高考物理磁场精讲精练磁场综合典型习题
高中物理磁场综合练习及答案
高中物理磁场综合练习及答案高中物理磁场综合练习及答案一、选择题 ( 此题 10 小题,每题 5 分,共 50 分)1. 一个质子穿过某一空间而未发生偏转,则()A.可能存在电场和磁场,它们的方向与质子运动方向相同B.此空间可能有磁场,方向与质子运动速度的方向平行C.此空间可能只有磁场,方向与质子运动速度的方向垂直D.此空间可能有正交的电场和磁场,它们的方向均与质子速度的方向垂直答案 ABD分析带正电的质子穿过一空间未偏转,可能不受力,可能受力均衡,也可能受合外力方向与速度方向在同向来线上 .2.两个绝缘导体环AA′ 、 BB′ 大小同样,环面垂直,环中通有同样大小的恒定电流,如图 1 所示,则圆心 O处磁感觉强度的方向为(AA′ 面水平,BB′面垂直纸面 )A.指向左上方B.指向右下方C.竖直向上D.水平向右答案 A3. 对于磁感觉强度 B,以下说法中正确的选项是 ( ) A. 磁场中某点 B 的大小,跟放在该点的尝试电流元的情况相关B. 磁场中某点 B 的方向,跟该点处尝试电流元所受磁场力的方向一致C. 在磁场中某点尝试电流元不受磁场力作用时,该点B 值大小为零D. 在磁场中磁感线越密集的地方, B 值越大答案D分析磁场中某点的磁感觉强度由磁场自己决定,与试探电流元没关 . 而磁感线能够描绘磁感觉强度,疏密程度表示大小 .4.对于带电粒子在匀强磁场中运动,不考虑其余场力( 重力 ) 作用,以下说法正确的选项是()A.可能做匀速直线运动B.可能做匀变速直线运动C.可能做匀变速曲线运动D.只好做匀速圆周运动答案 A分析带电粒子在匀强磁场中运动时所受的洛伦兹力跟速度方向与磁场方向的夹角相关,当速度方向与磁场方向平行时,它不受洛伦兹力作用,又不受其余力作用,这时它将做匀速直线运动,故 A 项正确 . 因洛伦兹力的方向一直与速度方向垂直,改变速度方向,因此同时也改变洛伦兹力的方向,故洛伦兹力是变力,粒子不行能做匀变速运动,故B、C 两项错误 . 只有当速度方向与磁场方向垂直时,带电粒子才做匀速圆周运动,故 D 项中“只好”是不对的.5.1930 年劳伦斯制成了世界上第一台盘旋加快器,其原理如图 2 所示 . 这台加快器由两个铜质 D 形盒 D1、D2 组成,此间留有缝隙,以下说法正确的选项是()A.离子由加快器的中心邻近进入加快器B.离子由加快器的边沿进入加快器C.离子从磁场中获取能量D.离子从电场中获取能量答案AD分析此题源于课本而又高于课本,既考察考生对盘旋加快器的构造及工作原理的掌握状况,又能综合考察磁场和电场对带电粒子的作用规律. 由 R=mvqB知,跟着被加快离子的速度增大,离子在磁场中做圆周运动的轨道半径渐渐增大,因此离子一定由加快器中心邻近进入加快器, A 项正确,B 项错误 ; 离子在电场中被加快,使动能增添; 在磁场中洛伦兹力不做功,离子做匀速圆周运动,动能不改变. 磁场的作用是改变离子的速度方向,因此 C 项错误, D 项正确 .6.如图3所示,一个带负电的油滴以水平向右的速度v 进入一个方向垂直纸面向外的匀强磁场 B 后,保持原速度做匀速直线运动,假如使匀强磁场发生变化,则以下判断中正确的是()A. 磁场 B 减小,油滴动能增添B. 磁场 B 增大,油滴机械能不变C.使磁场方向反向,油滴动能减小D.使磁场方向反向后再减小,油滴重力势能减小答案 ABD分析带负电的油滴在匀强磁场 B 中做匀速直线运动,受坚直向下的重力和竖直向上的洛伦兹力而均衡,当 B 减小时,由 F=qvB 可知洛伦兹力减小,重力大于洛伦兹力,重力做正功,故油滴动能增添, A 正确 ;B 增大,洛伦兹力大于重力,重力做负功,而洛伦兹力不做功,故机械能不变, B 正确; 磁场反向,洛伦兹力竖直向下,重力做正功,动能增添,重力势能减小,故 C 错, D 正确 .7. 如图 4 所示为一个质量为m、电荷量为 +q 的圆环,可在水平搁置的足够长的粗拙细杆上滑动,细杆处于磁感觉强度为 B 的匀强磁场中 ( 不计空气阻力 ). 现给圆环向右的初速度 v0,在此后的运动过程中,圆环运动的速度—时间图象可能是以下图中的 ()答案AD分析由左手定章可知,圆环所受洛伦兹力竖直向上,假如恰巧qv0B=mg,圆环与杆间无弹力,不受摩擦力,圆环将以 v0 做匀速直线运动,故 A 正确 ; 假如 qv0Bmg,则a=μ(qvB-mg)m,跟着 v 的减小 a 也减小,直到 qvB=mg,此后将以节余的速度做匀速直线运动,故 D 正确,B、C 错误 .8.如图 5 所示,空间的某一地区内存在着互相垂直的匀强电场和匀强磁场,一个带电粒子以某一初速度由 A 点进入这个地区沿直线运动,从 C 点走开地区 ; 假如这个地区只有电场则粒子从 B 点走开场区 ; 假如这个地区只有磁场,则粒子从 D 点走开场区 ; 设粒子在上述 3 种状况下,从 A 到 B 点,从 A 到 C 点和 A 到 D 点所用的时间分别是t1 、t2 和 t3 ,比较 t1 、t2 和 t3 的大小,则有 ( 粒子重力忽视不计)()A.t1=t2=t3B.t2C.t1=t2t2答案C分析只有电场时,粒子做类平抛运动,水平方向为匀速直线运动,故 t1=t2; 只有磁场时做匀速圆周运动,速度大小不变,但沿 AC方向的分速度愈来愈小,故 t3>t2 ,综上所述可知,选项 C 对 .9.如图 6 所示, a、b 是一对平行金属板,分别接到直流电源两极上,右边有一挡板,正中间开有一小孔d,在较大空间范围内存在着匀强磁场,磁感觉强度大小为B,方向垂直纸面向里,在a、 b 两板间还存在着匀强电场 E. 从两板左侧中点 c 处射入一束正离子( 不计重力 ) ,这些正离子都沿直线运动到右边,从 d 孔射出后分红 3 束 . 则以下判断正确的是 ()A.这三束正离子的速度必定不同样B.这三束正离子的质量必定不同样C.这三束正离子的电荷量必定不同样D.这三束正离子的比荷必定不同样答案D分析此题考察带电粒子在电场、磁场中的运动,速度选择器的知识 . 带电粒子在金属板中做直线运动,qvB=Eq,v=EB,表示带电粒子的速度必定相等,而电荷的带电量、电性、质量、比荷的关系均没法确立; 在磁场中R=mvBq,带电粒子运动半径不一样,因此比荷必定不一样,D项正确 .10.如图 7 所示,两个半径同样的半圆形轨道分别竖直搁置在匀强电场和匀强磁场中 . 轨道两头在同一高度上,轨道是圆滑的,两个同样的带正电小球同时从两轨道左端最高点由静止开释 .M、N 为轨道的最低点,则以下说法正确的选项是()A. 两小球抵达轨道最低点的速度vMB. 两小球第一次抵达轨道最低点时对轨道的压力FMC. 小球第一次抵达M点的时间大于小球第一次抵达N 点的时间D.在磁场中小球能抵达轨道的另一端,在电场中小球不可以抵达轨道的另一端答案 D。
2020高考物理精品习题:磁场(全套含解析)高中物理(20200818125802)
【答案】A5.电饭锅工作时有两种状态:一种是锅内水烧开前的加热状态,另一种是锅内 水烧开后的保温状态,如下图10-1-9是一学生设计的电饭锅电路原理示意图,S 是用感温材料制造的开关•以下讲法中正确的选项是〔 〕A .加热状态时是用 R 1、R 2同时加热的. B. 当开关S 接通时电饭锅为加热状态, S 断开时为保温状态2020高考物理精品习题:磁场(全套含解析 )高中物理第I 课时 部分电路?电功和电功率 i •关于电阻率,以下讲法中不正确的选项是 〔 〕 A •电阻率是表征材料导电性能好坏的物理量,电阻率越大,其导电性能越好 B •各种材料的电阻率都与温度有关,金属的电阻率随温度的升高而增大 C .所谓超导体,当其温度降低到接近绝对零度的某个临界温度时,它的电阻率突然变为零 D •某些合金的电阻率几乎不受温度变化的阻碍,通常用它们制作标准电阻【解析】电阻率表示导体的导电好坏,电阻率越小,导体的导电性能越好. 【答案】 A 2•一个标有” 220V A .接近于807 Q C .明显大于807 Q60W 〃的白炽灯泡,当用多用电表的欧姆挡去测量它的电阻时,其阻值〔 B 接近于0Q D .明显小于807 Q 【解析】 用多用电表的欧姆挡去测量灯泡的电阻时, 应把灯泡从电路中断开, 由于金属的电阻率随温度的升高而增大,现在它的电阻明显小于正常发光时的电阻 【答案】 D 测出的是其不发光时电阻,807 Q 3•如下图10-1-7,一幢居民楼里住着生活水平各不相同的 24户居民,因此整幢居民楼里有各种不同的电 器,例如电炉、电视机、微波炉、电脑等等•停电时,用多用电表测得 A 、B 间的电阻为R ;供电后,各 家电器同时使用,测得 A 、B 间电压为U ,进线电流为I ,那么运算该幢居民楼用电的总功率能够用的公 式是〔 〕c c U 2A . P = I 2R B.P = R C.P = IU D.以上公式都能够 【解析】 因居民楼内各种电器都有,因此不是纯电阻电路, 因此A 、B 、D 不对. 【答案】 CA 居 U 民楼 B A 图 10-1-7 4•如下图10-1-8 ,厚薄平均的矩形金属薄片边长 ab=10 cm , bc=5 cm ,当将A 与B 接入电压为U 的电路中时, 电流强度为1 A ,假设将C 与D 接入电压为U 的电路中,那么电流为 A.4A B.2A 1C. — A 21 D. —A 4 【解析】由电阻定律R = L ,当A 与B 接入电路中时,S ab »亠 R 1= R ,其中 图 10-1-8d 表示金属片的厚度•当 D 接入电路中时, bc R 2= ab d可知R 1= 4,由欧姆定律得 互=4,应选 AR 2I 1图 10-1-9C .要使R 2在保温状态时的功率为加热状态时的1/8 , R 1/R 2 应为 7 : 1当 S 断开,R 1 与 R 2 串联,P'= 2202/〔 R 1 + R 2〕; P > P'A 不正确B 正确.由于电路中总电压 U 不变,D .要使R 2在保温状态时的功率为加热状态时的 1/8, R 1/R 2 应为〔2 . 2 — 1〕:1 应选择功率公式 P =—,可知R 2 2 2202 2202 R 2 R 2 R 1 R 2 R 1 R 28 得兰 —LJ 即D 正确 R 2 1 【答案】BD 6•电子绕核运动可等效为一环形电流,设氢原子中的电子以速度 子的电量,那么其等效电流的电流强度等于 ________________ . 【解析】由电流的定义式I = q/t,那么电子的电流强度的大小应为v 在半径为r 的轨道上运动,用 e 表示电I = e/T,而电子运动的周期 ev T = 2 n /r ,得 I =2 r 【答案】 ev T7 7.—直流电源给蓄电池充电如下图 10-1-10,假设蓄电池内阻 电流表的读数为I ,那么输入蓄电池的电功率为 为 ________ ,电能转化为化学能的功率为 _ 【答案】UI,I 2r,UI-I 2r r ,电压表读数 ,蓄电池的发热功率 &某一直流电动机提升重物的装置,如下图 10-1-11 ,重物的质量 m=50kg ,电源提供给电动机的电压为 U=110V ,不计各种摩擦,当电动机以 v=0.9m/s 的恒定速率向上提升重物时,电路中的电流强度 I=5.0A , g=10m/s 2〕. 求电动机的线圈电阻大小〔取 【解析】电动机的输入功率 P = UI ,电动机的输出功率 P 1=mgv ,电动机发热功率P 2=I 2r 而 P 2=P — P i ,即卩 I 2r= UI — mgv图 10-1-11 代入数据解得电动机的线圈电阻大小为 r=4 Q 【答案】 r=4 Q 9•在图10-1-12中,AB 和A'B'是长度均为L = 2km ,每km 电阻值为p= 1Q 的两根输电线.假设发觉在 距离A 和A'等远的两点C 和C'间发生漏电,相当于在两点间连接了一个电阻•接入电动势 E = 90V 、内 阻不计的电源:当电源接在 A 、A'间时,测得 A'间电压为 U A = 45V.求A 与C 相距 多远? 【解析】在测量过程中的等效电路如 下图〔甲〕、〔乙〕所示•当电源接 在A 、A'时,能够认为电流仅在 A'C'CA 中流,现在U B = 72V 为漏电 阻R 上的电压.设 AC 和BC 间每根 输电线的电阻为 R AC 和R BC .那么有: 芈 R …①同理,当电源接在 E 2R AC R 图 10-1-12B 、B'间时,那么有:U AER…②2R BC R由①②两式可得:【解析】当S 闭合时, 那么可知S 闭合时为加热状态, R 1 被短路,P = 2202 /R 2;S 断开时为保温状态;即【答案】0.4km1R AC = — R BC4依照电阻定律 R = L %L ,可得A 、C 间相距为:SL AC =2km0.4km10.如下图 10-1-13 是- -种悬球式加速度仪 .它能够用来测定沿水平轨道做匀加速直线运动的列车的加速 度.m 是一个金属球,它系在细金属丝的下端,金属丝的上端悬挂在 O 点,AB 是一根长为L 的电阻丝,其阻值为R.金属丝与电阻丝接触良好, 摩擦不计.电阻丝的中点 C 焊接一根导线.从O 点也引出一根导线,两线 之间接入一个电压表 ①〔金属丝和导线电阻不计〕.图中虚线OC 与AB 相垂直,且 OC=h ,电阻丝AB 接在电压恒为 U 的直流稳压电源上.整个 装置固定在列车中使 AB 沿着车前进的方向.列车静止时金属丝呈竖直 状态•当列车加速或减速前进时,金属线将偏离竖直方向 0,从电压表的 读数变化能够测出加速度的大小 〔1〕当列车向右做匀加速直线运动时,试写出加速度 a 与0角的关系 及加速度a 与电压表读数 U'的对应关系. 图 10-1-13〔2〕那个装置能测得的最大加速度是多少 ? 【解析】〔1〕小球受力如下图,由牛顿定律得:a=F 合=mgta ^ =gtan 0 . m m设细金属丝与竖直方向夹角为 0时,其与电阻丝交点为 D , CD 间的电压为U ;U R CD CD CD CD L U 那么 CD,故得 a=gtan 0 =g • g. U R AB AB L h hU 〔2〕因CD 间的电压最大值为 U/2,即U max -U/2,因此a max = — g.2h F E【答案】〔1〕a=gtan0.