2019年浙江省温州市龙湾二模数学试卷

合集下载

2019温州市高职考二模数学试卷

2019温州市高职考二模数学试卷

2019年浙江省普通高职单独考试温州市二模《数学》试卷本试卷共三大题.全卷共4页.满分150分,考试时间120分钟.注意事项:1.所有试题均需在答题卷上作答,未在规定区域内答题,每错一个区域扣卷面总分1分,在试卷和草稿纸上作答无效.2.答题前,考生务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题卷上. 3.选择题每小题选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.非选择题用黑色字迹的签字笔或钢笔将答案写在答题卷上.4.在答题卷上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.一、单项选择题(本大题共20小题,1-10小题每题2分,11-20小题每题3分,共50分) (在每小题列出的四个备选答案中,只有一个是符合题目要求的,错涂,多涂或未涂均不得分) 1. “b a <”是“22bc ac <”的( ▲ )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2. 已知集合{}4,3,2,1,0=A ,且{}4,3=P A ,{}5,4,3,2,1,0=P A ,则集合=P ( ▲ )A .{}4,3B .{}5C .{}5,4,3D .{}5,4,3,2,1,03. 已知不等式012>+-ax x 的解集为R ,则实数a 的取值范围为( ▲ )A .()()+∞-∞-,22,B .()2,∞-C .()2,2-D .R4. 下列函数中,在其定义域内为增函数的是( ▲ )A .xy 2019=B .20192+=x yC .x y -=2019D .xy 2019=5. 若函数⎩⎨⎧>+≤-=0,120,1)(2x x x x x f ,则=-))2((f f ( ▲ )A .3B .3-C .7D .86. 在平行四边形ABCD 中,若a AC =,b BD =,则=AB ( ▲ )A .b a +B .b a -C .b a 2121+ D .b a 2121- 7. 已知21sin =α,将α的终边顺时针旋转90得到角β,则=βcos ( ▲ ) A .21-B .21C .21±D .23 8. 关于直线l 和平面βα,,下列命题正确的是( ▲ )A .若βαα⊥,//l ,则β⊥lB .若βαα//,//l ,则β//lC .若βα⊂l l ,//,则βα//D .若βα⊂⊥l l ,,则βα⊥9. 如图所示,直线l 的斜率为( ▲ )A .45B .2-C .1-D .110. 下列直线中,与直线012=+-y x 平行的是( ▲ )A .012=++y xB .12+=x yC .x y 2=D .012=++y x11. 若0<x ,要使函数xx x y 482++=取到最大值,则x 必须等于( ▲ )A .1-B .2-C .4-D .412. 如果函数c bx x x f ++=2)(对任意的实数x 都有)1()1(x f x f -=+,那么( ▲ )A .)3()0()3(f f f <<-B .)3()3()0(f f f <-<C .)3()0()3(-<<f f fD .)3()3()0(-<<f f f13. 有一个“神奇魔盒”,输入一个数据,经过“神奇魔盒”就会输出一个对应的新数据(对应关系如下表).当输入时,输出对应的新数据是( ▲ )A .721B .723C .728D .72914. 已知135)30sin(=+α,则=+)210sin(α( ▲ ) A .1312B .1312-C .135D .135-15. 已知[]π2,0∈x ,则21sin >x 的解集为( ▲ ) A .⎥⎦⎤⎝⎛2,0πB .⎪⎭⎫⎝⎛65,6ππ C .⎪⎭⎫⎝⎛ππ2,65 D .⎥⎦⎤⎝⎛2,6ππ 16. 函数)6sin(3cos )6cos(3sin x x x x y -+-=ππ的最大值与最小正周期分别为( ▲ )A .2,πB .1,πC .1,2π D .2,2π17. 将5本不同的杂志全部分给4个同学,每个同学至少有一本的分法有( ▲ )A .480种B .240种C .180种D .144种18. 某人玩飞行棋,某时距离终点还剩10步,那么投掷两次骰子,正好到达终点的概率为( ▲ )A .361 B .61 C .181 D .121 19. 直线32-=x y 与圆16)1()4(22=-+-y x 的位置关系是( ▲ )A .相切B .相交C .相离D .不确定(第9题图)20. 已知抛物线x y 42-=上一点M 到焦点F 的距离为3,则M 的横坐标是( ▲ )A .1B .1-C .2D .2-二、填空题(本大题共7小题,每小题4分,共28分) 21. 函数xx y -++=31)3(log 2的定义域为 ▲ . 22. 在等比数列{}n a 中,已知11=a ,5642a a a -=,则=7a ▲ . 23. 计算:()=+⎥⎦⎤⎢⎣⎡-100lg 32323 ▲ .24. 已知912sin =α,⎪⎭⎫⎝⎛∈4,0πα,则=-ααcos sin ▲ . 25. 圆3)1()2(22=++-y x 关于直线x y =对称的圆的方程是 ▲ . 26. 若椭圆的两个焦点把长轴三等分,则该椭圆的离心率为 ▲ . 27. 用平面截体积为π3500的球,截得小圆的半径4r =,则球心到截面的距离等于 ▲ . 三、解答题(本大题共8小题,共72分,解答应写出必要的文字说明、演算步骤)28. (本题满分7分)在二项式nx x ⎪⎭⎫ ⎝⎛-22的展开式中,所有项的二项式系数之和为128,求展开式中含5x的项的系数.29. (本题满分8分)在ABC ∆中,已知4:3:2sin :sin :sin =C B A ,⑴判断三角形的形状;(4分)⑵若153=∆ABC S ,求三角形的三边长.(4分) 30. (本题满分9分)已知51sin =α,31)cos(-=+βα,且βα,都是锐角,求: ⑴αcos 的值;(3分) ⑵βcos 的值.(6分)31. (本题满分9分)已知直线0173:=+-y x l ,圆016:22=--+x y x C .⑴求过圆心,垂直于直线l 的直线方程;(4分)⑴在圆C 上求一点P ,使点P 到直线l 的距离最短,并求最短距离.(5分)32. (本题满分9分)如图,正三棱柱111C B A ABC -的底面边长为4,高为6,截面D C A 11把正三棱柱分成两部分,已知4=BD .求:⑴二面角111B C A D --的大小;(5分) ⑴两部分中体积大的部分的体积.(4分)33. (本题满分10分)如图所示,在边长为5的等边ABC ∆上,点F E D ,,分别是边CA BC AB ,,上的动点,设x CF BE AD ===(50<<x ),阴影部分面积为S . ⑴写出S 关于x 的函数关系式;(5分)⑴当x 为何值时,阴影部分的面积S 最大,最大值是多少?(5分)34. (本题满分10分)如图所示,用长度相等的小木棒搭“塔式三角形”,搭第1个三角形需要3根小木棒,搭第2个三角形需要9根小木棒,搭第3个三角形需要18根小木棒,……,搭第n 个三角形需要n a 根小木棒,得到数列{}n a . ⑴求5a 和n a ;(4分) ⑴若na b nn =,求数列{}n b 的前n 项和n S .(6分)35. (本题满分10分)已知双曲线的渐近线方程为x y 21±=,焦点为)0,5(±,直线l 与双曲线交于B A ,两点,若点)1,2(P 平分线段AB ,求: ⑴双曲线的标准方程;(4分) ⑴直线l 的方程.(6分)(第33题图)(第32题图)(第34题图)2019年浙江省普通高职单独考试温州市二模答案及评分参考一、单项选择题(本大题共20小题,1-10小题每题2分,11-20小题每题3分,共50分) (在每小题列出的四个备选答案中,只有一个是符合题目要求的,错涂,多涂或未涂均不得分) 1—5 BCCDC 6—10 DBDDC 11—15BDCDB 16—20 BBDBD 二、填空题(本大题共7小题,每空格4分,共28分)21.)3,3(- 22.1或64 23.5 24.322- 25.3)2()1(22=-++y x 26.3127.3 三、解答题(本大题共8小题,共72分,解答应写出必要的文字说明、演算步骤) 28.(本题满分7分)解:由1282=n,得7=n . ………………………………………………… 2分r rr r rr r r x C x x C T 314772712)1(2)(--+⋅⋅⋅-=⎪⎭⎫ ⎝⎛-⋅⋅=,令 5314=-r ,得3=r . ………………………………………………… 3分所以,55373342802)1(x x C T -=⋅⋅⋅-=,所以,展开式中含5x 的项的系数为280-. ……………………………… 2分 29.(本题满分8分)30.(本题满分9分)解:⑴因为α为锐角,则562511cos 2=⎪⎭⎫⎝⎛-=α, …………………… 3分⑵322311)sin(2=⎪⎭⎫⎝⎛--=+βα, ………………………………… 3分[]αβααβααβαβsin )sin(cos )cos()(cos cos +++=-+=5132256231⨯+⨯⎪⎭⎫ ⎝⎛-=156222-=. ……………………………………………………… 3分31.(本题满分9分)解:⑴圆C 的标准方程:10)3(22=+-y x ,圆心)0,3(C ,半径10=r ……………… 2分设所求直线方程为03=++D y x ,由直线过圆心)0,3(C ,则9-=D则所求直线方程为093=-+y x . ………………………………………………………… 2分 ⑵由圆心)0,3(C 到直线0173:=+-y x l 的距离1021020)3(1170322==-++-=d . …… 2分 由⎩⎨⎧=--++-=0169322x y x x y ,解得⎩⎨⎧==32y x 或⎩⎨⎧-==34y x 所以,圆C 上到直线l 的距离最短的点P 的坐标为)3,2(. …………………………… 2分1010102=-=-r d ,所以,圆C 上的点到直线l 的最短距离为10. ……………………………………… 1分 32.(本题满分9分)解:⑴如图所示,取11C A 的中点O ,连接O B DO 1,. 11C A DO ⊥ ,111C A O B ⊥1DOB ∠∴为二面角111B C A D --的平面角. ……………… 2分 在O DB Rt 1∆中,21=DB ,321=O B , 33322tan 1==∠∴DOB , 301=∠∴DOB 即二面角111B C A D --的大小为30. ……………………… 3分 ⑵336423242131632421111111=⨯⨯⨯⨯-⨯⨯⨯=-=--C B A D C B A ABC V V V 棱锥棱柱 . …… 4分33.(本题满分10分) 解:⑴依题意得 360sin )5(21⨯⋅-⋅=x x S ………… 4分 )5(433x x -⋅=所以x x S 43154332+-= )50(<<x . …… 1分 ⑵当()2524334315=-⨯-=x 时, 163752525433max =⨯⨯=y . 答:当x 为25时,阴影部分的面积S 有最大值,最大值是16375. ………………………… 5分34.(本题满分10分)解:⑴45)54321(35=++++⨯=a ………………………………………………… 2分 )1(232)1(3)321(3+=⨯+⨯=+++⨯=n n n n n a n ………………………… 2分 ⑵)1(23+==n n a b n n . ……………………………………………………………… 1分 23)1(23)2(231=+-+=-+n n b b n n , 所以,数列{}n b 是公差23=d 的等差数列,且32231=⨯=b , ………………… 2分 )3(43232)1(3+=⨯-+=n n n n n S n . 所以,数列{}n b 的前n 项和公式)3(43+=n n S n . ……………………………… 3分35.(本题满分10分)解:⑴由题意得 5=c ,双曲线的焦点在x 轴上 由21=a b ,可得b a 2=. 由2552222==+=b b a c ,可得52=b ,20422==b a . ……………………… 3分所以,双曲线的标准方程为152022=-y x . ………………………………………… 1分⑵设直线l 与双曲线交于),(),,(2211y x B y x A 两点,点)1,2(P 是AB 中点.可知 421=+x x ,221=+y y ,由点B A ,在双曲线20422=-y x 上,联立方程组⎪⎩⎪⎨⎧=-=-20420422222121y x y x …………………………………………………… 2分 ))((4))((12121212y y y y x x x x +-=+-,21)(421211212=++=--y y x x x x y y ,即21=k . ………………………………………………………… 2分 可得直线l 方程为)2(211-=-x y ,即02=-y x . …………… 2分。

2019年浙江省温州市中考数学模拟试卷(二)(解析版)

2019年浙江省温州市中考数学模拟试卷(二)(解析版)

