常见的晶体结构

合集下载

常见的晶体结构

常见的晶体结构

常见的晶体结构晶体结构是材料科学中的基础概念之一,也是研究材料性质和应用的重要手段。

通过研究晶体结构,可以了解材料的晶格结构、晶体缺陷、晶体生长以及物理性质等信息。

在本文中,我们将主要介绍几种常见的晶体结构。

1.立方晶系。

立方晶系是最简单、最对称的晶体结构之一,其中所有三个晶轴都是等长且互相垂直。

立方晶系包括体心立方晶体(bcc)和面心立方晶体(fcc)。

在体心立方晶体中,每个原子位于一个正八面体的中心和另外八个顶点之一,而在面心立方晶体中,每个原子位于一个正方形面的中心和其四个相邻原子分别组成的正方形的四个角上。

2.六方晶系。

六方晶系包括一个长度为a和两个垂直于晶轴的长度为c的晶轴,其正交晶面呈六边形。

六方晶系中最常见的是六方密堆积结构,其中每个原子最近的邻居原子共有12个,六个在同一水平面上,另外六个分别位于上下两个平面上。

3.正交晶系。

正交晶系包括三个长度分别为a、b和c的互相垂直的晶轴,其六个面分别为长方形。

正交晶系中最常见的结构是析出相结构,例如钛钶合金中的钛纤维基板。

4.单斜晶系。

单斜晶系包括两个长度不等、互相成锐角的晶轴,以及垂直于这两个轴的垂轴。

单斜晶系中最常见的结构是某些金属、半导体和陶瓷材料中的基体结构。

5.斜方晶系。

斜方晶系包括两个长度不等但互相垂直的晶轴以及一个垂直于晶面的垂轴。

斜方晶系的晶体结构非常多样,但最常见的是钙钛矿结构,这是一种广泛存在于氧化物中的晶体结构。

总结。

以上介绍的几种晶体结构是最常见的晶体结构之一,它们共同构成了材料科学中的基础知识。

了解晶体结构对于研究材料性质和开发新型功能材料非常重要。

另外,随着实验技术和计算方法的不断优化,我们对于各种晶体结构的了解将会越来越深入。

1-3常见晶体结构

1-3常见晶体结构
A C E
D
rx /r=0.291
其实是扁八面体空隙的1/4
红球为间隙原子 黑球为晶胞原子
三、常见晶体结构及其几何特征
3 常见晶体中的重要间隙 3.3 HCP结构 (1)八面体间隙
数量: 6 与原子数比为6:6=1:1
rx /r=0.414
三、常见晶体结构及其几何特征
3 常见晶体中的重要间隙 3.3 HCP结构 (2)四面体间隙
2 r a 4
黑球为晶胞原子
rx /r=0.414 即八面体间隙的相对大小
三、常见晶体结构及其几何特征
3 常见晶体中的重要间隙 3.1 FCC结构 (2)四面体间隙 数量: 8 与原子数比为8:4=2:1 rx /r=0.225
三、常见晶体结构及其几何特征
3 常见晶体中的重要间隙 3.1 FCC结构 (2)四面体间隙
3.1 FCC结构
(1)八面体间隙 边长为 2 a的正八面体 2 数量为1+12*(1/4)=4 与原子数比为1:1
三、常见晶体结构及其几何特征
3 常见晶体中的重要间隙 3.1 FCC结构 (1)八面体间隙 如何度量八面体间隙? 在八面体间隙中填入刚性小球并与最邻近 的点阵原子相切。设rx为刚性小球的半径,则 rx就是间隙大小的度量成刚性小球为间隙原子。 rx +r=a/2 对于FCC 红球为间隙原子
注: -Fe 为 fcc 结构 , -Fe 为 bcc 结构, C 的半径为 0.077nm ,
而实际的 -Fe 为 fcc 结构中八面体间隙半径为 0.054nm
34
下图是某金属晶胞的三个晶面,图中小圆表示原 子的位置,请确定:


该晶胞属于哪个晶系?哪种晶体结构?并绘出 该晶胞的三维示意图,请标出坐标及晶胞参数。 如果原子的重量为105g/mol,试计算该金属的 密度。NA=6.023×1023

14种晶体结构

14种晶体结构

14种晶体结构晶体是由原子、分子或福隔离子按照一定的空间规则排列而成的有序固体。

晶体结构是指晶体中原子、离子或分子排列的规则和顺序。

在固体物质中,晶体结构的种类有很多种,其中比较常见的有以下14种:1. 立方晶体结构:最简单的晶体结构之一,具有三个等长的边和六个等角,包括简单立方、体心立方和面心立方三种类型。