〔 2〕a max = — g2h 第H 课时 电路分析•滑动变阻器1. 如下图10-2-14,在A 、B 两端加一恒定不变的电压 U ,电阻R 1为 60 Q,假设将R 1短路,R 2中的电流增大到原先的 4倍;那么R 2为〔 〕 A . 40 Q B . 20 Q C . 120 Q D . 6 Q 【答案】B 2. 如下图10-2-15 , D 为一插头,可接入电压恒定的照明电路中, a 、b 、c 为三只 R 1R 2A vBU图 10-2-14相同且功率较大的电炉, a 靠近电源,b 、c 离电源较远,而离用户电灯 炉接入电路后对电灯的阻碍,以下讲法中正确的选项是 A •使用电炉a 时对电灯的阻碍最大 L 专门近,输电线有电阻•关于电 图 10-2-15B •使用电炉b 时对电灯的阻碍比使用电炉 a 时大 C. 使用电炉c 时对电灯几乎没有阻碍 D •使用电炉b 或c 时对电灯阻碍几乎一样【解析】输电线有一定电阻, 在输电线上会产生电压缺失. 使用电炉c 或b 时,对输电线中电流阻碍较大, 使线路上的电压缺失较大, 从而对用户电灯产生较大的阻碍, 而使用电炉a 对线路上的电压缺失阻碍甚微, 能够忽略不计. 【答案】BD3•如图10-2-16 〔甲〕所示电路,电源电动势为 E ,内阻不计,滑动变阻器的最大阻值为 R ,负载电阻为 R o .当滑动变阻器的滑动端S 在某位置时,R o 两端电压为E/2,滑动变阻器上消耗的功率为P .假设将R oA . R o 两端的电压将小于 E/2B . R o 两端的电压将等于 E/2C .滑动变阻器上消耗的功率一定小于 PD .滑动变阻器上消耗的功率可能大于P【解析】在甲图中,设变阻器 R 滑动头以上、以下的电阻 分不为R上、R 下,那么R o //R 下=R 上,有R o > R 上;当接成乙图 电路时,由于R o >R 上,那么R o 两端的电压必大于 E/2,故A 、 而滑动变阻器上消耗的功率能够大于 P .应选D .【答案】D4•如下图io-2-17是一电路板的示意图,a 、b 、c 、d 为接线柱,a 、d 与22oV 的交流电源连接, 间、cd 间分不连接一个电阻.现发觉电路中没有电流,为检查电路故障,用一交流电压表分不测得 两点间以及a 、c 两点间的电压均为 22oV ,由此可知〔 A . ab 间电路通, cd 间电路不通 B . ab 间电路不通,bc 间电路通 C . ab 间电路通, bc 间电路不通 D . bc 间电路不通,cd 间电路通【解析】第一应明确两点:〔 1〕电路中无电流即l=o 时,任何电阻两端均无电压;〔 2〕假设电路中仅有一处断路,那么电路中哪里断路,横跨断路处任意两点间的电压均是电源电压.由题可知, bd 间电压为22oV ,讲明断路点必在 bd 之间;ac 间电压为22oV ,讲明断点又必在 ac 间;两者共同区间是 bc ,故bc 断路,其余各段均完好. 【答案】CD5•传感器可将非电学量转化为电学量,起自动操纵作用.如运算机鼠标中有位移传感器,电熨斗、电饭煲中有温度传感器,电视机、录象机、影碟机、空调机中有光电传感器 ……演示位移传感器的工作原理如下图 io-2-17,物体M 在导 轨上平移时,带动滑动变阻器的金属滑杆 P ,通过电压表显示的数据, 来反映物 体位移的大小 X ,假设电压表是理想的, 那么以下讲法中正确的选项是 〔 〕A .物体M 运动时,电源内的电流会产生变化B .物体M 运动时,电压表的示数会发生变化C .物体M 不动时,电路中没有电流D .物体M 不动时,电压表没有示数【解析】滑动变阻器与电流构成闭合回路,因此回路中总是有电流的,这与与电源位置互换,接成图〔乙〕所示电路时,滑动触头 S 的位置不变,那么〔〔甲〕 〔乙〕ab 间、bc b 、d M 运动与否无关,C 错误.图〕E图 io-2-17中的滑动变阻器实际上是一个分压器,电压表测量的是滑动变阻器左边部分的电压,在图中假设杆 P 右移那么示数增大,左移那么示数减小•因表是理想的,因此 P 点的移动对回路中的电流是无阻碍的•综上所 述,只有B 正确. 【答案】 6.如下图 R 1、R 2、 P'1: P'2: 【解析】 P 1: R 1、 =6 : P 2 : R 2、 B 10-2-18的电路中,电阻 R i =1 Q, R 2=2 Q, R B =3 Q,在A 、B 间接电源,S i 、S 2都打开,现在电阻 R B 消耗的功率之比 P 1: P 2: _______ P 3= ;当S 1、S 2都闭合时,电阻 R 1、R 2、R 3消耗的功率之比 P'3= ________. 当S 1、S 2都打开时, P 3= R 1 : R 2: R 3= 1 R 3相互并联, R 1、R 2、R 3相互串联,那么 :2: 3•当S 1、S 2都闭合时,A P'1: P'2: P'3=1/R 1: 1/R 2: 1/R 3 Si- R 2 RB 3: 2. 【答案】1 : 2 : 3, 6: S 2 图 10-2-18 7•在图 10-2-19 B 间的总电阻为 【解析】用等效替代法,可把除 R 1 与等效电阻R 为并联关系,那么R AB =RR 1〔R+R 1〕=12R 〔 12+R 〕=4,解得R=6Q , 假设 R‘1=6 Q 时,那么 R'AB =RR'1/〔 R+R'1〕=6 ⑹〔6+6〕=3 Q.【答案】3 8.如下图 10-2-20 的电路中,R 1=4 Q, R 2=10 Q, R B =6 Q, R 4=3 Q, a 、b 为接线柱,电路两端所加电压为 24V ,当a 、b 间接入一理想电流表时, - 它的示数应是多少? 【解析】如图乙所示,从图能够看出,接入理想电流表后, 再与R 2串联;而R 2+ R 34与R 1又是并联关系.电流表测的是 的电流之和. R 34 = R 3R 4/〔 R 3+R 4〕=2 Q R 234=R 34 + R 2=12 Q|2=U/R 234 =2A l 1=U/R 1=6A【答案】6.67A 8个不同的电阻组成,R 1=12 Q,其余电阻值未知, 测得A 、 4 Q,今将R 1换成6 Q 的电阻,A 、B 间总电阻变成 ____________ Q. R 1外的其他电阻等效为一个电阻 R ,在AB 间 所示的 旦_ _a bR 3R 2l 3/|4=R 4/R 3=1/2 ••• l 3=|2/3=2/3A ,••• I A =I 1 + I 3=6.67AR 3与R 4并联, R i 与 R 3 —R 4R 2-------- 0 ——_. R4R U --------------图 10-2-20其总电阻为 电路两端加上恒定电压 U ,移动R 的滑动触片,求电流表的示数变化范畴.【解析】设滑动变阻器滑动触头左边部分的电阻为R x . 电路连接为R 0与R x 并联,再与滑动变阻器右边部分的电阻 R - R x 串联, 9.如下图10-2-21,电路中R 0为定值电阻,R 为滑动变阻器, U -乙 R ,当在U 图 10-2-21那么干路中的电流 R 并 + R — R x R 0R xR R xR o R x因此电流表示数| R 0 R xUR °R x R 0R 0 R x "、0、xR RR 0 R xXUR 。
高考物理高考物理带电粒子在磁场中的运动解题技巧讲解及练习题(含答案)
高考物理高考物理带电粒子在磁场中的运动解题技巧讲解及练习题(含答案)一、带电粒子在磁场中的运动专项训练1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。
挡板PQ 垂直MN 放置,挡板的中点置于N 点。
在挡板的右侧区域存在垂直纸面向外的匀强磁场。
在左侧虚线上紧靠M 的上方取点A,一比荷qm=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。
已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。
(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。
若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。
【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t2122L qE t m = 解得E=16N/C(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0tan v qE t mθ=可得θ=450粒子射入磁场时的速度大小为2v 0粒子在磁场中做匀速圆周运动:2v qvB m r=由几何关系可知2r L = 解得B=1.6×10-2T(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为32π,带负电的粒子转过的圆心角为2π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r mT v qBππ==; 带正电的粒子在磁场中运动的时间为:4135.910s 4t T -==⨯; 带负电的粒子在磁场中运动的时间为:4212.010s 4t T -==⨯ 带电粒子在AC 两点射入电场的时间差为412 3.910t t t s -∆=-=⨯2.如图所示,虚线MN 沿竖直方向,其左侧区域内有匀强电场(图中未画出)和方向垂直纸面向里,磁感应强度为B 的匀强磁场,虚线MN 的右侧区域有方向水平向右的匀强电场.水平线段AP 与MN 相交于O 点.在A 点有一质量为m ,电量为+q 的带电质点,以大小为v 0的速度在左侧区域垂直磁场方向射入,恰好在左侧区域内做匀速圆周运动,已知A 与O 点间的距离为03mv qB ,虚线MN 右侧电场强度为3mgq,重力加速度为g .求:(1)MN 左侧区域内电场强度的大小和方向;(2)带电质点在A 点的入射方向与AO 间的夹角为多大时,质点在磁场中刚好运动到O 点,并画出带电质点在磁场中运动的轨迹;(3)带电质点从O 点进入虚线MN 右侧区域后运动到P 点时速度的大小v p .【答案】(1)mgq,方向竖直向上;(2);(3)013v .【解析】 【详解】(1)质点在左侧区域受重力、电场力和洛伦兹力作用,根据质点做匀速圆周运动可得:重力和电场力等大反向,洛伦兹力做向心力;所以,电场力qE =mg ,方向竖直向上; 所以MN 左侧区域内电场强度mgE q左=,方向竖直向上; (2)质点在左侧区域做匀速圆周运动,洛伦兹力做向心力,故有:200mv Bv q R=,所以轨道半径0mv R qB=; 质点经过A 、O 两点,故质点在左侧区域做匀速圆周运动的圆心在AO 的垂直平分线上,且质点从A 运动到O 的过程O 点为最右侧;所以,粒子从A 到O 的运动轨迹为劣弧; 又有033AO mv d R ==;根据几何关系可得:带电质点在A 点的入射方向与AO 间的夹角1260AOd arcsin Rθ==︒; 根据左手定则可得:质点做逆时针圆周运动,故带电质点在磁场中运动的轨迹如图所示:;(3)根据质点在左侧做匀速圆周运动,由几何关系可得:质点在O 点的竖直分速度00360y v v sin =︒=,水平分速度001602x v v cos v =︒=;质点从O 运动到P 的过程受重力和电场力作用,故水平、竖直方向都做匀变速运动; 质点运动到P 点,故竖直位移为零,所以运动时间023y v v t g==所以质点在P 点的竖直分速度032yP y v v v ==, 水平分速度000317322xP x v qE v v t v g v m =+==;所以带电质点从O 点进入虚线MN 右侧区域后运动到P 点时速度22013P yP xP v v v v =+=;3.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l -0质子束以初速度v 0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。
高中物理磁场练习题(含解析)
D.库仑通过与万有引力类比,在实验的基础上验证得出库仑定律
4.电磁炮是利用电磁系统中电磁场产生的安培力来对金属炮弹进行加速,使其达到打击目标所需的巨大动能,如图甲所示。原理图可简化为如图乙所示,其中金属杆表示炮弹,磁场方向垂直轨道平面向上,则当弹体中通过如图乙所示的电流时,炮弹加速度的方向为( )
高中物理磁场练习题
学校:___________姓名:___________班级:___________
一、单选题
1.假设一个力单独作用的效果跟某几个力共同作用的效果相同,这个力就叫作那几个力的合力,以下概念的建立方法与合力相同的是( )
A.瞬时速度B.交流电的有效值
C.电场强度D.磁通量
2.如图所示,匀强磁场方向垂直纸面向里,匀强电场方向竖直向下,有一正离子恰能沿直线从左向右水平飞越此区域。不计重力,则( )
16.“用霍尔元件测量磁场”的实验中,把载流子为带负电的电子e的霍尔元件接入电路如图,电流为I,方向向左,长方体霍尔元件长宽高分别为 、 、 ,处于竖直向上的恒定匀强磁场中。
(1)前后极板M、N,电势较高的是___________。(选填“M板”或“N板”)
(2)某同学在实验时,改变电流的大小,记录了不同电流下对应的 值,如下表
14.如图所示,面积为10m2的正方形导线框处于磁感应强度为 的匀强磁场中。在线框平面以ad边为轴转过180°的过程中,线圈中________感应电流产生(选填“有”或“无”),整个过程中,磁通量变化量为________Wb。
四、实验题
15.奥斯特研究电和磁的关系的实验中,通电导线附近的小磁针发生偏转的原因是______ 实验时为使小磁针发生明显偏转,通电前导线应放置在其上方,并与小磁针保持______ 选填“垂直”、“平行”、“任意角度” .元电荷的电量是______C.
