醇法大豆浓缩蛋白的改性专业技术研究进展

醇法大豆浓缩蛋白的改性专业技术研究进展
醇法大豆浓缩蛋白的改性专业技术研究进展

醇法大豆浓缩蛋白的改性技术研究进展

————————————————————————————————作者:————————————————————————————————日期:

醇法大豆浓缩蛋白的改性技术研究进展

xxx

(武汉轻工大学食品科学与工程学院食工xxx班xxx)

摘要:本文概括了醇法大豆浓缩蛋白的各种改性方法,通过对各种方法的作用机理进行分析,比较各个方法的优劣,以供大豆浓缩蛋白工业化借鉴。

关键词:醇法大豆浓缩蛋白;改性

1.前言

醇法大豆浓缩蛋白是以含水酒精淋洗低温脱脂豆粕,除去豆粕中的可溶性杂质而制得的大豆蛋白制品。醇法大豆浓缩蛋白制备工艺简单,无环境污染,且生产的大豆浓缩蛋白具有高蛋白、低脂肪、高纤维等优点,是优质的蛋白质来源。但是由于醇法大豆浓缩蛋白在加工过程中蛋白质与乙醇作用发生变性,蛋白质分子结构改变,氮溶解指数大大降低,造成在食品中的应用受到限制。不过研究发现,经过改性可以提高其功能特性,因此醇法大豆浓缩蛋白的改性技术得到管饭的研究,其改性方法多种多样且各有千秋。在此本文对国内外醇法大豆浓缩蛋白的应用现状和改性技术做出了整理和归纳。

2.醇法大豆浓缩蛋白的功能性及应用现状

大豆浓缩蛋白的功能性概括起来主要有十个方面:乳化性、吸油性、吸水性与保水性、凝胶性、溶解性、起泡性、被膜性、黏结性、调色性、附着性[1]。针对其应用领域不同,对大豆浓缩蛋白进行改性,使其具有不同的功能,在食品中发挥不同的作用。

分析发达国家大豆蛋白生产应用,浓缩蛋白、分离蛋白、组织蛋白三足鼎立,其中尤以浓缩蛋白所占市场份额最大,在此之中又以醇法大豆浓缩蛋白占据94%的绝对主导地位。按照食品加工的需求,开发出数十种大豆蛋白制品,广泛应用与各类食品中[2]。

3.醇法大豆浓缩蛋白的改性方法

大豆蛋白的功能性取决于蛋白质在液—液界面和气—液界面的吸附性质,而蛋白质吸附性质的强度主要受四个方面的影响:蛋白质的结构特性,如分子大小、形状、柔韧性、表面电荷、疏水性和溶解性;被吸附蛋白质层的特性,如厚度、流变学特性、静电荷及其分布、

水合程度等;溶液状况,如pH、离子强度、温度等;加工过程的有关参数,如剪切力、温度、相的组成及粘性、液滴大小等[3]。针对上述影响因素,可以采取不同手段对其进行修饰处理。大豆浓缩蛋白的改性方法主要有物理改性、化学改性、酶改性、生物工程改性。

3.1 物理改性

所谓物理改性就是利用物理方法(热、电、磁、机械剪切等)改变大豆蛋白的二、三、四级结构,从而达到改善大豆蛋白功能特性的目的。

物理改性具有费用低、无毒副作用、耗时短、对产品营养性能影响小等特点。

3.1.1 热改性

热改性是大豆蛋白在一定温度下加热一定时间,使其发生改性的方法。研究表明热改性对大豆蛋白的溶解性、粘性、凝胶性、乳化性及其稳定性均有一定程度的影响[4]。张梅等[5]研究物理改性对醇法大豆浓缩蛋白的影响时,发现90100℃加热4 min可将大豆浓缩蛋白的NSI提高到65%以上,乳化性及乳化稳定性等功能也有不同程度的改善。在工业化生产中,热处理时一般采用注入热蒸汽的方法,再经过减压降温迅速冷却,这种方法的优点在与能够使物料迅速达到预期温度,加热时间短,蛋白质改性可控程度强,在达到改善蛋白质性质的同时能较好的保持产品原有性状。

3.1.2 机械改性

机械改性是利用机械力力使大豆蛋白在高速运动的条件下受到剪切、碰撞等外力的作用,蛋白质的次级键断裂,再经过高温作用,使蛋白质分子重组,转变为大分子结构,类似于天然蛋白质结构[6],使蛋白质原有的一些功能特性得到恢复,经机械改性得到的蛋白质的结构与未加工的蛋白质结构有一定区别,两者在功能上也有很大的不同。华欲飞等[7]以FA25型均质机对醇法大豆浓缩蛋白进行物理改性研究,大豆浓缩蛋白溶出度有很大的提高。

3.1.3 超声改性

超声改性主要通过超声空化对溶液中悬浮的大豆蛋白粒子起强烈振荡、膨胀及崩溃作用,打断蛋白质的四级结构,释放小分子亚基或肽,提高大豆蛋白的溶解性。超声处理时间、功率不同以及在不同pH和离子强度下超声处理对大豆蛋白有不同程度的影响。朱建华等[8]

试验得出,采用频率25KHz、功率为400W超声波对大豆分离蛋白处理10min,能显著地提高蛋

白质的凝胶性。

3.1.4 微波改性

微波改性是利用高频率的微波场极化蛋白质分子,使其成为有序分子,暴露出分子内部的非极性基团,改善大豆浓缩蛋白的功能特性。但是由于微波的热作用,随着微波作用时间延长,蛋白质会由球形结构变为棒状结构,从而暴露出疏水基团,反而使蛋白质的溶解性降低。

3.2 化学改性

化学改性有广义与狭义之分。前者泛指所有利用化学手段,例如pH、盐、表面活性剂等对蛋白质进行结构修饰的方法,后者专指利用特定的化学试剂与蛋白质分子的特定基团反应,在大豆蛋白分子中引入各种功能基团,改变蛋白质的一级结构,从而改善大豆蛋白功能特性。

化学改性对于改善大豆蛋白的功能特性效果显著,但化学方法反应复杂、剧烈且副产物多,难以控制,残留化学修饰剂等诸多安全隐患,目前已较少采用。

3.2.1 酸碱作用下的改性

不同的酸碱水解条件可破坏大豆蛋白的四级结构甚至是二、三级结构,生成亚基、肽或氨基酸。

酸碱作用对大豆蛋白的结构改变较大,但对其功能性影响却有限。另外,酸、碱水解对设备要求较高,且反应条件不易控制,易发生羰氨褐变、胱赖反应等影响产品的质量。

3.2.2 酰基化改性

用酰化试剂与蛋白质分子的亲核基团(如氨基、苯环)进行反应,使大豆蛋白分子中引入新功能基团,酰化最常用的试剂为琥珀酸酐和乙酸酐。酰化后的蛋白质分子表面电荷下降,多肽链伸展,空间结构改变。酰基化增加了蛋白质的溶解性、乳化性。

3.2.3 磷酸化改性

磷酸化试剂选择性的与蛋白质侧链的活性基团相互作用,使蛋白质分子中引入磷酸基,使大豆蛋白质的表面电荷及电离度发生改变,从而达到改善蛋白质功能的目的。三氯氧磷和

三甲磷酸钠是磷酸化大豆蛋白最适宜的化学试剂。研究表明[9]磷酸化后蛋白质等电点发生漂移,溶解性、发泡性、乳化性、持水性得到不同程度的改善。

3.2.4 糖基化改性

大豆蛋白质的糖基化作用即将多羟基化合物以共价键与大豆蛋白分子上的氨基或羟基相结合的化学反应,最简单的例子是美拉德反应[10]。研究发现,随着糖基化程度的提高,所有类型的糖基化蛋白在等电点范围的溶解性皆有提高。溶解能力由糖配基的类型和分子量决定,糖配基分子量越大,糖基化蛋白的溶解能力也越大。

