“选取3个球至少有1个是红球”,则其互斥事件为A ,意义为“选取3个球都是白球”()()()54 51 - 1A P - 1 A P 51425364 123)456(123234A P 3634===∴=⨯⨯=⨯⨯⨯⨯⨯⨯⨯⨯==C C Θ 答:所选的3个球至少有一个是红球的概率为 54 . 解法2:(古典概型)由题意知,所有的基本事件有2012345636=⨯⨯⨯⨯=C 种情况,设事件 A 为“选取3个球至少有1个是红球” ,而事件A 所含有的基本事件数有16234241224=⨯⨯=⨯+⨯C , 所以 ()542016==A P 答:所选的3个球至少有一个是红球的概率为 54 . 解法3:(独立事件概率)设事件 A 为“选取3个球至少有1个是红球” ,则事件A 的情况如下:红 白 白 51435462=⨯⨯ 1红2白 白 白 红 51425364=⨯⨯ 白 红 白 51435264=⨯⨯ 红 红 白 151445162=⨯⨯ 2红1白 红 白 红 151415462=⨯⨯ 白 红所以 ()541513513=⨯+⨯=A P 答:所选的3个球至少有一个是红球的概率为54 . 变式训练2:盒中有6只灯泡,其中2只次品,4只正品,有放回的从中任抽2次,每次抽取1只,试求下列事件的概率:(1)第1次抽到的是次品(2)抽到的2次中,正品、次品各一次解:设事件A 为“第1次抽到的是次品”, 事件B 为“抽到的2次中,正品、次品各一次”则 ()3162==A P ,()94664224=⨯⨯+⨯=B P (或者()9462646462=⨯+⨯=B P ) 答:第1次抽到的是次品的概率为31 ,抽到的2次中,正品、次品各一次的概率为94 变式训练3:甲乙两人参加一次考试共有3道选择题,3道填空题,每人抽一道题,抽到后不放回,求(1)甲抽到选择题而乙抽到填空题的概率?(2)求至少1人抽到选择题的概率?【分析】(1)由于是不放回的抽,且只抽两道题,甲抽到选择题而乙抽到填空题是独立的,所以可以用独立事件的概率(2)事件“至少1人抽到选择题”和事件“两人都抽到填空题”时互斥事件,所以可以用互斥事件的概率来解:设事件A 为“甲抽到选择题而乙抽到填空题”,事件B 为“至少1人抽到选择题”,则B 为“两人都抽到填空题”(1)()()⎪⎪⎭⎫ ⎝⎛=⨯⨯===⨯=1035633 1035363261313P P P A P A P 或者 (2)()()⎪⎪⎭⎫ ⎝⎛===⨯=51 5152632623P P B P B P 或者 则 ()()545111=-=-=B P B P 答:甲抽到选择题而乙抽到填空题的概率为 103,少1人抽到选择题的概率为 54 . 变式训练4:一只口袋里装有5个大小形状相同的球,其中3个红球,2 个黄球,从中不放回摸出2个球,球两个球颜色不同的概率?【分析】先后抽出两个球颜色相同要么是1红1球,要么是1黄1球略解:()()⎪⎪⎭⎫ ⎝⎛===⨯+⨯= 536 534352425325C A P A P 或者 变式训练5:设盒子中有6个球,其中4个红球,2 个白球,每次人抽一个,然后放回,若连续抽两次,则抽到1个红球1个白球的概率是多少?略解: () 946642662464626264=⨯⨯+⨯⨯=⨯+⨯=A P高中数学必修三第一章算法初步1.1 算法与程序框图1、算法的概念(1)算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.(2)算法的特点:①有限性:一个算法的步骤序列是有限的,必须在有限操作之后停止,不能是无限的.②确定性:算法中的每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可.③顺序性与正确性:算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后继步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题.④不唯一性:求解某一个问题的解法不一定是唯一的,对于一个问题可以有不同的算法.⑤普遍性:很多具体的问题,都可以设计合理的算法去解决,如心算、计算器计算都要经过有限、事先设计好的步骤加以解决.2、程序框图(1)程序框图基本概念:①程序构图的概念:程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形。

一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明。

相关文档
最新文档