高考物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)及解析
高考物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)及解析一、带电粒子在磁场中的运动专项训练1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。
挡板PQ 垂直MN 放置,挡板的中点置于N 点。
在挡板的右侧区域存在垂直纸面向外的匀强磁场。
在左侧虚线上紧靠M 的上方取点A,一比荷qm=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。
已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。
(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。
若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。
【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t2122L qE t m = 解得E=16N/C(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0tan v qE t mθ=可得θ=450粒子射入磁场时的速度大小为2v 0粒子在磁场中做匀速圆周运动:2v qvB m r=由几何关系可知22r L =解得B=1.6×10-2T(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为32π,带负电的粒子转过的圆心角为2π;两带电粒子在AC 两点进入电场的时间差就是两粒子在磁场中的时间差; 若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r mT v qBππ==; 带正电的粒子在磁场中运动的时间为:4135.910s 4t T -==⨯; 带负电的粒子在磁场中运动的时间为:421 2.010s 4t T -==⨯带电粒子在AC 两点射入电场的时间差为412 3.910t t t s -∆=-=⨯2.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。
高中物理:磁场练习及答案(解析版)
高中物理:磁场练习及答案一、选择题1、如图所示,空间的某一区域存在着相互垂直的匀强电场和匀强磁场,一个带电粒子以某一初速度由A点进入这个区域沿直线运动,从C点离开区域;如果将磁场撤去,其他条件不变,则粒子从B点离开场区;如果将电场撤去,其他条件不变,则这个粒子从D点离开场区。
已知BC=CD,设粒子在上述三种情况下,从A到B、从A到C和从A到D所用的时间分别是t1,t2和t3,离开三点时的动能分别是Ek1、Ek2、Ek3,粒子重力忽略不计,以下关系式正确的是 ( )A.t1=t2<t3B.t1<t2=t3C.Ek1=Ek2<Ek3D.Ek1>Ek2=Ek32、(多选)下列说法正确的是()A.磁场中某点的磁感应强度可以这样测定:把一小段通电导线放在该点时,受到的磁场力F与该导线的长度L、通过的电流I的乘积的比值B=FIL,即磁场中某点的磁感应强度B.通电导线在某点不受磁场力的作用,则该点的磁感应强度一定为零C.磁感应强度B=FIL只是定义式,它的大小取决于场源及磁场中的位置,与F、I、L以及通电导线在磁场中的方向无关D.磁场是客观存在的3、如图所示,用三条细线悬挂的水平圆形线圈共有n匝,线圈由粗细均匀、单位长度质量为2.5 g的导线绕制而成,三条细线呈对称分布,稳定时线圈平面水平,在线圈正下方放有一个圆柱形条形磁铁,磁铁的中轴线OO′垂直于线圈平面且通过其圆心O,测得线圈的导线所在处磁感应强度大小为0.5 T,方向与竖直线成30°角,要使三条细线上的张力为零,线圈中通过的电流至少为(g取10 m/s2)()A.0.1 A B.0.2 A C.0.05 A D.0.01 A4、(多选)光滑平行导轨水平放置,导轨左端通过开关S与内阻不计、电动势为E的电源相连,右端与半径为L=20 cm的两段光滑圆弧导轨相接,一根质量m=60 g、电阻R=1 Ω、长为L 的导体棒ab,用长也为L的绝缘细线悬挂,如图所示,系统空间有竖直方向的匀强磁场,磁感应强度B=0.5 T,当闭合开关S后,导体棒沿圆弧摆动,摆到最大高度时,细线与竖直方向成θ=53°角,摆动过程中导体棒始终与导轨接触良好且细线处于张紧状态,导轨电阻不计,sin 53°=0.8,g取10 m/s2则()A.磁场方向一定竖直向下B.电源电动势E=3.0 VC.导体棒在摆动过程中所受安培力F=3 ND.导体棒在摆动过程中电源提供的电能为0.048 J5、(多选)一质量为m、电荷量为q的负电荷在磁感应强度为B的匀强磁场中绕固定的正电荷沿固定的光滑轨道做匀速圆周运动,若磁场方向垂直于它的运动平面,且作用在负电荷的电场力恰好是磁场力的三倍,则负电荷做圆周运动的角速度可能是()A.4qBm B.3qBm C.2qBm D.qBm6、如图所示,正六边形abcdef区域内有垂直于纸面的匀强磁场.一带正电的粒子从f点沿fd 方向射入磁场区域,当速度大小为v b时,从b点离开磁场,在磁场中运动的时间为t b;当速度大小为v c时,从c点离开磁场,在磁场中运动的时间为t c.不计粒子重力.则()A.v b∶v c=1∶2,t b∶t c=2∶1B.v b∶v c=2∶1,t b∶t c=1∶2C.v b∶v c=2∶1,t b∶t c=2∶1D.v b∶v c=1∶2,t b∶t c=1∶27、速度相同的一束粒子由左端射入质谱仪后分成甲、乙两束,其运动轨迹如图所示,其中S0A=23S0C,则下列说法中正确的是()A.甲束粒子带正电,乙束粒子带负电B.甲束粒子的比荷大于乙束粒子的比荷C.能通过狭缝S0的带电粒子的速率等于E B2D.若甲、乙两束粒子的电荷量相等,则甲、乙两束粒子的质量比为3∶2*8、关于磁感线的描述,下列说法中正确的是()A.磁感线可以形象地描述各点磁场的强弱和方向,它每一点的切线方向都和小磁针放在该点静止时北极所指的方向一致B.磁感线可以用细铁屑来显示,因而是真实存在的C.两条磁感线的空隙处一定不存在磁场D.两个磁场叠加的区域,磁感线就可能相交*9、如图所示,在同一平面内互相绝缘的三根无限长直导线ab、cd、ef围成一个等边三角形,三根导线通过的电流大小相等,方向如图所示,O为等边三角形的中心,M、N分别为O关于导线ab、cd的对称点.已知三根导线中的电流形成的合磁场在O点的磁感应强度大小为B1,在M点的磁感应强度大小为B2,若撤去导线ef,而ab、cd中电流不变,则此时N点的磁感应强度大小为()A.B1+B2B.B1-B2C.B1+B22D.B1-B2210、在如图所示的平行板器件中,电场强度E和磁感应强度B相互垂直。
高考物理高考物理带电粒子在磁场中的运动解题技巧(超强)及练习题(含答案)
高考物理高考物理带电粒子在磁场中的运动解题技巧(超强)及练习题(含答案)一、带电粒子在磁场中的运动专项训练1.如图所示,虚线MN 沿竖直方向,其左侧区域内有匀强电场(图中未画出)和方向垂直纸面向里,磁感应强度为B 的匀强磁场,虚线MN 的右侧区域有方向水平向右的匀强电场.水平线段AP 与MN 相交于O 点.在A 点有一质量为m ,电量为+q 的带电质点,以大小为v 0的速度在左侧区域垂直磁场方向射入,恰好在左侧区域内做匀速圆周运动,已知A 与O 点间的距离为03mv qB ,虚线MN 右侧电场强度为3mgq,重力加速度为g .求:(1)MN 左侧区域内电场强度的大小和方向;(2)带电质点在A 点的入射方向与AO 间的夹角为多大时,质点在磁场中刚好运动到O 点,并画出带电质点在磁场中运动的轨迹;(3)带电质点从O 点进入虚线MN 右侧区域后运动到P 点时速度的大小v p .【答案】(1)mgq,方向竖直向上;(2);(3013v .【解析】 【详解】(1)质点在左侧区域受重力、电场力和洛伦兹力作用,根据质点做匀速圆周运动可得:重力和电场力等大反向,洛伦兹力做向心力;所以,电场力qE =mg ,方向竖直向上; 所以MN 左侧区域内电场强度mgE q左=,方向竖直向上; (2)质点在左侧区域做匀速圆周运动,洛伦兹力做向心力,故有:200mv Bv q R=,所以轨道半径0mv R qB=; 质点经过A 、O 两点,故质点在左侧区域做匀速圆周运动的圆心在AO 的垂直平分线上,且质点从A 运动到O 的过程O 点为最右侧;所以,粒子从A 到O 的运动轨迹为劣弧; 又有033AO mv d R ==;根据几何关系可得:带电质点在A 点的入射方向与AO 间的夹角1260AOd arcsin Rθ==︒; 根据左手定则可得:质点做逆时针圆周运动,故带电质点在磁场中运动的轨迹如图所示:;(3)根据质点在左侧做匀速圆周运动,由几何关系可得:质点在O 点的竖直分速度00360y v v sin v =︒=,水平分速度001602x v v cos v =︒=;质点从O 运动到P 的过程受重力和电场力作用,故水平、竖直方向都做匀变速运动; 质点运动到P 点,故竖直位移为零,所以运动时间023y v v t g==; 所以质点在P 点的竖直分速度032yP y v v v ==, 水平分速度000317322xP x v qE v v t v g v m g =+=+⋅=; 所以带电质点从O 点进入虚线MN 右侧区域后运动到P 点时速度22013P yP xP v v v v =+=;2.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。
磁场综合练习题-1
磁场综合练习题-1一.选择题:1. 在磁感强度为B的均匀磁场中作一半径为r 的半球面S ,S 边线所在平面的法线方向单位矢量n与B的夹角为α ,则通过半球面S 的磁通量(取弯面向外为正)为(A) πr 2B .. (B) 2 πr 2B .(C) -πr 2B sin α. (D) -πr 2B cos α. [ ] 2. 边长为l 的正方形线圈中通有电流I ,此线圈在A 点(见图)产生的磁感强度B 为 (A) l I π420μ. (B) l Iπ220μ.(C)lIπ02μ. (D) 以上均不对. [ ] 3. 边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为 (A) 01=B ,02=B . (B) 01=B ,l I B π=0222μ.(C) l IB π=0122μ,02=B . (D) l I B π=0122μ,lIB π=0222μ.[ ]4. 如图,在一圆形电流I 所在的平面内,选取一个同心圆形闭合回路L ,则由安培环路定理可知(A) 0d =⎰⋅Ll B ,且环路上任意一点B = 0.(B) 0d =⎰⋅Ll B,且环路上任意一点B ≠0.(C) 0d ≠⎰⋅Ll B,且环路上任意一点B ≠0.(D) 0d ≠⎰⋅Ll B,且环路上任意一点B =常量. [ ]5. 如图,两根直导线ab 和cd 沿半径方向被接到一个截面处处相等的铁环上,稳恒电流I 从a 端流入而从d 端流出,则磁感强度B沿图中闭合路径L 的积分⎰⋅Ll Bd 等于(A)I 0μ. (B)I 031μ. (C) 4/0I μ. (D) 3/20I μ. [ ]a二.填空题:6. 在匀强磁场B 中,取一半径为R 的圆,圆面的法线n 与B 成60°角,如图所示,则通过以该圆周为边线的如图所示的任意曲面S 的磁通量==⎰⎰⋅Sm S Bd Φ_______________________.7. 