3.3 酶改性

酶改性是采用酶制剂对大豆浓缩蛋白进行有限水解,将大分子的蛋白质水解为肽,使蛋白质的表面活性剂作用增强,其溶解性、乳化性、起泡性等功能性得以改善。目前采用的酶制剂主要有动物蛋白酶、植物蛋白酶、微生物蛋白酶。

蛋白酶解作用条件温和,专一性强。在水解过程中通过对反应条件(酶种类、底物浓度、酶浓度、PH、温度、时间等)进行控制,可以得到水解度不同的产品,水解度不同其功能特性也不同,可应用的方向也不同。酶改性法对大豆浓缩蛋白的改性效果非常显著,通过水解度的控制可以制备不同功能性大豆浓缩蛋白产品。

蛋白质酶改性的缺点在于苦味肽使产品的口感和风味较差,可通过控制水解程度、活性炭脱苦、水解过程中加入掩盖剂等来控制苦味的产生。另外酶改性大豆浓缩蛋白的成本较高,这使得酶改性法与其他方法相比在价格方面没有优势,这也是酶制剂在大豆浓缩蛋白应用中受限制最主要的要原因。

3.4 生物工程改性

生物工程改性是应用植物育种和分子技术,改变蛋白质分子的结构,从而影响其功能特性。主要集中在以下几个方面[11-13]:改变大豆球蛋白的组成,提高其营养性;改变脂肪氧化酶同功酶组成,减少大豆产品的异味;改变脂肪合成酶系,使其脂类组成发生变化。

4 结语

综上所述,醇法大豆浓缩蛋白的改性方法很多,但受环保问题和食品安全问题影响,物

理改性成为对大豆浓缩蛋白改性的首选方法。酶改性虽然也环保节能,但对酶制剂的要求高,生产成本昂贵,只适合于生产高端产品。

目前,国内几家大型醇法大豆浓缩蛋白的生产企业采用的改性方法都以物理改性法为主,但均为引进技术,反映了我国在改性技术方面的不足,所以我国的研究者应该更好的将研究的内容与生产相结合,使大豆蛋白加工技术不断创新,将大豆蛋白产业推向新的发展。

参考文献

[1]刘景顺,黄纪念,谭本刚.大豆分离蛋白的改性研究(一)[J].郑州粮食学院学报,1997,

18(4):2-9.

[2]杨学军.醇法大豆浓缩蛋白的应用及产业化现状[J]. 科技创新与应用,2012(26).122

[3]宋宏哲,赵勇,白志明,醇法大豆浓缩蛋白的改性技术综述[J].粮油食品科技.

2008,16(2).30

[4]韩军,徐廷丽,茹梅.热水蒸煮大豆蛋白产品的功能性研究[J]. 粮食加工,

2004,(5):55-57.

[5]张梅.醇法大豆浓缩蛋白物理改性研究[J].粮食与油脂,2003,(8) :3-5.

[6]顾玉兴,华欲飞,陈莹.醇法大豆浓缩蛋白应用技术研究[J].中国油脂,1999,24(I):

48-50.

[7]华欲飞,黄友如,顾玉兴.酵变性大豆浓缩蛋白在物理改性条件下的溶出行为和机理

[J].食品与发酵工业,2004,30(8):125-129.

[8]朱建华,杨晓泉,雄犍.超声处理对大豆分离蛋白热致凝胶功能性质的影响[J].食品与

生物技术学报,2006,25(1):15-20.

[9]刘天,迟玉杰.大豆分离蛋白的磷酸化改性及功能性质的研究[J].食品与发酵工业,2004,

30(6):118-121.

[10]Srinivasan Damodaran.Food Protein [M].Food protein and Their Apllication Marcel

Dekker,INC Press,1997.

[11] Mazur B.et al. Gene Discovery Product development for Grain Quality Traits[J] .Science

USA.1999,285:372-375.

[12] Staswick D.E. Nielsen N.C.Characterization of a Soybean Cultivar Lacking Certain Glycinin

Subunits[J].Archives of Biochemistry and Biophysics,1983,223(1):1-8

[13]Davies C.S.et al.Flavor Improvement of Soybean Preparations by Cenetic Removal of

Lipoxygenase-2[J] . JAOCS.1987,64(10):1428-1433

大豆蛋白水解液脱苦的研究_百度文库.

中图分类号:TQ645.9+9;文献标识码:A;文章篇号:1007-2764(200401-0012-032 大豆蛋白水解液脱苦的研究 朱海峰 1 班玉凤 1 周克仲 2 (1.沈阳工业大学辽阳校区化工学院,辽阳 111003 (2.辽阳石油化纤公司,辽阳111003 摘要:大豆蛋白酶解常常会产生苦味,蛋白质水解物苦味肽的苦味是长期困扰其应用的问题。本文研究了酶法与微生物法对大豆蛋白水解液脱苦的效果。结果表明:采用端肽酶黑曲霉酸性蛋白酶(3000u/g与内切酶枯草杆菌碱性蛋白酶(Alcalase 2.4L协同作用水解大豆蛋白可有效降低水解液苦味,并且由酿酒酵母对水解液进一步处理后,大豆蛋白水解液的苦味降至更低。 关键词:大豆蛋白水解液;脱苦;黑曲霉酸性蛋白酶;酿酒酵母 大豆蛋白是植物性食物中氨基酸组成比例最合理的蛋白质。通过水解大豆蛋白制成蛋白肽混合物可以提高大豆蛋白的加工性能、营养性以及生理保健功能。但水解后,原来处于蛋白质内部的疏水性氨基酸就会暴露出来,使水解产物呈现出一定的苦味,限制了水解产物的最终应用,因此必须将苦味消去。脱苦的主要方法有选择性分离法、掩盖法、膜分离法、和酶法。文献中报道的在大豆蛋白水解液中多采用活性炭吸附法或活性炭吸附法与包埋法结合法进行脱苦 [1~2], 但在脱苦过程中营养成分会有所损失。本文在制取大豆蛋白肽工艺中采用酶法和微生物法来脱除大豆蛋白水解液的苦味。 1 材料与方法 1.1 实验原料及药品 枯草杆菌(Alcalase 碱性蛋白酶 2.4L :食品级 (酶活力 2.4AU/g ,丹麦 NOVO 公司出品;

黑曲霉酸性蛋白酶:食品级 (酶活力 3000u/g,北京房山酶制剂厂出品; 大豆蛋白(含水量 7.35%,蛋白质含量 69.6% :市售; 酿酒酵母:大连理工大学生化实验室提供; 其它试剂为国产试剂。 1.2 实验仪器 精密酸度计:pHS-2型,上海雷磁仪器厂; 台式离心机:80-1型, 江苏省金坛市医疗仪器厂; 超级恒温水浴:501型,上海市实验仪器厂; 水夹套式三口玻璃发酵罐:250ml ,自加工; 磁力搅拌器:78-1型,国华电器有限公司。收稿日期:2003-10-29 作者简介:朱海峰(1970~ ,男,讲师,研究方向为生物酶催化 1.3 工艺流程 大豆蛋白→酶解→灭酶→离心→水解液→脱苦→脱色→ 浓缩→喷雾干燥 1.4 实验方法 1.4.1 酶解反应 将大豆蛋白在 105℃下干燥至恒重,称取一定量上述原料加入发酵罐 (置于磁力搅拌器上 , 按照设计的底物浓度向发酵罐中补适量自来水。连接发酵罐和超级恒温水浴,启动磁力搅拌器和超级恒温水浴,然后在搅拌下以一定方式加入蛋白酶(单酶或双酶进行水解。水解结束后,水解液经过高温灭活(95℃下加热 5min ,在 4000 r/min的条件下离心 10min ,取适量上清液供分析用,同时小心取出全部残渣经充分干燥后用于测定降解率 HR 。 HR 定义为:(底物投料量-剩余残渣量 /底物投料量。 1.4.2 蛋白质水解度(HD 测定 根据文献[3~5]介绍的甲醛滴定法测定。水解度的定义为在水解过程中打开的肽键占蛋白质肽键总数的百分比。