2. 六方晶体结构:其晶胞的基本结构是六方密堆,其中最典型的就是六方晶体和螺旋晶体。

3. 正交晶体结构:晶胞具有三个不相互垂直的晶轴,分别被称为a、b 和c 轴,是最常见的晶体结构之一。

4. 单斜晶体结构:晶胞具有两个不相互垂直的晶轴,是晶体结构中的一种。

5. 三方晶体结构:具有三个相等的轴,夹角为60度,最常见的晶体结构之一是石英。

6. 菱晶体结构:晶胞内部有四面体结构,是一种简单的晶体结构。

7. 钙钛矿晶体结构:一种具有钙钛矿结构的晶体,包括钙钛矿结构和螺旋钙钛矿结构。

8. 蜗牛晶体结构:晶胞的形状像一只蜗牛的壳,是晶体结构中的一种。

9. 立方密排晶体结构:晶胞的结构是立方密排,是晶体结构中的一种。

10. 体心立方晶体结构:晶体结构的晶胞中有一个原子位于晶体的中心,是晶体结构中的一种。

11. 面心立方晶体结构:晶体结构的晶胞的各个面的中心有一个原子,是晶体结构中的一种。

12. 钻石晶体结构:晶体结构的晶胞构成了一种钻石结构,是晶体结构中的一种。

13. 银晶体结构:晶体结构的晶胞构成了一种银结构,是晶体结构中的一种。

14. 锶钛矿晶体结构:晶体结构的晶胞构成了一种锶钛矿结构,是晶体结构中的一种。

晶体结构的种类繁多,每种晶体结构都有其独特的结构特点和性质,对晶体的物理和化学性质有着重要的影响。

研究晶体结构不仅可以帮助我们更好地了解晶体的构成和性质,还有助于我们在材料科学、物理化学等领域的应用和研究。

因此,对晶体结构的研究具有重要的科学意义和应用价值。

常见晶体结构

常见晶体结构
(5)FCC和HCP的两种间隙的相对大小相等。(原因见堆垛方式)
常见晶体结构
FCC和HCP ➢配位数是一样的 ➢间隙相对大小是一样的 ➢间隙数和原子数比是一样的 ➢堆垛密度(致密度)是一样的
0.155R<100>
常见晶体结构
三、常见晶体结构及其几何特征
4 常见晶体的堆垛方式 任何晶体都可以看成由任给的{hkl}原子面一层一层堆垛而成的。 主要讨论FCC和HCP的密排面的堆垛次序。
➢这里,“最邻近”是就同种元素的原子 相比较而言,而配位数则是一个原子周 围的各元素的最近邻原子数之和。 ➢ 配位数通常用 CN 表示。例如, CN 12 表示配位数为12。
体心立方结构 CN8常见晶 Nhomakorabea结构四 面 体 配 位4
立方 体配
位 8
常见晶体结构
八 面 体 配 位6
十 四 面 体 配 位 12
体中的原子看成是有一定直径的刚球,则紧密系 数可以用刚球所占空间的体积百分数来表示。
以一个晶胞为例,致密度就等于晶胞中原子所 占体积与晶胞体积之比 即: 致密度 =晶胞中原子所占体积之和/晶胞的体积。
=nv/V n: 晶胞原子数 v:每个原子所占的体积 V: 晶胞的体积
常见晶体结构
三、常见晶体结构及其几何特征
1 常见晶体结构 (1)体心立方结构 简写为BCC 例如:V Nb Ta Cr Mo W (2)面心立方结构 简写为FCC 例如:Al Cu Ag Au (3)密排六方结构 简写为HCP 例如:-Ti -Zr -Hf
常见晶体结构
2 几何特征 2.1 配位数 简写CN 一个原子周围最邻近的原子数 ➢ 纯元素金属 这些最邻近的原子到所论原子的距离是相等的 ➢ 多元素晶体 不同元素的最邻近原子到所论原子的距离不一定相等