2019年浙江省温州市中考数学模拟试卷(二)一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.计算:﹣4÷2的结果是()A.﹣8B.8C.﹣2D.22.某校欲举办“校园吉尼斯挑战赛”,对该校全体学生进行“你最喜欢的挑战项目”的问卷调查(每人都只选一项),并将结果绘制成如图所示统计图,则学生最喜欢的项目是()A.足球B.篮球C.踢毽子D.跳绳3.某零件的立体图如图所示,其主视图是()A.B.C.D.4.某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是()A.中位数是4,平均数是3.75B.众数是4,平均数是3.75C.中位数是4,平均数是3.8D.众数是2,平均数是3.85.如图,四边形ABCD是⊙O的内接四边形,已知∠BCD=110°,则∠BOD的度数为()A.70°B.90°C.110°D.140°6.下列选项,可以用来证明命题“若a2>b2,则a>b”是假命题的反例是()A.a=3,b=﹣2B.a=﹣2,b=1C.a=0,b=1D.a=2,b=17.如图,某同学在距离建筑中心B点m米的点A处,测得旗杆底部点C的仰角为α,旗杆顶部点D的仰角为β,则旗杆CD的长为()A.B.m tanβ﹣m tanαC.D.m sinβ﹣m sinα8.如图,两个全等的等腰直角三角形按如图所示叠放在一起,点A,D分别在EF,BC边上,AB ∥DE,BC∥EF.若AB=4,重叠(阴影)部分面积为4,则AE等于()A.2B.C.D.9.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB 边重合,如图所示:按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转……连续经过六次旋转.在旋转的过程中,当正方形和正六边形的边重合时,点B,M间的距离可能是()A.0.5B.0.7C.﹣1D.﹣110.如图,正△AOB的边长为5,点B在x轴正半轴上,点A在第一象限,反比例函数y=(x>0)的图象分别交边AO,AB于点C,D,若OC=2BD,则实数k的值为()A.4B.C.D.8二、填空题(本题有6小题,每小题5,共30分)11.(5分)因式分解:2a2﹣2=.12.(5分)方程x2+2x=0的解为.13.(5分)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,根据题意可列出方程组.14.(5分)现在很多家庭都使用折叠型西餐桌来节省空间,两边翻开后成圆形桌面(如图1).餐桌两边AB和CD平行且相等(如图2),小华用皮带尺量出AC=1.2米,AB=0.6米,那么桌面翻成圆桌后,桌子面积会增加平方米.(结果保留π)15.(5分)为了节省材料,某农场主利用围墙(围墙足够长)为一边,用总长为80m的篱笆围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等,则能围成的矩形区域ABCD的面积最大值是m2.16.(5分)如图,在R△ABC中,∠CAB=90°,D是BC边上一点,连结AD,作△ABD的外接圆,将△ADC沿直线AD翻折,若点C的对应点E落在的中点,CD=,则BD的长为.三、解答题(本题有8小题,共80分17.(10分)(1)计算:2sin30°﹣(1+)0+﹣1(2)先化简,再求值(x+1)2﹣x(x﹣2),其中x=.18.(8分)如图,在正方形ABCD中,G是CD边上任意一点连结BG,作AE⊥BG于点E,CF⊥BG于点F.(1)求证:BE=CF.(2)若BC=5,CF=3,求EF的长.19.(8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(1,3),B(3,4),请在所给网格上按要求画整点三角形.(1)在图1中画一个△OBP,使得点P的横纵坐标之和等于5,且点在它的外部.(2)在图2中画个△OBQ,使得点Q的横、纵坐标的平方和等于17,且点A在它的内部.20.(8分)为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组):(1)报名参加课外活动小组的学生共有人,将条形图补充完整;(2)扇形图中m=,n=;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.21.(10分)如图,AC切半圆O于点A,弦AD交OC于点P,CA=CP,连结OD (1)求证:OD⊥OC.(2)若OA=3,AC=4,求线段AP的长.22.(10分)如图,已知二次函数图象与x轴交于点A(﹣1,0),B(3m,0),交y轴于点C(0,3m)(m>0).(1)当m=2时,求抛物线的表达式及对称轴.(2)过OB中点M作x轴垂线交抛物线于点D过点D作DF∥x轴.交抛物线于点E,交直线BC于点F,当时,求m的值.23.(12分)某通讯经营店销售AB两种品牌儿童手机今年进货和销售价格如表:已知A型手机去年1月份销售总额为3.6万元今年经过改造升级后每只销售价比去年增加400元.今年1月份A型手机的销售数量与去年1月份相同,而销售总额比去年1月份增加50%.(1)今年1月份A型手机的销售价是多少元?(2)该店计划6月份再进一批A型和B型手机共50只且B型手机数量不超过A型手机数量的2倍,应如何进货才能使这批儿童手机获利最多?(3)该店为吸引客源,准备增购一种进价为500元的C型手机,预算用8万元购进这三种手机若F只,其中A型与B型的数量之比为1:2,则该店至少可以购进三种手机共多少只?24.(14分)如图,在矩形ABCD中,AB=8,BC=6,点E,F分别从点B,D同时出发沿AB延长线和射线DA以相同的速度运动,连结EF,交射线DB于点G.连结CG.(1)当BE=2时,求BD,EG的长.(2)当点F在线段AD上时,记∠DCG为∠1,∠AFE为∠2,那么的值是否会变化?若不变,求出该比值;若变化,请说明理由.(3)在整个运动过程中,当△DCG为等腰三角形时,求BE长.2019年浙江省温州市中考数学模拟试卷(二)参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.计算:﹣4÷2的结果是()A.﹣8B.8C.﹣2D.2【分析】根据有理数的除法法则计算可得.【解答】解:﹣4÷2=﹣2,故选:C.【点评】本题主要考查有理数的除法,解题的关键是掌握有理数的除法法则.2.某校欲举办“校园吉尼斯挑战赛”,对该校全体学生进行“你最喜欢的挑战项目”的问卷调查(每人都只选一项),并将结果绘制成如图所示统计图,则学生最喜欢的项目是()A.足球B.篮球C.踢毽子D.跳绳【分析】找出扇形统计图中所占百分数最大的项目即可.【解答】解:由图可知,足球所占的百分比为32%,高于其它的三个项目,所以学生最喜欢的项目是足球.故选:A.【点评】本题考查了扇形统计图的知识,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图是用整个圆表示总数,用圆内各个扇形的大小表示各部分数量占总数的百分数.通过扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.用整个圆的面积表示总数(单位1),用圆的扇形面积表示各部分占总数的百分数.3.某零件的立体图如图所示,其主视图是()A.B.C.D.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:观察图形可知,某零件的立体图如图所示,其主视图是.故选:B.【点评】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.某小组5名同学在一周内参加家务劳动的时间如表所示,关于“劳动时间”的这组数据,以下说法正确的是()A.中位数是4,平均数是3.75B.众数是4,平均数是3.75C.中位数是4,平均数是3.8D.众数是2,平均数是3.8【分析】根据众数、平均数和中位数的概念求解.【解答】解:这组数据中4出现的次数最多,众数为4,∵共有5个人,∴第3个人的劳动时间为中位数,故中位数为:4,平均数为:=3.8.故选:C.【点评】本题考查了众数、中位数及加权平均数的知识,解题的关键是了解有关的定义,难度不大.5.如图,四边形ABCD是⊙O的内接四边形,已知∠BCD=110°,则∠BOD的度数为()A.70°B.90°C.110°D.140°【分析】根据圆内接四边形的性质求出∠A,根据圆周角定理计算,得到答案.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A=180°﹣∠BCD=70°,由圆周角定理得,∠BOD=2∠A=140°,故选:D.【点评】本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.6.下列选项,可以用来证明命题“若a2>b2,则a>b”是假命题的反例是()A.a=3,b=﹣2B.a=﹣2,b=1C.a=0,b=1D.a=2,b=1【分析】将答案依次代入验证即可.【解答】解:a=﹣2,b=1,∴a2=4,b2=1,∴a2>b2成立,但是a<b,故选:B.【点评】考查假命题的判断方法.正确进行实数的运算是解题的关键.7.如图,某同学在距离建筑中心B点m米的点A处,测得旗杆底部点C的仰角为α,旗杆顶部点D的仰角为β,则旗杆CD的长为()A.B.m tanβ﹣m tanαC.D.m sinβ﹣m sinα【分析】解直角三角形即可得到结论.【解答】解:在Rt△ABD中,∵AB=m,∠BAD=β,∴BD=AB•tanβ=m tanβ,在Rt△ABC中,∵AB=m,∠BAC=α,∴BC=AB•tanα=m tanα,∴CD=BD﹣BC=m tanβ﹣m tanα,故选:B.【点评】本题考查了直角三角形的应用,解答本题的关键是利用三角函数解直角三角形.8.如图,两个全等的等腰直角三角形按如图所示叠放在一起,点A,D分别在EF,BC边上,AB ∥DE,BC∥EF.若AB=4,重叠(阴影)部分面积为4,则AE等于()A.2B.C.D.【分析】根据等腰直角三角形的性质解答即可.【解答】解:∵两个全等的等腰直角三角形按如图所示叠放在一起,AB∥DE,BC∥EF,∴△AEG是等腰直角三角形,∴AE=EG,∴GD=4﹣AE,∵GD•AE=4,∴AE=2,故选:A.【点评】此题考查等腰直角三角形,关键是根据等腰直角三角形的性质解答.9.已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB 边重合,如图所示:按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转……连续经过六次旋转.在旋转的过程中,当正方形和正六边形的边重合时,点B,M间的距离可能是()A.0.5B.0.7C.﹣1D.﹣1【分析】如图,在这样连续6次旋转的过程中,点M的运动轨迹是图中的红线,观察图象可知点B,M间的距离大于等于2﹣小于等于1,由此即可判断.【解答】解:如图,在这样连续6次旋转的过程中,点M的运动轨迹是图中的红线,观察图象可知点B,M间的距离大于等于2﹣小于等于1,当正方形和正六边形的边重合时,点B,M间的距离可能是1或﹣1,故选:D.【点评】本题考查正六边形、正方形的性质等知识,解题的关键作出点M的运动轨迹,利用图象解决问题,题目有一定的难度.10.如图,正△AOB的边长为5,点B在x轴正半轴上,点A在第一象限,反比例函数y=(x>0)的图象分别交边AO,AB于点C,D,若OC=2BD,则实数k的值为()A.4B.C.D.8【分析】根据等边三角形得出B(12,0),进一步求得C的坐标(2,2),根据待定系数法即可求得k的值;【解答】解:∵等边三角形AOB的边长为5,边OB在x轴的正半轴上,点A在第一象限,∴B(5,0),∴OB=5,作CE⊥OB于E,DF⊥OB于F,∴CE∥DF,∴∠OEC=∠BFD=90°,∵△AOB是正三角形,∴∠AOB=∠ABO=60°,∴△COE∽△DBF,∴==,设C(a,b),∴OE=a,CE=b,∵OC=2BD,∴==2,∴BF=a,DF=b,∴OF=OB﹣BF=5﹣b,∴D(5﹣b,b),∵反比例函数y=(x>0)的图象分别交边AO,AB于点C,D,∴k=ab=(5﹣b)•b,解得a=2,∴OE=2,在Rt△COE中,∠AOB=60°,∴CE=OE•tan60°=2,∴C(2,2),∴k=2×2=4,故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,反比例函数的性质,等边三角形的性质,求得C点的坐标是解题的关键.二、填空题(本题有6小题,每小题5,共30分)11.(5分)因式分解:2a2﹣2=2(a+1)(a﹣1).【分析】原式提取2,再利用平方差公式分解即可.【解答】解:原式=2(a2﹣1)=2(a+1)(a﹣1).故答案为:2(a+1)(a﹣1).【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.12.(5分)方程x2+2x=0的解为0,﹣2.【分析】本题应对方程进行变形,提取公因式x,将原式化为两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题.【解答】解:x2+2x=0x(x+2)=0∴x=0或x+2=0∴x=0或﹣2故本题的答案是0,﹣2.【点评】本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.13.(5分)《九章算术》是中国传统数学的重要著作,方程术是它的最高成就.其中记载:今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?译文:今有人合伙购物,每人出8钱,会多3钱;每人出7钱,又会差4钱,问人数、物价各是多少?设合伙人数为x人,物价为y钱,根据题意可列出方程组.【分析】设合伙人数为x人,物价为y钱,根据“每人出8钱,会多3钱;每人出7钱,又会差4钱”,即可得出关于x,y的二元一次方程组,此题得解.【解答】解:设合伙人数为x人,物价为y钱,依题意,得:.故答案为:.【点评】本题考查了由实际问题抽象出二元一次方程组以及数学常识,找准等量关系,正确列出二元一次方程组是解题的关键.14.(5分)现在很多家庭都使用折叠型西餐桌来节省空间,两边翻开后成圆形桌面(如图1).餐桌两边AB和CD平行且相等(如图2),小华用皮带尺量出AC=1.2米,AB=0.6米,那么桌面翻成圆桌后,桌子面积会增加平方米.(结果保留π)【分析】首先将圆形补全,设圆心为O,连接DO,过点O作OE⊥AD于点E,进而得出AD,EO的长以及∠1,∠AOD的度数,进而得出S弓形AD面积=S扇形AOD﹣S△AOD求出即可.【解答】解:将圆形补全,设圆心为O,连接DO,过点O作OE⊥AD于点E,由题意可得出:∠DAB=∠ABC=90°,∵AC=1.2米,AB=0.6米,∴∠ACB =30°,∵餐桌两边AB 和CD 平行且相等,∴∠C =∠1=30°,∴EO =AO =0.3m ,∴AE =×=,∴AD =, ∵∠1=∠D =30°,∴∠AOD =120°,∴S 弓形AD 面积=S 扇形AOD ﹣S △AOD=﹣×0.3×,=π﹣,∴桌面翻成圆桌后,桌子面积会增加()平方米.故答案为:.【点评】此题主要考查了勾股定理以及扇形面积计算以及三角形面积求法等知识,熟练掌握特殊角的三角函数关系是解题关键.15.(5分)为了节省材料,某农场主利用围墙(围墙足够长)为一边,用总长为80m 的篱笆围成了如图所示的①②③三块矩形区域,而且这三块矩形区域的面积相等,则能围成的矩形区域ABCD 的面积最大值是 300 m 2.【分析】根据三个矩形面积相等,得到矩形AEFD面积是矩形BCFE面积的2倍,可得出AE=2BE,设BE=a,则有AE=2a,表示出a与2a,进而表示出y与x的关系式,并求出x的范围即可;再利用二次函数的性质求出面积S的最大值即可.【解答】解:如图,∵三块矩形区域的面积相等,∴矩形AEFD面积是矩形BCFE面积的2倍,∴AE=2BE,设BC=x,BE=FC=a,则AE=HG=DF=2a,∴DF+FC+HG+AE+EB+EF+BC=80,即8a+2x=80,∴a=﹣x+10,3a=﹣x+30,∴矩形区域ABCD的面积S=(﹣x+30)x=﹣x2+30x,∵a=﹣x+10>0,∴x<40,则S=﹣x2+30x(0<x<40);∵S=﹣x2+30x=﹣(x﹣20)2+300(0<x<40),且二次项系数为﹣<0,∴当x=20时,S有最大值,最大值为300m2.故答案为:300.【点评】此题考查了二次函数的应用,以及列代数式,熟练掌握二次函数的性质是解本题的关键.16.(5分)如图,在R△ABC中,∠CAB=90°,D是BC边上一点,连结AD,作△ABD的外接圆,将△ADC沿直线AD翻折,若点C的对应点E落在的中点,CD=,则BD的长为.【分析】连接BE,作EF⊥BD于F,由折叠的性质得:∠DAC=∠DAE,DE=CD=,求出,得出BE=DE=,由圆周角定理得出∠DAE=∠BAE=∠BDE=∠DBE,得出∠DAC=∠DAE =∠BAE,求出∠BAE=∠BDE=∠DBE=30°,由等腰三角形的性质和直角三角形的性质得出DF=BF,EF=DE=,求出DF=EF=,即可得出结果.【解答】解:连接BE,作EF⊥BD于F,如图所示:由折叠的性质得:∠DAC=∠DAE,DE=CD=,∵点E是的中点,∴,∴BE=DE=,∠DAE=∠BAE=∠BDE=∠DBE,∴∠DAC=∠DAE=∠BAE,∵∠CAB=90°,∴∠BAE=30°,∴∠BDE=∠DBE=30°,∵EF⊥BD,∴DF=BF,EF=DE=,∴DF=EF=,∴BD=2DF=;故答案为:.【点评】本题考查了翻折变换的性质、圆周角定理、垂径定理、等腰三角形的判定与性质、勾股定理等知识;熟练掌握圆周角定理,求出∠BAE=30°是解题关键.三、解答题(本题有8小题,共80分17.(10分)(1)计算:2sin30°﹣(1+)0+﹣1(2)先化简,再求值(x+1)2﹣x(x﹣2),其中x=.【分析】(1)根据锐角三角函数、零指数幂、负整数指数幂可以解答本题;(2)根据完全平方公式、单项式乘多项式可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【解答】解:(1)2sin30°﹣(1+)0+﹣1=2×﹣1+2=1﹣1+2=2;(2)(x+1)2﹣x(x﹣2)=x2+2x+1﹣x2+2x=4x+1,当x=时,原式=4+1.【点评】本题考查锐角三角函数、零指数幂、负整数指数幂、整式的化简求值,解答本题的关键是明确它们各自的计算方法.18.(8分)如图,在正方形ABCD中,G是CD边上任意一点连结BG,作AE⊥BG于点E,CF⊥BG于点F.(1)求证:BE=CF.(2)若BC=5,CF=3,求EF的长.【分析】(1)证明△BCF≌△ABE即可说明BE=CF;(2)在Rt△BCF中利用勾股定理求出BF长,则EF=BE﹣BF可求.【解答】解:(1)在正方形ABCD中,BC=AB,∠ABC=90°.∵AE⊥BG,CF⊥BG,∴∠ABE+∠CBE=90°,∠ABE+∠BAE=90°.∴∠CBE=∠BAE.∴△BCF≌△ABE(AAS).∴BE=CF;(2)在Rt△BCF中,BF==4.∵BE=CF=3,∴EF=BE﹣BF=1.【点评】本题主要考查了正方形的性质、全等三角形的判定和性质,证明线段相等一般是借助全等三角形,所以找到两个三角形全等是解题的关键.19.(8分)在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,记顶点都是整点的三角形为整点三角形.如图,已知整点A(1,3),B(3,4),请在所给网格上按要求画整点三角形.(1)在图1中画一个△OBP,使得点P的横纵坐标之和等于5,且点在它的外部.(2)在图2中画个△OBQ,使得点Q的横、纵坐标的平方和等于17,且点A在它的内部.【分析】(1)设P(x,y),由题意x+y=5,求出整数解即可解决问题;(2)设Q(x,y),由题意x2+y2=12+42=17,求出整数解即可解决问题.【解答】解:(1)设P(x,y),由题意x+y=5,∴P(3,2)或(4,1)或(0,5)或(2,3),△OBP如图所示.(2)设Q(x,y),由题意x2+y2=12+42=17整数解为(1,4)或(4,1)等,△OBQ如图所示.【点评】本题考查作图﹣应用与设计、二元方程的整数解问题等知识,解题的关键是理解题意,学会用转化的思想思考问题,属于中考常考题型.20.(8分)为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组):(1)报名参加课外活动小组的学生共有100人,将条形图补充完整;(2)扇形图中m=25,n=108;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.【分析】(1)用地方戏曲的人数除以其所占的百分比即可求得总人数,减去其它小组的频数即可求得民族乐器的人数,从而补全统计图;(2)根据各小组的频数和总数分别求得m和n的值即可;(3)列树状图将所有等可能的结果列举出来,然后利用概率公式求解即可.【解答】解:(1)∵根据两种统计图知地方戏曲的有13人,占13%,∴报名参加课外活动小组的学生共有13÷13%=100人,参加民族乐器的有100﹣32﹣25﹣13=30人,统计图为:(2)∵m%=×100%=25%,∴m=25,n=×360=108,故答案为:25,108;(3)树状图分析如下:∵共有12种情况,恰好选中甲、乙的有2种,∴P(选中甲、乙)==.【点评】本题考查了扇形统计图、条形统计图及列表与树状图法求概率的知识,解题的关键是能够列树状图将所有等可能的结果列举出来,难度不大.21.(10分)如图,AC切半圆O于点A,弦AD交OC于点P,CA=CP,连结OD (1)求证:OD⊥OC.(2)若OA=3,AC=4,求线段AP的长.【分析】(1)由题意可得,∠OAD=∠D,∠CAP=∠CPA=∠OPD,所以∠CAP+∠PAO=∠OPD+∠D=90°,可得OD⊥OC;(2)作OM⊥AD于M,由题意可得OC=5,OP=1,在Rt△POD中,用面积法可求得OM=,在Rt△OMD中,用勾股定理求得AM=DM=,在Rt△OPM中,用勾股定理求得PM=,根据AP=AM﹣PM,即可得出线段AP的长.【解答】解:(1)∵AC切半圆O于点A,∴OA⊥AC,∵OA=OD,∴∠OAD=∠D,∵AC=CP,∴∠CAP=∠CPA=∠OPD,∵∠CAP+∠PAO=∠OPD+∠D=90°,∴∠POD=90°,即OD⊥OC.(2)如图,作OM⊥AD于M,∵AC=4,OA=3,∴OC=5,∵CA=CP=4,∴OP=1,∵OD=OA=3,∴DP=,∴OM=,∴AM=DM=,PM=,∴AP=AM﹣PM=.【点评】本题考查圆的切线的性质,等腰三角形的性质,勾股定理,解题的关键是掌握圆的切线的性质.22.(10分)如图,已知二次函数图象与x轴交于点A(﹣1,0),B(3m,0),交y轴于点C(0,3m)(m>0).(1)当m=2时,求抛物线的表达式及对称轴.(2)过OB中点M作x轴垂线交抛物线于点D过点D作DF∥x轴.交抛物线于点E,交直线BC于点F,当时,求m的值.【分析】(1)当m=2时,求出点A(﹣1,0),B(6,0),C(0,6),代入函数解析式即可;(2)设抛物线表达式为y=a(x﹣3m)(x+1),将点C(0,3m)代入即求解析式,根据条件求出OM=,HM=DG=,ED=1,再由条件,得到EF=,求得D(,+),将D代入抛物线解析式即可求m=1;【解答】解:(1)当m=2时,得到A(﹣1,0),B(6,0),C(0,6),设抛物线表达式为y=a(x﹣6)(x+1),将点C(0,6)代入得a=﹣1,∴y=﹣x2+5x+6,∴对称轴为x=;(2)设抛物线表达式为y=a(x﹣3m)(x+1),将点C(0,3m)代入表达式,得a=﹣1,∴y=﹣(x﹣3m)(x+1),∴对称轴为x=,∵M为OB的中点,∴OM=,∴HM=DG=,∴ED=1,∵,∴EF=,∴FD=DN=,∴DM=+,∴D(,+),代入抛物线解析式得:∴m=1.【点评】本题考查二次函数图象与解析式;能够根据条件,结合图形,找到边的关系,进而确定点,再利用待定系数法求解析是关键.23.(12分)某通讯经营店销售AB两种品牌儿童手机今年进货和销售价格如表:已知A型手机去年1月份销售总额为3.6万元今年经过改造升级后每只销售价比去年增加400元.今年1月份A型手机的销售数量与去年1月份相同,而销售总额比去年1月份增加50%.(1)今年1月份A型手机的销售价是多少元?(2)该店计划6月份再进一批A型和B型手机共50只且B型手机数量不超过A型手机数量的2倍,应如何进货才能使这批儿童手机获利最多?(3)该店为吸引客源,准备增购一种进价为500元的C型手机,预算用8万元购进这三种手机若F只,其中A型与B型的数量之比为1:2,则该店至少可以购进三种手机共多少只?【分析】(1)根据今年1月份A型手机的销售数量与去年1月份相同,利用数量=销售总额÷销售单价,列分式方程,计算即可;(2)设购买A型手机a只,则B型手机(50﹣a)只,根据B型手机数量不超过A型手机数量的2倍,列不等式,求出a的取值范围,用含s的式子表示出总利润w,再根据一次函数的增减性,计算即可;(3)设购进A型x只,则B型2x只,C型(n﹣3x)只,根据三种手机共用8万元,求解即可.【解答】解:(1)设今年1月份的A型手机售价为x元,则去年A型手机售价为(x﹣400)元.根据题意,得:,解得:x=1200,经检验,x=1200是所列分式方程的解.∴今年1月份的A型手机售价为1200元;(2)设购买A型手机a只,则B型手机(50﹣a)只,∴50﹣a≤2a,解得:a≥,∴利润w=(1200﹣1000)a+(1500﹣1100)(50﹣a)=20000﹣200a,∵﹣200<0,∴w随a的增大而减小,∴当a=17时即A型进17只,B型进33只时获利最多;(3)设购进A型x只,则B型2x只,C型(n﹣3x)只,根据题意,得:1000x+2200x+500(n﹣3x)=80000,解得:n=160﹣,∵160﹣>3x,∴x<25,∵x为5的倍数,∴当x=20时,n最小值为92.答:该店至少可以共购进92只【点评】本题主要考查一次函数的应用、分式方程的应用、一元一次不等式的应用,能根据题目中的等量关系式列出方程或不等式是解题的关键.24.(14分)如图,在矩形ABCD中,AB=8,BC=6,点E,F分别从点B,D同时出发沿AB延长线和射线DA以相同的速度运动,连结EF,交射线DB于点G.连结CG.(1)当BE=2时,求BD,EG的长.(2)当点F在线段AD上时,记∠DCG为∠1,∠AFE为∠2,那么的值是否会变化?若不变,求出该比值;若变化,请说明理由.(3)在整个运动过程中,当△DCG为等腰三角形时,求BE长.【分析】(1)由矩形性质可求对角线BD的长;根据点E、F运动速度相同,即BE=DF,利用勾股定理求AE的长.过点F作AE的平行线构造相似三角形,利用对应边成比例即求的EG的长.(2)过点G分别作AD、CD边上的垂线,得到tan∠1和tan∠2对应哪些线段的比.设BE=DF =a,利用相似用a把图形中的线段表示出来,即能求出tan∠1和tan∠2的值,再作商比较.(3)△DCG为等腰三角形需分三种情况讨论:①DG=DC=8,利用相似三角形对应边成比例求得各线段长度;②CG=CD=8,此时点G在BD的延长线上,利用相似三角形对应边成比例求得各线段长度;③DG=CG,可证得矛盾.【解答】解:(1)过点F作FN∥AB交BD于点N,如图1,∴△EBG∽△FNG,△DNF∽△DBA∴∵矩形ABCD中,AB=8,BC=6,∴∠BAD=90°,AD=BC=6∴BD=,∴∵BE=2,DF=BE∴AE=AB+BE=8+2=10,AF=AD﹣DF=6﹣2=4∴EF=∵△EBG∽△FNG∴∴EG=EF=(2)的值不变.过点G作GP⊥AD于点D,GQ⊥CD与点Q,如图2,∴四边形PDQG是矩形∴PG=DQ,DP=QG设DF=BE=a,则AF=6﹣a,AE=a+8∵GP∥AE∴△PGF∽△AEF由(1)得EG=EF,即∴=∴PF=AF=(6﹣a),PG=AE=(a+8)∴CQ=CD﹣DQ=CD﹣PG=8﹣(a+8)=,QG=DP=DF+PF=a+(6﹣a)=∴tan∠1=,tan∠2=∴为定值.(3)①若DG=DC=8,如图3,过点G作GM∥AD交AB于点M∴BG=BD﹣DG=2,=∴BM=BA=,GM=DA=设BE=x,则AE=8+x,EM=BE+BM=x+∵GM∥AF∴∴解得:x=②若CG=CD=8,如图4,过点G作GM⊥AE于点M,过点C作CN⊥BD于点N∵DN=DC=∴DG=2DN=∴BG=DG﹣BD=设BE=DF=x,则AF=DF﹣AD=x﹣6∵GM∥AF∴又∵∴BG=GM=AF=(x﹣6)∴(x﹣6)=解得:x=③若CG=DG,设EF与BC交于点R∴BG=DG=CG∴△BGR≌△DGF(AAS)∴BR=DF=BE,不成立∴CG不能与DG相等综上所述,当BE=或时,△DCG为等腰三角形.【点评】本题考查了矩形的判定和性质,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,解一元一次方程.解题关键是适当作辅助线构造全等三角形和相似三角形,进而得到线段之间的比例关系.由于等腰三角形三边不确定时作分类讨论,是等腰三角形存在性题目的常规做法.。