蛋白油脂资料

蛋白 1、写出醇洗大豆浓缩蛋白的工艺流程(方框图)、主要工艺技术条件、主要设备 型式。 答:工艺流程如下: : 主要工艺技术条件:先将低温脱溶豆粕进行粉碎,用100目筛进行过筛,然后将 豆粕粉由输送装置送入浸洗器中,用60%-65%乙醇溶液,在温度50℃左右,流 量按1:7质量比进行一次醇洗,洗涤粕中可溶性糖分、灰分及部分醇溶性蛋白质, 浸提约1h ,经过浸洗的浆状物分离机进行分离,除去乙醇溶液后,进行二次醇 洗(浓度90%-95%),再分离后,将浆状物干燥既得浓缩蛋白产品。 主要设配型式:LB220链板式萃取器、ZPT250真空盘式脱溶机、SJM-II 双效降膜蒸发器、GBZ10刮板薄膜蒸发器、尾气水吸收塔。 2、写出醇洗大豆浓缩蛋白改性的工艺流程(方框图)、主要工艺技术条件、主要 设备型式。 答:工艺流程如下: 水 ↓ 主要工艺技术条件: 调制、均质:加水调配成 10%左右的蛋白溶液,加碱液调配其 pH 至10,每次 进料量为42 kg ,加水量为280 L ,均质乳化时间为30~40 min 。 瞬时高温处理:在 115~135 ℃的高温下约 35 s 左右。 冷却:冷却至40~50 ℃用泵打入超声波处理罐中。 超声波处理:超声强度为3600 W ,超声时间为35 min 。 豆粕粉 一次醇洗 固液分离 二次醇洗 固液分离 干燥 产品 浓缩蛋白 粉碎 调制 瞬时高温处理 冷却 高压均质 超声波处理 喷粉 均质

主要设备型式:均质乳化罐,超高温瞬时灭菌机,超声波提取罐,供料泵(防爆),高压均质泵(防爆),喷粉塔,蒸汽分配器,电控柜(防爆)。 3、水酶法和水剂法生产花生浓缩蛋白的工艺原理是什么?各有哪些优缺点?答:水酶法工艺原理:水酶法主要利用机械破碎的基础上,采用酶(蛋白酶、淀粉酶、果胶酶、维生素酶等)破碎花生的细胞壁,使蛋白质与油脂暴露出来,利用蛋白质的亲水力和油脂的疏水作用,是蛋白质溶解在水中,同时把油脂从破碎的细胞裂缝中排挤出来。采用离心分离设备,将悬浊液中的乳油和淀粉残渣分离出去,才能得到蛋白液。 水剂法工艺原理:借助机械的剪切力和压延力将花生的细胞壁破坏,使蛋白质与油脂暴露出来,利用蛋白质的亲水力和油脂的疏水作用,是蛋白质溶解在水中,同时把油脂从破碎的细胞裂缝中排挤出来。采用离心分离设备,将悬浊液中的乳油和淀粉残渣分离出去,才能得到蛋白液。 水酶法优缺点:处理条件温和,能同时得到纯度高、可利用性强的蛋白质等。但提取率还不太高,一定程度上造成蛋白质资源浪费,由于两性大分子物质存在,容易形成O/W乳状液,造成乳化,一旦形成稳定的乳状液,要破乳就非常困难。水剂法优缺点:出油率大体和压榨法相当,残油在5%~7%;设备简单,操作方便,由于不使用易燃溶剂,保证了食品的卫生和生产上的安全。由于工业化时间短,在工艺与设备上尚存一些问题。以水作溶剂蛋白质溶液在加工过程中容易变质。 4、写出碱溶酸沉法生产大豆分离蛋白的工艺流程、主要工艺技术条件、主要设备型式。 答:工艺流程如下: 豆粕→浸取→固-液分离→酸沉→分离→水洗→分离→中和→灭菌↓↓↓↓ 饲料←干燥←残渣乳清废水冷却 ↓ 产品←干燥工艺技术条件:浸取:加水量1:10;浸取温度55~60℃;pH值7.5~8.5;时间0.5~1h。酸沉:时间0.5h;pH值4.5

醇法制备大豆浓缩蛋白工艺研究

醇法制备大豆浓缩蛋白工艺研究 作者:林凤岩, 董季 作者单位:济宁市机械设计研究院,山东济宁,272023 本文读者也读过(10条) 1.魏冰.曹万新.杨帆.石珊珊.朱正友.吴生平醇法大豆浓缩蛋白生产关键技术开发与实践[会议论文]-2007 2.关海君.于殿宇.周凤超.王瑾.Guan Haijun.Yu Dianyu.Zhou Fengchao.Wang Jin醇法连续提取大豆浓缩蛋白及其副产物综合利用的生产实践[期刊论文]-大豆通报2007(6) 3.胡晓荣.谷克仁醇法大豆浓缩蛋白制取工艺条件的试验[会议论文]-2004 4.宋宏哲.赵勇.白志明.SONG Hong-zhe.ZHAO Yong.BAI Zhi-ming醇法大豆浓缩蛋白的改性技术综述[期刊论文]-粮油食品科技2008,16(2) 5.樊永华.华欲飞.FAN Yong-hua.HUA Yu-fei氨作碱性剂对醇法大豆浓缩蛋白改性[期刊论文]-粮食与油脂 2007(12) 6.李华栋.夏慧玲.徐刚大豆浓缩蛋白的提取及产品质量评价[期刊论文]-江西科学2004,22(4) 7.宋宏哲.赵勇.王哲.白志明醇法大豆浓缩蛋白的改性技术浅析[会议论文]-2007 8.张术臻.唐金泉.崔海东年产5000 t功能性大豆浓缩蛋白投资分析[期刊论文]-粮油食品科技2009,17(2) 9.白志明.田娟娟醇法大豆浓缩蛋白全程质量控制体系的建立[期刊论文]-黑龙江粮食2006(4) 10.杨敏.田少君.周瑞宝.郭兴凤.YANG Min.TIAN Shao-jun.ZHOU Rui-bao.GUO Xing-feng大豆浓缩蛋白物理改性研究进展[期刊论文]-粮油食品科技2007,15(6) 本文链接:https://www.360docs.net/doc/6c2722890.html,/Conference_6566543.aspx