晶体的结构与晶格常数

晶体的结构与晶格常数

晶体的结构与晶格常数晶体是由具有规则的、无序的、周期性重复的排列方式组成的固体材料。

它的结构是由晶格和晶体结构单元组成的。

晶格是指晶体中的原子、离子或分子按照规则、有序的方式排列成的一个平行于晶体表面、经过晶体内部的无限重复网格。

晶格常数是指晶体中晶胞平衡状态下,晶胞沿各个晶胞轴的最小长度,用a、b和c表示。

不同的晶体具有不同的结构和晶格常数。

下面将介绍几种常见的晶体结构及其对应的晶格常数。

1. 立方晶系立方晶系是最简单的晶体结构之一,其晶格常数在三个晶胞轴上相等。

具体包括以下几种类型:- 体心立方结构(BCC):其晶格常数a=4R/√3,其中R为原子半径。

- 面心立方结构 (FCC):其晶格常数a=2R/√2。

- 简单立方结构 (SC):其晶格常数a=2R。

2. 正交晶系正交晶系的晶体结构具有与立方晶系类似的特点,但其晶胞轴长度不相等。

其晶格常数表达为:- a轴:a=2R。

- b轴:b=2R。

- c轴:c=2R。

3. 单斜晶系单斜晶系的晶格常数也具有不同的长度。

其中a轴、b轴和c轴的长度分别为:- a轴:a=2R。

- b轴:b=2R。

- c轴:c=2R。

4. 菱面晶系菱面晶系的晶胞具有菱形形状,晶胞轴长度如下:- a轴:a=2R。

- b轴:b=2R。

- c轴:c=2R。

5. 六方晶系六方晶系的晶胞具有六角形形状,a轴和c轴的长度为:- a轴:a=2R。

- c轴:c=2R。

以上仅是几种常见的晶体结构及其晶格常数的示例,实际晶体的结构和晶格常数还可能受到其他因素的影响,如晶体的成分、原子尺寸等。

总结起来,晶体的结构与晶格常数密切相关,不同的晶体结构及其晶格常数决定了晶体的物理性质和化学性质。

通过深入研究晶体的结构与晶格常数,可以更好地理解晶体的性质,并为材料科学和应用提供基础。

晶体结构的类型分类

晶体结构的类型分类

晶体结构的类型分类晶体是由原子、离子或分子按照一定的规则排列而成的固体物质。

晶体结构的类型分类是根据晶体中原子、离子或分子的排列方式和空间群的不同来进行的。

不同的晶体结构类型具有不同的物理和化学性质,对于研究晶体的性质和应用具有重要的意义。

本文将介绍几种常见的晶体结构类型分类。

1. 离子晶体结构离子晶体结构是由正负离子按照一定的比例和排列方式组成的晶体。

离子晶体结构可以分为两种类型:离子-离子晶体和离子-极化离子晶体。

离子-离子晶体是由正负离子按照一定的比例排列而成的,如氯化钠晶体。

离子-极化离子晶体是由正负离子和极化离子按照一定的比例排列而成的,如氯化钾晶体。

2. 原子晶体结构原子晶体结构是由原子按照一定的规则排列而成的晶体。

原子晶体结构可以分为两种类型:金属晶体和共价晶体。

金属晶体是由金属原子按照一定的规则排列而成的,如铁晶体。

共价晶体是由非金属原子按照一定的规则排列而成的,如硅晶体。

3. 分子晶体结构分子晶体结构是由分子按照一定的规则排列而成的晶体。

分子晶体结构可以分为两种类型:分子-分子晶体和分子-离子晶体。

分子-分子晶体是由分子按照一定的比例排列而成的,如葡萄糖晶体。

分子-离子晶体是由分子和离子按照一定的比例排列而成的,如氯化铵晶体。

4. 复合晶体结构复合晶体结构是由不同类型的原子、离子或分子按照一定的规则排列而成的晶体。

复合晶体结构可以分为两种类型:复合离子晶体和复合分子晶体。

复合离子晶体是由不同类型的离子按照一定的比例排列而成的,如硫酸铜铵晶体。

复合分子晶体是由不同类型的分子按照一定的比例排列而成的,如葡萄糖-脱氧核糖晶体。

总结:晶体结构的类型分类包括离子晶体结构、原子晶体结构、分子晶体结构和复合晶体结构。

不同类型的晶体结构具有不同的物理和化学性质,对于研究晶体的性质和应用具有重要的意义。

通过对晶体结构的分类和研究,可以深入了解晶体的组成和性质,为晶体材料的设计和应用提供理论基础。

常见九种典型的晶体结构

常见九种典型的晶体结构

反萤石型结构
球键图
阳离子四面体配位 阴离子立方体配位
反萤石型结构可看作:阴离子做立方最紧密堆积,阳离 子充填在全部的四面体空隙中。
结构类型 物质名称 萤石(CaF2)
萤石型结 氯化锶(SrCl2)

氯化钡(BaCl2)
氟化铅(PbF2)
氧化钾(K2O)
反萤石型 结构
氧化钠(Na2O)
氧化锂(Li2O)
闪锌矿的晶体结构:球键图(左)、配位多面体连接图(右)
结构中,S2- 和Zn2+配位数都是4,配位多面体都 是四面体。四面体共角顶相联。
从图可看出,[SZn4] 四面体([ZnS4] 四面体 也是一样)共角顶联成的 四面体基元层与[111]方 向垂直。
由于S2-和Zn2+都呈配位四面体,所以闪锌矿只用一种配位 多面体结构形式表达(S和Zn互换是一样的)。
(Fe3+(Fe2+Fe3+)2O4)。
当结构中四、八面体孔隙被A2+和B3+无序占据时, 叫混合尖晶石结构,代表晶相是镁铁矿(Fe, Mg)3O4。
具有尖晶石型结构的部分物质
Fe3O4 VMn2O4 NiAl2O4 NiGa2O4 Co3S4 TiZn2O4 γ-Fe2O3 LiTi2O4 CoAl2O4 MgGa2O4 NiCo2S4 VZn2O4 MnFe2O4 MnTi2O4 ZnAl2O4 MnGa2O4 Fe2SiO4 SnMg2O4 MgFe2O4 ZnCr2O4 Co3O4 ZnIn2S4 Ni2SiO4 TiMg2O4 Ti Fe2O4 CoCr2O4 GeCo2O4 MgIn2O4 Co2SiO4 WNa2O4 LiMn2O4 CuMn2O4 VCo2O4 CuV2S4 Mg2SiO4 CdIn2O4