在非均匀磁场中,有一电荷为q 的运动电荷.当电荷运动至某点时,其速率为v ,运动方向与磁场方向间的夹角为α ,此时测出它所受的磁力为f m .则该运动电荷所在处的磁感强度的大小为________________.磁力f m 的方向一定垂直于________________________________________________________________.8. 电流由长直导线1沿切向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿切线流出,经长直导线2返回电源(如图).已知直导线上的电流强度为I ,圆环的半径为R ,且a 、b 和圆心O 在同一直线上,则O 点的磁感强度的大小为______________. 9. 在真空中,电流由长直导线1沿半径方向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿切向从圆环流出,经长直导线2返回电源(如图).已知直导线上的电流强度为I ,圆环半径为R .a 、b 和圆心O在同一直线上,则O 处的磁感强度B 的大小为__________________________. 10. 电流由长直导线1经过a 点流入一由电阻均匀的导线构成的正三角形线框,再由b 点流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,两直导线的延长线交于三角形中心点O ,三角框每边长为l ,则O 处的磁感强度为______________. 三.计算题: 11. 两根导线沿半径方向接到一半径R =9.00 cm 的导电圆环上.如图.圆弧ADB 是铝导线,铝线电阻率为ρ1 =2.50×10-8Ω·m ,圆弧ACB 是铜导线,铜线电阻率为ρ2 =1.60×10-8 Ω·m .两种导线截面积相同,圆弧ACB 的弧长是圆周长的1/π.直导线在很远处与电源相联,弧ACB上的电流I 2 =2.00A,求圆心O 点处磁感强度B 的大小.(真空磁导率μ0 =4π×10-7 T ·m/A)四.简答题:12. 从毕奥─萨伐尔定律能导出无限长直电流的磁场公式aIB π20μ=,当考察点无限接近导线时(a →0),则B →∞,这是没有物理意义的,请解释.13. 载有电流的I 长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度 v平行导线平移,求半圆环内感应电动势的大小和方向以及MN 两端的电压U M - U N .任意曲面I答案:一.选择题:1. D2. A3. C4.B5.D 二.填空题:6. 221R B π-3分 7. αsin v q f m2分运动电荷速度矢量与该点磁感强度矢量所组成的平面. 2分 8. 0 3分 9.RIπ40μ 3分10. 0 3分三.计算题:11. 解:设弧ADB = L 1,弧ACB = L 2,两段弧上电流在圆心处产生的磁感强度分别为 211014R L I B π=μ 222024R L I B π=μ 3分 1B、2B 方向相反.圆心处总磁感强度值为 12B B B -=)(411222L I L I R -π=μ)1(422112220L I L I R L I -π=μ 2分 两段导线的电阻分别为 S L r 111ρ= S Lr 222ρ= 1分因并联 11221221L Lr r I I ρρ== 2分又 R R L 2/22=ππ=∴ )1(21220ρρμ-π=R I B =1.60×10-8 T 2分四.简答题:12. 答:公式)2/(0R I B π=μ只对忽略导线粗细的理想线电流适用,当a →0, 导线的尺寸不能忽略. 此电流就不能称为线电流,此公式不适用. 5分13. 解:动生电动势⎰⋅⨯=MNv l B MeN d )(☜ 为计算简单,可引入一条辅助线MN ,构成闭合回路MeNM , 闭合回路总电动势 0=+=NM MeN ☜☜☜总MN NM MeN ☜☜☜=-= 2分x x I l B b a ba MNd 2d )(0⎰⎰⋅+-π-=⨯=μv v MN☜b a b a I -+π-=ln20v μ I负号表示MN ☜的方向与x 轴相反. 3分ba ba I MeN -+π-=ln20vμ☜ 方向N →M 2分 ba ba I U U MN N M -+π=-=-ln20vμ☜ 3分。
(精校版)高中物理磁场经典习题(题型分类)含答案
(直打版)高中物理磁场经典习题(题型分类)含答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)高中物理磁场经典习题(题型分类)含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)高中物理磁场经典习题(题型分类)含答案(word版可编辑修改)的全部内容。
寒假磁场题组练习题组一1.如图所示,在xOy 平面内,y ≥ 0的区域有垂直于xOy 平面向里的匀强磁场,磁感应强度为B ,一质量为m 、带电量大小为q 的粒子从原点O 沿与x 轴正方向成60°角方向以v 0射入,粒子的重力不计,求带电粒子在磁场中运动的时间和带电粒子离开磁场时的位置.2.如图所示,abcd 是一个正方形的盒子,在cd 边的中点有一小孔e ,盒子中存在着沿ad 方向的匀强电场,场强大小为E ,一粒子源不断地从a 处的小孔沿ab 方向向盒内发射相同的带电粒子,粒子的初速度为v 0,经电场作用后恰好从e 处的小孔射出,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为B (图中未画出),粒子仍恰好从e 孔射出。
(带电粒子的重力和粒子之间的相互作用均可忽略不计)(1)所加的磁场的方向如何?(2)电场强度E 与磁感应强度B 的比值为多大?题组二4.如图所示的坐标平面内,在y 轴的左侧存在垂直纸面向外、磁感应强度大小B 1 = 0。
20 T 的匀强磁场,在y 轴的右侧存在垂直纸面向里、宽度d = 0。
125 m 的匀强磁场B 2。
某时刻一质量m= 2.0×10-8 kg 、电量q = +4.0×10-4 C 的带电微粒(重力可忽略不计),从x 轴上坐标为(—0.25 m ,0)的P 点以速度v = 2。
高考物理带电粒子在磁场中的运动及其解题技巧及练习题(含答案)及解析
高考物理带电粒子在磁场中的运动及其解题技巧及练习题(含答案)及解析一、带电粒子在磁场中的运动专项训练1.如图所示,在一直角坐标系xoy 平面内有圆形区域,圆心在x 轴负半轴上,P 、Q 是圆上的两点,坐标分别为P (-8L ,0),Q (-3L ,0)。
y 轴的左侧空间,在圆形区域外,有一匀强磁场,磁场方向垂直于xoy 平面向外,磁感应强度的大小为B ,y 轴的右侧空间有一磁感应强度大小为2B 的匀强磁场,方向垂直于xoy 平面向外。
现从P 点沿与x 轴正方向成37°角射出一质量为m 、电荷量为q 的带正电粒子,带电粒子沿水平方向进入第一象限,不计粒子的重力。
求: (1)带电粒子的初速度;(2)粒子从P 点射出到再次回到P 点所用的时间。
【答案】(1)8qBLv m=;(2)41(1)45m t qB π=+ 【解析】 【详解】(1)带电粒子以初速度v 沿与x 轴正向成37o 角方向射出,经过圆周C 点进入磁场,做匀速圆周运动,经过y 轴左侧磁场后,从y 轴上D 点垂直于y 轴射入右侧磁场,如图所示,由几何关系得:5sin37o QC L =15sin37OOQO Q L ==在y 轴左侧磁场中做匀速圆周运动,半径为1R ,11R O Q QC =+21v qvB mR =解得:8qBLv m=; (2)由公式22v qvB m R =得:2mv R qB =,解得:24R L =由24R L =可知带电粒子经过y 轴右侧磁场后从图中1O 占垂直于y 轴射放左侧磁场,由对称性,在y 圆周点左侧磁场中做匀速圆周运动,经过圆周上的E 点,沿直线打到P 点,设带电粒子从P 点运动到C 点的时间为1t5cos37o PC L =1PCt v=带电粒子从C 点到D 点做匀速圆周运动,周期为1T ,时间为2t12mT qBπ=2137360oo t T = 带电粒子从D 做匀速圆周运动到1O 点的周期为2T ,所用时间为3t22·2m mT q B qBππ== 3212t T =从P 点到再次回到P 点所用的时间为t12222t t t t =++联立解得:41145mt qB π⎛⎫=+⎪⎝⎭。
高考物理磁场精讲精练磁场综合典型习题
磁场综合典型习题一、选择题(本题共8小题,每小题6分,共48分,1~5题每小题只有一个选项正确,6~8小题有多个选项符合题目要求,全选对得6分,选对但不全得3分,有选错的得0分)1.指南针是我国古代四大发明之一,东汉学者王充在《论衡》一书中描述的“司南”是人们公认的最早的磁性定向工具,指南针能指示南北方向是由于( )A .指南针的两个磁极相互吸引B .指南针的两个磁场相互排斥C .地磁场对指南针的作用D .指南针能吸引铁、铝、镍等物质解析:选C.地球本身就是一个巨大的磁体,司南静止时指南的一端是南极,指北的一端是北极;故勺柄指的是南极.指南针指示南北主要是因为地磁场的作用,故C 正确.2.如图所示,用天平测量匀强磁场的磁感应强度,下列各选项所示的载流线圈匝数相同,边长NM 相等,将它们分别挂在天平的右臂下方,线圈中通有大小相同的电流,天平处于平衡状态,若磁场发生微小变化,天平最容易失去平衡的是( )解析:选A.由题意知,当处于磁场中的导体,受安培力作用的有效长度越长,根据F =BIL 知受安培力越大,越容易失去平衡,由图知选项A 中导体的有效长度最大,所以A 正确.3.如图所示,完全相同的甲、乙两个环形电流同轴平行放置,甲的圆心为O 1,乙的圆心为O 2,在两环圆心的连线上有a 、b 、c 三点,其中aO 1=O 1b =bO 2=O 2c ,此时a 点的磁感应强度大小为B 1,b 点的磁感应强度大小为B 2.当把环形电流乙撤去后,c 点的磁感应强度大小为( )A .B 2-B 1 B .B 1-B 22C .B 2-B 12D.B 13解析:选B.对于图中单个环形电流,根据安培定则,其在中轴线上的磁场方向均是向左,故c 点的磁场方向也是向左的.设aO 1=O 1b =bO 2=O 2c =r ,设单个环形电流在距离中点r 位置的磁感应强度为B 1r ,在距离中点3r 位置的磁感应强度为B 3r ,a 点磁感应强度:B 1=B 1r +B 3r ,b 点磁感应强度:B 2=B 1r +B 1r ,当撤去环形电流乙后,c 点磁感应强度B c =B 3r =B 1-B 22,故B 正确.4.如图所示,台秤上放一光滑平板,其左边固定一挡板,一轻质弹簧将挡板和一条形磁铁连接起来,此时台秤的读数为F N1,现在磁铁上方中心偏左位置固定一通电导线,电流方向如图,当加上电流后,台秤的示数为F N2,则下列说法正确的是( )A .F N1>F N2,弹簧长度将变长B .F N1>F N2,弹簧长度将变短C .F N1<F N2,弹簧长度将变长D .F N1<F N2,弹簧长度将变短解析:选B.以通电导线为研究对象,由左手定则可知,通电导线在磁场中受到斜向右下方的安培力,由牛顿第三定律可知条形磁铁受到通电导线的磁场力为斜向左上方,该力产生对条形磁铁向上提拉和向左压缩弹簧的效果,则台秤示数变小,弹簧被压缩.选项B 正确.5.如图所示,匀强磁场分布在平面直角坐标系的整个第Ⅰ象限内,磁感应强度为B 、方向垂直于纸面向里.一质量为m 、电荷量绝对值为q 、不计重力的粒子,以某速度从O 点沿着与y 轴夹角为30°的方向进入磁场,运动到A 点时,粒子速度沿x 轴正方向.下列判断正确的是( )A .