大豆蛋白纤维

大豆纤维的探究及应用 院系:外语系 学号:201313060124 姓名:司淼

目录 大豆纤维 大豆纤维释义 大豆纤维简介 大豆蛋白纤维 大豆纤维纱线 大豆纤维的面料 大豆纤维染整 大豆纤维服饰 大豆纤维衣服正确洗涤方法

大豆纤维释义 1. Soy Fiber 属于膳食纤维,在减肥过程中可以产生饱足感,而减少食物的摄取,但它们会干扰其他营养素的吸收,因此不建议单独食用。 2. SB=soybean SB=soybean 大豆纤维 3. soybean fibers soybean fibers大豆纤维 大豆纤维简介 大豆蛋白纤维属于再生植物蛋白纤维类,是以榨过油的大豆豆粕为原料,利用生物工程技术,提取出豆粕中的球蛋白,通过添加功能性助剂,与腈基、羟基等高聚物接枝、共聚、共混,制成一定浓度的蛋白质纺丝液,改变蛋白质空间结构,经湿法纺丝而成. 其有着羊绒般的柔软手感,蚕丝般的柔和光泽,棉的保暖性和良好的亲肤性等优良性能,还有明显的抑菌功能,被誉为“新世纪的健康舒适纤维”。 经过工业化规模生产,大豆纤维从纺纱到织造到染整的相关生产技术均已相对成熟,其价格已从初期的每吨7万多元,降至3.5万元左右,已被下游应用企业所认可,产业链结构也逐步形成. 大豆纤维是以脱去油脂的大豆豆粕作原料,提取植物球蛋白经合成后制成的新型再生植物蛋白纤维,是由我国纺织科技工作者自主开发,并在国际上率先实现了工业化生产的高新技术,也是迄今为止我国获得的唯一完全知识产权的纤维发明。 在成为纤维之前,要从大豆中提取蛋白质与高聚物为原料,采用生物工程等高新技术处理,经湿法纺丝而成。这种单丝,细度细、比重轻、强伸度高、耐酸耐碱性强、吸湿导湿性好。有着羊绒般的柔软手感,蚕丝般的柔和光泽,棉的保暖性和良好的亲肤性等优良性能,还有明显的抑菌功能,被誉为“新世纪的健康舒适纤维”。 以50%以上的大豆纤维与羊绒混纺成高支纱,用于生产春、秋、冬季的薄型绒衫,其效果与纯羊绒一样滑糯、轻盈、柔软,能保留精纺面料的光泽和细腻感,增加滑糯手感,也是生产轻薄柔软型高级西装和大衣的理想面料。 用大豆纤维与真丝交织或与绢丝混纺制成的面料,既能保持丝绸亮泽、飘逸的特点,又能改善其悬垂性,消除产生汗渍及吸湿后贴肤的特点,是制作睡衣、衬衫、晚礼服等高档服装的理想面料。 此外,大豆纤维与亚麻等麻纤维混纺,是制作功能性内衣及夏季服装的理想面料;与棉混纺的高支纱,是制造高档衬衫、高级寝卧具的理想材料;或者加入少量氨纶,手感柔软舒适,用于制作T恤、内衣、沙滩装、休闲服、运动服、时尚女装等,极具休闲风格。 大豆蛋白纤维是由华康集团董事长李官奇先生历经十年研究开发成功,获得世界发明专利金奖,李官奇先生的这项发明为纺织业带来了一场新的革命,在纤维材料发展史上和人造

2019李官奇在国内首次发明大豆蛋白纤维语文

李官奇在国内首次发明大豆蛋白纤维 我国河南濮阳华康生物化学工程联合集团公司总经理 李官奇潜心研究了10年,投资7000多万元,经历了艰难的研究历程,终于把再生植物纤维——大豆蛋白纤维试纺成功,并首次进行了工业化生产。大豆蛋白纤维的研制成功并投入生产,无论在新世纪人类衣着消费领域,还是对农业产品结构调整现代化进程方面都具有重大的现实意义。这项科研成果向深层次推进和产业化开发,必将成为中国世界纤维史上又一重大贡献。何谓大豆蛋白纤维?大豆蛋白纤维是一种再生植物蛋白纤维。再生蛋白纤维一种是从天然动物牛乳中提炼出的蛋白质,一种是从天然植物(如花生、玉米、大豆等)中提炼出的蛋白质溶解液经纺丝而成。再生蛋白纤维的研究历史较早,大约在19世纪末和20世纪初国外就开始了研究。1935年,意大利科学家、1938年,英国ICI公司、1939年,CornProductRefining公司分别探讨从牛乳、花生提炼蛋白质,从玉米大豆粕中提炼蛋白质再进行纺丝。20世纪40年代初,美国、日本研制了酪素纤维,1945年,美国、英国研究了大豆蛋白纤维,1948年,美国通用汽车公司从豆粕中提取了大豆纤维,但大多因为纤维性能差,无法进行纺织加工而中断研究。1969年,日本东洋纺公司开发牛奶蛋白纤维,实行了工业化生产,由于100公斤牛奶只能提

取2公斤蛋白质,使得制造成本过高,至今无法大量推广使用。而我国的大豆蛋白质纤维制造技术不仅成本低,而且纤维性能优良,具有很高的经济价值。据有关数据分析,1公斤大豆可以榨出0.17公斤的大豆油。榨油后,剩下的0.83公斤的大豆粕中含有40%的有效蛋白质。以往大豆粕主要用于牲畜的饲料,而现在,从大豆粕中提取蛋白质与高聚物共混制成纺丝原液后,再纺成大豆蛋白纤维,还剩余40%的大豆饼粕仍可用于饲料。从价格分析,1吨大豆粕市场售价2500元,经提炼蛋白质400公斤,加入600公斤的高聚物可制成1吨大豆蛋白纤维,其成本价为2.5万元左右,市场销售价为6—8万元左右。也就是说,1吨大豆粕可提高40%的新使用价值,可带来4万元的经济效益。这就意味着目前全国大豆总产量1350万吨可带来巨大的经济效益。不仅如此,农业作物结构也将发生重大调整。从1990年起,李官奇开始湿法小试,搞了一年半,包括自制设备,干法纺丝实验也搞了二年半,这其中也包括自制设备;干喷湿纺法又进行了一年。最后,根据3种小试工艺数据结果确定了湿法的中试工艺、路线。他还根据中试工艺要求设计制造了中试设备,安装了1条生产线,进行了3年的中试。在这3年当中,他大小实验做了200多次。实验的重点是对动物蛋白质、植物蛋白质,特别是大豆蛋白纤维物理性能和指标进行创新。他通过各种牵伸倍数,

5000吨年大豆浓缩蛋白工艺设计

前言 浓缩蛋白质的生产主要是以低温脱脂豆粕为原料,通过不同的加工方法,除去低温粕中的可溶性糖分、灰分以及其他可溶性的微量成分,从而使蛋白质的含量从45%-50%提高到70%左右。所采用的乙醇洗涤法工艺原理是:一定浓度的乙醇溶液,可使大豆蛋白质变性,失去可溶性。根据这一特性,利用含水乙醇对豆粕中的非蛋白质可溶性物质进行浸出、洗涤,剩下的不溶物经脱溶、干燥即可获得浓缩蛋白。醇法大豆浓缩蛋白的特点在于产品的风味、色泽好,蛋白质得率高,生产过程中无污水排放,避免了环境污染,且更有利于对产品进行综合利用。

目次 1. 工艺设计说明 (1) 1.1 国内外现状及发展趋势 (1) 1.2 课题意义 (2) 1.3 设计说明 (3) 2. 工艺设计计算 (6) 2.1 物料衡算 (6) 2.2 热量衡算 (8) 3. 设备选型及明细 致谢.......................................................................................................................... 参考文献..........................................................................................................................

1.工艺设计说明 1.1 国内外现状及发展趋势 大豆蛋白加工是最近10多年来我国大豆加工利用的新方向。其加工工艺和传统大豆加工工艺的区别在于大豆经过浸出法提取油脂后, 豆粕在低温条件下脱除溶剂, 大豆蛋白质基本不变性。利用此低温脱溶豆粕(俗称白豆片)可以进一步生产出大豆蛋白粉、大豆组织蛋白、大豆浓缩蛋白、大豆分离蛋白等大豆蛋白产品。我国现今已有30 余家生产大豆蛋白的企业, 可以生产大豆组织蛋白、大豆浓缩蛋白、大豆分离蛋白。由于美国是大豆的主要产地, 所以其大豆加工业也是规模最大的。根据网上数据统计, 目前在美国就有381家企业涉及大豆的加工。世界上加工大豆蛋白的一些企业如ADM、DuPont Protein Technologist (即以前的保利来蛋白公司, 现被DuPont 公司收购, 该公司已经在我国收购多家企业并开始生产分离蛋白)、Central Soya、International ProteinCorporation 等,其大豆蛋白生产品种基本覆盖了已经成功开发的所有品种, 最为重要的是有些公司的产品已经形成序列化、专一化, 有不同类型的蛋白质产品来满足不同的食品加工需要。据不完全统计, 仅ADM和DuPont公司的蛋白产品就达几十种, 产品的应用范围几乎覆盖所有的日常加工食品, 同时一些产品的针对性强, 有自己的特定使用对象, 而这个问题正是我国大豆蛋白加工所存在的问题。从蛋白质产品生产厂商数目上看, 大豆蛋白的生产以豆奶类、脱脂豆粉、浓缩蛋白、分离蛋白、组织化蛋白的生产较多, 而对水解蛋白的生产较少。它的营养价值与牛乳接近, 并且还存在以下几个优势: 无乳糖、无胆固醇、富含不饱和脂肪酸、富含异黄酮、含纤维素。在注重健康的今天得到美国消费者逐步认可,消费观念发生了改变所致。 在对脱脂豆粉进行加工处理时, 产品的风味质量得到改善, 特有的豆腥味被去, 大豆中含有的所谓“胀气因子”——大豆低聚糖也同时被除去, 产品中蛋白质的含量与原料脱脂豆粉相比明显提高(一般不低于70% ) , 通常1吨脱脂豆粉可以生产出750kg的浓缩蛋白。蛋白产品的性状与处理方法有关。脱脂豆粉热变性后水浸提处理, 产品的溶解性能低、色泽也较深; 醇浸提法生产出的产品溶解度虽然低(NSI为10%~15% ) , 但可以保留大豆蛋白的一些功能性质, 如粘度、