常见的晶体结构

常见的晶体结构
Ti4+离子填充1/2八面体空隙;
晶胞分子数:Z=2;
晶胞中:2个八面体空隙 4个四面体空隙;
(2)质点坐标:
111 Ti : 000, 222
4
1 1 1 1 1 1 O : uuo, 1 u 1 u 0, u u , u u 2 2 2 2 2 2
1、金刚石结构
——立方晶系
(1)金刚石是面心立方格子
(2)碳原子位于立方体的8个
顶点,6个面心及立方体内4个
小立方体的中心。 (3)单位晶胞原子数:n=8
(4)晶胞内各原子的空间坐标: 000, ½ ½ 0, ½ 0 ½ , 0 ½ ½ , ¼ ¼ ¾ , ¼ ¾ ¼, ¾ ¼ ¼ , ¾ ¾ ¾
体结构中,每一个负离子电荷数等于或近似等于相邻正离 子分配给这个负离子的静电键强度的总和,其偏差1/4 价”。
静电键强度
S=
正离子电荷数 Z , 正离子配位数 n
Z Z Si i ni i i
则负离子电荷数

电价规则有两个用途: 其一,判断晶体是否稳定;
其二,判断共用一个顶点的多面体的数目。
离子半径、电中性、阴离子多面体之间的连接
1、NaCl型结构
(1)密堆积情况: Cl- 离子面心立方堆积; Na+离子填充八面体空隙;
——立方晶系
晶胞分子数:Z=4;
晶胞中:4个八面体空隙
8个四面体空隙;
Na+离子填充全部八面体空隙
(2)质点坐标:
11 1 1 11 Cl : 000 , 0, 0 ,0 22 2 2 22
连接(2个配位多面体共用一个顶点),或者和另外3个[MgO6]八面体

§2-2 常见的晶体结构

§2-2 常见的晶体结构

历史上最为著名的两颗尖晶石是“铁木尔红宝石”和“黑 太子红宝石”,“铁木尔红宝石”重361ct(1ct=200mg),深红 色,可能来源于阿富汗,这颗著名的尖晶石自1612年以来 被誉为东方的“世界贡品”。 被称为“黑太子红宝石” 重约170ct,产于缅甸镶 于英王冠中前方明显的 位置。经专家评这颗著 名的红色尖晶石的价值 约55万美元。还有一些 著名的尖晶石珍藏于不 同的国家。
Pauling第四规则 在一个含有多种阳离子的晶体中,电价高而配位数 小的那些阳离子所形成的配位多面体不倾向于相互直接 连接。 Pauling第五规则 在一个晶体结构中,本质不同组成的结构单元的数 目,趋向最少,也称节约规则。 表明,晶体中一切化 学上相同的离子,应具有相同的排列关系。
二. 典型金属的晶体结构
黑太子红宝石
晶体结构: 立方晶系,a=0.808nm,Z=8。 空间格子: O2-是按立方密堆积的形式排列。二价离子A充 填1/8 四面体空隙,三价离子B充填于1/2八面 体空隙(正尖晶石结构)。 多面体: 〔MgO4〕、〔AlO6〕八面体之间是共棱相连, 八面体与四面体之间是共顶相连。
小 结:
B2O3
SiO2 GeO2 闪锌矿 β-ZnS
岩盐NaCl MgO TiO2
萤石CaF2 ZrO2 CsCl
自然金 Au
自然锇 Os
4. Pauling(鲍林)规则 — 离子晶体结构的规律
Pauling第一规则 在正离子周围,形成一个阴离子配位多面体,正离子 处于中心位置,负离子处于多面体的顶角;正、负离子的 间距取决于它们的半径之和,而离子的配位数则取决于它 们的半径之比,与离子的价数无关,也称多面体规则。 Pauling第二规则 在稳定的离子晶体结构中,一个阴离子的电价等于从 所有相邻的阳离子分配给该阴离子的静电键强度的总和, 即阴离子电价被阳离子电价所平衡。静电价规则。 静电键强度 = 阳离子电荷数 / 阳离子配位数

常见九种典型的晶体结构

常见九种典型的晶体结构

二八面体结构的O层
每个配位离子被两个八 面体共用,分给每个八 面体样子-1/2价电荷,6 个共-3价,因此八面体 阳离子为+3价。
结构单元层及基本类型 T层和O层的不同堆积方式构成了层状结构硅酸盐的结构单元层: 1∶1型(TO型):1层T层和1层O层,代表矿物是高岭石。 2∶1型(TOT型):2层T层夹1层O层,代表矿物是滑石。
LiMn2O4锂电材料
9 层状硅酸盐结构
四面体层(T)和八面体层(O) T层 [SiO4]共3个角顶成六方网层,第4个角顶(活性氧)朝向 同一方向;在六方网孔中心、与活性氧同高度处存在一个OH。
半径 1.3A
O层 两个T层活性氧相向、错开一定距离做紧密堆积,阳离 子充填八面体孔隙,形成O层。
反萤石型结构
球键图
阳离子四面体配位 阴离子立方体配位
反萤石型结构可看作:阴离子做立方最紧密堆积,阳离 子充填在全部的四面体空隙中。
结构类型 物质名称 萤石(CaF2)
萤石型结 氯化锶(SrCl2)