粒子带正电B .运动过程中,粒子的速度不变C .粒子由O 到A 经历的时间为t =πm3qBD .离开第Ⅰ象限时,粒子的速度方向与x 轴正方向的夹角为30°解析:选C.根据题意和左手定则可判断:该带电粒子带负电,故A 选项错误;该带电粒子在洛伦兹力作用下在匀强磁场中做匀速圆周运动,虽然粒子的速度的大小不变,但速度的方向时刻改变,则粒子的速度不断变化,故B 选项错误;根据带电粒子在匀强磁场中做匀速圆周运动的运动时间t 与圆心角θ、周期T 的关系t =θ2π·T 和带电粒子在匀强磁场中做匀速圆周运动的周期公式T =2πmqB,根据数学知识可得θ=π3,解得t=πm3qB,故C选项正确;根据带电粒子在有界匀强磁场中运动的对称性可知,该带电粒子离开第Ⅰ象限时,粒子的速度方向与x轴正方向的夹角应该为60°,故D选项错误.6.如图所示,质量为m的带电小物块在绝缘粗糙的水平面上以初速度v0开始运动.已知在水平面上方的空间内存在方向垂直纸面向里的水平匀强磁场,则以下关于小物块的受力及运动的分析中,正确的是( )A.若物块带正电,可能受两个力,做匀速直线运动B.若物块带负电,可能受两个力,做匀速直线运动C.若物块带正电,一定受四个力,做减速直线运动D.若物块带负电,一定受四个力,做减速直线运动解析:选AD.若小物块带正电,则受到的洛伦兹力竖直向上,如果洛伦兹力小于重力,则小物块还会受到支持力和摩擦力,做变减速运动,如果洛伦兹力恰好等于重力,则小物块只受这两个力而做匀速直线运动,故A对,C错;若小物块带负电,洛伦兹力竖直向下,小物块受四个力作用而做减速运动,故B错,D对.7.设空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,如图所示.已知一带电粒子在电场力和洛伦兹力的作用下,从静止开始自A点沿曲线ACB运动,到达B点时速度为零,C点是运动的最低点,忽略粒子的重力,以下说法中正确的是( )A.此粒子必带正电荷B.A点和B点位于同一高度C.粒子在C点时机械能最大D.粒子到达B点后,将沿原曲线返回A点解析:选ABC.粒子从静止开始运动的方向向下,电场强度方向也向下,所以粒子必带正电荷,A正确;因为洛伦兹力不做功,只有静电力做功,A、B两点速度都为0,根据动能定理可知,粒子从A点到B点运动过程中,电场力不做功,故A、B点位于同一高度,B正确;C点是最低点,从A点到C点运动过程中电场力做正功最大,根据动能定理可知粒子在C点时速度最大,动能最大,C正确;到达B点时速度为零,将重复刚才ACB的运动,向右运动,不会返回,故D错误.8.日本福岛核电站的核泄漏事故,使碘的同位素131被更多的人所了解.利用质谱仪可分析碘的各种同位素,如图所示,电荷量均为+q的碘131和碘127质量分别为m1和m2,它们从容器A下方的小孔S1进入电压为U的加速电场(入场速度忽略不计),经电场加速后从S2小孔射出,垂直进入磁感应强度为B的匀强磁场中,最后打到照相底片上.下列说法正确的是( )A .磁场的方向垂直于纸面向里B .碘131进入磁场时的速率为2qUm 1C .碘131与碘127在磁场中运动的时间差值为2π(m 1-m 2)qBD .打到照相底片上的碘131与碘127之间的距离为2B ⎝⎛⎭⎪⎫2m 1Uq- 2m 2U q 解析:选BD.粒子带正电,根据左手定则可知,磁场方向垂直纸面向外,A 错误;由动能定理知,粒子在电场中得到的动能等于电场对它所做的功,即qU =12m 1v 21,解得v 1=2qUm 1,B 正确;粒子在磁场中运动的时间t 为周期的一半,根据周期公式T =2πm qB ,在磁场中运动的时间差值Δt=π(m 1-m 2)qB ,故C 错误;粒子在磁场中做匀速圆周运动的轨道半径R =mv qB =1B2mU q ,则它们的距离之差Δd=2R 1-2R 2=2B⎝⎛⎭⎪⎫2m 1Uq- 2m 2U q ,故D 正确. 二、非选择题(共4小题,52分)9.(12分)如图所示,金属梯形框架导轨放置在竖直平面内,顶角为θ,底边ab 长为l ,垂直于梯形平面有一个磁感应强度为B 的匀强磁场.在导轨上端再放置一根水平金属棒cd ,质量为m ,导轨上接有电源,使abcd 构成回路,回路电流恒为I ,cd 棒恰好静止.已知金属棒和导轨之间接触良好,不计摩擦阻力,重力加速度为g.求:(1)cd 棒所受磁场力;(2)cd 棒与ab 边之间的高度差h.解析:(1)对于金属棒cd ,在安培力与重力的作用下处于平衡状态,因此cd 棒所受磁场力F cd =mg ,方向竖直向上.(2)设cd 棒的有效长度为l ′,由cd 棒静止得:mg =BIl ′, 因此l ′=mgBI根据几何关系知cd 棒的有效长度l ′=l +2htanθ2解得h=mgBI-l 2tanθ2.答案:(1)mg,方向竖直向上(2)mgBI-l2tanθ210.(12分)如图所示,质量为m,电荷量为q的带电粒子,以初速度v沿垂直磁场方向射入磁感应强度为B的匀强磁场,在磁场中做匀速圆周运动.不计带电粒子所受重力.(1)求粒子做匀速圆周运动的半径R和周期T;(2)为使该粒子做匀速直线运动,还需要同时存在一个与磁场方向垂直的匀强电场,求电场强度E的大小.解析:(1)洛伦兹力提供向心力,有F洛=qvB=mv2R带电粒子做匀速圆周运动的半径R=mvBq匀速圆周运动的周期T=2πRv=2πmqB(2)粒子受电场力F电=qE,洛伦兹力F洛=qvB,粒子做匀速直线运动,则qE=qvB,电场强度E的大小E=vB.答案:(1)mvBq2πmqB(2)vB11.(14分)如图所示,MN、PQ是平行金属板,板长为L,两板间距离为L2,PQ板带正电,MN板带负电,在PQ板的上方有垂直纸面向里的匀强磁场.一个电荷量为q、质量为m的带负电的粒子以速度v0从MN板边缘沿平行于板的方向射入两板间,结果粒子恰好从PQ板左边缘飞进磁场,然后又恰好从PQ板的右边缘飞进电场.不计粒子重力,求:(1)两金属板间所加电场的场强大小;(2)匀强磁场的磁感应强度B的大小.解析:(1)如图所示,设粒子在平行金属板匀强电场中运动的时间为t ,由类平抛运动可知:L =v 0t L 2=12at 2 a =Eq m联立解得:E =mv 2qL.(2)粒子以速度v 飞出电场后射入匀强磁场做匀速圆周运动,由 qvB =m v 2R ,sin θ=L 2R ,sin θ=v yv ,v y =at联立解得:B =2mv 0qL .答案:(1)mv 20qL (2)2mv 0qL12.(14分)如图所示,空间中存在着水平向右的匀强电场,电场强度大小E =5 3 N/C ,同时存在着水平方向的匀强磁场,其方向与电场方向垂直,磁感应强度大小B =0.5 T .有一带正电的小球,质量m =1×10-6kg ,电荷量q =2×10-6C ,正以速度v 在图示的竖直面内做匀速直线运动,当经过P 点时撤掉磁场(不考虑磁场消失引起的电磁感应现象)取g =10 m/s 2,求:(1)小球做匀速直线运动的速度v 的大小和方向;(2)从撤掉磁场到小球再次穿过P 点所在的这条电场线经历的时间t.解析:(1)小球匀速直线运动时受力如图,其所受的三个力在同一平面内,合力为零,有qvB =q 2E 2+m 2g 2①代入数据解得v =20 m/s ②速度v 的方向与电场E 的方向之间的夹角满足 tan θ=qE mg③代入数据解得tan θ= 3 θ=60°④(2)撤去磁场,小球在重力与电场力的合力作用下做类平抛运动,如图所示,设其加速度为a ,有a =q 2E 2+m 2g 2m⑤设撤去磁场后小球在初速度方向上的分位移为x ,有 x =vt ⑥设小球在重力与电场力的合力方向上分位移为y ,有 y =12at 2⑦ tan θ=yx⑧联立④⑤⑥⑦⑧式,代入数据解得 t =2 3 s =3.5 s ⑨答案:(1)20 m/s 与电场方向成60°角斜向上 (2)3.5 s高考理综物理模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
高考物理带电粒子在磁场中的运动解题技巧讲解及练习题(含答案)及解析
高考物理带电粒子在磁场中的运动解题技巧讲解及练习题(含答案)及解析一、带电粒子在磁场中的运动专项训练1.在如图所示的平面直角坐标系中,存在一个半径R =0.2m 的圆形匀强磁场区域,磁感应强度B =1.0T ,方向垂直纸面向外,该磁场区域的右边缘与y 坐标轴相切于原点O 点。
y 轴右侧存在一个匀强电场,方向沿y 轴正方向,电场区域宽度l =0.1m 。
现从坐标为(﹣0.2m ,﹣0.2m )的P 点发射出质量m =2.0×10﹣9kg 、带电荷量q =5.0×10﹣5C 的带正电粒子,沿y 轴正方向射入匀强磁场,速度大小v 0=5.0×103m/s (粒子重力不计)。
(1)带电粒子从坐标为(0.1m ,0.05m )的点射出电场,求该电场强度;(2)为了使该带电粒子能从坐标为(0.1m ,﹣0.05m )的点回到电场,可在紧邻电场的右侧区域内加匀强磁场,试求所加匀强磁场的磁感应强度大小和方向。
【答案】(1)1.0×104N/C (2)4T ,方向垂直纸面向外 【解析】 【详解】解:(1)带正电粒子在磁场中做匀速圆周运动,根据洛伦兹力提供向心力有:200v qv B m r=可得:r =0.20m =R根据几何关系可以知道,带电粒子恰从O 点沿x 轴进入电场,带电粒子做类平抛运动,设粒子到达电场边缘时,竖直方向的位移为y 根据类平抛规律可得:2012l v t y at ==, 根据牛顿第二定律可得:Eq ma = 联立可得:41.010E =⨯N/C(2)粒子飞离电场时,沿电场方向速度:305.010y qE lv at m v ===⨯g m/s=0v 粒子射出电场时速度:02=v v根据几何关系可知,粒子在B '区域磁场中做圆周运动半径:2r y '=根据洛伦兹力提供向心力可得: 2v qvB m r'='联立可得所加匀强磁场的磁感应强度大小:4mvB qr'=='T 根据左手定则可知所加磁场方向垂直纸面向外。
高考物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)含解析