大豆蛋白纤维染色研究要点

大豆蛋白纤维应用资料常熟市江河天绒丝纤维有限责任公司 大豆纤维散纤染色注意点 (2007-3-12) 一、填棉(装笼): 国内厂家采用的散纤染色设备以国产常温常压开口设备为主,也有部分采用高温高压缸。填棉均匀性直接影响到前处理和染色的均匀性。最好采用自动填棉、温水加湿、一次压实的工艺,若人工填棉,不能大块装笼,边温水冲浸边填棉,四周均匀压实,包布包好,(包布可采用涤纶网眼布,如蚊帐布)确保笼体与笼盖之间无间隙,避免漂液短路和渗透不匀。 若人工填棉,纤维在热水浸洗或精练后,应开盖检查纤维缩水情况,及时补加纤维,或将笼盖贴紧纤维层,并盖好包布,防止喷笼。 二、前处理 1.主要进行精练,或精练加漂白,即加入精练剂、纯碱、分散剂后升温至90℃保温30分钟,然后三次水洗,温度递减,避免急剧降温使纤维收缩,残存在沟槽与微孔中的油剂、杂质不易被清除,会干扰染色。 2.浴比1:7-15;用水总硬度<50ppm,水质硬度、碱度高时加入适量分散剂。 3.染中深色时,对本色纤维只需进行精练去油去杂,染浅色、深色(黑色)时,对本色纤维需进行精练+漂白。 4.前处理工艺: (1)本色纤维精练: 还原剂3%owf(二氧化硫脲) 纯碱 3.6%owf(PH=10~10.5) 精练剂0.72%owf 分散剂(水质硬度、碱度高时酌情加入) 90℃×30~45min 升温速度:1.5℃/min

(2)本色纤维精练+漂白 精练同上 三次水洗(逐渐降温、充分水洗) 漂白: 27.5%H 2O 2 36%owf 水玻璃(泡化碱) 7.2%owf 纯碱 2.4%owf(PH=10~10.5) 95℃×60min 升温1.5℃/min 三次水洗(逐渐降温、充分水洗) 5.由于大豆纤维本身湿模量低,遇热水夯实变得紧密,纤维层密度在0.4左右,比棉/羊毛等要大将近一倍,使染液渗透较困难,在还原、氧化漂时也可以加入渗透剂,改善漂液的渗透性。 三、染色 大豆纤维上含有-NH2,-COOH,-OH,可用活性染料、酸性染料、中性染料、阳离子染料、直接染料、还原染料、分散染料、硫化染料染色,从实验结果看,阳离子染料、分散染料和直接染料对大豆纤维的染色牢度较差,生产上很少使用,还原和硫化染料因为染色条件的强碱性会损伤蛋白质,不适用。 酸性染料和直接染料可染,但湿摩擦牢度、水洗牢度较差,目前,主要选择使用双活性基团的棉用活性染料,干湿磨擦牢度4级。 (1)活性染料染大豆纤维,主要是与蛋白质上的氨基、羧基反应,同时与PV A 上部分极性基团反应,上色速率快(比粘胶还快),染色时须缓慢升温,如<1℃/min(一般控制在0.5℃/min); (2)染色温度60-70℃时得色量最高; (3)双组分材质比单一组分的纤维在吃色均匀性上更难掌握,因此,须通过小试,确定盐/碱投放量和频率。元明粉(盐)、纯碱的用量根据颜色深、浅来确定(以下为参考值):

大豆蛋白酶解产物功能特性的研究进展#(优选.)

大豆蛋白酶解产物功能特性的研究进展 摘要:总结了大豆蛋白酶解产物功能特性,主要阐述了大豆蛋白酶解产物的生物活性肽功能特性、轻度酶解产物功能特性以及苦味肽,并作出了展望。 关键词:大豆蛋白酶解产物生物活性肽轻度酶解苦味肽功能特性 由于大豆蛋白的高营养价值和低成本使它在食品工业 上的应用日益广泛,在过去十年里,大豆蛋白开始应用到咖啡增白剂、乳品饮料、蛋黄酱和可食用膜等产品当中。然而,大豆蛋白本身的溶解性,热稳定性,乳化性和起泡性限制了它在某些食品中的应用。通过蛋白酶水解来改善大豆蛋白的功能特性是目前比较可行的方法之一,以下将对酶解所产生的不同分子量的产物特性进行具体阐述。 1 生物活性肽功能特性 大豆活性肽的分子量范围大多在500~2000之间,大部分可以直接被人体吸收。在较宽的pH范围内有很好的溶解性,持水能力比原蛋白有很大提高。其生物活性主要有以下几个方面。 1.1 降血脂和胆固醇 国外专家研究指出,增加膳食中大豆活性肽含量,可以

降低血清胆固醇浓度。在小鼠喂饲试验中,添加大豆活性肽有利于降低极低密度脂蛋白合成,从而促进肝脏载脂蛋白的合成,防止脂肪在肝脏的积累,促进脂肪的运输和代谢。 1.2 抗氧化活性 大豆活性肽的抗氧化活性明显高于大豆蛋白本身。酶解是提高大豆蛋白抗氧化性的有效方法之一,大豆活性肽的抗氧化性是多肽氨基酸序列的一种本质特性。不同的酶,其水解专一性不同,导致水解产物的抗氧化性也不同。大豆活性肽对小鼠体内脂肪过氧化抑制作用强于酪蛋白活性肽,在对红血球抗氧化防御能力的提高方面与酪蛋白活性肽相当,可增强红血球对自由基的攻击抵抗作用。 1.3 低过敏原性 很多食物中由于过敏原的存在,会导致一些特异性过敏反应,如一些皮肤病、呼吸道疾病甚至过敏性休克就是由于这个原因所引起。大豆蛋白中也存在着过敏原,但已有研究表明,蛋白降解是降低或消除过敏原的有效方法。通过酶免疫测定法对大豆活性肽的抗原性进行测定,结果指出,活性肽抗原性比大豆蛋白降低1%~2%。 1.4 降血压 血压在血管紧张素转换酶(ACE)的作用下进行调节,血管紧张素I不具有活性,在ACE作用下可以转变为血管紧张素Ⅱ。血管紧张素Ⅱ具有收缩血管平滑肌的功能,从而引