氯化钡(BaCl2)
氟化铅(PbF2)
氧化钾(K2O)
反萤石型 结构
氧化钠(Na2O)
氧化锂(Li2O)
物质名称 化学式
a0/nm
H D / g/cm3
颜色 熔点(℃)
主要用途
特点
金刚石
单晶硅

α锡
C
Si
Ge
Sn
0.3567 0.5431 0.5623
0.6489
10
7
6
5
3.51
2.336
5.47
5.77
无色
黑色
淡灰色
白色
3550

常见的晶体结构-PPT

常见的晶体结构-PPT
Octahedral sites:
6
×
×
晶体结构中得空隙位(3): hcp
Tetrahedral sites
×
×
7c 8
1c
××
8
2 6 2 1 2 3 12 3
5c 8
3c 8
棱与中心线得1/4与3/4处
3、点阵常数与原子半径
R 2R
R RR
a0
a0 2R
a0
a0
2 2R 3
R 2R
图2-48 NaCL晶胞
图2-49 CsCL晶胞
Zn
0 75
(0, 0, 0), (1 , 1 , 0), (1 , 0, 1), (0, 1 , 1) 22 2 2 22
50 25
0
(1 , 1 , 1), ( 3 , 3 , 1), (1 , 3 , 3), ( 3 , 1 , 3) 444 444 444 444
(2
R
fcc
)
Center of tetrahedron, o,
oD = (3/4)DE
A D
B
rin
oD
R fcc
3 4
DE
R fcc
2Rfcc
rin
3 2
2 3
R
fcc
R fcc
(
3 2
1)R
fcc
o
C
A
E
B
rin 3 1 0.225
R fcc
2
晶体结构中得空隙位(2): bcc
Octahedral sites: Face and edge center sites
6 1 12 1 6
2
4

常见的金属晶格类型

常见的金属晶格类型

常见的金属晶格类型
金属是一种常见的物质,具有独特的金属结构和性质。

金属的晶体结构是由金属原子相互
排列而成的,不同的金属晶体结构影响着金属的物理和化学性质。

下面将介绍一些常见的金属
晶格类型。

1. 面心立方结构:面心立方结构是最常见的金属晶格结构之一。

在这种结构中,金属原子位于
体心和八个围绕着立方体面中心的位置上。

典型的面心立方结构金属包括铜、铝和银。

这种结
构具有高密度和良好的塑性。

2. 体心立方结构:体心立方结构是另一种常见的金属晶格类型。

在这种结构中,金属原子位于
立方体的每个角和体心位置。

典型的体心立方结构金属包括铁、钨和钠。

这种结构具有较高的
密度和强度。

3. 密排六方结构:密排六方结构是一种特殊的金属晶格类型,由六方最密堆积(ABABAB...)
所构成。

典型的密排六方结构金属包括钴、镍和钛。

这种结构具有高密度和良好的耐腐蚀性能。

4. 立方密堆积结构:立方密堆积结构也是一种常见的金属晶格类型,由紧密堆积的球体所构成。

典型的立方密堆积结构金属包括银、金和铂。

这种结构密度高,具有良好的热和电导性能。

5. 柱面结构:柱面结构是一种由金属原子在柱面上排列形成的结构。

这种结构适用于一些特殊
的金属,如锆和铀。

柱面结构具有独特的物理和化学性质。

以上是一些常见的金属晶格类型。

不同的金属晶体结构决定了金属的性质和应用。

了解金属晶
格类型对于研究金属材料的性质和生产工艺具有重要意义。

1.晶体结构

1.晶体结构









晶体结构=空间点阵+基元
Ci (i)、 CS (m)和 S4( 4 )
四、点群(32种) Schö nflies符号:用主轴+脚标表示 主轴:Cn、Dn、Sn、T和O Cn:n次旋转轴 Sn : n次旋转-反映轴 Dn:n次旋转轴加上一个与之垂直的二次轴 T: 四面体群 O: 八面体群 脚标:h、v、d h:垂直于n次轴(主轴)的水平面为对称面 v:含n次轴(主轴)在内的竖直对称面 d:垂直于主轴的两个二次轴的平分面为对称面
第一章 晶体结构
§1.1 几种常见的晶体结构
一、晶体的定义
晶 体: 组成固体的原子(或离子)在微观上的
排列具有长程周期性结构 非晶体:组成固体的粒子只有短程序,但无长程
周期性 准 晶: 有长程的取向序,沿取向序的对称轴方向 有准周期性,但无长程周期性
规则网络
无规网络
Al65Co25Cu10合金 准 晶
体心立方的基矢和Wigner-Seitz原胞
面心立方基矢、原胞和Wigner-Seitz原胞
4. 晶格的分类 简单晶格:每个晶格原胞中只含有一个原子, 晶格中所有原子在化学、物理和几何环境 上都是完全等同的。 例:Na、Cu、Al等晶格均为简单晶格
复式晶格:每个晶格原胞中含有两个或两个以上的 原子或离子。 简单晶格必须由同种原子组成;反之,由同种原子组成 的晶格却不一定是简单晶格。 如:金刚石、Mg、Zn 、 C60和NaCl等晶格都是复式晶格
b3 a1 a 2 a 3 va
2 a 2 a 3
倒格矢:G n n1 b1 n2 b 2 n3 b3 , n1、n2、n3都是整数。 倒格子原胞体积:

常见的晶体结构范文

常见的晶体结构范文

常见的晶体结构范文晶体是一种具有周期性排列的原子(或离子、分子)结构的物质。

晶体结构是指晶体内原子或离子相对有序地排列在一定方向上,并且重复出现,形成各种晶体结构的方式。

在固态物质中,晶体结构的多样性是非常丰富的。

下面将介绍一些常见的晶体结构。

1.简单立方晶体结构:简单立方晶体结构是最简单的晶体结构,具有最低的密堆积度。

在简单立方晶体中,原子或离子沿着空间的三个坐标轴等距地排列,形成一个由正方体相邻顶点组成的立方体结构。

例如,金属铁的结构就属于简单立方晶体结构。

2.体心立方晶体结构:体心立方晶体结构是由一个位于立方体的中心的原子或离子,以及其他原子或离子分别位于立方体的各个顶点上组成。

体心立方晶体结构比简单立方晶体结构的密堆积度高,但仍然较低。

金属钠的结构即为体心立方晶体结构。

3.面心立方晶体结构:面心立方晶体结构是由顶点处的原子或离子以及每个立方体的六个面中心处的原子或离子组成。

面心立方晶体结构具有相对较高的密堆积度。

金属铝的结构属于面心立方晶体结构。

4.密堆积晶体结构:密堆积晶体结构是由离子或原子按照一定规则在三维空间中排列而成,使得最大化地充满空间。

密堆积晶体结构中,原子或离子之间互相有接触点或面。

有两种典型的密堆积晶体结构:六方密堆积结构和面心立方,即hcp和fcc晶体结构。

5.体心正交晶体结构:体心正交晶体结构是由一个位于正交晶体的中心的原子或离子,以及其他原子或离子分别位于临近的面心上组成。

体心正交晶体结构具有相对较高的密堆积度。

6.密堆金刚石晶体结构:密堆金刚石晶体结构是一种高度有序的结构,其中每个碳原子都与四个相邻的碳原子形成共价键,形成一个立方体结构。

这种结构是金刚石的晶体结构,因其硬度而得名。

7.六方密堆积晶体结构:六方密堆积晶体结构是由两个六角密排的平面相互垂直堆积而成。

每个六角密排层中的离子或原子与下一个六角密排层中的空隙处的离子或原子之间互相位于中心位置,使得结构更加密集。

常见的晶体结构高中化学

常见的晶体结构高中化学

常见的晶体结构高中化学晶体是由原子、分子或离子等按照一定的规则排列组成的固体物质。

晶体结构是指晶体中原子、分子或离子的排列方式和空间位置的有序性。

以下是一些常见的晶体结构:1.立方晶系:立方晶系是最简单的晶体结构类型,具有最高的对称性。

立方晶系包括以下几种晶体结构:-简单立方结构:最简单的晶体结构,如钠金属。

-面心立方结构:每个立方格点上除了原子所在的角点外,还有一个原子位于正方形面的中心,如铝、铜等。

-体心立方结构:每个立方格点上除了原子所在的角点外,还有一个原子位于立方体的中心,如铁、锂等。

-体心立方密堆结构:在体心立方结构的基础上,每个体心立方顶点上还有各自的三个原子,如铬、铤等。

2.六方晶系:六方晶系的晶体结构相对复杂,具有六重轴对称性。

六方晶系包括以下几种晶体结构:-六方最密堆积结构:最密堆积的晶体结构,如铝合金、硬质合金等。

3.正交晶系:正交晶系的晶体结构具有三个相互垂直的轴和互相垂直的面,没有对称轴。

正交晶系包括以下几种晶体结构:-基心正交结构:每个顶点上有原子以外,还有一个原子位于底面的中点,如锌等。

-面心正交结构:每个顶点上原子以外,还有一个原子位于两个邻接底面的中点和两个对称角上的原子,如镍。

4.单斜晶系:单斜晶系的晶体结构具有一个二重轴和一组不对称的轴,没有对称轴。

单斜晶系包括以下几种晶体结构:-单斜底心结构:每个顶点上有原子以外,还有一个原子位于两个底面的中点,如铅、镀镍等。

5.斜方晶系:斜方晶系的晶体结构没有对称轴,具有两个相等且垂直的轴。

-斜方单斜结构:具有一个反射面,如黄铁矿、菱铁矿等。

6.三斜晶系:三斜晶系的晶体结构没有对称轴,也没有垂直的轴。

三斜晶系包括以下几种晶体结构:-无底心三斜结构:没有底心原子,如铜酸亚锌等。

这些晶体结构是根据晶体的对称性进行分类的,每一种晶体结构都有其独特的排列方式和空间位置。

通过研究晶体结构,可以揭示物质的物理和化学性质以及材料的制备和应用方面的特点。

常见的晶体结构

常见的晶体结构



(3)配位数与配位多面体:
r+/r-=0.975,
CNCa=8
CNF=4
[FCa4]
[CaF8]
萤石型(RO2):
ZrO2、ThO2、CeO2、VO2、BaF2等
反萤石型(R2O): Li2O、Na2O、K2O…….
6、金红石(TiO2)型结构 ——四方晶系
(1)密堆积情况:
O2- 离子近似六方紧密堆积;
1.7 常见的晶体结构
典型金属的晶体结构
典型金属的晶体结构是最简单的晶体结
构。由于金属键的性质,使典型金属的晶体
具有高对称性,高密度的特点。常见的典型