高考物理带电粒子在磁场中的运动解题技巧及经典题型及练习题(含答案)含解析一、带电粒子在磁场中的运动专项训练1.如图所示,在xOy平面内,以O′(0,R)为圆心,R为半径的圆内有垂直平面向外的匀强磁场,x轴下方有垂直平面向里的匀强磁场,两区域磁感应强度大小相等.第四象限有一与x轴成45°角倾斜放置的挡板PQ,P,Q两点在坐标轴上,且O,P两点间的距离大于2R,在圆形磁场的左侧0<y<2R的区间内,均匀分布着质量为m,电荷量为+q的一簇带电粒子,当所有粒子均沿x轴正向以速度v射入圆形磁场区域时,粒子偏转后都从O点进入x轴下方磁场,结果有一半粒子能打在挡板上.不计粒子重力,不考虑粒子间相互作用力.求:(1)磁场的磁感应强度B的大小;(2)挡板端点P的坐标;(3)挡板上被粒子打中的区域长度.【答案】(1)mvqR(2)(21),0R⎡⎤⎣⎦21042R+-【解析】【分析】【详解】(1)设一粒子自磁场边界A点进入磁场,该粒子由O点射出圆形磁场,轨迹如图甲所示,过A点做速度的垂线长度为r,C为该轨迹圆的圆心.连接AOˊ、CO,可证得ACOOˊ为菱形,根据图中几何关系可知:粒子在圆形磁场中的轨道半径r=R,由2v qvB mr=得:mv BqR =(2)有一半粒子打到挡板上需满足从O 点射出的沿x 轴负方向的粒子、沿y 轴负方向的粒子轨迹刚好与挡板相切,如图乙所示,过圆心D 做挡板的垂线交于E 点2DP R =(21)OP R =+P 点的坐标为((21)R +,0 )(3)设打到挡板最左侧的粒子打在挡板上的F 点,如图丙所示,OF =2R ①过O 点做挡板的垂线交于G 点,22(21)(122OG R R =⋅=+② 225-22=2FG OF OG R=-③2EG =④ 挡板上被粒子打中的区域长度l =FE =22R +5-222R 2+10-42R ⑤2.如图所示,在长度足够长、宽度d=5cm 的区域MNPQ 内,有垂直纸面向里的水平匀强磁场,磁感应强度B=0.33T .水平边界MN 上方存在范围足够大的竖直向上的匀强电场,电场强度E=200N/C .现有大量质量m=6.6×10﹣27kg 、电荷量q=3.2×10﹣19C 的带负电的粒子,同时从边界PQ 上的O 点沿纸面向各个方向射入磁场,射入时的速度大小均为V=1.6×106m/s ,不计粒子的重力和粒子间的相互作用.求:(1)求带电粒子在磁场中运动的半径r ;(2)求与x 轴负方向成60°角射入的粒子在电场中运动的时间t ;(3)当从MN 边界上最左边射出的粒子离开磁场时,求仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围,并写出此时这些粒子所在位置构成的图形的曲线方程. 【答案】(1)r=0.1m (2)43.310t s -=⨯ (3)3060~ 曲线方程为222x y R +=(30.1,0.1R m m x m =≤≤) 【解析】 【分析】 【详解】(1)洛伦兹力充当向心力,根据牛顿第二定律可得2v qvB m r=,解得0.1r m =(2)粒子的运动轨迹如图甲所示,由几何关系可知,在磁场中运动的圆心角为30°,粒子平行于场强方向进入电场,粒子在电场中运动的加速度qE a m= 粒子在电场中运动的时间2v t a= 解得43.310t s -=⨯(3)如图乙所示,由几何关系可知,从MN 边界上最左边射出的粒子在磁场中运动的圆心角为60°,圆心角小于60°的粒子已经从磁场中射出,此时刻仍在磁场中的粒子运动轨迹的圆心角均为60°,则仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围为30°~60° 所有粒子此时分别在以O 点为圆心,弦长0.1m 为半径的圆周上,曲线方程为22x y R += 30.1,0.1R m m x m ⎛⎫=≤≤ ⎪ ⎪⎝⎭【点睛】带电粒子在组合场中的运动问题,首先要运用动力学方法分析清楚粒子的运动情况,再选择合适方法处理.对于匀变速曲线运动,常常运用运动的分解法,将其分解为两个直线的合成,由牛顿第二定律和运动学公式结合求解;对于磁场中圆周运动,要正确画出轨迹,由几何知识求解半径3.在水平桌面上有一个边长为L 的正方形框架,内嵌一个表面光滑的绝缘圆盘,圆盘所在区域存在垂直圆盘向上的匀强磁场.一带电小球从圆盘上的P 点(P 为正方形框架对角线AC 与圆盘的交点)以初速度v 0水平射入磁场区,小球刚好以平行于BC 边的速度从圆盘上的Q 点离开该磁场区(图中Q 点未画出),如图甲所示.现撤去磁场,小球仍从P 点以相同的初速度v 0水平入射,为使其仍从Q 点离开,可将整个装置以CD 边为轴向上抬起一定高度,如图乙所示,忽略小球运动过程中的空气阻力,已知重力加速度为g .求:(1)小球两次在圆盘上运动的时间之比; (2)框架以CD 为轴抬起后,AB 边距桌面的高度.【答案】(1)小球两次在圆盘上运动的时间之比为:π:2;(2)框架以CD 为轴抬起后,AB边距桌面的高度为222vg.【解析】【分析】【详解】(1)小球在磁场中做匀速圆周运动,由几何知识得:r2+r2=L2,解得:r=22L,小球在磁场中做圆周运的周期:T=2rvπ,小球在磁场中的运动时间:t1=14T=2Lπ,小球在斜面上做类平抛运动,水平方向:x=r=v0t2,运动时间:t2=22Lv,则:t1:t2=π:2;(2)小球在斜面上做类平抛运动,沿斜面方向做初速度为零的匀加速直线运动,位移:r=2212at,解得,加速度:a=222vL,对小球,由牛顿第二定律得:a=mgsinmθ=g sinθ,AB 边距离桌面的高度:h =L sinθ=222v g;4.如图所示,坐标原点O 左侧2m 处有一粒子源,粒子源中,有带正电的粒子(比荷为qm=1.0×1010C/kg)由静止进人电压U= 800V 的加速电场,经加速后沿x 轴正方向运动,O 点右侧有以O 1点为圆心、r=0.20m 为半径的圆形区域,内部存在方向垂直纸面向里,磁感应强度大小为B=1.0×10-3T 的匀强磁场(图中未画出)圆的左端跟y 轴相切于直角坐标系原点O ,右端与一个足够大的荧光屏MN 相切于x 轴上的A 点,粒子重力不计。
专题14 磁场+电场模型-2023年高考物理磁场常用模型精练(解析版)
2023年高考物理《磁场》常用模型最新模拟题精练专题14.磁场+电场模型1.(2023湖北五校联盟高二期中)16.(13分)如图所示,在x 轴上方有一匀强磁场,方向垂直纸面向里;在x 轴下方有一匀强电场,方向竖直向上;一质量为m ,电荷量为q ,重力不计的带电粒子从y 轴上的a 点(0,h )处沿y 轴正方向以初速度v =2v 0开始运动,一段时间后,粒子速度方向与x 轴正方向成45°角进入电场,经过y 轴上b 点时速度方向恰好与y 轴垂直;求:(1)判断粒子的电性(2)匀强磁场的磁感应强度大小;(3)匀强电场的电场强度大小;(4)粒子从a 点开始运动到再次经过a点的时间。
【参考答案】.(1)正电;(2)0mv qh ;(3)20(21)mv qh-;(4)05(222)2h v π++【名师解析】(1)带电粒子做逆时针偏转,该粒子带正电(1分)(2)根据题意可得粒子的运动轨迹如下由图可得cos 45r h ︒=①(1分)粒子在磁场中做圆周运动,故由牛顿第二定律有2mv qvB r=②(1分)结合题意联立可得2r h =(1分)0=mv B qh(1分)(3)分析可知,粒子在电场中做斜抛运动,即在水平方向上做匀速直线运动,竖直方向上做匀减速直线运动,且到达b 点时,竖直方向速度恰好为零,故在水平方向上有11sin 45sin 45v t r r ︒=+︒③(1分)在竖直方向有qE ma =④(1分)11cos 45v at ︒=⑤(1分)联立可得10(12)h t v =(1分)2(21)mv E -=(1分)(4)由粒子的运动轨迹图可知,粒子在磁场中的运动的总圆心角为555=+rad=rad 442πππθ()⑥(1分)故粒子在磁场中运动的总时间为0125222rht v v v θπ⋅==⨯⑦(1分)由对称性可知,粒子在y 轴左侧和右侧电场中的运动时间相等,故粒子从开始运动至再次经过a 点所用的总时间为0100052(12)52(222)22h h ht t t v v ππ+=+=+++⑧(1分)2.(2022山东聊城重点高中质检)如图所示,在x 轴上方存在磁感应强度为B 、方向垂直纸面向里的匀强磁场,在x 轴下方存在竖直向上的匀强电场。
高考物理 磁场精讲精练 组合场复合场叠加场典型习题
组合场复合场叠加场典型习题1.如图所示,匀强电场方向水平向右,匀强磁场方向垂直纸面向里,将带正电的小球在场中静止释放,最后落到地面上.关于该过程,下述说法正确的是( )A.小球做匀变速曲线运动B.小球减少的电势能等于增加的动能C.电场力和重力做的功等于小球增加的动能D.若保持其他条件不变,只减小磁感应强度,小球着地时动能不变解析:选C.重力和电场力是恒力,但洛伦兹力是变力,因此合外力是变化的,由牛顿第二定律知其加速度也是变化的,选项A错误;由动能定理和功能关系知,选项B错误,选项C正确;磁感应强度减小时,小球落地时的水平位移会发生变化,则电场力所做的功也会随之发生变化,选项D错误.2.带电质点在匀强磁场中运动,某时刻速度方向如图所示,所受的重力和洛伦兹力的合力恰好与速度方向相反,不计阻力,则在此后的一小段时间内,带电质点将( )A.可能做直线运动B.可能做匀减速运动C.一定做曲线运动D.可能做匀速圆周运动解析:选C.带电质点在运动过程中,重力做功,速度大小和方向发生变化,洛伦兹力的大小和方向也随之发生变化,故带电质点不可能做直线运动,也不可能做匀减速运动和匀速圆周运动,C正确.3.(多选)质量为m、电荷量为q的微粒以速度v与水平方向成θ角从O点进入方向如图所示的正交的匀强电场和匀强磁场组成的混合场区,该微粒在电场力、洛伦兹力和重力的共同作用下,恰好沿直线运动到A,下列说法中正确的是( )A.该微粒一定带负电荷B .微粒从O 到A 的运动可能是匀变速运动C .该磁场的磁感应强度大小为mgqv cos θD .该电场的场强为Bv cos θ解析:选AC.若微粒带正电荷,它受竖直向下的重力mg 、水平向左的电场力qE 和斜向右下方的洛伦兹力qvB ,知微粒不能做直线运动,据此可知微粒应带负电荷,它受竖直向下的重力mg 、水平向右的电场力qE 和斜向左上方的洛伦兹力qvB ,又知微粒恰好沿着直线运动到A ,可知微粒应该做匀速直线运动,则选项A 正确,B 错误;由平衡条件有:qvB cos θ=mg ,qvB sin θ=qE ,得磁场的磁感应强度B =mgqv cos θ,电场的场强E =Bv sin θ,故选项C 正确,D 错误.4.(多选)如图所示,已知一带电小球在光滑绝缘的水平面上从静止开始经电压U 加速后,水平进入互相垂直的匀强电场E 和匀强磁场B 的复合场中(E 和B 已知),小球在此空间的竖直面内做匀速圆周运动,则( )A .小球可能带正电B .小球做匀速圆周运动的半径为r =1B2UEgC .小球做匀速圆周运动的周期为T =2πEBgD .若电压U 增大,则小球做匀速圆周运动的周期增加解析:选BC.小球在复合场中做匀速圆周运动,则小球受到的电场力和重力满足mg =Eq ,方向相反,则小球带负电,A 错误;因为小球做圆周运动的向心力由洛伦兹力提供,由牛顿第二定律和动能定理可得:Bqv =mv 2r ,Uq =12mv 2,联立两式可得:小球做匀速圆周运动的半径r =1B2UE g ,由T =2πr v 可以得出T =2πE Bg,与电压U 无关,所以B 、C 正确,D 错误.5.(多选)如图所示,在第二象限中有水平向右的匀强电场,在第一象限内存在垂直纸面向外的匀强磁场.有一重力不计的带电粒子(电荷量为q ,质量为m )以垂直于x 轴的速度v 0从x 轴上的P 点进入匀强电场,恰好与y 轴正方向成45°角射出电场,再经过一段时间又恰好垂直于x 轴进入第四象限.已知OP 之间的距离为d ,则( )3A .带电粒子通过y 轴时的坐标为(0,d )B .电场强度的大小为mv 202qdC .带电粒子在电场和磁场中运动的总时间为(3π+4)d2v 0D .磁感应强度的大小为2mv 04qd解析:选BC. 粒子在电场中做类平抛运动,因为进入磁场时速度方向与y 轴正方向成45°角,所以沿x 轴正方向的分速度v x =v 0,在x 轴正方向做匀加速运动,有d =0+v 02t ,沿y 轴正方向做匀速运动,有s =v 0t =2d ,故选项A 错误.沿x 轴正方向做匀加速运动,根据v x =v 0=Eq m ×2d v 0=2Eqd mv 0,解得E =mv 202qd,故选项B 正确.粒子进入磁场后做匀速圆周运动,轨迹如图所示,由图可知粒子在磁场中运动的半径R =22d ,圆心角θ=135°=34π,所以在磁场中的运动时间为t 1=2πR ×1353602v 0=3π×22d 42v 0=3πd2v 0;在电场中的运动时间为t 2=2d v 0,所以总时间为t =t 1+t 2=(3π+4)d 2v 0,故选项C 正确.由qvB =mv2R 可知,磁感应强度B =m ×2v 0q ×22d =mv 02qd,故选项D 错误.6.在某空间存在着水平向右的匀强电场E 和垂直于纸面向里的匀强磁场B ,如图所示,一段光滑且绝缘的圆弧轨道AC 固定在纸面内,其圆心为O 点,半径R =1.8 m ,OA 连线在竖直方向上,AC 弧对应的圆心角θ=37°.