浙江省温州实验中学2019年中考数学二模试卷

浙江省温州实验中学2019年中考数学二模试卷

2019年浙江省温州实验中学中考数学二模试卷一.选择题(共10小题)1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.一个几何体的三视图如图所示,那么这个几何体是()A.B.C.D.3.计算:m6•m2的结果为()A.m12B.m8C.m4D.m34.某商店一天中卖出某种品牌的运动鞋15双,它们的尺码与销售量如表所示:鞋的尺码/cm23 23.5 24 24.5 25 销售量/双 2 3 3 5 2 则这15双鞋的尺码组成的数据中,中位数为()A.23.5cm B.24cm C.24.5cm D.25cm5.不等式3(x﹣1)≥x+1的解集是()A.x≤﹣2 B.x≤﹣1 C.x≥1 D.x≥26.如图,∠A是⊙O的圆周角,∠A=40°,则∠OBC的度数为是()A.40°B.50°C.60°D.80°7.如图,AC是旗杆AB的一根拉线,拉直AC时,測得BC=3米,∠ACB=50°,则AB的高为()A.3cos50°米B.3tan50°米C.米D.米8.已知点A(﹣1,a),B(1,b),C(2,c)均在一次函数y=﹣2x+k的图象上,则a,b,c的大小关系为()A.a<c<b B.c<a<b C.b<a<c D.c<b<a9.如图,将图一中的等腰直角三角形纸片ABC,依次沿着折痕DE,FG翻折,得到图二中的五边形ADEGF.若图二中,DF∥EG,点C′,B′恰好都是线段DF的三等分点,GC′交EB′于点O,EG=4﹣2,则等腰直角三角形ABC的斜边BC的长为()A.4+6 B.4﹣6 C.8+4 D.8﹣410.如图所示,是由北京国际数学家大会的会徽演化而成的图案,其主体部分是由一连串的等腰直角三角形依次连接而成,其中∠MA1A2=∠MA2A3…=∠MA n A n+1=90°,(n为正整数),若M点的坐标是(﹣1,2),A1的坐标是(0,2),则A22的坐标为()A.(﹣1﹣29,2﹣29)B.(1﹣29,2﹣29)C.(﹣1﹣210,2﹣210)D.(1﹣210,2﹣210)二.填空题(共6小题)11.因式分解:a2﹣a=.12.一组数据3,6,8,a,8,3的平均数是6,则这组数据的众数是.13.若分式的值为零,则x的值为.14.如图,正六边形ABCDEF内接于半径为1的⊙O,则的长为.15.如图,矩形ABCD的顶点A,B分别在x轴负半轴,y轴负半轴上,AD交y轴于点F,E 为CD的中点.若OB=1,BD=2EF时,反比例函数y=的图象经过D,E两点,则k的值为.16.如图,正方形ABCD的对角线AC⊥AE,射线EB交射线DC于点F,连结AF,若AF=BF,AE=4,则BE的长为.三.解答题(共8小题)17.(1)计算:(﹣3)2﹣+(1﹣)0;(2)化简:(m+2)(m﹣2)﹣m(m﹣3).18.如图,四边形ABCD是菱形,E,B,D,F在同一条直线上,EB=DF.(1)求证:△ABF≌△CDE;(2)当∠E=∠BAD=30°时,求∠DAF的度数.19.为关注学生出行安全,调查了某班学生出行方式,调查结果分为四类:A﹣骑自行车,B﹣步行,C﹣坐社区巴士,D﹣其它,并将调査结果绘制成以下两幅不完整的统计图.请你根据统计图,解答下列问题:(1)本次一共调査了多少名学生?(2)C类女生有名,D类男生有名,并将条形统计图.....补充完整.(3)若从被调查的A类和D类学生中分别..随机选取一位同学进行进一步调查,请用列表法或画树状图的方法求出所选同学中恰好是一位男同学和一位女同学的概率.20.在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,如图,已知点A(0,1),B(2,0),请在所给网格区域(含边界)上,按要求找到整点.(1)画一个直角三角形ABC,使整点C的横坐标与纵坐标相等;(2)若△PAB(不与△ABC重合)的面积等于△OAB的面积,则符合条件点整P共有个.21.如图,抛物线y=﹣x2+2x+3与x轴交于点A,B两点,点A在点B的左侧,点M为AB 的中点,PQ∥x轴交抛物线于点P,Q,点P在点Q的左侧,点Q在第一象限,以PQ,PM 为邻边作▱PMNQ.设点P的横坐标为m.(1)当m=0时,求▱PMNO的周长;(2)连结MQ,若MQ⊥QN时,求m的值.22.如图,等腰三角形ABC内接于⊙O,CA=CB,过点A作AE∥BC,交⊙O于点E,过点C 作⊙O的切线交AE的延长线于点D,已知AB=6,BE=3.(1)求证:四边形ABCD为平行四边形;(2)延长AO交DC的延长线于点F,求AF的长.23.如图所示,电脑绣花设计师准备在长120cm,宽8cm的矩形ABCD模板区域内设计绣花方案,现将其划分为区域Ⅰ(2个全等的五边形),区域Ⅱ(2个全等的菱形),区域Ⅲ(正方形EFGH中减去与2个菱形重合的部分),剩余为不刺绣的空白部分:点O是整副图形的对称中心EG∥AB,H,F分别为2个菱形的中心,MH=2PH,HQ=2OQ,为了美观,要求MT不超过10cm.若设OQ=x(cm),x为正整数.(1)用含x的代数式表示区域Ⅲ的面积;(2)当矩形ABCD内区域Ⅰ的面积最小时,图案给人的视觉感最好.求此时MN的长度;(3)区域Ⅰ,Ⅱ,Ⅲ的刺绣方式各有不同.区域Ⅰ与区域Ⅲ所用的总针数之比为29:19,区域Ⅱ与区域Ⅲ每平方厘米所用的针数分别为a,b针(a,b均为整数,a>b),区域Ⅲ的面积为正整数.这时整个模板的总针数为12960针,则a+b=.24.如图,∠ACL=90°,AC=4,动点B在射线CL,CH⊥AB于点H,以H为圆心,HB为半径作圆交射线BA于点D,交直线CD于点F,交直线BC于点E.设BC=m.(1)当∠A=30°时,求∠CDB的度数;(2)当m=2时,求BE的长度;(3)在点B的整个运动过程中,①当BC=3CE时,求出所有符合条件的m的值.②连接EH,FH,当tan∠FHE=时,直接写出△FHD与△EFH面积比.。