花生蛋白质在食品中的应用

花生蛋白质在食品中的应用 继大豆蛋白被人们充分认识和深度利用后,花生蛋白也开始引起人们的重视。花生蛋白质是一种完全蛋白质,含有人体必需的八种氨基酸。花生蛋白质可消化率高,极易被人体吸收利用,其消化系数可达90%以上。花生蛋白质具有诱人食欲的香味,简单地烘焙和磨碎成粉就可以用于多种食品加工,既可作为食品的主要成分,又可作为食品添加剂,还可兼用。这种特殊的优点,标志着花生蛋白在食品中占有十分重要的地位。花生蛋白质中10%为水溶性蛋白,其余90%为碱溶性蛋白,由花生球蛋白和伴花生球蛋白两部分组成,花生蛋白的等电点在pH4.5左右。花生球蛋白的分子量约为30000,等电点为pH5~5.2;伴花生球蛋白的分子量由2×104~2×106的6~7个单体组成,等电点为pH3.9 ~4。花生蛋白产品多种多样,其中以粉状花生蛋白为主要产品,如花生粉、浓缩蛋白、分离蛋白等。花生粉又包括全脂、半脱脂和脱脂花生粉。花生蛋白质溶解性PDI值为54%~90%,持水能力2.1~4.8 克水/克蛋白,吸油能力0.98~1.3克油/克蛋白,起泡度130%~ 160%。花生蛋白的制取一般有两条途径:第一,以花生仁作原料,采用水溶法同时分离出油脂和蛋白质;第二,利用低温浸出或压榨取油后的饼粕作原料制取花生粉,或进一步做浓缩蛋白和分离蛋白。由于采用工艺和操作条件不同,可生产出几种不同的花生蛋白产品。全脂花生粉是由花生仁作原料直接加工而成的一种粉状产品,蛋白质含量30 %;脱脂花生粉是由直接浸出或预榨浸出粕生产的,蛋白质含量65%。浓缩蛋白是花生脱脂后,只除去少量水溶性糖分、灰分和其他微量成分,而淀粉和纤维素随凝聚的蛋白质集中为一体,蛋白质含量为70%。分离蛋白是利用碱溶酸沉原理,不仅除去低分子水溶性糖分,还除去纤维素、淀粉等成分而制得的,其纯度高,蛋白质含量达90%以上。在加工过程中,大部分磷脂也集中在花生蛋白粉中,这不仅提高了营养价值,而且对其溶解性也有利。花生蛋白目前在食品工业及人们的日常膳食中得到初步应用。为最佳地发挥花生蛋白的功能特性,科学地选择应用领域和配方,以下简要介绍花生蛋白产品的应用方法。作添加剂。利用花生蛋白的香味和溶解特性,即溶解度大,水溶程度高,可生产代乳品、饮料等强化食品,或单独冲调,或与奶粉等混合冲调饮用,可形成稳定的胶体溶液,产生令人易于接受的愉快风味。在此类制品中用量浓缩蛋白为10%~15%,分离此类制品中用量浓缩蛋白为10%~50%,分离蛋白为5%~30%。冰淇淋、焙烤食品、儿童食品等不需要很高溶解性的食品,其添加量浓缩蛋白为4%~10 %,分离蛋白为2%~7%。脱脂花生粉适用于饼干、面包、蛋糕之类食品,其添加量饼干为10%~15%,面包为4%~8%,蛋糕为15%~ 25%。同时应适当增加疏松剂量,可提高膨松性和柔软性,延缓老化期。将浓缩蛋白1%~2%,分离蛋白0.5%~1.5%,或脱脂花生粉 1.5%~3.5%,掺入面粉中制作馒头、面条,耐高温,滑爽有咬劲。作吸油保水剂。利用花生蛋白的吸水性、保水性、吸油性、乳化性等特性,将花生蛋白添加到火腿、香肠、午餐肉等畜禽肉制品中,可保持肉汁,促进脂肪吸收,使油水界面张力降低,乳化的油滴被制品表面的蛋白质所稳定,形成保护层,可防止乳化状态被破坏。从而使制品能够实现组织细腻、口感良好、风味诱人、富有弹性。作发泡稳定剂。花生蛋白粉经酶法或碱法处理后,是很好的发泡剂,可广泛应用于糖果、中西糕点、冰淇淋等食品中。例如在充气糖果生产中,加入1%~2%的花生蛋白粉,控制温度在35℃左右,浓度 25%左右,同样可以起到蛋白干和明胶的作用。还可作为汽水的发泡稳定剂,用于汽

醇法大豆浓缩蛋白的改性专业技术研究进展

醇法大豆浓缩蛋白的改性技术研究进展

————————————————————————————————作者:————————————————————————————————日期:

醇法大豆浓缩蛋白的改性技术研究进展 xxx (武汉轻工大学食品科学与工程学院食工xxx班xxx) 摘要:本文概括了醇法大豆浓缩蛋白的各种改性方法,通过对各种方法的作用机理进行分析,比较各个方法的优劣,以供大豆浓缩蛋白工业化借鉴。 关键词:醇法大豆浓缩蛋白;改性 1.前言 醇法大豆浓缩蛋白是以含水酒精淋洗低温脱脂豆粕,除去豆粕中的可溶性杂质而制得的大豆蛋白制品。醇法大豆浓缩蛋白制备工艺简单,无环境污染,且生产的大豆浓缩蛋白具有高蛋白、低脂肪、高纤维等优点,是优质的蛋白质来源。但是由于醇法大豆浓缩蛋白在加工过程中蛋白质与乙醇作用发生变性,蛋白质分子结构改变,氮溶解指数大大降低,造成在食品中的应用受到限制。不过研究发现,经过改性可以提高其功能特性,因此醇法大豆浓缩蛋白的改性技术得到管饭的研究,其改性方法多种多样且各有千秋。在此本文对国内外醇法大豆浓缩蛋白的应用现状和改性技术做出了整理和归纳。 2.醇法大豆浓缩蛋白的功能性及应用现状 大豆浓缩蛋白的功能性概括起来主要有十个方面:乳化性、吸油性、吸水性与保水性、凝胶性、溶解性、起泡性、被膜性、黏结性、调色性、附着性[1]。针对其应用领域不同,对大豆浓缩蛋白进行改性,使其具有不同的功能,在食品中发挥不同的作用。 分析发达国家大豆蛋白生产应用,浓缩蛋白、分离蛋白、组织蛋白三足鼎立,其中尤以浓缩蛋白所占市场份额最大,在此之中又以醇法大豆浓缩蛋白占据94%的绝对主导地位。按照食品加工的需求,开发出数十种大豆蛋白制品,广泛应用与各类食品中[2]。 3.醇法大豆浓缩蛋白的改性方法 大豆蛋白的功能性取决于蛋白质在液—液界面和气—液界面的吸附性质,而蛋白质吸附性质的强度主要受四个方面的影响:蛋白质的结构特性,如分子大小、形状、柔韧性、表面电荷、疏水性和溶解性;被吸附蛋白质层的特性,如厚度、流变学特性、静电荷及其分布、