今有一质量m =3.6×10-4kg 、带电荷量q =+9.0×10-4C 的带电小球(可视为质点),以v 0=4.0 m/s 的初速度沿水平方向从A 点射入圆弧轨道内,一段时间后从C 点离开,小球离开C 点后做匀速直线运动.已知重力加速度g =10 m/s 2,sin 37°=0.6,cos 37°=0.8,不计空气阻力,求:(1)匀强电场的场强E ;(2)小球刚离开C 点时的速度大小;(3)小球刚射入圆弧轨道时,轨道对小球的瞬间支持力.解析:(1)当小球离开圆弧轨道后,对其受力分析如图甲所示,由平衡条件得F 电=qE=mg tan θ,代入数据解得E =3 N/C.(2)小球从进入圆弧轨道到离开圆弧轨道的过程中,由动能定理得F 电R sin θ-mgR (1-cos θ)=mv 22-mv 22,代入数据得v =5 m/s.(3)由(1)可知F 洛=qvB =mgcos θ, 解得B =1 T ,小球射入圆弧轨道瞬间竖直方向的受力情况如图乙所示,由牛顿第二定律得F N +Bqv 0-mg =mv 20R,代入数据得F N =3.2×10-3N.答案:(1)3 N/C (2)5 m/s (3)3.2×10-3N7. 如图所示,在直角坐标系xOy 平面内,虚线MN 平行于y 轴,N 点坐标为(-L,0),MN 与y 轴之间有沿y 轴正方向的匀强电场,在第四象限的某区域有方向垂直于坐标平面的矩形有界匀强磁场(图中未画出).现有一质量为m 、电荷量为-e 的电子,从虚线MN 上的P 点,以平行于x 轴正方向的初速度v 0射入电场,并从y 轴上点A ()0,0.5L 射出电场,射出时速度方向与y 轴负方向成30°角,进入第四象限后,经过矩形磁场区域,电子过点Q ⎝⎛⎭⎪⎫36L ,-L ,不计电子重力,求:5(1)匀强电场的电场强度E 的大小;(2)匀强磁场的磁感应强度B 的大小和电子在磁场中运动的时间t ; (3)矩形有界匀强磁场区域的最小面积S min .解析:(1)设电子在电场中运动的加速度为a ,时间为t ,离开电场时,沿y 轴方向的速度大小为v y ,则L =v 0ta =eE mv y =at v y =v 0tan 30°解得:E =3mv 2eL(2) 设轨迹与x 轴的交点为D ,OD 距离为x D ,则x D =0.5L tan 30°=36L 所以,DQ 平行于y 轴,电子在磁场中做匀速圆周运动的轨道的圆心在DQ 上,电子运动轨迹如图所示.设电子离开电场时速度为v ,在磁场中做匀速圆周运动的轨道半径为r ,则evB =m v 2rv =v 0sin 30°由几何关系有 r +r sin 30°=L ,即r =L3联立以上各式解得 B =6mv 0eL电子转过的圆心角为120°,则得 t =T3T =2πm eB ⎝⎛⎭⎪⎫或T =2πr v =πL 3v 0 得t =πL9v 0(3)以切点F 、Q 的连线长为矩形的一条边,与电子的运动轨迹相切的另一边作为其FQ 的对边,有界匀强磁场区域面积为最小.S min =3r ×r2得S min =3L218答案:(1)3mv 2eL (2)6mv 0eL πL 9v 0 (3)3L2188.如图所示,圆柱形区域的半径为R ,在区域内有垂直于纸面向里、磁感应强度大小为B 的匀强磁场;对称放置的三个相同的电容器,极板间距为d ,板间电压为U ,与磁场相切的极板,在切点处均有一小孔,一带电粒子,质量为m ,带电荷量为+q ,自某电容器极板上的M 点由静止释放,M 点在小孔a 的正上方,若经过一段时间后,带电粒子又恰好返回M 点,不计带电粒子所受重力.求:(1)带电粒子在磁场中运动的轨道半径; (2)U 与B 所满足的关系式;(3)带电粒子由静止释放到再次返回M 点所经历的时间. 解析:(1)由几何关系解得r =3R . (2)设粒子加速后获得的速度为v , 由动能定理得qU =12mv 2-0,由洛伦兹力提供向心力,得qvB =m v 2r,7联立解得B =1R2mU 3q. (3)根据运动电荷在磁场中做匀速圆周运动的周期T =2πmqB=2πR3m 2qU, 依题意分析可知粒子在磁场中运动一次所经历的时间为16T ,故粒子在磁场中运动的总时间t 1=3×16T =πR3m 2qU, 而粒子在匀强电场中所做运动类似竖直上抛运动,设每次上升或下降过程经历的时间为t 2,则有d =12at 22, a =qU md, 解得t 2=d2m qU,粒子在电场中运动的总时间为t 3=6t 2=6d2m qU.带电粒子由静止释放到再次返回M 点所经历的时间为t =t 1+t 3=πR3m2qU+6d 2mqU.答案:(1)3R (2)B =1R2mU 3q(3)πR3m2qU+6d 2mqU9.如图所示,在xOy 平面第一象限内有平行于y 轴的匀强电场和垂直于xOy 平面的匀强磁场,匀强电场电场强度为E .一带电荷量为+q 的小球从y 轴上离坐标原点距离为L 的A 点处,以沿x 正向的初速度进入第一象限,如果电场和磁场同时存在,小球将做匀速圆周运动,并从x 轴上距坐标原点L2的C 点离开磁场.如果只撤去磁场,并且将电场反向,带电小球以相同的初速度从A 点进入第一象限,仍然从x 轴上距坐标原点L2的C 点离开电场.求:(1)小球从A 点出发时的初速度大小; (2)磁感应强度B 的大小和方向.解析:(1)由带电小球做匀速圆周运动知mg =Eq 所以电场反向后竖直方向受力Eq +mg =ma 得a =2g小球做类平抛运动,有L 2=v 0t ,L =12at 2得v 0=12gL(2)带电小球做匀速圆周运动时,洛伦兹力提供向心力,有qv 0B =mv 20R 得B =mv 0qR由圆周运动轨迹分析得(L -R )2+⎝ ⎛⎭⎪⎫L 22=R 2R =5L 8代入得B =4E gL5gL由左手定则得,磁感应强度垂直于xOy 平面向外. 答案:(1)12gL (2)4E gL5gL,垂直于xOy 平面向外10.如图甲所示,建立Oxy 坐标系.两平行极板P 、Q 垂直于y 轴且关于x 轴对称,极9板长度和板间距均为l .在第一、四象限有磁感应强度为B 的匀强磁场,方向垂直于Oxy 平面向里.位于极板左侧的粒子源沿x 轴向右连续发射质量为m 、电荷量为+q 、速度相同、重力不计的带电粒子.在0~3t 0时间内两板间加上如图乙所示的电压(不考虑极板边缘的影响).已知t =0时刻进入两板间的带电粒子恰好在t 0时刻经极板边缘射入磁场.上述m 、q 、l 、t 0、B 为已知量.(不考虑粒子间相互影响及返回极板间的情况)(1)求电压U 0的大小;(2)求12t 0时刻进入两板间的带电粒子在磁场中做圆周运动的半径;(3)何时进入两板间的带电粒子在磁场中的运动时间最短?求此最短时间.解析:(1)t =0时刻进入两板间的带电粒子在电场中做匀变速曲线运动,t 0时刻刚好从极板边缘射出,在y 轴负方向偏移的距离为12l ,则有E =U 0l ①qE =ma ②12l =12at 20③ 联立①②③式,解得两板间偏转电压为U 0=ml 2qt 20④(2)12t 0时刻进入两板间的带电粒子,前12t 0时间在电场中偏转,后12t 0时间两板间没有电场,带电粒子做匀速直线运动.带电粒子沿x 轴方向的分速度大小为v 0=l t 0⑤带电粒子离开电场时沿y 轴负方向的分速度大小为v y =a ·12t 0⑥带电粒子离开电场时的速度大小为v =v 20+v 2y ⑦设带电粒子离开电场进入磁场做匀速圆周运动的半径为R ,则有qvB =m v 2R⑧联立③⑤⑥⑦⑧式解得R =5ml 2qBt 0⑨(3)2t 0时刻进入两板间的带电粒子在磁场中运动时间最短.带电粒子离开电场时沿y 轴正方向的分速度为v y ′=at 0⑩设带电粒子离开电场时速度方向与y 轴正方向夹角为α,则tan α=v 0v y ′⑪ 联立③⑤⑩⑪式解得α=π4⑫带电粒子在磁场中运动轨迹如图所示,圆弧所对的圆心角2α=π2,所求最短时间为t min =14T ⑬带电粒子在磁场中运动的周期为T =2πmqB⑭联立⑬⑭式得t min =πm2qB答案:(1)ml 2qt 20 (2)5ml 2qBt 0 (3)2t 0 πm2qB百度文库是百度发布的供网友在线分享文档的平台。
物理人教版高考复习精练与解析——磁场 磁场力
第1讲磁场磁场力(链接《配餐》P92)1. (安培定则)(2019年山西大同阶段检测)如图所示,圆环上带有大量的负电荷,当圆环沿顺时针方向转动时,a、b、c三枚小磁针都要发生转动,以下说法正确的是()。
A.a、b、c的N极都向纸里转B.b的N极向纸外转,而a、c的N极向纸里转C.b、c的N极都向纸里转,而a的N极向纸外转D.b的N极向纸里转,而a、c的N极向纸外转【解析】圆环带负电,顺时针转动时产生逆时针方向的电流,根据安培定则可知环内磁场方向向外,环外磁场方向向内,B项正确。
【答案】B2. (安培力的平衡)(2020年广西贵港月考)质量为m、长为L的直导体棒放置于四分之一光滑圆弧轨道上,整个装置处于竖直向上、磁感应强度为B的匀强磁场中,直导体棒中通有恒定电流,平衡时导体棒与圆弧圆心的连线与竖直方向成60°角,其截面图如图所示,重力加速度为g。
关于导体棒中的电流,下列分析正确的是()。
A.导体棒中电流垂直于纸面向外,大小为√3mgBLB.导体棒中电流垂直于纸面向外,大小为√3mg3BLC.导体棒中电流垂直于纸面向里,大小为√3mgBLD.导体棒中电流垂直于纸面向里,大小为√3mg3BL【解析】导体棒受到竖直向下的重力和指向圆心的弹力,要使导体棒平衡,应使其受水平向右的安培力,=√3,解得导体棒中电流重力和安培力的合力大小与弹力大小相等,方向相反,由平衡条件有tan 60°=BILmgI=√3mg,由左手定则可判断,导体棒中电流的方向应垂直于纸面向里,C项正确。
BL【答案】C3.(磁场叠加)(2019年湖北黄石第1次模拟考试)如图所示,AC是四分之一圆弧,O为圆心,D为弧AC中点,A、D、C处各有一垂直纸面的通电直导线,电流大小相等,A、C两处电流垂直纸面向里,D处电流垂直纸面向外,整个空间再加一个磁感应强度大小为B的匀强磁场,O处的磁感应强度刚好为零,如果将D处电流反向,其他条件都不变,则O处的磁感应强度大小为()。
磁场综合--高中物理模块典型题归纳(含详细答案)
磁场综合--高中物理模块典型题归纳(含详细答案)一、单选题1.如图甲所示有界匀强磁场Ⅰ的宽度与图乙所示圆形匀强磁场Ⅱ的半径相等,一不计重力的粒子从左边界的M点以一定初速度水平向右垂直射入磁场Ⅰ,从右边界射出时速度方向偏转了θ角,该粒子以同样的初速度沿半径方向垂直射入磁场Ⅱ,射出磁场时速度方向偏转了2θ角.己知磁场I、Ⅱ的磁感应强度大小分别为B1、B2,则B1与B2的比值为()A.2cosθB.sinθC.cosθD.tanθ2.如图,由均匀的电阻丝组成的等边三角形导体框,垂直磁场放置,将AB两点接入电压恒定的电源两端,通电时电阻丝AB段受到的安培力为F,则此时三根电阻丝受到的合安培力大小为()A.FB.1.5FC.2FD.3F3.如图所示,在充电的平行金属板间有匀强电场和方向垂直纸面向里的匀强磁场。
一带电粒子以速度v从左侧射入,方向垂直于电场方向和磁场方向,当它从右侧射出场区时,动能比射入时小,若要使带电粒子从射入到射出动能是增加的,可采取的措施有(不计重力)()A.可使电场强度增强B.可使磁感应强度增强C.可使粒子带电性质改变(如正变负)D.可使粒子射入时的动能增大4.两个大小不同的绝缘金属圆环如图叠放在一起,小圆环有一半面积在大圆环内,当大圆环通上顺时针方向电流的瞬间,下列叙述正确的是()A.小圆环中产生顺时针方向的感应电流B.小圆环中产生逆时针方向的感应电流C.小圆环中不产生感应电流D.小圆环有向左运动的趋势5.如图所示为研究平行通电直导线之间相互作用的实验装置。