浙江省温州市2019年中考数学第二次模拟训练试题

浙江省温州市2019年中考数学第二次模拟训练试题

浙江省温州市2019年中考第二次模拟训练数学试题亲爱的考生:欢迎参加考试!请认真审题,仔细答题,发挥最佳水平. 答题时请注意以下几点: 1.全卷共4页,满分150分,考试时间120分钟;2.答案必须写在答题纸相应的位置上,写在试卷、草稿纸上无效;3.答题前,请认真阅读答题纸上的“注意事项”,按规定答题;4.本次考试不得使用计算器.一、选择题(本题共有10小题,每小题4分,共40分. 请选出一个符合题意的正确选项,不选,多选,错选均不得分)1.如图,水平放置的圆柱体的俯视图是( ▲ )A .B .C .D .2.口袋内装有一些除颜色外完全相同的红球3个,白球1个,那么从中任意摸出一个球是白球的概率是( ▲ ) A .41 B .31C .43 D .213.如图,数轴上表示实数10的点可能是( ▲ )A .A 点B .B 点C .C 点D .D 点 4.下列运算正确的是( ▲ )A .362()a a =B .235a a a +=C .263a a a ⋅=D .632a a a ÷=5.如图,点O 是菱形ABCD 对角线交点,点E 是边BC 中点,已知AB =6,则OE 的长为( ▲ ) A .33B .32C .6D .36.关于x 的一元二次方程20x x m -+=有两个不相等的实数根,则实数m 的取值范围是( ▲ )A .14m =B .14m …C .14m >D .14m <7.如图, m //n ,点A 在直线n 上,以A 为圆心的圆弧与直线n ,m 相交于 点B ,C , 若∠1=30°,则∠2的度数为( ▲ )A .75°B .70°C .60°D .45°8.足球联赛积分规则如下:每胜一场得3分,平一场得1分,负一场得0分. 第20轮后(即每队均比了20场),甲球队的积分为25分,若设甲队胜了x 场,负了y 场,则x 与y 应满足的关系是( ▲ ) A .x +y =19 B .2x -y =5 C .y -x =3 D .3x +y =259.如图,矩形ABCD 是某农博园示意图,园中有一条观光大道A -E -F -C ,∠DAE =∠BCF =37°,EF ∥AB ,已知AB =800米,AD =400米,则观光大道A -E -F -C 的长度为(参考数据:sin37°≈0.6,cos37°≈0.8,tan37°≈0.75)( ▲ )A.1300米B.1120米C.1000米D.820米 10.一简易运算程序如下:下面有关这个运算程序的判断正确的是( ▲ ) A .存在唯一的输入数,与对应的输出数相等. B .存在唯一的输入数,与对应的输出数是互为倒数.C .输入数与输出数的差的最大值为3.D .当输入的数值大于1时,则输出的数值一定小于输入的数值.二、填空题(本题共有6小题,每小题5分,共30分)11.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数.若收入500元记作+500元,则支出300元记作 ▲ 元. 12.如图,点D ,B 在线段AE 上,AC ∥DF ,AC =DF ,再添加一个 条件,使△ABC ≌△DEF ,这个条件可以是 ▲ . 13.如图,扇形纸扇完全打开后,两竹条AB ,AC 夹角为150°, AB 的长为24cm ,则BC 的长为 ▲ .14.已知2217x y +=,3x y +=,则xy 的值为 ▲ .15.一辆慢车从甲地匀速行驶至乙地,一辆快车同时从乙地出发匀速行驶至甲地,两车之间的距离y (千米)与行驶时间x (小时)的对应关系如图所示,有以下四个结论:①甲乙两地相距1200千米;②快车的速度是100千米∕小时;③慢车的速度是60千米∕小时; ④快车到达甲地时,慢车距离乙地200千米,其中正确的是 ▲ .(填序号)16.如图,□ABCD 中,∠D 是锐角,AB =6,AD =7,E 是BC 的中点,点F 在CD 上,且DF =2CF ,∠AFD =2∠BAE ,则cos D = ▲ .三、解答题(本题共8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17. 计算:111232-⎛⎫+-- ⎪⎝⎭.18. 先化简,再求值:211(1)24x x x +-÷+-,其中x =13.19.实验室中,小敏同学测得某实验中的两个变量之间的关系如下表所示:请你根据表格回答下列问题:(1)根据表中的数据,在平面直角坐标系中画出y关于x 的函数图象;(2)根据图象,确定y 与x 这两个变量之间可能是怎样的函数关系?并直接写出这个函数的解析式;(3)当x =4.0时,求y 的值.20.在正方形网格中,小正方形的边长为1,线段AB 的两个端点都在格点上.请你仅用无刻度...的直尺完成下面的作图(保留作图痕迹,不必说明作图过程). (1)在图1中作出线段AB 的垂直平分线;(2)在图2中作一个矩形ABCD ,使矩形ABCD 的面积为5.(点C ,D 可以不是格点)21.某校九年级体育考试球类运动项目选择中,选择篮球项目和排球项目的学生比较多.为了解学生掌握篮球技巧和排球技巧的水平情况,进行了抽样调查,过程如下:收集数据: 从选择篮球和排球的学生中各随机抽取16人,测试成绩(十分制)如下: 排球 10 9 9 10 8 7 10 9 7 10 4 6 10 10 9 10x 2.2 3.0 4.8 3.5 1.2 5.8y 2.73 2.00 1.25 1.71 5.00 1.05 xy54321654321O说明:成绩9分及以上为优秀,7分及以上为合格,7分以下为不合格.篮球 10 9 9 8 10 10 10 8 6 9 10 10 9 8 9 7 整理数据: 按如下分数值整理这两组样本数据: 成绩频数 项目小于7 7 8 9 10排球 2 2 1 4 7 篮球11356分析数据 : 两组样本数据的平均数、中位数、众数、方差如下表所示:项目 平均数 中位数 众数 方差 排球 8.625 9 10 2.984 篮球 ab101.358应用数据:(1)估计全校九年级选择排球项目的240人中,成绩不合格的约有多少人? (2)表中a = ▲ , b = ▲ ;(3)结合上述的数据信息,请判断该校九年级排球、篮球项目中,哪个项目整体水平较高,并说明理由.(要求至少从两个不同的角度说明推断的合理性)22. 如图,AD 是等边三角形ABC 的高,M 是AD 上的一点,把线段BM 绕点M 顺时针旋转α 度(0°<α<180°),点B 恰好落在AC 边上的E 处.(1)连接BE ,求证:点M 是△BCE 的外心; (2)求α的值;(3)猜想线段AB ,AM ,AE 三者之间的数量关系,并证明.23.二次函数2()y ax b a x b =+--(a ,b 为常数,0a ≠)的图象记为L . (1)若a =1,b =3,求图象L 的顶点坐标;(2)若图象L 过点(4,1),且2≤a ≤5,求b 的最大值;(3)若2b =-,点11()x y ,,22()x y ,在图象L 上,当12122x x -<<<时,12y y >恒成立,求a 的取值范围.24.如图1,半径为1的⊙O 与直线l 相切于点A ,直径BC ∥l ,点D 在BC 上方的弧上,连接DC 并延长,与直线l 交于点P ,连接OA ,BD . (1)求证:∠AOB =90°;(2)连接AB ,若BD =PD ,求证:AB =AP ;(3)如图2,延长AO 交⊙O 于点E ,点D 在CE 上,连接BE ,DE .①若2DE DC =,求AP 的长;②设AP =x ,四边形BCDE 的面积为y ,请直接写出y 关于x 的函数关系式.图1 图2lBPCOADlBPCOEAD浙江省温州市2019年中考第二次模拟训练试题参考答案及评分标准 数 学一、选择题(本题共有10小题,每小题4分,共40分) 二、填空题(本题共有6小题,每小题5分,共30分)11.-300 12.∠C =∠F ,∠ABC =∠DEF ,AD =BE ,AB =DE ,BC ∥EF 等(不唯一,写∠B =∠E 给4分)13. 20π 14.-4 15.③④ 16.156三、解答题(第17-20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.111232-⎛⎫+-- ⎪⎝⎭2323=+- (6分) 231=- (2分)18.2111(2)(2)(1)22421x x x x x x x x x +++--÷=⨯=-+-++ (6分)112221333x x =-=-=-当时, (2分) 19.(1)如图 (3分)(2)成反比例函数关系,解析式是6y x= (3分)(只答成反比例函数关系,给1分;直接给出解析式是6y x =,给3分;解析式ky x=中的比例系数k 取值在5.9至6.1间,同样给分)题号 1 2 3 4 5 6 7 8 9 10 答案 BACADDABCBxy54321654321O(3)当x=4.0时,61.54.0y==(2分)(根据解析式计算所得y取值在1.475至1.525间,同样给分)20.(1)P1、P2、P3、P4 中任取两点作直线均可. (4分)(2)如图,利用点M、N、P、Q确定线段BM、AN及直线PQ(4分)21.(1)22403016⨯=(人)(3分,其中列算式2分,计算结果1分)(2)a=8.875 ,b=9(4分,每空2分)(3)回答篮球项目整体水平较高,从平均数、合格率、方差取两或三方面,结合中位数、众数说明,得3分;回答篮球项目整体水平较高,能从平均数、合格率中取一方面结合说明,或回答排球项目整体水平较高,从满分人数结合中位数、众数据、优秀率说明,得2分;只回答篮球项目整体水平较高,没有依据说明,或回答排球项目整体水平较高,只从满分人数说明,得1分22.(1)∵AD是等边三角形ABC的高,∴AD是BC的垂直平分线………1分∴CM=BM ∵EM=BM ∴CM=EM………2分∴M在CE的垂直平分线的上∴点M是△BCE的外心………3分(2) 方法一:延长CM,如图,∵CM=BM∴∠1=∠2………4分6 54321EDC ABMEDC ABM∵EM =BM ∴∠3=∠4………5分∵∠5=∠1+∠2,∠6=∠3+∠4,∴∠5+∠6=∠1+∠2+∠3+∠4=2(∠2+∠3)= 120° 即α= 120°. ………7分方法二:证∠3=∠4,∠ABM =∠3,………5分则∠ABM =∠4,∠ABM +∠AEM =∠4+∠AEM =180°………6分 ∴∠BAC +∠BME =180°,∴∠BME =120°,即α=120°. ………7分(3) 线段AB ,AM ,AE 三者之间的数量关系为3AM AB AE =+.………8分方法一:过点M 作MG ⊥AB 于点G ,在AB 的延长线上取点F ,使BF =AE . 证△AEM ≌△FBM (SAS ),得AM =FM ,………10分所以2AG =AF =AB +AE ,由∠GAM = 30°得32AM AG =,………11分所以3AM AB AE =+.………12分方法二:过点M 分别作MG ⊥AB 于点G ,MH ⊥AC 于点H . 证△BGM ≌△EHM (AAS ),得BG =EH ,证△AGM ≌△AHM (HL ),得AG =AH ,所以2AG =(AB -BG )+(AE +EH )= AB +AE ,由∠GAM = 30°得32AM AG =,所以3AM AB AE =+. (参照方法一给分)23. (1)若a =1,b =3,则223y x x =+-………1分∴2(1)4y x =+-………2分∴图象L 的顶点坐标为(-1,-4)………3分 (直接用顶点坐标公式求得,同样给分) (2)若图象L 过点(4,1),则1164()a b a b =+--………4分 化简得1123ab -=,………5分 ∵2≤a ≤5,b 随a 的增大而减少, ∴当a =2时,b 的最大值=11222333-⨯=-………7分 GFEDCABM GHEDCABM(3)若2b =-,则2(2)2y ax a x =+--+,图象的对称轴为直线21122a x a a --=-=+………8分 ∵当12122x x -<<<时,12y y >恒成立,∴当a >0时,1122a +≥,解得0<a ≤23;………10分 当a <0时,11122a +≤-,解得-1≤a <0. ………12分 故a 的取值范围为0<a ≤23或-1≤a <0.24. 解:(1)∵⊙O 与直线l 相切于点A , ∴ OA ⊥l , ………1分 ∴∠OAP =90°. ∵直径BC ∥l , ∴∠AOB =∠OAP ,∴∠AOB =90° ………2分(2)连接AD , ∵BC 是直径∴∠BDC =90° ………3分 ∵∠AOB =90° ∴∠ADB =45°∴∠ADB =∠ADP ………4分 又∵BD =PD ,AD =AD , ∴△ADB ≌△ADP , ………5分 ∴AB =AP . ………6分(3)①方法一:过点E 作IE ⊥DE ,交BD 于点I ,过点C 作CN ⊥AP 于点N . ∵∠BDE =45°,∴∠EID =45°,∴EI =ED , ID =2DE , ∵2DE CD ,∴ID =2CD .………7分∵∠BEI +∠IEC =90°, ∠CED +∠IEC =90°, ∴∠BEI =∠CED , ∵∠EBI =∠ECD ,∴△BEI ≌△CED ,………8分 ∴BI =CD ,∴BD =3CD , ………9分∵∠BCD +∠PCN =90°,∠BCD +∠CBD =90°,lBPCOAD lI BPCOEA DN∴∠PCN =∠CBD ,∴tan ∠PCN =tan ∠CBD ,即PN CD CNBD=………10分∴1113AP -=,即AP =43.………11分方法二:连接EC 并延长交直线l 于点F , 过点P 作PM ⊥CF 于点M ,过点E 作EH ⊥CD ,交CD 延长线于H . ∵∠EDH +∠EDC =180°, ∠EBC +∠EDC =180°∴∠EDH =∠EBC =45° ∴EH =DH =22DE ………7分∵2DE CD =,∴EH =DH =CD∴tan ∠ECH =12,………8分 ∴tan ∠PCM =12,即12PM CM = ………9分 易知∠F =45°,CF =2,设AP =x ,则PM =FM =22x -,CM =2x ………10分∴212x x -=,解得43x = ,即AP =43. ………11分方法三:证得EH :CH :CE =1:2:5 ………7分 证得△CHE ≌△AKC ,………8分得CK :AK :AC =1:2:5,∴AK =225………9分由CP AK AP CN ⋅=⋅得522AP CN APCP AK ⋅==, ………10分 设AP =x ,在Rt △CNP 中222NP CN CP +=,2225(1)1()22x x -+=,解得43x =,或4x =(舍去),即AP =43. ………11分lBH MPCOEAFDlBH KPC OEADN② y =222xx x -+………14分方法一:易知EH ∥BD ,则四边形BCDE 的面积=△BCH 的面积=12CH BD ⋅. 证△ECH ∽△PCM ,得CH CE CM CP =,即CE CM CH CP ⋅==xCP. ∵12BCP CP BD S ∆⋅==1,(也可由△BCD ∽△CPN 得到) ∴2BD CP=, ∴△BCH 的面积=12122x CH BD CP CP ⋅=⋅⋅=2xCP. ∵222CP CN PN =+221(1)x =+-222x x =-+,∴△BCH 的面积=222xx x -+, 即y =222xx x -+.方法二:四边形BCDE 的面积=△BCH 的面积=12CH BD ⋅. 过点A 作AK ⊥CP 于点K . 证△CHE ≌△AKC ,则CH =AK =AP CN CP ⋅=xCP, 又∵22BCP S BD CP CP ∆==,∴y =△BCH 的面积=122x CP CP ⋅⋅=2x CP =222xx x -+. 方法三:四边形BCDE 的面积=△BCE 的面积+△CDE 的面积=1+12CD EH ⋅.CD =22BC BD -=244CP -=2441(1)x -+-=224884x x CP -+-=2(1)x CP-,由△ECH ∽△PCM 得EH =2PM CE xCP CP⋅-=, ∴四边形BCDE 的面积=1+12(1)22x x CP CP --⨯⨯=222xx x -+.lBH MPCOEAFDN lBH KPC OEA DN lBH MPCOEA FDN。