金属晶体是面心立方、体心立方和密排六方 三种晶体。
1、面心立方结构(FCC,A1型) (1)密堆积情况: 原子以ABCABC……的方式堆积, 面心立方紧密堆积 (111)面为密排面。 (2)原子分布:
常见无机化合物晶体结构 ——离子晶体
根据数量关系(化学式):
AX型、 AX2型、 A2X3型、 ABO3型、 AB2O4型
常见的无机化合物:
NaCl型、CsCl型、-ZnS型、-ZnS型、 CaF2型、TiO2型、刚玉(Al2O3)型、CaTiO3型、 尖晶石(MgAl2O4)型

晶体结构分析:
12(4)个四面体空隙;
(4)原子的空间坐标:
121 000 , 332
(5)原子半径与点阵常数: 密排六方结构(a=b=c):
a 2r c 1.633 a
(6)配位数: CN=12 (7)致密度(堆垛密度): 致密度:K=0.74
A3型结构:铍、镁、镉、钛和 锆等
常见共价晶体的晶体结构
原子分布在立方体的8个顶点与
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Rfcc
2
r 210.414 R
2r a0 2 2R
4. 鲍林规则
第一规则
在正离子周围,形成一个负离子配位多面体,正负 离子间的距离取决于它们的半径之和,而配位数取 决于它们的半径之比。
第二规则(静电价规则)
在一个稳定的晶体结构中,每一个负离子的电价等
于从邻近的正离子配给该负离子各静电键强度的总
第二节 常见的晶体结构
晶体化学基本原理 典型金属的晶体结构 常见无机化合物晶体结构
一、晶体化学基本原理
1. 原子半径与离子半径
有效半径: 在晶体结构中原子或离子处于相接触时的半径
离子晶体中,正负离子相接触的中心距,即为正负离子 的半径之和 ;共价键化合物的晶体中,两个相邻键合的 中心距,即是两个原子的共价半径之和。在纯金属的晶 体中,两个相邻原子中心距的一半,就是金属原子半径。
TiO2为四方简单点阵,结构单元为2个TiO2
空间群为:
D14 4h
P 42 m
21 n
2 m
分数坐标:
Ti4+:
(0,0,0),(1, 1, 1) 222
O2-: ( u ,u ,0 ) ,( 1 u ,1 u ,0 ) ,( 1 u ,1 u ,1 ) ,( 1 u ,1 u ,1 ) 2 2 22 2 2
a0
2 2R 2
SC
BCC
FCC
*HCP点阵常数与原子半径
a0 2R
c02
2a4 3
2R 3
C0/2 C0
2R 2R
C0/2
HCP
4.一个晶胞中占有的原子数
Simple cubic
18 1 8
Body-centered cubic
Face-centered cubic
1 81 2 8
Octahedron
Tetrahedron
Interstitials
3. 原子和离子的配位数
指在晶体结构中,该原子或离子的周围与它直接相邻结 合的原子个数或所有异号离子的个数
原子或离子的周围与它直接相邻结合的原子或离子的中心 联线所构成的多面体,称为原子或离子的配位多面体
2020/3/2
10
4Rfcc 2a0
a0/2

5 3
Rbcc

Rbcc
rin 5 10.291
Rbcc
3
octahedral sites
bcc 4Rbcc 3a0
rin1 2a0Rbc c 233Rbc c Rbcc
a0/4
rin Rbcc
a0/2
rin 2 310.155 Rbcc 3
晶体结构中的空隙位(3): hcp
Zn S
图2-51 a-ZnS晶胞
空间群为: C64V P63mc 分数坐标: S2-: (0,0,0 ), (2/3,1/3,1/2)
Zn2+:(0,0,5/8), (2/3,1/3,1/8)
S2-: (0,0,0), (1/3,2/3,1/2) Zn2+:(0,0,3/8), (1/3,2/3,7/8)
A D
B
rinoD Rf cc4 3D ERf cc
2Rfcc
rin2 3 3 2Rfc cRfc c ( 2 31)Rfcc
o
C
A
E
B
rin 3 10.225
Rfcc
2
晶体结构中的空隙位(2): bcc
Octahedral sites: Face and edge center sites
C
D
Tetrahedron
2 DE 3(2Rfcc)
Center of tetrahedron, o, oD = (3/4)DE
A D
B
rinoD Rf cc4 3D ERf cc
2Rfcc
rin2 3 3 2Rfc cRfc c ( 2 31)Rfcc
o
C
A
E
B
rin 3 10.225
GaSb,InP, InAs, InSb, CdS, CdTe, HgTe
图2-52 CaF2晶胞
属于立方面心点阵, 结构单元为一个CaF2
空间群为: 分数坐标:
Oh5