大豆分离蛋白改性的研究进展

基金项目:国家自然科学基金资助项目(20704044); 作者简介:李海萍(1984-),女,硕士研究生; 3通讯联系人,E 2mail :cesyjz @https://www.360docs.net/doc/6c2722890.html,. 大豆分离蛋白改性的研究进展 李海萍,易菊珍3 (中山大学化学与化学工程学院高分子研究所,广州 510275) 摘要:首先介绍了大豆分离蛋白的基本组成与结构,然后分别从化学改性、酶改性和物理改性三个方面对 大豆分离蛋白改性进行了综述。其中,在化学改性方面,针对大豆分离蛋白中含有的氨基、羧基、巯基等不同活性基团的改性原理及研究现状进行了介绍。在酶改性方面,主要介绍了谷胺酰胺转胺酶、木瓜蛋白酶等对大豆分离蛋白的改性作用。在物理改性方面,介绍了共混、加热改性等目前研究较多的方法。通过化学、物理和酶等方法等来引起分子结构的微变化,可使人们获得各种符合预期的性能优良的产品,开发其在医药、化工等领域的应用潜力。 关键词:大豆分离蛋白;结构;改性 引言近年来,由于全球石油危机及环境污染问题,以石油为原料、不可降解的聚合物材料的广泛使用引起 了大家的担忧[1],而且塑料垃圾掩埋后,有毒单体和小分子低聚物的释放又会污染地下水资源 ,给人类和 生物体健康构成威胁。因此,人们致力于研究通过可再生农作物开发环境友好、可生物降解的材料。大豆分离蛋白(s oybean protein is olate ,SPI )是一种重要的植物蛋白,是每年都可进行大量种植的可再生资源,而且具有无毒、可降解等优点,在材料领域具有广泛的应用前景。大豆蛋白包含多种功能团,如氨基、羟基、巯基、酚基、羧基等。这些活性基团可作为化学改性或交联的位点,来合成各种功能可与以石油为原料的材料相当或更优的新型聚合物。因此,本文介绍了大豆分离蛋白的基本组成与结构,并对基于大豆分离蛋白功能基团的改性研究进行了综述。 1 大豆分离蛋白的基本组成及结构 大豆分离蛋白(S oybean Protein Is olate ,SPI )是以低变性脱脂豆粕为原料,采用现代化的加工技术制取的一种蛋白质含量较高的功能性食品添加剂或食品原料。其主要组成元素为C 、H 、O 、N 、S 和P ,还含有少量的Zn 、Mg 、Fe 和Cu 。大豆分离蛋白中蛋白质含量高达90%以上,含有多种人体必需氨基酸,其主要 氨基酸含量如表1所示[2]。 SPI 主要包括β 2大豆伴球蛋白(7S 球蛋白,β2conglycinin )和大豆球蛋白(11S 球蛋白,glycinin )两种成分[3]。其中β2大豆伴球蛋白是由α’2(69kDa )、β2(68kDa )和β2(42kDa )三种亚基组成的分子量约为~180kDa 的三聚体糖蛋白,三种亚基分子量不同文献报道有所差别[4]。大豆球蛋白是由五种分子量为54kDa ~64kDa 的亚基(G 12G 5)组成的分子量约为~320kDa 的六角形化合物。各个亚基的基本结构通式为A 2SS 2B ,其中A 表示分子量为34~44kDa 的酸性多肽,B 表示分子量约为20kDa 的碱性多肽,A 和B 由 二硫键(SS )连接。Utsumi [5]、Maruyama 等[6]利用基因重组技术并通过X 射线晶体衍射法推导出大豆球蛋 白和β2大豆伴球蛋白结构模型,如图1所示。

醇法大豆浓缩蛋白质量标准的建立

醇法大豆浓缩蛋白质量标准的建立与分析 戴劲松,宋宏哲,田娟娟 (黑龙江省双河松嫩大豆生物工程有限责任公司,哈尔滨150001) 摘要:本文对醇法大豆浓缩蛋白的原料检验标准、制程检验标准以及产品企业标准的建立和原理分别予以阐述,为规范化生产提供一个参考依据。 关键词:醇法大豆浓缩蛋白;原料检验标准;制程检验标准;成品内控标准 醇法大豆浓缩蛋白是以含水酒精淋洗低温豆粕除去可溶性杂质,制得的蛋白质干基含量在65%以上的商业产品。从上个世纪60年代投入商业化运行至今,醇法大豆浓缩蛋白的应用领域不断拓宽,生产规模逐渐扩大,包括美国的Archer Daniels Midland和Central Soya、以色列的Solbar Hatzor、巴西的Ceval Alimentos、印度的Ruchi等公司,以及国内的金海、松嫩、三维、万德福、谷神等公司均实现工业化连续生产,产能和能耗等指标控制在理想的水平,醇法大豆浓缩蛋白在技术和设备水平不断发展的带动下,产品和市场已趋于成熟,进入快速发展时期。 连续化生产醇法大豆浓缩蛋白对原料、过程的控制直接影响着终产品的成本和质量,所以制定企业的内控标准,是保证醇法大豆浓缩蛋白产品质量,提升企业竞争力的最有效的手段之一。企业的内控标准分为原料检验标准、制程检验标准以及产品企业标准三个部分,本文针对醇法大豆浓缩蛋白的工艺和产品特点,结合公司的实际运行情况,分别对三部分标准予以阐述,希望对醇法大豆浓缩蛋白生产经营的规范化产生积极的推动作用。 1原(辅)料验收标准 醇法大豆浓缩蛋白的原辅料主要是低温豆粕和食用酒精,连续化生产对低温豆粕的蛋白质含量、粉末度、水分、粗脂肪、含杂量等指标要求较高,在原有国家标准的基础上应有所提高;而食用酒精一般符合国家标准的就可满足生产需求,如果级别提升,对各残留物的控制更有利,但成本会相应增加。 1.1低温豆粕的内控标准 用于醇法大豆浓缩蛋白生产的低温豆粕的质量标准见表1。 表1原料低温豆粕的质量指标 项目标准项目标准感官同国标杂质,% ≤0.10 蛋白含量(干基),% ≥54 粗脂肪(干基),% ≤ 1.0 水分,% ≤10 粗纤维(干基),% ≤ 3.5 氮溶解指数(NSI),% ≥70 灰分(干基),% ≤ 6.5 粉末度(60目通过率),% ≤ 4 含砂量,% ≤0.1

化学纤维的发展历史

化学纤维的发展历史 一.世界化学纤维发展简史 自古以来,人类的生活就与纤维密切相关。5-10万年前,随着体毛的退化,人类开始用兽皮、树皮和草叶等天然衣料遮体保温。以后,人类掌握了将植物纤维进行分离精制的技术。1万年前,人类已能直接使用羊的绒毛。在中国、埃及和南非的早期文化中,都有一些关于用天然纤维纺纱织布的记载,这可以追溯至公元前3000年。例如,亚麻早在新石器时代就已在中欧使用。棉在印度的历史之久犹如欧洲使用亚麻。蚕丝公元前2640年就已在我国被发现,商朝的出土文物证明,当时高度发达的织造技术中已经使用了多种真丝。羊毛也已在新石器时代末在中亚细亚开始使用。因此可以说,现在作为天然纤维广泛使用的麻、棉、丝、毛等,在公元前就已在世界范围内得到了应用。 与天然纤维悠久的历史相比,化学纤维的历史还很短。尽管Hook在1664年于“Micrographia”一书中已经就提出化学纤维的构思,但由于当时科学家无法了解纤维的基本结构,因此在开发化学纤维时显得茫然无措,这导致这一美好的设想在200多年后才成为现实。 1846年,德国人F.Sch?nbein通过用硝酸处理木纤维素制成硝酸纤维素。1855年,G.Audemars获得了世界化学纤维发展史上的第一个专利。他提出用硝酸处理桑树枝的韧皮纤维,溶解于醚和酒精混合物后通过钢喷嘴进行抽丝。1862年,法国人M.Ozanam提出了使用喷丝头纺丝的设想。1883年,英国人J.W.Swan 1