浙江省温州实验中学中考数学二模试卷 解析版

浙江省温州实验中学中考数学二模试卷  解析版

2019年浙江省温州实验中学中考数学二模试卷一.选择题(共10小题)1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.一个几何体的三视图如图所示,那么这个几何体是()A.B.C.D.3.计算:m6•m2的结果为()A.m12B.m8C.m4D.m34.某商店一天中卖出某种品牌的运动鞋15双,它们的尺码与销售量如表所示:鞋的尺码/cm23 23.5 24 24.5 25 销售量/双 2 3 3 5 2 则这15双鞋的尺码组成的数据中,中位数为()A.23.5cm B.24cm C.24.5cm D.25cm5.不等式3(x﹣1)≥x+1的解集是()A.x≤﹣2 B.x≤﹣1 C.x≥1 D.x≥26.如图,∠A是⊙O的圆周角,∠A=40°,则∠OBC的度数为是()A.40°B.50°C.60°D.80°7.如图,AC是旗杆AB的一根拉线,拉直AC时,測得BC=3米,∠ACB=50°,则AB的高为()A.3cos50°米B.3tan50°米C.米D.米8.已知点A(﹣1,a),B(1,b),C(2,c)均在一次函数y=﹣2x+k的图象上,则a,b,c的大小关系为()A.a<c<b B.c<a<b C.b<a<c D.c<b<a9.如图,将图一中的等腰直角三角形纸片ABC,依次沿着折痕DE,FG翻折,得到图二中的五边形ADEGF.若图二中,DF∥EG,点C′,B′恰好都是线段DF的三等分点,GC′交EB′于点O,EG=4﹣2,则等腰直角三角形ABC的斜边BC的长为()A.4+6 B.4﹣6 C.8+4 D.8﹣410.如图所示,是由北京国际数学家大会的会徽演化而成的图案,其主体部分是由一连串的等腰直角三角形依次连接而成,其中∠MA1A2=∠MA2A3…=∠MA n A n+1=90°,(n为正整数),若M点的坐标是(﹣1,2),A1的坐标是(0,2),则A22的坐标为()A.(﹣1﹣29,2﹣29)B.(1﹣29,2﹣29)C.(﹣1﹣210,2﹣210)D.(1﹣210,2﹣210)二.填空题(共6小题)11.因式分解:a2﹣a=.12.一组数据3,6,8,a,8,3的平均数是6,则这组数据的众数是.13.若分式的值为零,则x的值为.14.如图,正六边形ABCDEF内接于半径为1的⊙O,则的长为.15.如图,矩形ABCD的顶点A,B分别在x轴负半轴,y轴负半轴上,AD交y轴于点F,E 为CD的中点.若OB=1,BD=2EF时,反比例函数y=的图象经过D,E两点,则k的值为.16.如图,正方形ABCD的对角线AC⊥AE,射线EB交射线DC于点F,连结AF,若AF=BF,AE=4,则BE的长为.三.解答题(共8小题)17.(1)计算:(﹣3)2﹣+(1﹣)0;(2)化简:(m+2)(m﹣2)﹣m(m﹣3).18.如图,四边形ABCD是菱形,E,B,D,F在同一条直线上,EB=DF.(1)求证:△ABF≌△CDE;(2)当∠E=∠BAD=30°时,求∠DAF的度数.19.为关注学生出行安全,调查了某班学生出行方式,调查结果分为四类:A﹣骑自行车,B﹣步行,C﹣坐社区巴士,D﹣其它,并将调査结果绘制成以下两幅不完整的统计图.请你根据统计图,解答下列问题:(1)本次一共调査了多少名学生?(2)C类女生有名,D类男生有名,并将条形统计图.....补充完整.(3)若从被调查的A类和D类学生中分别..随机选取一位同学进行进一步调查,请用列表法或画树状图的方法求出所选同学中恰好是一位男同学和一位女同学的概率.20.在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,如图,已知点A(0,1),B(2,0),请在所给网格区域(含边界)上,按要求找到整点.(1)画一个直角三角形ABC,使整点C的横坐标与纵坐标相等;(2)若△PAB(不与△ABC重合)的面积等于△OAB的面积,则符合条件点整P共有个.21.如图,抛物线y=﹣x2+2x+3与x轴交于点A,B两点,点A在点B的左侧,点M为AB 的中点,PQ∥x轴交抛物线于点P,Q,点P在点Q的左侧,点Q在第一象限,以PQ,PM 为邻边作▱PMNQ.设点P的横坐标为m.(1)当m=0时,求▱PMNO的周长;(2)连结MQ,若MQ⊥QN时,求m的值.22.如图,等腰三角形ABC内接于⊙O,CA=CB,过点A作AE∥BC,交⊙O于点E,过点C 作⊙O的切线交AE的延长线于点D,已知AB=6,BE=3.(1)求证:四边形ABCD为平行四边形;(2)延长AO交DC的延长线于点F,求AF的长.23.如图所示,电脑绣花设计师准备在长120cm,宽8cm的矩形ABCD模板区域内设计绣花方案,现将其划分为区域Ⅰ(2个全等的五边形),区域Ⅱ(2个全等的菱形),区域Ⅲ(正方形EFGH中减去与2个菱形重合的部分),剩余为不刺绣的空白部分:点O是整副图形的对称中心EG∥AB,H,F分别为2个菱形的中心,MH=2PH,HQ=2OQ,为了美观,要求MT不超过10cm.若设OQ=x(cm),x为正整数.(1)用含x的代数式表示区域Ⅲ的面积;(2)当矩形ABCD内区域Ⅰ的面积最小时,图案给人的视觉感最好.求此时MN的长度;(3)区域Ⅰ,Ⅱ,Ⅲ的刺绣方式各有不同.区域Ⅰ与区域Ⅲ所用的总针数之比为29:19,区域Ⅱ与区域Ⅲ每平方厘米所用的针数分别为a,b针(a,b均为整数,a>b),区域Ⅲ的面积为正整数.这时整个模板的总针数为12960针,则a+b=.24.如图,∠ACL=90°,AC=4,动点B在射线CL,CH⊥AB于点H,以H为圆心,HB为半径作圆交射线BA于点D,交直线CD于点F,交直线BC于点E.设BC=m.(1)当∠A=30°时,求∠CDB的度数;(2)当m=2时,求BE的长度;(3)在点B的整个运动过程中,①当BC=3CE时,求出所有符合条件的m的值.②连接EH,FH,当tan∠FHE=时,直接写出△FHD与△EFH面积比.参考答案与试题解析一.选择题(共10小题)1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣【分析】根据相反数的意义,只有符号不同的数为相反数.【解答】解:﹣3的相反数是3.故选:A.2.一个几何体的三视图如图所示,那么这个几何体是()A.B.C.D.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由于俯视图为三角形.主视图为两个长方形和左视图为长方形可得此几何体为三棱柱.故选:A.3.计算:m6•m2的结果为()A.m12B.m8C.m4D.m3【分析】根据同底数幂的乘法运算法则计算可得.【解答】解:m6•m2=m6+2=m8,故选:B.4.某商店一天中卖出某种品牌的运动鞋15双,它们的尺码与销售量如表所示:鞋的尺码/cm23 23.5 24 24.5 25销售量/双 2 3 3 5 2 则这15双鞋的尺码组成的数据中,中位数为()A.23.5cm B.24cm C.24.5cm D.25cm【分析】利用中位数的定义求解.【解答】解:排序后位于中间位置的数是24cm,所以中位数是24cm,故选:B.5.不等式3(x﹣1)≥x+1的解集是()A.x≤﹣2 B.x≤﹣1 C.x≥1 D.x≥2【分析】根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.【解答】解:3x﹣3≥x+1,3x﹣x≥1+3,2x≥4,x≥2,故选:D.6.如图,∠A是⊙O的圆周角,∠A=40°,则∠OBC的度数为是()A.40°B.50°C.60°D.80°【分析】连接OC,利用圆周角定理以及等腰三角形的性质解决问题即可.【解答】解:连接OC.∵∠BOC=2∠A=80°,∵OB=OC,∴∠OBC=∠OCB=50°,故选:B.7.如图,AC是旗杆AB的一根拉线,拉直AC时,測得BC=3米,∠ACB=50°,则AB的高为()A.3cos50°米B.3tan50°米C.米D.米【分析】在Rt△ABC中,利用∠ACB=50°的正切函数解答.【解答】解:∵BC=3米,∠ACB=50°,tan∠ACB=,∴旗杆AB的高度为AB=BC×tan∠ACB=3tan50°(米),故选:B.8.已知点A(﹣1,a),B(1,b),C(2,c)均在一次函数y=﹣2x+k的图象上,则a,b,c的大小关系为()A.a<c<b B.c<a<b C.b<a<c D.c<b<a【分析】根据一次函数的系数﹣2<0知,y随x的增大而减小,据此来判断a,b,c的大小关系并作出选择.【解答】解:∵一次函数y=﹣2x+k中的系数﹣2<0,∴该一次函数是y随x的增大而减小;又∵点A(﹣1,a),B(1,b),C(2,c)均在一次函数y=﹣2x+k的图象上,∴﹣1<1<2,∴c<b<a.故选:D.9.如图,将图一中的等腰直角三角形纸片ABC,依次沿着折痕DE,FG翻折,得到图二中的五边形ADEGF.若图二中,DF∥EG,点C′,B′恰好都是线段DF的三等分点,GC′交EB′于点O,EG=4﹣2,则等腰直角三角形ABC的斜边BC的长为()A.4+6 B.4﹣6 C.8+4 D.8﹣4【分析】根据折叠得:FC=FC′,DB=DB′,∠C=∠FC′G=45°,进而得出四边形CFC′G是菱形,设DC′=x,表示其它的边长,在等腰直角三角形中,利用边角关系,表示边长,再在等腰直角三角形ABC中,依据边角关系,距离方程求出未知数,进而求出斜边BC的长.【解答】解:由折叠得:FC=FC′,DB=DB′,∠C=∠FC′G=45°,∵DF∥BC,∴∠FC′G=∠C′GE=∠C=45°,∴C′G∥AC,∴四边形CFC′G是菱形,∴CF=FC′=C′G=GC,同理:BE=BD=DB′=EB′,设DC′=x,则DF=3x,BE=CG=2x,在等腰直角三角形ADF中,AF=AD=DF=,∴AC=AF+FC=+2x=,在在等腰直角三角形ABC中,AB=AC=BC,∴=(4x+4﹣2),解得:x=2,∴BC=4x+4﹣2=4+6,故选:A.10.如图所示,是由北京国际数学家大会的会徽演化而成的图案,其主体部分是由一连串的等腰直角三角形依次连接而成,其中∠MA1A2=∠MA2A3…=∠MA n A n+1=90°,(n为正整数),若M点的坐标是(﹣1,2),A1的坐标是(0,2),则A22的坐标为()A.(﹣1﹣29,2﹣29)B.(1﹣29,2﹣29)C.(﹣1﹣210,2﹣210)D.(1﹣210,2﹣210)【分析】探究规律,利用规律解决问题即可.【解答】解:观察图象可知,点的位置是8个点一个循环,∴A22与A6,A14的位置都在第三象限,且在直线y=x+3上,∵第一个等腰直角三角形的直角边为1,第二个等腰直角三角形的边长为,…,第n 个等腰直角三角形的边长为()n﹣1,∴第22个等腰直角三角形的边长为()21,可得A22M=()21,∴A22(﹣1﹣210,2﹣210),故选:C.二.填空题(共6小题)11.因式分解:a2﹣a=a(a﹣1).【分析】直接提取公因式a,进而分解因式得出即可.【解答】解:a2﹣a=a(a﹣1).故答案为:a(a﹣1).12.一组数据3,6,8,a,8,3的平均数是6,则这组数据的众数是8 .【分析】先根据平均数的计算方法求出x,然后根据众数的定义求解.【解答】解:根据题意得(3+6+8+a+8+3)=6×6,解得x=8,则这组数据为3,3,6,8,8,8的平均数为6,所以这组数据的众数是8.故答案为8.13.若分式的值为零,则x的值为 1 .【分析】分式的值为0的条件是分子为0,分母不能为0,据此可以解答本题.【解答】解:,则x﹣1=0,x+1≠0,解得x=1.故若分式的值为零,则x的值为1.14.如图,正六边形ABCDEF内接于半径为1的⊙O,则的长为.【分析】由正六边形的性质求出圆心角∠AOB的度数,得出所对的圆心角度数,再利用弧长公式解答即可.【解答】解:连接OA、OE、OB,如图所示:∵六边形ABCDEF为正六边形,∴∠AOB=360°×=60°,∴所对的圆心角为60°×4=240°,∴的长为=;故答案为:.15.如图,矩形ABCD的顶点A,B分别在x轴负半轴,y轴负半轴上,AD交y轴于点F,E 为CD的中点.若OB=1,BD=2EF时,反比例函数y=的图象经过D,E两点,则k的值为.【分析】根据矩形的性质以及勾股定理求出FD===BC=AD,则F为AD中点.如果设A(﹣a,0),a>0,则B(0,﹣1),D(a,),C(2a,﹣1),F(0,),E(a,﹣).将E点坐标代入y=,求出k=a,那么F (0,).再证明△AOB∽△FOA,得出OA2=OB•OF=1×=,求出OA=,a=,进而求出k的值.【解答】解:∵四边形ABCD是矩形,∴∠ADC=∠C=90°,∵EF=BD,DE=CD,∴FD===BC=AD,∴F为AD中点.设A(﹣a,0),a>0,则B(0,﹣1),D(a,),C(2a,﹣1),F(0,),E(a,﹣).∵反比例函数y=的图象经过E点,∴a(﹣)=k,∴k=a,∴F(0,).在△AOB与△FOA中,,∴△AOB∽△FOA,∴=,∴OA2=OB•OF=1×=,∴OA=,∴a=,∴k=×=.故答案为.16.如图,正方形ABCD的对角线AC⊥AE,射线EB交射线DC于点F,连结AF,若AF=BF,AE=4,则BE的长为2.【分析】如图,过点E作EH⊥AB于H,由勾股定理可求CF=2BC,通过证明△BCF∽△EHB,可得BH=2EH,由勾股定理可得EH,即可求BH的长,由勾股定理可求解.【解答】解:如图,过点E作EH⊥AB于H,∵四边形ABCD是矩形,∴AB=BC=CD=AD,∠CAB=45°,AB∥CD,∵BF2=BC2+CF2,AF2=AD2+DF2=AD2+(DC+CF)2,且AF=BF,∴AD2+(DC+CF)2=2(BC2+CF2),∴CF=2BC,设AB=BC=CD=AD=a,则CF=2a,∵AB∥CD,∴∠ABE=∠CFB,且∠BCF=∠BHE=90°,∴△BCF∽△EHB,∴=,∴BH=2EH,∵AC⊥AE,∠CAB=45°,∴EH=AH,∵AH2+EH2=AE2=16,∴EH=AH=2,∴BH=4,∵BE2=BH2+EH2=32+8=40,∴BE=2,故答案为:2.三.解答题(共8小题)17.(1)计算:(﹣3)2﹣+(1﹣)0;(2)化简:(m+2)(m﹣2)﹣m(m﹣3).【分析】(1)根据幂的乘方、二次根式的性质以及任何非0数的0次幂等于1化简计算即可;(2)分别根据平方差公式与单项式乘多项式的法则化简计算即可.【解答】解:(1)原式=9﹣+1=10﹣;(2)原式=m2﹣4﹣m2+3m=3m﹣4.18.如图,四边形ABCD是菱形,E,B,D,F在同一条直线上,EB=DF.(1)求证:△ABF≌△CDE;(2)当∠E=∠BAD=30°时,求∠DAF的度数.【分析】(1)利用菱形的性质、全等三角形的判定方法SAS得出△DCE≌△BCE;(2)利用全等三角形的性质得到∠F=∠E=30°,结合等腰三角形的性质得出∠ADB=75°,再根据三角形外角的性质求出即可.【解答】(1)证明:∵四边形ABCD是菱形,∴AB∥CD,∴∠ABF=∠CDE.∵FD=EB,∴FD+DB=EB+BD.即FB=ED.又∵AB=CD,∴△ABF≌△CDE(SAS)(2)解:由(1)△ABF≌△CDE得:∠F=∠E=30°,∵四边形ABCD为菱形,∴AB=AD.∴∠ABD=∠ADB.∵∠BAD=30°,∴∠ABD=∠ADB=75°,∴∠DAF=∠ADB﹣∠F=75°﹣30°=45°.19.为关注学生出行安全,调查了某班学生出行方式,调查结果分为四类:A﹣骑自行车,B﹣步行,C﹣坐社区巴士,D﹣其它,并将调査结果绘制成以下两幅不完整的统计图.请你根据统计图,解答下列问题:(1)本次一共调査了多少名学生?(2)C类女生有 3 名,D类男生有 1 名,并将条形统计图.....补充完整.(3)若从被调查的A类和D类学生中分别..随机选取一位同学进行进一步调查,请用列表法或画树状图的方法求出所选同学中恰好是一位男同学和一位女同学的概率.【分析】(1)用步行的人数除以所占的百分比即可得出调出的总人数;(2)用调查的总人数乘以所占的百分比,即可求出C类和D类的人数,从而补全统计图;(3)根据题意先画出树状图得出所以等情况数和恰好是一位男同学和一位女同学的情况数,然后根据概率公式即可得出答案.【解答】解:(1)本次调查的学生数=10÷50%=20(名);(2)C类女生数有20×25%﹣2=3名;D类男生数有20×(1﹣50%﹣25%﹣15%)﹣1=1名,条形统计图为:故答案为:3,1;(3)画树状图为:共有6种等可能的结果数,其中恰好是一位男同学和一位女同学的结果数为3种,所以所选A,D两类同学中恰好是一位男同学和一位女同学的概率是=.20.在直角坐标系中,我们把横、纵坐标都为整数的点称为整点,如图,已知点A(0,1),B(2,0),请在所给网格区域(含边界)上,按要求找到整点.(1)画一个直角三角形ABC,使整点C的横坐标与纵坐标相等;(2)若△PAB(不与△ABC重合)的面积等于△OAB的面积,则符合条件点整P共有 3 个.【分析】(1)利用数形结合的思想解决问题即可.(2)满足条件的点P有3个,如图所示.【解答】解:(1)图略,C点坐标为(4,4).(2)满足条件的点P有3个,如图所示.故答案为3.21.如图,抛物线y=﹣x2+2x+3与x轴交于点A,B两点,点A在点B的左侧,点M为AB 的中点,PQ∥x轴交抛物线于点P,Q,点P在点Q的左侧,点Q在第一象限,以PQ,PM 为邻边作▱PMNQ.设点P的横坐标为m.(1)当m=0时,求▱PMNO的周长;(2)连结MQ,若MQ⊥QN时,求m的值.【分析】(1)求得P(0,3),Q(2,3),则PQ=2,由勾股定理得PM长,则▱PMNO的周长可求出;(2)由题意知△PQM为等腰直角三角形,P(m,﹣m2+2m+3),有Q(2﹣m,﹣m2+2m+3),则PQ=2﹣2m,可得关于m的方程,解方程可求出m的值.【解答】解:(1)令x=0得,y=3∴P(0,3),∵抛物线的对称轴为:直线x=﹣,∴M(1,0),∵PQ∥x轴,∴Q(2,3),即得PQ=2,PM==,∵▱PMNQ∴QN=PM=,MN=PQ=2∴▱PMNQ的周长为:QN+PM+MN+PQ=4+2.(2)如图,连接MQ,∵▱PMNQ,∴PM∥QN,∵MQ⊥QN,∴MQ⊥PM,∵P,Q关于对称轴对称,∴MP=MQ,∴△PQM为等腰直角三角形,∴,∵P(m,﹣m2+2m+3),∴Q(2﹣m,﹣m2+2m+3),∴PQ=2﹣2m,∴﹣,解得,m2=,∵P在Q左侧,∴m=.22.如图,等腰三角形ABC内接于⊙O,CA=CB,过点A作AE∥BC,交⊙O于点E,过点C 作⊙O的切线交AE的延长线于点D,已知AB=6,BE=3.(1)求证:四边形ABCD为平行四边形;(2)延长AO交DC的延长线于点F,求AF的长.【分析】(1)连接CO并延长交AB于H,如图1,利用切线的性质得OC⊥DC,再证明CO 为AB的中垂线,则CO⊥AB,所以AB∥CD,然后根据平行四边形的判定方法得到结论;(2)如图2,利用平行线的性质得到∠DAC=∠BCA,则=,所以=,于是得到CB=CA=BE=3,利用垂径定理得到AH=3,则根据勾股定理可计算出CH=9,设⊙O的半径为r,则OH=9﹣r,在Rt△OAH中利用(9﹣r)2+32=r2得r=5,然后证明△AOH~△FOC,利用相似比求出OF,从而得到AF的长.【解答】(1)证明:连接CO并延长交AB于H,如图1,∵CD与⊙O相切于点C,∴OC⊥DC,∵OA=OB,CA=CB∴CO为AB的中垂线∴CO⊥AB,∴AB∥CD∵AD∥BC,∴四边形ABCD为平行四边形;(2)解:如图2,∵AD∥BC∴∠DAC=∠BCA∴=,∵+=+,即=,∴CB=CA=BE=3∵CH⊥AB,∴AH=BH=AB=3,在Rt△ACH中,CH==9,设⊙O的半径为r,则OH=9﹣r,在Rt△OAH中,(9﹣r)2+32=r2,解得r=5,∴OH=4∵AH∥CF,∴△AOH~△FOC,∴=,即=,解得OF=,∴AF=AO+OF=5+=.23.如图所示,电脑绣花设计师准备在长120cm,宽8cm的矩形ABCD模板区域内设计绣花方案,现将其划分为区域Ⅰ(2个全等的五边形),区域Ⅱ(2个全等的菱形),区域Ⅲ(正方形EFGH中减去与2个菱形重合的部分),剩余为不刺绣的空白部分:点O是整副图形的对称中心EG∥AB,H,F分别为2个菱形的中心,MH=2PH,HQ=2OQ,为了美观,要求MT不超过10cm.若设OQ=x(cm),x为正整数.(1)用含x的代数式表示区域Ⅲ的面积;(2)当矩形ABCD内区域Ⅰ的面积最小时,图案给人的视觉感最好.求此时MN的长度;(3)区域Ⅰ,Ⅱ,Ⅲ的刺绣方式各有不同.区域Ⅰ与区域Ⅲ所用的总针数之比为29:19,区域Ⅱ与区域Ⅲ每平方厘米所用的针数分别为a,b针(a,b均为整数,a>b),区域Ⅲ的面积为正整数.这时整个模板的总针数为12960针,则a+b= 5 .【分析】(1)区域Ⅲ的面积=正方形EFGH的面积﹣4×△JQH的面积.(2)构建二次函数,求出自变量的取值范围即可解决问题.(3)由(2)可知:7.5≤x<10,由区域Ⅲ的面积=x2是整数,可得x=9,由区域Ⅰ与区域Ⅲ所用的总针数之比为29:19,可以假设区域Ⅰ与区域Ⅲ所用的总针数分别为29k,19k,由区域Ⅱ的面积=32x2,区域Ⅲ的面积=x2,设区域Ⅱ的总针数为y.则有=,可得y=48k,根据整个模板的总针数为12960针,构建方程求出k,即可解决问题.【解答】解:(1)∵OQ=x,∴HQ=2OQ=2x,OH=3x,HF=6x,∴菱形EFGH的面积为18x2(cm2),设EH交MQ于J.∵∠JHQ=45°,tan∠JQH=2,HQ=2x解得这个三角形的面积为:x2(cm2),∴区域Ⅲ的面积为:18x2﹣4×x2=x2(cm2).(2)令区域Ⅰ的面积为y,则y=2×[40(60﹣3x)﹣4x2]=﹣8x2﹣240x+4800,∴该函数的对称轴为:直线x=﹣15,∵a=﹣8<0,∴在对称轴右侧y随x的增大而减小……………(2分)∵,∴7.5≤x<10,x为正整数,∴x=8,9∴当x=9时,区域Ⅰ面积最小,此时MN=8x=72cm.(3)由(2)可知:7.5≤x<10,∵区域Ⅲ的面积=x2是整数,∴x=9,∵区域Ⅰ与区域Ⅲ所用的总针数之比为29:19,∴可以假设区域Ⅰ与区域Ⅲ所用的总针数分别为29k,19k,∵区域Ⅱ的面积=32x2,区域Ⅲ的面积=x2,设区域Ⅱ的总针数为y.则有=,∴y=48k,∵整个模板的总针数为12960针,∴29k+48k+19k=12960,∴k=135,∴a+b=+=5.故答案为5.24.如图,∠ACL=90°,AC=4,动点B在射线CL,CH⊥AB于点H,以H为圆心,HB为半径作圆交射线BA于点D,交直线CD于点F,交直线BC于点E.设BC=m.(1)当∠A=30°时,求∠CDB的度数;(2)当m=2时,求BE的长度;(3)在点B的整个运动过程中,①当BC=3CE时,求出所有符合条件的m的值.②连接EH,FH,当tan∠FHE=时,直接写出△FHD与△EFH面积比.【分析】(1)由HB=HD,CH⊥BD可知:CH是BD的中垂线,再由∠A=30°得:∠CDB=∠ABC=60°;(2)当m=2时,由勾股定理可得:AB=2,cos∠ABC=,过点H作HK⊥BC于点K,利用垂径定理可得结论;(3))①要分两种情况:1°.当点E在C右侧时,2°.当点E在C左侧时;根据相似三角形性质和勾股定理即可求得结论;②先证明:EF∥BD,根据平行线间距离相等可得:△FHD与△EFH高相等,面积比等于底之比,再由tan∠FHE=可求得的值即可.【解答】解:(1)∵∠A=30°,∠ACB=90°∴∠ABC=60°∵HB=HD,CH⊥BD∴CH是BD的中垂线∴CB=CD∴∠CDB=∠ABC=60°(2)如图1,过点H作HK⊥BC于点K当m=2时,BC=2∴AB==2∴cos∠ABC==,∴BH=BC•cos∠ABC=∴BK=BH•cos∠ABC=∴BE=2BK=;(3)①分两种情况:1°.当点E在C右侧时,如图2,连结DE,由BD是直径,得DE⊥BC ∵BC=3CE=m∴CE=m,BE=m∵DE∥AC∴△DEB~△ACB∴==∴DE=AC=∵CD=CB=m∴Rt△CDE中,由勾股定理得:+=m2∵m>0∴m=22°.当点E在C左侧时,如图3,连结DE,由BD是直径,得DE⊥BC ∵BC=3CE∴CE=m,BE=m∵DE∥AC∴△DEB~△ACB∴==∴DE=AC=6∵CD=CB=m∴Rt△CDE中,由勾股定理得:62+=m2∵m>0∴m=4,综上所述,①当BC=3CE时,m=2或4.②如图4,过F作FG⊥HE于点G,∵CH⊥AB,HB=HD∴CB=CD∴∠CBD=∠CDB∴=,即+=+∴=∴EF∥BD∴=∵在Rt△FHG中,=tan∠FHE=,设FG=5k,HG=12k,则FH===13k∴DH=HE=FH=13k,EG=HE﹣HG=13k﹣12k=k∴EF===k∴==.。

2019年浙江省温州市中考数学模拟试卷(二)(解析版)

2019年浙江省温州市中考数学模拟试卷(二)(解析版)
14.【答案】
【解析】
解:将圆形补全,设圆心为O,连接DO,过点O作OE⊥AD于点E,
由题意可得出:∠DAB=∠ABC=90°,
∵AC=1.2米,AB=0.6米,
11.【答案】2(a+1)(a-1)
【解析】
解:原式=2(a2-1)
=2(a+1)(a-1).
故答案为:2(a+1)(a-1).
原式提取2,再利用平方差公式分解即可.
此题考查了提公因式法与公式法的综合运用,熟练掌握运算法则是解本题的关键.
12.【答案】0,-2
【解析】
解:x2+2x=0
x(x+23,AC=4,求线段AP的长.
22. 如图,已知二次函数图象与x轴交于点A(-1,0),B(3m,0),交y轴于点C(0,3m)(m>0).
(1)当m=2时,求抛物线的表达式及对称轴.
(2)过OB中点M作x轴垂线交抛物线于点D过点D作DF∥x轴.交抛物线于点E,交直线BC于点F,当 时,求m的值.
【解析】
解:如图,在这样连续6次旋转的过程中,点M的运动轨迹是图中的红线,
观察图象可知点B,M间的距离大于等于2- 小于等于1,
当正方形和正六边形的边重合时,点B,M间的距离可能是1或 -1,
故选:D.
如图,在这样连续6次旋转的过程中,点M的运动轨迹是图中的红线,观察图象可知点B,M间的距离大于等于2- 小于等于1,由此即可判断.
24. 如图,在矩形ABCD中,AB=8,BC=6,点E,F分别从点B,D同时出发沿AB延长线和射线DA以相同的速度运动,连结EF,交射线DB于点G.连结CG.
(1)当BE=2时,求BD,EG的长.
(2)当点F在线段AD上时,记∠DCG为∠1,∠AFE为∠2,那么 的值是否会变化?若不变,求出该比值;若变化,请说明理由.