F
4 m

3
2 m
Ca2+: (0,0,0), (1/2,1/2,0),(1/2,0,1/2), (0,1/2,1/2)
F-:(1/4,1/4,1/4), (3/4,1/4,1/4), (1/4,3/4,1/4), (1/4,1/4,3/4),
和。
SZ n
第三规则 在配位结构中,配位多面体共用棱,特别是共用面 的存在会降低这个结构的稳定性。图2-44四面体和 八面体的共顶、共面和共棱联结
第四规则
在晶体中有一种以上的正离子,那么高电价正离子的 低配位数多面体之间尽可能彼此互不结合的趋势。
第五规则
在晶体中,本质上不同组成的结构单元的数目,趋 向了最少.简单立方结构sc (ABCABC…)
(3/4,3/4,1/4), (3/4,1/4,3/4), (1/4,3/4,3/4), (3/4,3/4,3/4) 或将各离子坐标平移1/4
Ca2+:(1/4,1/4,1/4), (3/4,3/4,1/4), (3/4,1/4,3/4), (1/4,3/4,3/4)
F-:(1/2,1/2,1/2), (0,1/2,1/2), (1/2,04,1/2), (1/2,1/2,0), (0,0,1/2), (0,1/2,0), (1/2,0,0), (0,0,0)
u为一结构参数,金红石本身u = 0.31。
MgF2, FeF2, VO2,CrO2, PbO2,WO2,MoO2等 为金红石型。
图2-54 CaTiO3晶体结构
图2-49 尖晶石型晶体结构
Octahedral sites
Tetrahedral sites
Cube and edge center sites
112 1 4
8
4
2r a0 2 2R
fcc 4Rfcc 2a0
C
D
Tetrahedron
2 DE 3(2Rfcc)
Center of tetrahedron, o, oD = (3/4)DE
每个球周围有8个四面体 空隙,6个八面体空隙。 n个等径球堆积时,其 四面体空隙数为8n/4=2n, 八面体空隙数为6n/6=n
面 心立方紧密堆积 Face-centered cubic (ABCABC…)
Unit cell
六方 紧密堆积hcp (ABAB…)
Close-packed hexagonal
图2-48 NaCL晶胞
图2-49 CsCL晶胞
Zn
0 75
50
(0,0,0),(1,1,0),(1,0,1),(0,1,1) 22 2 2 22
25 0
(1,1,1),(3,3,1),(1,3,3),(3,1,3) 444 444 444 444
S
50
0 25
0
50
75
0
50
图2-50 -ZnS晶胞
22 3 d0
面 心立方紧密堆积 (ABCABC…)
Unit cell
六方 紧密堆积hcp (ABAB…)
2.原子的配位数与空隙
简单立方结构中原子的配位数为6,体心立方
结构中原子的配位数为8。
密排六方结构中原子的配位 密排六方结构中原子的配位数为12
面心立方结构中原子的配位数为12
晶体结构中的间隙位(1): fcc
611216 24
面心和棱中点
Tetrahedral sites
bcc
a/4
a
641 12 2
侧面中心线1/4和3/4处
Tetrahedral sites
bcc 4Rbcc 3a0
(rinRbc)c2(a 40)2(a 20)2
rin
5 4
a0

Rbcc
a0/4
rin Rbcc
2.球体紧密堆积原理
离子晶体和原子晶体中原子和离子在结构中堆积相 当于球体相互作最紧密堆积。晶体的紧密堆积有两 种:如纯金属晶体的等大球体最紧密堆积和离子作 不等大球体的紧密堆积。
等大球体紧密堆积方式(球体代表原子)
ABC AB
四 面 体 空 隙 和八 面 体 空 隙 数
八面体空 隙
四面体空隙
SrF2, UO2,HgF2等晶体属CaF2型,而 Li2O, Na2O, Be2C等晶体属反萤石型, 即正离子占据F-离子位置,负离子占据
Ca2+的位置。
图2-53 金红石晶体结构
TiO2型(金红石型)
Pauling半径比
68 0.486
140
O2- 近似按立方A1 型堆积, Ti4+填充了变形八面体空隙 中(占据率50%), O2- 的 配位数为3,Ti4+ 的配位数 为 6。
属于六方ZnS结构的化合物有Al、Ga、In的氮化物, 一价铜的卤化物,Zn、Cd、Mn的硫化物、硒化物。
立方ZnS和六方ZnS是非常重要的两种晶体结 构. 已投入使用的半导体除Si、Ge单晶为金刚石 型结构外,III-V族和II-VI族的半导体晶体都是 ZnS型,且以立方ZnS型为主.例如:GaP, GaAs,
图2-44 四面体的共顶、共面和共棱联结 (中心正离子间的距离为:1:0.58:0.33)
图2-44 八面体的共顶、共面和共棱联结(中心正幻离灯子片间1的1 距离为 :1:0.71:0.58)
二、典型金属的晶体结构
1.原子紧密堆积方式
相关文档
最新文档