取得了用硝化纤维素的醋酸溶液纺丝、随后进行炭化生产白炽灯丝的专利。他还认为这种丝可用于纺织,而把它称为“人造丝”。同年,法国人Chardonnet 获得了用硝酸纤维素制造化学纤维的最著名的专利,并于1891年在Besancon以工业规模生产硝酯纤维(硝酸纤维素纤维),这标志着世界化学纤维的工业化开始。随后,各种形式的人造纤维素纤维(包括铜氨纤维、粘胶纤维和醋酯纤维)相继问世。而硝酯纤维由于纺织用性能不如粘胶纤维而发展缓慢。 1857年德国人Schweizer发明了制备铜氨纤维素的方法。1890年Despassie 提出了由铜氨溶液制备纤维素纤维的方法。德国在Aachen附近的Oberbruch首先用铜氨法生产纤维素纤维,并且于1899年成立了Enka公司的前身Glanzstoff公司,实现了铜氨纤维的工业化。以后Bemberg公司进一步发展了铜氨法。铜氨纤维由于要以价格较高的铜氨作溶剂,在成本上无法与比粘胶纤维竞争,因此只用作少数纺织品和人工肾。 1891年,三个英国人C.F.Cross、E.J.Bevan和C.Beadle发明了把纤维素溶解成溶液的新方法——粘胶法,并于1892年在英国和德国取得专利。德国H.V.Donnersmarck公司取得了在中欧地区使用此专利的许可,于1901年建厂,但直到1910年仍不能正常生产。英国Courtaulds公司购买了这一权利,于1904年首先实现了工业化,成为世界第一个大规模生产的化学纤维品种。在第一次世界大战将结束时,人们就用切断粘胶长丝的方法生产短纤维。1921年,德国Premnitz工厂生产出了可用于纺织的粘胶短纤维。在此期间,还开发了工业用的高强力粘胶长丝。 与此同时,1869年,德国人P.Schützenberger以实验室规模研究成功使用醋 2

醇法浓缩蛋白调研报告

醇法浓缩蛋白调研报告 目录 一、大豆浓缩蛋白概述 (1) 1.1大豆浓缩蛋白主要成分 (1) 1.2大豆浓缩蛋白主要应用 (1) 二、醇法浓缩蛋白概述 (2) 2.1大豆浓缩蛋白生产工艺比较 (2) 2.2醇法浓缩蛋白生产工艺及要点 (3) 2.3醇法浓缩蛋白性能 (6) 三、醇法浓缩蛋白国内外主要生产企业及产品 (7) 3.1山东三维大豆蛋白有限公司 (8) 3.2阳霖油脂集团 (9) 3.3谷神生物科技集团有限公司 (9) 3.4哈高科大豆食品有限责任公司(哈高科) (10) 3.5宁波索宝 (10) 3.6秦皇岛金海食品公司 (11) 3.7杜邦集团 (12) 四、醇法浓缩蛋白应用及市场前景 (12)

一、大豆浓缩蛋白概述 1.1大豆浓缩蛋白主要成分 大豆浓缩蛋白(Soy protein concentrate,简写SPC)是用高质量的豆粕除去水溶性或醇溶性非蛋白部分后,所制得的含有65%(干基)以上蛋白质(N ×6.25)的大豆蛋白产品。主要成分表见表1。 表1 大豆浓缩蛋白主要成分表 项目指标项目指标粗蛋白68-72% 氮溶解指数(NSI)≥75%碳水化合物16-20% 总菌落cfu/g ≤5000/g 水分6-10% 沙门氏菌阴性/25g 粗脂肪0.5-1% 大肠杆菌阴性/g 粗纤维3-5% 酵母及霉菌≤100/g 灰分4-6% 致病菌不得检出 1.2大豆浓缩蛋白主要应用 浓缩大豆蛋白具有较强的吸水、吸油性及较高的营养价值,作为食品辅料主要用于肉制品等食品生产加工,起到改善肉制品等食品的口感和营养的作用,在西方国家肉制品等食品生产业中普遍使用已有四十多年历史。随着人们的生活水平提高及社会发展,应用水平和范围有所扩展,大豆浓缩蛋白(SPC)的应用主要体现在以下几个方面: A、典型SPC的应用产品有粉状、粒状两种。粉状用于食品增加蛋白质含量;粒状基本上是用来增强食品的组织结构,两种产品都能增强食品的保水性。在肉制品中,容留肉汁、吸收脂肪,改善口感。SPC比脱脂豆粉SPF的蛋白质含量高,这就使其广泛应用于要求蛋白质含量高及功能性好的食品中。SPC 使产品改善风味,消除了胀气现象,由于糖份低,褐变反应少、颜色浅,这就使SPC更适宜禽类和鱼类制品中。 B、功能性浓缩蛋白(FSPC)的应用 FSPC产品可以替代奶蛋白、酪蛋白和分离蛋白(SPI)。在肉糜制品中,由于FSPC比SPC乳化性和持水性好,在法兰克福香肠,波洛尼香肠和肉糜中广泛应用。在肌肉制品、面包、糕饼、油炸面圈、乳制品、婴儿食品,调制咖啡、人造奶油等也被广泛应用。FSPC与注射盐水后的肉混合形成一种稳定的乳化状态,而不吸收溶解肌球型肉蛋白。因此,

大豆蛋白纤维项目

2万吨/年大豆蛋白纤维项目 一、简述 大豆蛋白纤维是一种可以替代化学纤维、天然纤维(如棉、麻、毛、蚕丝等)并能与各种纤维混纺的新型纺织品原料。属于再生植物蛋白纤维类,它主要原料来自于自然界的大豆粕,原料丰富且具有可再生性,不会对资源造成掠夺性开发。在大豆蛋白纤维生产过程中,由于所使用的辅料、助剂均无毒,且大部分助剂和半成品纤维均可回收重新使用。提取蛋白后留下的残渣还可以作为饲料,其生产过程不会对环境造成污染,被专家誉为“21世纪健康舒适型纤维”。大豆蛋白纤维的性能优越,具有天然纤维和化学纤维的众多优点,不仅具有单丝细度细,比重轻,强伸度高,耐酸耐碱性好,光泽好,吸湿性好等特点,还具有羊绒般柔软的手感,蚕丝般柔和的光泽,棉纤维的吸湿和导湿性,羊毛的保暖性等优良服用性能,可部分替代羊绒和真丝,是生产各种高档纺织品的理想材料。 1、大豆蛋白纤维的种类 2、大豆蛋白纤维的纤维结构 不光滑,表面沟槽导湿。截面呈不规则哑铃型,海岛结构,

有细微孔隙,透气导湿。 3、大豆蛋白纤维物理指标 4、大豆蛋白质纤维与其它纺织纤维性能比较

5、大豆纤维耐酸碱性能和耐虫蛀,耐霉菌性能比较 6、产品特点 这种特制的面料柔软滑爽、透气爽身、悬垂飘逸,具有独特的润

肌养肤、抗菌消炎穿着功能。采用这种纤维生产的织物具有以下4个特点。 ①外观华贵。服装面料在外观上给人们的感觉体现在光泽、悬垂性和织纹细腻程度3个方面。大豆蛋白纤维面料具有真丝般的光泽,非常怡人;其悬垂性也极佳,给人以飘逸脱俗的感觉;用高支纱织成的织物,表面纹路细洁、清晰,是高档的衬衣面料。 ②舒适性好。大豆蛋白纤维面料不但有优异的视觉效果,而且在穿着舒适性方面更有着不凡的特性。以大豆蛋白纤维为原料的针织面料手感柔软、滑爽,质地轻薄,具有真丝与山羊绒混纺的感觉,其吸湿性与棉相当,而导湿透气性远优于棉,保证了穿着的舒适与卫生。由于它属于天然织物,又含有丰富蛋白质,因此其吸水性、透气性较一般针织品优越,与人体接触不会发生不良反应,更不会像一些化学纤维织物使穿着者有发痒等过敏现象。 ③物理机械性能好。这种纤维的单纤断裂强度在 3.0cN/dtex以上,比羊毛、棉、蚕丝的强度都高,仅次于涤纶等高强度纤维,而纤度已可达到0.9 dtex。目前,利用1.27 dtex的棉型纤维在棉纺设备上已纺出6 dtex的高品质纱,可开发高档的高支高密面料。大豆蛋白纤维的初始模量偏高,沸水收缩率低。在常规洗涤下不必担心织物的收缩,抗皱性也非常出色,且易洗、快干。 ④保健功能性。大豆蛋白纤维与人体皮肤亲和性好,且含有多种人体所必须的氨基酸,具有良好的保健作用。在大豆蛋白纤维纺丝工

相关文档
最新文档