浙江省温州市第二十三中学2019年初三中考校第二次模拟考试数学试卷(含答案)

浙江省温州市第二十三中学2019年初三中考校第二次模拟考试数学试卷(含答案)

23.(本题 12 分)
解:(1)
SⅡ =4

1 2

6ห้องสมุดไป่ตู้2 2

8-2 2
=12
…………………………3分
(2)
SⅢ
=48-4
1 2

6-a 2

8-a 2
=

1 2
(a

7)2

97 2
1 a 5
当a

5时 ,
SⅢ
max

97 2

2

93 2
…………………………5分
(3)设红、蓝、黄三种玻璃的单价分别为每立方厘米 x 、 y 、 (190 x y) 元
…………………………4 分 …………………………4 分
19.(本题 8 分) (1) 50 ,30
…………………………2 分
10 5
…………………………2 分 (2)
数学答案第 1 页(共 5 页)
树状图
男2
男1

男1
男2


男1
男2
列表
男1 男2 女
男1
男,男 男,女
男 2 男,男
男,女

女,男 女,男
27 x 4y 44(190 x y) 3960 4490 2 61x 80y 8800
y 110 61 x ( x 、 y 都是正整数) 80
x 80 , y 49 ,190 x y 61 答:红色玻璃单价为80元/m2,蓝色玻璃单价为49元/m2,黄色玻璃单价为61元/m2
数学答案第 3 页(共 5 页)

浙江省温州市2019届高考数学二模试卷(理科) Word版含解析

浙江省温州市2019届高考数学二模试卷(理科) Word版含解析

2018-2019学年浙江省温州市高考数学二模试卷(理科)最新试卷十年寒窗苦,踏上高考路,心态放平和,信心要十足,面对考试卷,下笔如有神,短信送祝福,愿你能高中,马到功自成,金榜定题名。

最新试卷多少汗水曾洒下,多少期待曾播种,终是在高考交卷的一刹尘埃落地,多少记忆梦中惦记,多少青春付与流水,人生,总有一次这样的成败,才算长大。

一、选择题:本大题共8小题,每小题是5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.下列函数中,既是奇函数又在其定义域上是增函数的是()A.y=﹣B.y=2x C.y=log2x D.y=2x2.“任意的x∈R,都有x2≥0成立”的否定是()A.任意的x∈R,都有x2≤0成立B.任意的x∈R,都有x2<0成立C.存在x0∈R,使得x≤0成立D.存在x0∈R,使得x<0成立3.要得到函数y=sin2x+cos2x的图象,只需将函数y=2sin2x的图象()A.向左平移个单位B.向右平移个单位C.向左平移个单位D.向右平移个单位4.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()A.(18π﹣20)cm2cm3 B.(24π﹣20)cm3 C.(18π﹣28)cm23 D.(24π﹣28)cm35.若实数x,y满足不等式组,且z=y﹣2x的最小值等于﹣2,则实数m的值等于()A.﹣1 B.1 C.﹣2 D. 26.已知f(x)=,则方程f[f(x)]=2的根的个数是()A.3个B.4个C.5个D.6个7.在△ABC中,BC=5,G,O分别为△ABC的重心和外心,且=5,则△ABC的形状是()A.锐角三角形B.钝角三角形C.直角三角形D.上述三种情况都有可能8.如图所示,A,B,C是双曲线=1(a>0,b>0)上的三个点,AB经过原点O,AC经过右焦点F,若BF⊥AC且|BF|=|CF|,则该双曲线的离心率是()A.B.C.D.3二、填空题:本大题共7小题,9-12题:每小题6分,13-15题:每小题6分,共36分.9.集合A={0,|x|},B={1,0,﹣1},若A⊆B,则A∩B=,A∪B=,C B A=.10.设两直线l1:(3+m)x+4y=5﹣3m与l2:2x+(5+m)y=8,若l1∥l2,则m=,若l1⊥l2,则m=.11.已知ABCDEF为正六边形,若向量,则||=;=.(用坐标表示)12.设数列{}是公差为d的等差数列,若a3=2,a9=12,则d=;a12=.13.设抛物线y2=4x的焦点为F,P为抛物线上一点(在第一象限内),若以PF为直径的圆的圆心在直线x+y=2上,则此圆的半径为.14.若实数x,y满足4x2+2x+y2+y=0,则2x+y的范围是.15.如图所示的一块长方体木料中,已知AB=BC=4,AA1=1,设E为底面ABCD的中心,且(0≤λ≤),则该长方体中经过点A1、E、F的截面面积的最小值为.三、解答题:本大题共5小体,共74分,解答应写出文字说明,证明过程或演算步骤。

浙江省温州市龙湾区2019年中考数学二模试卷

浙江省温州市龙湾区2019年中考数学二模试卷

2019年浙江省温州市龙湾区中考数学二模试卷一.选择题(共10小题)1.﹣2019的相反数是()A.2019 B.﹣2019 C.D.﹣2.如图所示的支架是由两个长方体构成的组合体,则它的俯视图是()A.B.C.D.3.安居物业管理公司对某小区一天的垃圾进行了分类统计,并将统计结果绘制成如图所示的扇形统计图.若某一天产生的垃圾约为300kg,则该小区这一天产生的可回收垃圾约为()A.15kg B.45kg C.105kg D.135kg4.一次函数y=2x+4的图象与y轴交点的坐标是()A.(0,﹣4)B.(0,4)C.(2,0)D.(﹣2,0)5.如图,一个小球沿倾斜角为a的斜坡向下滚动,cos a=.当小球向下滚动了2.5米时,则小球下降的高度是()A.2.5米B.2米C.1.5米D.1米6.若关于x的一元二次方程4x2﹣4x+c=0有两个相等的实数根,则c的值是()A.4 B.﹣4 C.1 D.﹣17.如图,在△ABC中,∠ACB=90°,∠B=28°.分别以点A,B为圆心大于AB的长为半径画弧,两弧交于点D和E,直线DE交AB于点F,连结CF,则∠AFC的度数为()A.62°B.60°C.58°D.56°8.有甲、乙两种糖果,原价分别为每千克a元和b元.根据调查,将两种糖果按甲种糖果x千克与乙种糖果y千克的比例混合,取得了较好的销售效果.现在糖果价格有了调整:甲种糖果单价下降15%,乙种糖果单价上涨20%,但按原比例混合的糖果单价恰好不变,则等于()A.B.C.D.9.如图,已知点A,点C在反比例函数y=(k>0,x>0)的图象上,AB⊥x轴于点B,连结OC交AB于点D,若CD=2OD,则△BDC与△ADO的面积比为()A.B.C.D.10.如图,一个正六棱柱的表面展开后恰好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出5cm,宽留出1cm,则该六棱柱的侧面积是()A.(108﹣24)cm2B.(108﹣12)cm2C.(54﹣24)cm2D.(54﹣12)cm2二.填空题(共6小题)11.分解因式:m2﹣8m+16=.12.小明有5把钥匙,其中有2把钥匙能打开教室门,则小明任取一把钥匙,恰好能打开教室门的概率是.13.如果式子有意义,则x的取值范围是.14.如图所示,在扇形AOC中,∠AOC=120°,OA=4,以点O为圆心在其同侧画扇形BOD,∠BOD=60°,OB=2,且△AOB≌△COD,则阴影部分的面积是15.如图,以菱形ABCD的对角线AC为边,在AC的左侧作正方形ACEF,连结FD并延长交EC于点H.若正方形ACEF的面积是菱形ABCD面积的1.4倍,CH=6,则EF=.16.小明家的门框上装有一把防盗门锁(如图1).其平面结构图如图2所示,锁身可以看成由两条等弧,和矩形ABCD组成,的圆心是倒锁按钮点M.其中的弓高GH =2cm,AD=8cm,EP=11cm.当锁柄PN绕着点N旋转至NQ位置时,门锁打开,此时直线PQ与所在的圆相切,且PQ∥DN,tan∠NQP=2,则AB的长度约为cm.(结果精确到0.1cm,参考数据:≈1.732,≈2.236)三.解答题(共8小题)17.(1)计算:(﹣2)0+|﹣5|﹣()﹣1(2)化简:(a+1)(a﹣1)﹣a(a﹣2).18.如图,点D是等边△ABC内一点,将线段AD绕着点A逆时针旋转60°得到线段AE,连结CD并延长交AB于点F,连结BD,CE.(1)求证:△ACE≌△ABD;(2)当CF⊥AB时,∠ADB=140°,求∠ECD的度数.19.如图,这是一张6×6的方格纸,方格纸中的每个小正方形的边长均为1,线段AB的端点均在格点上.请按要求完成下列作图:①仅用无刻度直尺,且不能用直尺中的直角;②保留作图痕迹.(1)请以线段AB为斜边作等腰直角△ABC(作出一个即可).(2)在(1)的基础上,作出BC边上的中线AD.20.为让学生感受中华诗词之美,某校九年级举行了“诗词大赛”,为了解九年级A,B两班学生的“诗词大赛”成绩,分别从每班50名学生中各随机抽取20人的“诗词大赛”成绩(满分为40分,成绩均为整数),制成如图所示的统计图.(1)若将不低于35分的成绩评为优秀,请你估计一下哪个班级优秀人数多?多几人?(2)请你选择适当的统计量来说明A,B两班哪个班级的整体成绩较好?21.如图,抛物线M1:y=﹣x2+4x交x轴正半轴于点A,将抛物线M,平移得到抛物线M2:y=﹣x2+bx+c,M1与M2交于点B,直线OB交M2于点C,点C的横坐标为6,且OB=BC.(1)①直接写出点B,点C的坐标;②求抛物线M2的表达式;(2)点P是抛物线M1上AB间一点,作PQ⊥x轴交抛物线M2于点Q,连结CP,CQ,设点P的横坐标为m.当m为何值时,使△CPQ的面积最大,并求出最大值.22.如图1,平面内有一点P到△ABC的三个顶点的距离分别为PA,PB,PC.若满足PA2=PB2+PC2,则称点P为△ABC关于点A的勾股点.如图2,E是矩形ABCD内一点,且点C 是△ABE关于点A的勾股点,连接DE.(1)求证:CE=CD.(2)若AB=5,BC=6,DA=DE,求AE的长.23.某礼品店从文化用品市场批发甲、乙、丙三种礼品(每种礼品都有),各礼品的数量和批发单价列表如下:甲乙丙数量(个)m3m n批发单价(元)a(1≤m≤10)b100.8a(m>10)(1)当m=5时,若这三种礼品共批发35个,甲礼品的总价不低于丙礼品的总价,求a 的最小值;(2)已知该店用1320元批发了这三种礼品,且a=5b;①当m=25时,若批发这三种礼品的平均单价为11元/个,求b的值;②当7<m<20时,若该店批发了20个丙礼品,且a为正整数,求a的值.24.如图,在Rt△ABC中,∠ABC=90°,⊙O(圆心O在△ABC内部)经过B,C两点,交线段AC于点D,直径BH交AC于点E,点A关于直线BD的对称点F落在⊙O上.连结BF.(1)求证:∠C=45°;(2)在圆心O的运动过程中;①若tan∠EDF=,AB=6,求CE的长;②若点F关于AC的对称点落在△BFE边上时,求点的值.(直接写出答案);(3)令⊙O与边AB的另一个交点为P,连结PC,交BD于点Q,若PC⊥BF,垂足为点G,求证:BD=AD+CE.。

2019届浙江省温州市龙湾区九年级中考二模试卷(含详解)

2019届浙江省温州市龙湾区九年级中考二模试卷(含详解)