接通电路后发现两根导线均发生形变,此时通过导线M和N的电流大小分别为I1和I2,已知I1> I2,方向均向上。
若用F1和F2分别表示导线M与N受到的磁场力,则下列说法正确的是()A.两根导线相互排斥B.为判断F1的方向,需要知道I l和I2的合磁场方向C.两个力的大小关系为F1> F2D.仅增大电流I2,F1、F2会同时都增大6.如图所示,虚线所围矩形区域abcd内充满磁感应强度为B、方向垂直纸面向外的匀强磁场。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁场综合典型习题一、选择题(本题共8小题,每小题6分,共48分,1~5题每小题只有一个选项正确,6~8小题有多个选项符合题目要求,全选对得6分,选对但不全得3分,有选错的得0分)1.指南针是我国古代四大发明之一,东汉学者王充在《论衡》一书中描述的“司南”是人们公认的最早的磁性定向工具,指南针能指示南北方向是由于( )A .指南针的两个磁极相互吸引B .指南针的两个磁场相互排斥C .地磁场对指南针的作用D .指南针能吸引铁、铝、镍等物质解析:选C.地球本身就是一个巨大的磁体,司南静止时指南的一端是南极,指北的一端是北极;故勺柄指的是南极.指南针指示南北主要是因为地磁场的作用,故C 正确.2.如图所示,用天平测量匀强磁场的磁感应强度,下列各选项所示的载流线圈匝数相同,边长NM 相等,将它们分别挂在天平的右臂下方,线圈中通有大小相同的电流,天平处于平衡状态,若磁场发生微小变化,天平最容易失去平衡的是( )解析:选A.由题意知,当处于磁场中的导体,受安培力作用的有效长度越长,根据F =BIL 知受安培力越大,越容易失去平衡,由图知选项A 中导体的有效长度最大,所以A 正确.3.如图所示,完全相同的甲、乙两个环形电流同轴平行放置,甲的圆心为O 1,乙的圆心为O 2,在两环圆心的连线上有a 、b 、c 三点,其中aO 1=O 1b =bO 2=O 2c ,此时a 点的磁感应强度大小为B 1,b 点的磁感应强度大小为B 2.当把环形电流乙撤去后,c 点的磁感应强度大小为( )A .B 2-B 1 B .B 1-B 22C .B 2-B 12D.B 13解析:选B.对于图中单个环形电流,根据安培定则,其在中轴线上的磁场方向均是向左,故c 点的磁场方向也是向左的.设aO 1=O 1b =bO 2=O 2c =r ,设单个环形电流在距离中点r 位置的磁感应强度为B 1r ,在距离中点3r 位置的磁感应强度为B 3r ,a 点磁感应强度:B 1=B 1r +B 3r ,b 点磁感应强度:B 2=B 1r +B 1r ,当撤去环形电流乙后,c 点磁感应强度B c =B 3r =B 1-B 22,故B 正确.4.如图所示,台秤上放一光滑平板,其左边固定一挡板,一轻质弹簧将挡板和一条形磁铁连接起来,此时台秤的读数为F N1,现在磁铁上方中心偏左位置固定一通电导线,电流方向如图,当加上电流后,台秤的示数为F N2,则下列说法正确的是( )A .F N1>F N2,弹簧长度将变长B .F N1>F N2,弹簧长度将变短C .F N1<F N2,弹簧长度将变长D .F N1<F N2,弹簧长度将变短解析:选B.以通电导线为研究对象,由左手定则可知,通电导线在磁场中受到斜向右下方的安培力,由牛顿第三定律可知条形磁铁受到通电导线的磁场力为斜向左上方,该力产生对条形磁铁向上提拉和向左压缩弹簧的效果,则台秤示数变小,弹簧被压缩.选项B 正确.5.如图所示,匀强磁场分布在平面直角坐标系的整个第Ⅰ象限内,磁感应强度为B 、方向垂直于纸面向里.一质量为m 、电荷量绝对值为q 、不计重力的粒子,以某速度从O 点沿着与y 轴夹角为30°的方向进入磁场,运动到A 点时,粒子速度沿x 轴正方向.下列判断正确的是( )A .粒子带正电B .运动过程中,粒子的速度不变C .粒子由O 到A 经历的时间为t =πm3qBD .离开第Ⅰ象限时,粒子的速度方向与x 轴正方向的夹角为30°解析:选C.根据题意和左手定则可判断:该带电粒子带负电,故A 选项错误;该带电粒子在洛伦兹力作用下在匀强磁场中做匀速圆周运动,虽然粒子的速度的大小不变,但速度的方向时刻改变,则粒子的速度不断变化,故B 选项错误;根据带电粒子在匀强磁场中做匀速圆周运动的运动时间t 与圆心角θ、周期T 的关系t =θ2π·T 和带电粒子在匀强磁场中做匀速圆周运动的周期公式T =2πmqB,根据数学知识可得θ=π3,解得t=πm3qB,故C选项正确;根据带电粒子在有界匀强磁场中运动的对称性可知,该带电粒子离开第Ⅰ象限时,粒子的速度方向与x轴正方向的夹角应该为60°,故D选项错误.6.如图所示,质量为m的带电小物块在绝缘粗糙的水平面上以初速度v0开始运动.已知在水平面上方的空间内存在方向垂直纸面向里的水平匀强磁场,则以下关于小物块的受力及运动的分析中,正确的是( )A.若物块带正电,可能受两个力,做匀速直线运动B.若物块带负电,可能受两个力,做匀速直线运动C.若物块带正电,一定受四个力,做减速直线运动D.若物块带负电,一定受四个力,做减速直线运动解析:选AD.若小物块带正电,则受到的洛伦兹力竖直向上,如果洛伦兹力小于重力,则小物块还会受到支持力和摩擦力,做变减速运动,如果洛伦兹力恰好等于重力,则小物块只受这两个力而做匀速直线运动,故A对,C错;若小物块带负电,洛伦兹力竖直向下,小物块受四个力作用而做减速运动,故B错,D对.7.设空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,如图所示.已知一带电粒子在电场力和洛伦兹力的作用下,从静止开始自A点沿曲线ACB运动,到达B点时速度为零,C点是运动的最低点,忽略粒子的重力,以下说法中正确的是( )A.此粒子必带正电荷B.A点和B点位于同一高度C.粒子在C点时机械能最大D.粒子到达B点后,将沿原曲线返回A点解析:选ABC.粒子从静止开始运动的方向向下,电场强度方向也向下,所以粒子必带正电荷,A正确;因为洛伦兹力不做功,只有静电力做功,A、B两点速度都为0,根据动能定理可知,粒子从A点到B点运动过程中,电场力不做功,故A、B点位于同一高度,B正确;C点是最低点,从A点到C点运动过程中电场力做正功最大,根据动能定理可知粒子在C点时速度最大,动能最大,C正确;到达B点时速度为零,将重复刚才ACB的运动,向右运动,不会返回,故D错误.8.日本福岛核电站的核泄漏事故,使碘的同位素131被更多的人所了解.利用质谱仪可分析碘的各种同位素,如图所示,电荷量均为+q的碘131和碘127质量分别为m1和m2,它们从容器A下方的小孔S1进入电压为U的加速电场(入场速度忽略不计),经电场加速后从S2小孔射出,垂直进入磁感应强度为B的匀强磁场中,最后打到照相底片上.下列说法正确的是( )A .磁场的方向垂直于纸面向里B .碘131进入磁场时的速率为2qUm 1C .碘131与碘127在磁场中运动的时间差值为2π(m 1-m 2)qBD .打到照相底片上的碘131与碘127之间的距离为2B ⎝⎛⎭⎪⎫2m 1Uq- 2m 2U q 解析:选BD.粒子带正电,根据左手定则可知,磁场方向垂直纸面向外,A 错误;由动能定理知,粒子在电场中得到的动能等于电场对它所做的功,即qU =12m 1v 21,解得v 1=2qUm 1,B 正确;粒子在磁场中运动的时间t 为周期的一半,根据周期公式T =2πm qB ,在磁场中运动的时间差值Δt=π(m 1-m 2)qB ,故C 错误;粒子在磁场中做匀速圆周运动的轨道半径R =mv qB =1B2mU q ,则它们的距离之差Δd=2R 1-2R 2=2B⎝⎛⎭⎪⎫2m 1Uq- 2m 2U q ,故D 正确. 二、非选择题(共4小题,52分)9.(12分)如图所示,金属梯形框架导轨放置在竖直平面内,顶角为θ,底边ab 长为l ,垂直于梯形平面有一个磁感应强度为B 的匀强磁场.在导轨上端再放置一根水平金属棒cd ,质量为m ,导轨上接有电源,使abcd 构成回路,回路电流恒为I ,cd 棒恰好静止.已知金属棒和导轨之间接触良好,不计摩擦阻力,重力加速度为g.求:(1)cd 棒所受磁场力;(2)cd 棒与ab 边之间的高度差h.解析:(1)对于金属棒cd ,在安培力与重力的作用下处于平衡状态,因此cd 棒所受磁场力F cd =mg ,方向竖直向上.(2)设cd 棒的有效长度为l ′,由cd 棒静止得:mg =BIl ′, 因此l ′=mgBI根据几何关系知cd 棒的有效长度l ′=l +2htanθ2解得h=mgBI-l 2tanθ2.答案:(1)mg,方向竖直向上(2)mgBI-l2tanθ210.(12分)如图所示,质量为m,电荷量为q的带电粒子,以初速度v沿垂直磁场方向射入磁感应强度为B的匀强磁场,在磁场中做匀速圆周运动.不计带电粒子所受重力.(1)求粒子做匀速圆周运动的半径R和周期T;(2)为使该粒子做匀速直线运动,还需要同时存在一个与磁场方向垂直的匀强电场,求电场强度E的大小.解析:(1)洛伦兹力提供向心力,有F洛=qvB=mv2R带电粒子做匀速圆周运动的半径R=mvBq匀速圆周运动的周期T=2πRv=2πmqB(2)粒子受电场力F电=qE,洛伦兹力F洛=qvB,粒子做匀速直线运动,则qE=qvB,电场强度E的大小E=vB.答案:(1)mvBq2πmqB(2)vB11.(14分)如图所示,MN、PQ是平行金属板,板长为L,两板间距离为L2,PQ板带正电,MN板带负电,在PQ板的上方有垂直纸面向里的匀强磁场.一个电荷量为q、质量为m的带负电的粒子以速度v0从MN板边缘沿平行于板的方向射入两板间,结果粒子恰好从PQ板左边缘飞进磁场,然后又恰好从PQ板的右边缘飞进电场.不计粒子重力,求:(1)两金属板间所加电场的场强大小;(2)匀强磁场的磁感应强度B的大小.解析:(1)如图所示,设粒子在平行金属板匀强电场中运动的时间为t ,由类平抛运动可知:L =v 0t L 2=12at 2 a =Eq m联立解得:E =mv 2qL.(2)粒子以速度v 飞出电场后射入匀强磁场做匀速圆周运动,由 qvB =m v 2R ,sin θ=L 2R ,sin θ=v yv ,v y =at联立解得:B =2mv 0qL .答案:(1)mv 20qL (2)2mv 0qL12.(14分)如图所示,空间中存在着水平向右的匀强电场,电场强度大小E =5 3 N/C ,同时存在着水平方向的匀强磁场,其方向与电场方向垂直,磁感应强度大小B =0.5 T .有一带正电的小球,质量m =1×10-6kg ,电荷量q =2×10-6C ,正以速度v 在图示的竖直面内做匀速直线运动,当经过P 点时撤掉磁场(不考虑磁场消失引起的电磁感应现象)取g =10 m/s 2,求:(1)小球做匀速直线运动的速度v 的大小和方向;(2)从撤掉磁场到小球再次穿过P 点所在的这条电场线经历的时间t.解析:(1)小球匀速直线运动时受力如图,其所受的三个力在同一平面内,合力为零,有qvB =q 2E 2+m 2g 2①代入数据解得v =20 m/s ②速度v 的方向与电场E 的方向之间的夹角满足 tan θ=qE mg③代入数据解得tan θ= 3 θ=60°④(2)撤去磁场,小球在重力与电场力的合力作用下做类平抛运动,如图所示,设其加速度为a ,有a =q 2E 2+m 2g 2m⑤设撤去磁场后小球在初速度方向上的分位移为x ,有 x =vt ⑥设小球在重力与电场力的合力方向上分位移为y ,有 y =12at 2⑦ tan θ=yx⑧联立④⑤⑥⑦⑧式,代入数据解得 t =2 3 s =3.5 s ⑨答案:(1)20 m/s 与电场方向成60°角斜向上 (2)3.5 s高考理综物理模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。