2019届浙江省温州市龙湾区九年级中考二模试卷数学(考试时间:120分钟,满分100分)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一.选择题(共10小题,满分40分,每小题4分)1.a是不为零的自然数,a与的关系一定是()A. a≥B. a<C. a=D. a>【答案】A【解析】【分析】由题意可知,a和互为倒数,此题可从两个方面考虑①当a=1时,a=;②当a>1时,a>;由此可得出答案.【详解】∵a是不为零的自然数,∴a与的关系一定是a≥.故选:A.【点睛】解题关键是关键一定要掌握a是不为零的自然数的两种情况.2.如图是由若干个大小相同的小正方体堆砌而成的几何体,那么其三种视图中面积最小的是()A. 主视图B. 俯视图C. 左视图D. 一样大【答案】C【解析】如图,该几何体主视图是由5个小正方形组成,左视图是由3个小正方形组成,俯视图是由5个小正方形组成,故三种视图面积最小的是左视图,故选C.3.下面的统计图反映了我市2011﹣2016年气温变化情况,下列说法不合理的是()A. 2011﹣2014年最高温度呈上升趋势B. 2014年出现了这6年的最高温度C. 2011﹣2015年的温差成下降趋势D. 2016年的温差最大【答案】C【解析】【分析】利用折线统计图结合相应数据,分别分析得出符合题意的答案.【详解】A选项:2011-2014年最高温度呈上升趋势,正确;B选项:2014年出现了这6年的最高温度,正确;C选项:2011-2015年的温差成下降趋势,错误;D选项:2016年的温差最大,正确;故选:C.【点睛】考查了折线统计图,利用折线统计图获取正确信息是解题关键.4.已知点A(﹣3,m)与点B(2,n)是直线y=﹣2x+b上的两点,则m与n的大小关系是()A. m<nB. m=nC. m>nD. 无法确定【答案】C【解析】【分析】先根据直线的解析式判断出函数的增减性,再根据一次函数的性质即可得出结论.【详解】∵直线y=-2x+b中,k=-2<0,∴此函数是减函数.∵-3<2,∴m>n.故选:C.【点睛】考查的是一次函数图象上点的坐标特点,熟知一次函数的增减性(当k>0时,直线y=kx+b从左向右上升,函数y的值随自变量x的增大而增大;当k<0时,直线y=kx+b从左向右下降,函数y的值随自变量x的增大而减小)是解答此题的关键.5.如图,⊙O的直径AB与弦CD垂直相交于点E,且AC=2,AE=.则的长是()A. B. C. D.【答案】B【解析】试题分析:如答图,连接OC,∵△ACE中,AC=2,AE=,CE=1,∴AE2+CE2=AC2.∴△ACE是直角三角形,即AE⊥CD.∵sinA=,∴∠A="30°." ∴∠COE=60°.∵,∴,解得OC=.∵AE⊥CD,∴.∴.故选B.考点:1. 勾股定理的逆定理;2.锐角三角函数定义;3.特殊角的三角函数值;4.垂径定理;5.弧长的计算.6.用配方法解一元二次方程x2﹣6x﹣1=0时,下列变形正确的是()A. (x﹣3)2=1B. (x﹣3)2=10C. (x+3)2=1D. (x+3)2=10【答案】B【解析】【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【详解】x2﹣6x﹣1=0方程移项得:x2-6x=1,配方得:x2-6x+9=10,即(x-3)2=10,故选:B.【点睛】考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.7.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,则∠BAC的度数为()A. 40°B. 45°C. 50°D. 55°【答案】A【解析】解:∵AE∥BD,∴∠CBD=∠E=35°.∵BD平分∠ABC,∴∠CBA=70°.∵AB=AC,∴∠C=∠CBA=70°,∴∠BAC=180°﹣70°×2=40°.故选A.点睛:考查了平行线的性质,角平分线的性质,等腰三角形的性质和三角形内角和定理.关键是得到∠C=∠CBA=70°.8.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设实际参加游览的同学共x人,则所列方程为()A. B.C. D.【答案】D【解析】【分析】先写出前后两次同学们每个人的车费,再根据每个同学比原来少摊了3元钱车费构造方程.【详解】原每人的车费为元,实际每人的车费为元,则.故选D.【点睛】本题考查列分式方程解决实际问题,根据题意找出能够表示应用题全部含义的一个等量关系,关键是设未知数和用未知数的代数式表示相关的未知量.本题需要注意的是x表示的是实际参加游览的同学人数.9.如图所示为一种“羊头”形图案,其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②,…,依此类推,若正方形①的面积为64,则正方形⑤的面积为()A. 2B. 4C. 8D. 16【答案】B【解析】试题解析:第一个正方形的面积是64;第二个正方形的面积是32;第三个正方形的面积是16;…第n个正方形的面积是,∴正方形⑤的面积是4.故选B.考点:勾股定理.10.如图,已知矩形ABCD,AB=4,AD=2,E为AB的中点,连接DE与AC交于点F,则CF的长等于()A. B. C. D.【答案】B【解析】【分析】利用勾股定理求出AC,再由△AEF∽△CDF,推出即可.【详解】∵四边形ABCD是矩形,∴AB=CD=4,AD=BC=2,∠B=90°,∴AC=,∵AE=EB=AB,AE∥CD,∴△AEF∽△CDF,∴,∴AF=AC=.∴CF=2AF=,故选:B.【点睛】考查相似三角形的判定和性质、矩形的性质、平行线的性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题.二.填空题(共6小题,满分30分,每小题5分)11.化简:a+1+a(a+1)+a(a+1)2+…+a(a+1)99=_________.【答案】(a+1)100.【解析】【分析】原式提取公因式,计算即可得到结果.【详解】原式=(a+1)[1+a+a(a+1)+a(a+1)2+…+a(a+1)98],=(a+1)2[1+a+a(a+1)+a(a+1)2+…+a(a+1)97],=(a+1)3[1+a+a(a+1)+a(a+1)2+…+a(a+1)96],=…,=(a+1)100.故答案是:(a+1)100.【点睛】考查了因式分解-提公因式法,熟练掌握提取公因式的方法是解本题的关键.12.已知m>6,则关于x的不等式(6﹣m)x<m﹣6的解集为_____【答案】x>﹣1【解析】【分析】根据题意判断出6-m的正负,求出不等式的解集即可.【详解】∵m>6,∴6-m<0,不等式解集为x>-1,故答案是:x>-1.【点睛】考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.13.袋子中装有红、黄、绿三种颜色的小球各一个,从中任意摸出一个放回搅匀,再摸出一个球,则两次摸出的球都是黄色的概率是_____.【答案】【解析】【分析】先列有得出所有等可能的情况,然后找出符合条件的情况数,利用概率公式进行求解即可得.【详解】列表得:绿(红,绿)(黄,绿)(绿,绿)黄(红,黄)(黄,黄)(绿,黄)红(红,红)(黄,红)(绿,红)红黄绿故一共有9种情况,两次摸出的球都是黄色的有一种,则两次摸出的球都是黄色的概率是,故答案为:.【点睛】本题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.14.如图,将Rt△ABC的BC边绕C旋转到CE的位置,且在Rt△ABC中,∠B=90°,∠A=30°,则∠ACD=_____度.【答案】120【解析】【分析】根据旋转的性质,旋转前后图形的大小和形状没有改变,则∠ACB=∠DCE=60°,即可求得∠BCD,从而求出∠ACD的度数.【详解】将Rt△ABC的BC边绕C旋转到CE的位置,且在Rt△ABC中,∠B=90°,∠A=30°,则∠ACB=60°,∠A=∠D,∠ECD=60°,∴∠BCD=60°,故∠ACD=∠ACB+∠BCD=120°.故答案是:120°.【点睛】考查了旋转的性质,其中解题的关键是正确判定旋转的对应角.15.有一座抛物线形拱桥,正常水位时桥下水面宽度为20米,拱顶距离水面4米.设正常水位时桥下的水深为2米,为保证过往船只顺利航行,桥下水面的宽度不得小于18米,则水深超过_____米时就会影响过往船只在桥下的顺利航行.【答案】2.76【解析】【分析】以拱顶为坐标原点,水平向右为x轴正方向,建立平面直角坐标系.根据题中数据求出抛物线解析式.桥下水面的宽度不得小于18米,即求当x=9时y的值,然后根据正常水位进行解答.【详解】设抛物线解析式为y=ax2,把点B(10,﹣4)代入解析式得:﹣4=a×102,解得:a=﹣,∴y=﹣x2,把x=9代入,得:y=﹣=﹣3.24,此时水深=4+2﹣3.24=2.76米.故答案是:2.76.【点睛】考查点的坐标的求法及二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.16.如图,点A是反比例函数y=(x>0)图象上的一点,点B是反比例函数y=﹣(x<0)图象上的点,连接OA、OB、AB,若∠AOB=90°,则sin∠A=_____【答案】【解析】【分析】从A和B分别作X轴的垂线,证明相似即可求解.【详解】如图,从A点和B点作X轴的垂线,垂足分别为C和D.因为∠AOB=90°,易知△O BD≌△AOC,则.因为点A是反比例函数y=(x>0)图象上的一点,点B是反比例函数y=﹣(x<0)图象上的点,设OD为m,BD为n,OC为a,AC为b,则ab=5,mn=1,求得,则sin∠A=..【点睛】证明相似是解题的关键.三.解答题(共8小题,满分66分)17.(1)计算:﹣sin30°(2)化简:.【答案】(1)0;(2).【解析】【分析】(1)直接利用负指数幂的性质以及零指数幂的性质和特殊角的三角函数值进而化简得出答案;(2)直接利用通分运算进而得出答案.【详解】(1)原式=﹣+1﹣=0;(2)原式===.【点睛】考查了分式的加减运算以及实数运算,正确掌握运算法则是解题关键.18.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=2,求BD的长.【答案】(1)证明见解析;(2)BD=4.【解析】【分析】(1)根据角平分线性质求出CD=DE,根据HL定理求出另三角形全等即可;(2)求出∠D EB=90°,DE=2,根据含30度角的直角三角形性质求出即可.【详解】(1)证明:∵AD平分∠CAB,DE⊥AB,∠C=90°,∴CD=ED,∠DEA=∠C=90°,∵在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL);(2)∵DC=DE=2,DE⊥AB,∴∠DEB=90°,∵∠B=30°,∴BD=2DE=4.【点睛】考查了全等三角形的判定,角平分线性质,含30度角的直角三角形性质的应用,注意:角平分线上的点到角两边的距离相等.19.如图所示,正方形网格中,每个小正方形的边长是1个单位长度(1)在图中作出△ABC关于点O对称的△A1B1C1(不写作法,但需在图中标注相应字母);(2)已知点A、B的坐标分别为A(﹣4,4)、B(﹣3,1),求点C1的坐标.【答案】(1)作图见解析;(2)(2,﹣3).【解析】【分析】(1)延长AO到A1使A1O=OA,则点A1为A点的对应点,同样方法作出点B、C的对应点B1、C1,则△A1B1C1为所求;(2)首先根据B点坐标确定原点位置,然后画出坐标系,再确定点C1的坐标即可.【详解】(1)如图:△A1B1C1即为所求;(2)如图:点C1的坐标(2,﹣3).【点睛】考查了作图--旋转变换,根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.20.某工厂车间共有10名工人,调查每个工人的日均生产能力,获得数据制成如下统计图.(1)求这10名工人的日均生产件数的平均数、众数、中位数;(2)若要使占60%的工人都能完成任务,应选什么统计量(平均数、中位数、众数)做日生产件数的定额?【答案】(1)见解析;(2)应选中位数作为日生产件数的定额.【解析】分析: (1)根据平均数=加工零件总数÷总人数,中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,如果数据的个数是偶数就是中间两个数的平均数,众数是指一组数据中出现次数最多的数据,分别进行解答即可得出答案.(2)应根据平均数、中位数和众数和本题的60%可知选择哪个统计量比较合适.详解:(1)由统计图可得,平均数为:(8×3+10+12×2+13×4)÷10=11(件),∵13出现了4次,出现的次数最多,∴众数是13件;把这些数从小到大排列为:8,8,8,10,12,12,13,13,13,13,最中间的数是第5、6个数的平均数,则中位数是=12(件);(2)由题意可得,若要使占60%的工人都能完成任务,应选中位数作为日生产件数的定额.点睛: 本题考查统计量的选择、平均数、中位数和众数的计算,解题的关键是明确题意,找出所求问题需要的条件.21.如图,AB为⊙O的直径,点C为⊙O上一点,将弧BC沿直线BC翻折,使弧BC的中点D恰好与圆心O重合,连接OC,CD,BD,过点C的切线与线段BA的延长线交于点P,连接AD,在PB的另一侧作∠MPB=∠ADC.(1)判断PM与⊙O的位置关系,并说明理由;(2)若PC=,求四边形OCDB的面积.【答案】(1)PM与⊙O相切,理由见解析;(2).【解析】【分析】(1)连接DO并延长交PM于E,如图,利用折叠的性质得OC=DC,BO=BD,则可判断四边形OBDC 为菱形,所以OD⊥BC,△OCD和△OBD都是等边三角形,从而计算出∠COP=∠EOP=60°,接着证明PM∥BC得到OE⊥PM,所以OE=OP,根据切线的性质得到OC⊥PC,则OC=OP,从而可判定PM是⊙O的切线;(2)先在Rt△OPC中计算出OC=1,然后根据等边三角形的面积公式计算四边形OCDB的面积.【详解】(1)PM与⊙O相切.理由如下:连接DO并延长交PM于E,如图,∵弧BC沿直线BC翻折,使弧BC的中点D恰好与圆心O重合,∴OC=DC,BO=BD,∴OC=DC=BO=BD,∴四边形OBDC为菱形,∴OD⊥BC,∴△OCD和△OBD都是等边三角形,∴∠COD=∠BOD=60°,∴∠COP=∠EOP=60°,∵∠MPB=∠ADC,而∠ADC=∠ABC,∴∠ABC=∠MPB,∴PM∥BC,∴OE⊥PM,∴OE=OP,∵PC为⊙O的切线,∴OC⊥PC,∴OC=OP,∴OE=OC,而OE⊥PC,∴PM是⊙O的切线;(2)在Rt△OPC中,OC=PC=,∴四边形OCDB的面积=2S△OCD=2××12=.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了直线与圆的关系、圆周角定理和折叠的性质.22.已知抛物线y=ax2经过点A(﹣2,﹣8).(1)求此抛物线的函数解析式;(2)写出这个二次函数图象的顶点坐标、对称轴;(3)判断点B(﹣1,﹣4)是否在此抛物线上;(4)求出此抛物线上纵坐标为﹣6的点的坐标.【答案】(1)y=﹣2x2;(2)顶点坐标为(0,0),对称轴为y轴;(3)不在;(4)(,﹣6)或(﹣,﹣6).【解析】分析:(1)根据二次函数图象上点的坐标满足其解析式,把A点坐标代入解析式得到关于a的方程,然后解方程即可.(2)根据图象和性质直接写出顶点坐标、对称轴即可.(3)把点B(-1,-4)代入解析式,即可判断;(4)把y=-6代入解析式,即可求得;详解:(1)∵抛物线y=ax2经过点A(﹣2,﹣8),∴a•(﹣2)2=﹣8,∴a=﹣2,∴此抛物线对应的函数解析式为y=﹣2x2.(2)由题可得,抛物线的顶点坐标为(0,0),对称轴为y轴;(3)把x=﹣1代入得,y=﹣2×(﹣1)2=﹣2≠﹣4,∴点B(﹣1,﹣4)不在此抛物线上;(4)把y=﹣6代入y=﹣2x2得,﹣6=﹣2x2,解得x=±,∴抛物线上纵坐标为﹣6的点的坐标为(,﹣6)或(﹣,﹣6).点睛:本题主要考查了待定系数法求解析式,二次函数的性质以及二次函数图象上点的坐标特征,函数解析式与图象上的点之间的关系,点在图象上,则满足解析式;反之,满足解析式则在函数图象上.23.如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO=,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.【答案】(1)D(5,4);(2)见解析;(3)点Q坐标为(,)或(4,1)或(1,﹣3).【解析】【分析】(1)在Rt△BOC中,OB=3,sin∠CBO=,设CO=4k,BC=5k,根据BC2=CO2+OB2,可得25k2=16k2+9,推出k=1或﹣1(舍弃),求出菱形的边长即可解决问题;(2)①如图1中,当0≤t≤2时,直线l扫过的图象是四边形CCQP,S=4t;②如图2中,当2<t≤5时,直线l扫过的图形是五边形OCQTA.分别求解即可解决问题;(3)画出符合条件的图形,分三种情形分别求解即可解决问题;【详解】(1)在Rt△BOC中,OB=3,sin∠CBO=,设CO=4k,BC=5k,∵BC2=CO2+OB2,∴25k2=16k2+9,∴k=1或﹣1(舍去),BC=5,OC=4,∵四边形ABCD是菱形,∴CD=BC=5,∴D(5,4);(2)①如图1中,当0≤t≤2时,直线l扫过的图象是四边形CCQP,S=4t.②如图2中,当2<t≤5时,直线l扫过的图形是五边形OCQTA.S=S梯形OCDA﹣S△DQT=×(2+5)×4﹣×(5﹣t)×(5﹣t)=﹣t2+t﹣,∴;(3)如图3中,①当QB=QC,∠BQC=90°,Q(,);②当BC=CQ′,∠BCQ′=90°时,Q′(4,1);③当BC=BQ″,∠CBQ″=90°时,Q″(1,﹣3);综上所述,满足条件的点Q坐标为(,)或(4,1)或(1,﹣3).【点睛】本题考查四边形综合题、菱形的性质、等腰直角三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会构建方程解决问题.24.如图,△ABC内接于⊙O,弦CD平分∠ACB,点E为弧AD上一点,连接CE、DE,CD与AB交于点N.(1)如图1,求证:∠AND=∠CED;(2)如图2,AB为⊙O直径,连接BE、BD,BE与CD交于点F,若2∠BDC=90°﹣∠DBE,求证:CD=CE;(3)如图3,在(2)的条件下,连接OF,若BE=BD+4,BC=,求线段OF的长.【答案】(1)证明见解析;(2)证明见解析;(3)OF=.【解析】分析:(1)连接BE,则∠CAB=∠CEB,∠BCD=∠DEB,由CD是∠ACB的平分线得∠ACD=∠BCD,从而,∠CAB+∠ACD=∠CEB+∠DEB;由∠CAB+∠ACD=∠AND可得结论;(2)根据2∠BDC=90°-∠DBE得∠BDC+∠DBE=90°-∠BDC,由∠BDC=∠BAC得∠BDC+∠DBE=∠CFB,结合AB是直径可得∠CFB=∠CBN,从而可证明∠CDE=∠CED,故可得结论;(3)过C作CM⊥BE,CK⊥DB易证△CEM≌△CDK,△CMB≌△CKB从而求出CM=6,作FH⊥BC于点H,FH交CM于点G,易证△CGH≌△FHB,得CG=BF,设FM=x,利用tan∠GFM=tan∠MCB==求得FM=3,CF=3. 作EQ⊥DF交DF于点Q,通过△CBF∽△EDF设FQ=3k,EQ==6k,则DQ=2k,EF=3k,DE=2k得BE=5+3k,BD=BE-4=3k+1,作DP⊥BE交于点P,运用勾股定理求出k的值,连接OD,在Rt△ODF中,OF2=OD2 -DF2=50-45=5,故OF=.详解:(1)证明:连接BE.∠CED=∠CEB+∠DEB∠AND=∠CAB+∠ACD∵CD是∠ACB的平分线∴∠ACD=∠BCD=∠DEB∵∠CAB=∠CEB,∴∠CAB+∠ACD=∠CEB+∠DEB∠CED=∠AND;(2)∵2∠BDC=90-∠DBE∴∠BDC+∠DBE=90°-∠BDC∵∠BDC=∠BAC∴∠BDC+∠DBE=∠CFB∴90°-∠DBE=90°-∠CAB∵AB是直径,∴∠ACB=90∴∠CFB=∠CBN,∠CNB=∠CBE=∠CDE∠CNB=∠AND=∠CED∴∠CDE=∠CED,∴CE=CD;(3)过C作CM⊥BE,CK⊥DB∴∠CME=∠CKD=90°,∠CEM=∠CDK,CE=CD ∴△CEM≌△CDK,∴EM=DK,CM=CK∴△CMB≌△CKB,∴BM=BK∴BE-BD=2BM=4,BM=2,∴CM=6.;作FH⊥BC于点H,FH交CM于点G∵∠FCB=45°∴△CGH≌△FHB,∴CG=BF设FM=x,∴CG=BF=x+2,GM=6-(x+2)=4-xtan∠GFM=tan∠MCB==∴x=3,FM=3,CF=3.∵△CBF∽△EDF(可以用正切值相等)作EQ⊥DF交DF于点Q设FQ=3k,EQ==6k,则DQ=2k,EF=3k,DE=2k∴BE=5+3k,BD=BE-4=3k+1作DP⊥BE交于点P,∵∠PED=∠BCD=45°,∴PD=PE=DE=2k,PB=BE-PE=5+k;在Rt△PDB中,PB2+PD2=DB2,(5+k)2+(2k)2=(3k+1)2∴k=, DF=5k=3=CF, BD=3k+1=10,;∴OF⊥CD连接OD,∴∠AOD=∠BOD=90°,∴OD=BD=5在Rt△ODF中,OF2=OD2 -DF2=50-45=5,∴OF=点睛:此题主要考查了圆周角定理,勾股定理,相似三角形的判定与性质,关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等.综合性比较强,难度偏大.。

浙江省温州市龙湾区2019年中考数学模拟试卷

浙江省温州市龙湾区2019年中考数学模拟试卷

2019年浙江省温州市龙湾区中考数学模拟试卷一.选择题(每题4分,满分40分)1.2020的相反数是()A.2020 B.﹣2020 C.D.2.如图是由6个棱长均为1的正方体组成的几何体,从左面看到的该几何体的形状为()A.B.C.D.3.安居物业管理公司对某小区一天的垃圾进行了分类统计,如图是分类情况的扇形统表,若一天产生的垃圾的为300kg,估计该小区一个月(按30天计)产生的可回收垃圾重量约是()A.900kg B.105kg C.3150kg D.5850kg4.一次函数y=﹣2x+4的图象与两条坐标轴所围成的三角形面积是()A.2 B.4 C.6 D.85.如图,河坝横断面的迎水坡AB的坡比为3:4,BC=6m,则坡面AB的长为()A.6m B.8m C.10m D.12m6.关于x的一元二次方程x2+x+n=0(m≠0)有两个相等的实数根,则的值为()A.4 B.﹣4 C.D.7.如图,已知AB=AC,AB=5,BC=3,以A,B两点为圆心,大于AB的长为半径画圆弧,两弧相交于点M,N,连接MN与AC相交于点D,则△BDC的周长为()A.8 B.10 C.11 D.138.学校“校园之声”广播站要选拔一名英语主持人,小莹参加选拔的各项成绩如下:姓名读听写小莹92 80 90 若把读、听、写的成绩按5:3:2的比例计入个人的总分,则小莹的个人总分为()A.86 B.87 C.88 D.899.如图,在平面直角坐标系中,点A(0,2),点P是双曲线y=(x>0)上的一个动点,做PB⊥x轴于点B,当点P的横坐标逐渐减小时,四边形OAPB的面积将会()A.逐渐增大B.不变C.逐渐减小D.先减小后增大10.一个长方体礼盒的展开图如图所示(重叠部分不计)则该长方体的表面积为()A.34 B.36 C.42 D.46二.填空题(满分30分,每小题5分)11.分解因式:x2﹣9=.12.已知盒子里有4个黄色球和n个红色球,每个球除颜色不同外均相同,则从中任取一个球,取出红色球的概率是,则n的值是.13.若式子x+在实数范围内有意义,则x的取值范围是.14.如图,△AOB≌△COD,OA=OC=4,OB=OD=2,∠AOB=30°,扇形OCA的圆心角∠AOC =120°,以点O为圆心画扇形ODB,则阴影部分的面积是.15.如图,正方形ABCO的顶点A、C在坐标轴上,BC是菱形BDCE的对角线,若∠EBD=120°,BC=2,则点E的坐标是.16.小明家的门框上装有一把防盗门锁(如图1).其平面结构图如图2所示,锁身可以看成由两条等弧AD,弧BC和矩形ABCD组成,弧BC的圆心是倒锁按钮点M.已知弧AD的弓形高GH=2cm,AD=8cm,EP=11cm.当锁柄PN绕着点N旋转至NQ位置时,门锁打开,此时直线PQ与弧BC所在的圆相切,且PQ∥DN,tan∠NQP=2.(1)弧BC所在圆的半径为cm.(2)线段AB的长度约为cm.(≈2.236,结果精确到0.1cm)三.解答题(满分80分,每小题10分)17.(10分)解下列各题:(1)计算:﹣+(﹣1)2017(2)化简:(2a﹣1)(2a+1)﹣4a(a﹣1)18.(8分)如图1,△ABC为等边三角形,点D为BC边上一点,连接AD,并将线段AD绕点A逆时针旋转60°得到AE,连接CE(1)求证:∠ADB=∠AEC;(2)如图2,当点D为BC中点时,连接DE交AC于点F,直接写出长度等于CF的所有线段.19.(8分)如图,方格纸中每个小正方形的边长均为1,线段AB的两个端点均在小正方形的顶点上.(1)在图中画出以AB为底边的等腰直角三角形ABC,点C在小正方形顶点上;(2)在图中画出以AB为腰的等腰三角形AB D,点D在小正方形的顶点上,且△ABD的面积为8.连接CD,请直接写出CD的长.20.(8分)为积极响应“弘扬传统文化”的号召,某学校组织全校1200名学生进行经典诗词诵读活动,并在活动之后举办经典诗词大赛,为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取40名学生调查“一周诗词诵背数量”,根据调查结果绘制成的统计图如图所示.大赛结束后一个月,再次抽查这部分学生“一周诗词诵背数量”,绘制成统计表如下: 一周诗词诵背数量3首 4首 5首 6首 7首 8首人数 1 3 5 6 10 15 请根据调查的信息分析:(1)活动启动之初学生“一周诗词诵背数量”的中位数为 ;(2)估计大赛后一个月该校学生一周诗词诵背6首(含6首)以上的人数;(3)选择适当的统计量,至少从两个不同的角度分析两次调查的相关数据,评价该校经典诗词诵背系列活动的效果.21.(10分)如图,已知抛物线y =ax 2+bx +c (a <0)分别交x 轴、y 轴于点A (2,0)、B (0,4),点P 是线段AB 上一动点,过点P 作PC ⊥x 轴于点C ,交抛物线于点D .(1)若a +b =0.①求抛物线的解析式;②当线段PD 的长度最大时,求点P 的坐标;(2)当点P 的横坐标为1时,是否存在这样的抛物线,使得以B 、P 、D为顶点的三角形与△AOB相似?若存在,求出满足条件的抛物线的解析式;若不存在,请说明理由.22.(10分)如图,在矩形ABCD中,AB=16cm,BC=6cm,点P从点A出发沿AB以3cm/s 的速度向点B移动(不与点A,B重合);同时点Q从点C出发沿CD以2cm/s的速度向点D移动(不与点C、D重合),经过几秒,△PDQ为直角三角形?说明理由.23.(12分)大华服装厂生产一件秋冬季外套需面料1.2米,里料0.8米,已知面料的单价比里料的单价的2倍还多10元,一件外套的布料成本为76元.(1)求面料和里料的单价;(2)该款外套9月份投放市场的批发价为150元/件,出现购销两旺态势,10月份进入批发淡季,厂方决定采取打折促销.已知生产一件外套需人工等固定费用14元,为确保每件外套的利润不低于30元.①设10月份厂方的打折数为m,求m的最小值;(利润=销售价﹣布料成本﹣固定费用)②进入11月份以后,销售情况出现好转,厂方决定对VIP客户在10月份最低折扣价的基础上实施更大的优惠,对普通客户在10月份最低折扣价的基础上实施价格上浮.已知对VIP客户的降价率和对普通客户的提价率相等,结果一个VIP客户用9120元批发外套的件数和一个普通客户用10080元批发外套的件数相同,求VIP客户享受的降价率.24.(14分)已知:△ABC内接于⊙O,连接CO并延长交AB于点E,交⊙O于点D,满足∠BEC=3∠ACD.(1)如图1,求证:AB=AC;(2)如图2,连接BD,点F为弧BD上一点,连接CF,弧CF=弧BD,过点A作AG⊥CD,垂足为点G,求证:CF+DG=CG;(3)如图3,在(2)的条件下,点H为AC上一点,分别连接DH,OH,OH⊥DH,过点C 作CP⊥AC,交⊙O于点P,OH:CP=1:,CF=12,连接PF,求PF的长.。

2019-2020学年温州市中考数学二模试卷(有标准答案)

2019-2020学年温州市中考数学二模试卷(有标准答案)

浙江省温州市中考数学二模试卷一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.在﹣4,﹣2,﹣1,0这四个数中,比﹣3小的数是()A.﹣4 B.﹣2 C.﹣1 D.02.如图是由5个完全相同的小正方体组成的几何体.则这个几何体的主视图是()A.B.C.D.3.一次函数y=2x+4交y轴于点A,则点A的坐标为()A.(0,4)B.(4,0)C.(﹣2,0)D.(0,﹣2)4.不等式3x≤2(x﹣1)的解集为()A.x≤﹣1 B.x≥﹣1 C.x≤﹣2 D.x≥﹣25.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的值可以是下列选项中的()A.3 B.4 C.5 D.66.解方程,去分母正确的是()A.2﹣(x﹣1)=1 B.2﹣3(x﹣1)=6 C.2﹣3(x﹣1)=1 D.3﹣2(x﹣1)=67.如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BC于点E,交BD于点F,连结CF.若∠A=60°,∠ACF=45°,则∠ABC的度数为()A.45°B.50°C.55°D.60°8.如图,直线y=2x+4与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰△OBC,将点C向左平移4个单位,使其对应点C′恰好落在直线AB上,则点C的坐标为()A.(5,2)B.(4,2)C.(3,2)D.(﹣1,2)9.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a元后,再次打7折,现售价为b元,则原售价为()A.a+B.a+C.b+D.b+10.如图,给定的点A,B分别在y轴正半轴、x轴正半轴上,延长OB至点C,使BC=OB,以AB,BC为邻边构造▱ABCD,点P从点D出发沿边DC向终点C运动(点P不与点C重合),反比例函数的图象y=经过点P,则k的值的变化情况是()A.先增大后减小B.一直不变C.一直增大D.一直减小二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:a2﹣2a+1﹣b2= .12.某校为纪念世界反法西斯战争胜利70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为:8.6,9.5,9.7,8.8,9,则这5个数据中的中位数是.13.如图,以△ABC的边BC为直径的⊙O分别交AB,AC于点D,E,连结OD,OE,若∠DOE=40°,则∠A的度数为.14.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是,则黄球的个数为个.15.如图,在△ABC中,∠ACB=90°BC=2,将△ACB绕点C逆时针旋转60°得到△DCE(A和D,B和E分别是对应顶点),若AE∥BC,则△ADE的周长为.16.如图,已知点A的坐标为(m,0),点B的坐标为(m﹣2,0),在x轴上方取点C,使CB ⊥x轴,且CB=2AO,点C,C′关于直线x=m对称,BC′交直线x=m于点E,若△BOE的面积为4,则点E的坐标为.三、解答题(本题有8小题,共80分.解答需要写出必要的文字说明、演算步骤或证明过程)17.(1)计算:(﹣2)2+2×(﹣3)+20160.(2)化简:(m+1)2﹣(m﹣2)(m+2).18.如图,在⊙O中,弦AB=弦CD,AB⊥CD于点E,且AE<EB,CE<ED,连结AO,DO,BD.(1)求证:EB=ED.(2)若AO=6,求的长.19.如图,在平面直角坐标系中,已知点A(3,4),B(﹣3,0).(1)只用直尺(没有刻度)和圆规按下列要求作图.(要求:保留作图痕迹,不必写出作法)Ⅰ)AC⊥y轴,垂足为C;Ⅱ)连结AO,AB,设边AB,CO交点E.(2)在(1)作出图形后,直接判断△AOE与△BOE的面积大小关系.20.某校举办初中生演讲比赛,每班派一名学生参赛,现某班有A,B,C三名学生竞选,他们的笔试成绩和口试成绩分别用两种方式进行了统计,如表和图1:学生A B C笔试成绩(单位:分)859590口试成绩(单位:分)8085(1)请将表和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由本年级段的300名学生代表进行投票,每票计1分,三名候选人的得票情况如图2(没有弃权票,每名学生只能推荐一人),若将笔试、口试、得票三项测试得分按3:4:3的比例确定最后成绩,请计算这三名学生的最后成绩,并根据最后成绩判断谁能当选.21.如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作CE⊥AC,且使AE∥BD,连结DE.(1)求证:AD=CE.(2)若DE=3,CE=4,求tan∠DAE的值.22.某校准备去楠溪江某景点春游,旅行社面向学生推出的收费标准如下:人数m0<m≤100100<m≤200m>200收费标准(元/人)908070已知该校七年级参加春游学生人数多于100人,八年级参加春游学生人数少于100人.经核算,若两个年级分别组团共需花费17700元,若两个年级联合组团只需花费14700元.(1)两个年级参加春游学生人数之和超过200人吗?为什么?(2)两个年级参加春游学生各有多少人?23.实验室里,水平桌面上有甲、乙两个圆柱形容器(容器足够高),底面半径之比为1:2,用一个管子在甲、乙两个容器的15厘米高度处连通(即管子底端离容器底15厘米).已知只有乙容器中有水,水位高2厘米,如图所示.现同时向甲、乙两个容器注水,平均每分钟注入乙容器的水量是注入甲容器水量的k倍.开始注水1分钟,甲容器的水位上升a厘米,且比乙容器的水位低1厘米.其中a,k均为正整数,当甲、乙两个容器的水位都到达连通管子的位置时,停止注水.甲容器的水位有2次比乙容器的水位高1厘米,设注水时间为t分钟.(1)求k的值(用含a的代数式表示).(2)当甲容器的水位第一次比乙容器的水位高1厘米时,求t的值.(3)当甲容器的水位第二次比乙容器的水位高1厘米时,求a,k,t的值.24.如图,在平面直角坐标系中,点A,B分别是y轴正半轴,x轴正半轴上两动点,OA=2k,OB=2k+3,以AO,BO为邻边构造矩形AOBC,抛物线y=﹣x2+3x+k交y轴于点D,P为顶点,PM⊥x轴于点M.(1)求OD,PM的长(结果均用含k的代数式表示).(2)当PM=BM时,求该抛物线的表达式.(3)在点A在整个运动过程中.①若存在△ADP是等腰三角形,请求出所有满足条件的k的值.②当点A关于直线DP的对称点A′恰好落在抛物线y=﹣x2+3x+k的图象上时,请直接写出k 的值.浙江省温州市中考数学二模试卷参考答案与试题解析一、选择题(本题有10小题,每小题4分,共40分.每小题只有一个选项是正确的,不选、多选、错选,均不给分)1.在﹣4,﹣2,﹣1,0这四个数中,比﹣3小的数是()A.﹣4 B.﹣2 C.﹣1 D.0【考点】有理数大小比较.【分析】根据两个负数比较大小,绝对值大的数反而小,可得答案.【解答】解:由|﹣4|>|﹣3|,得﹣4<﹣3,故选:A.2.如图是由5个完全相同的小正方体组成的几何体.则这个几何体的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的视图是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层右边一个小正方形,故选:B.3.一次函数y=2x+4交y轴于点A,则点A的坐标为()A.(0,4)B.(4,0)C.(﹣2,0)D.(0,﹣2)【考点】一次函数图象上点的坐标特征.【分析】在一次函数y=2x+4中,令x=0,求出y的值,即可得到点A的坐标.【解答】解:在一次函数y=2x+4中,当x=0时,y=0+4解得y=4∴点A的坐标为(0,4)4.不等式3x≤2(x﹣1)的解集为()A.x≤﹣1 B.x≥﹣1 C.x≤﹣2 D.x≥﹣2【考点】解一元一次不等式.【分析】根据解一元一次不等式的步骤:去括号、移项、合并同类项计算,即可得到答案.【解答】解:去括号得,3x≤2x﹣2,移项、合并同类项得,x≤﹣2,故选:C.5.如图,在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,则r的值可以是下列选项中的()A.3 B.4 C.5 D.6【考点】点与圆的位置关系;矩形的性质.【分析】根据点与圆心的距离d,则d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内,可得答案.【解答】解:由勾股定理,得BD==5.在矩形ABCD中,AB=4,AD=3,以顶点D为圆心作半径为r的圆,若点A,B,C中至少有一个点在圆内,且至少有一个点在圆外,得3<r<5,故选:B.6.解方程,去分母正确的是()A.2﹣(x﹣1)=1 B.2﹣3(x﹣1)=6 C.2﹣3(x﹣1)=1 D.3﹣2(x﹣1)=6【考点】解一元一次方程.【分析】等式的两边同时乘以公分母6后去分母.【解答】解:在原方程的两边同时乘以6,得2﹣3(x﹣1)=6;7.如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BC于点E,交BD于点F,连结CF.若∠A=60°,∠ACF=45°,则∠ABC的度数为()A.45°B.50°C.55°D.60°【考点】线段垂直平分线的性质;三角形内角和定理;等腰三角形的性质.【分析】设∠ABD=∠CBD=x°,则∠ABC=2x°,根据线段垂直平分线性质求出BF=CF,推出∠FCB=∠CBD,根据三角形内角和定理得出方程,求出方程的解即可.【解答】解:∵BD平分∠ABC,∴∠ABD=∠CBD,设∠ABD=∠CBD=x°,则∠ABC=2x°,∵EF是BC的垂直平分线,∴BF=CF,∴∠FCB=∠CBD=x°,∵∠A=60°,∠ACF=45°,∴60°+45°+x°+2x°=180°,解得:x=25,∴∠ABC=2x°=50°,故选B.8.如图,直线y=2x+4与x,y轴分别交于点A,B,以OB为底边在y轴右侧作等腰△OBC,将点C向左平移4个单位,使其对应点C′恰好落在直线AB上,则点C的坐标为()A.(5,2)B.(4,2)C.(3,2)D.(﹣1,2)【考点】一次函数图象上点的坐标特征;坐标与图形变化-平移.【分析】先求出直线y=2x+4与y轴交点B的坐标为(0,4),再由C在线段OB的垂直平分线上,得出C点纵坐标为2,将y=2代入y=2x+4,求得x=﹣1,即可得到C′的坐标为(﹣1,2).【解答】解:∵直线y=2x+4与y轴交于B点,∴x=0时,得y=4,∴B(0,4).∵以OB为边在y轴右侧作等边三角形OBC,∴C在线段OB的垂直平分线上,∴C点纵坐标为2.将y=2代入y=2x+4,得2=2x+4,解得x=﹣1.则C′(﹣1,2),将其向右平移4个单位得到C(3,2).故选:C.9.随着服装市场竞争日益激烈,某品牌服装专卖店一款服装按原售价降价a元后,再次打7折,现售价为b元,则原售价为()A.a+B.a+C.b+D.b+【考点】列代数式.【分析】可设原售价是x元,根据降价a元后,再次下调了30%后是b元为相等关系列出方程,用含a,b的代数式表示x即可求解.【解答】解:设原售价是x元,则(x﹣a)70%=b,解得x=a+b,故选:A.10.如图,给定的点A,B分别在y轴正半轴、x轴正半轴上,延长OB至点C,使BC=OB,以AB,BC为邻边构造▱ABCD,点P从点D出发沿边DC向终点C运动(点P不与点C重合),反比例函数的图象y=经过点P,则k的值的变化情况是()A.先增大后减小B.一直不变C.一直增大D.一直减小【考点】反比例函数图象上点的坐标特征;平行四边形的性质.【分析】根据反比例函数的性质和二次函数的性质,从而可以解答本题.【解答】解:如右图所示,设点P的坐标为(x,y),OB=a,OA=b,则S△OPE =S梯形OADC﹣S△梯形EADP﹣S△OPC,即化简,得k=﹣,∵x≥a,∴k的值随x的变大而变小,故选D.二、填空题(本题有6小题,每小题5分,共30分)11.因式分解:a2﹣2a+1﹣b2= (a﹣1+b)(a﹣1﹣b).【考点】因式分解-分组分解法.【分析】原式前三项结合,利用完全平方公式变形,再利用平方差公式分解即可.【解答】解:原式=(a2﹣2a+1)﹣b2=(a﹣1)2﹣b2=(a﹣1+b)(a﹣1﹣b),故答案为:(a﹣1+b)(a﹣1﹣b)12.某校为纪念世界反法西斯战争胜利70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为:8.6,9.5,9.7,8.8,9,则这5个数据中的中位数是9 .【考点】中位数.【分析】把这组数按从大到小(或从小到大)的顺序排列,因为数的个数是奇数个,所以中间哪个数就是中位数.【解答】解:按照从小到大的顺序排列为:8.6,8.8,9,9.5,9.7,中位数为:9.故答案为:9.13.如图,以△ABC的边BC为直径的⊙O分别交AB,AC于点D,E,连结OD,OE,若∠DOE=40°,则∠A的度数为70°.【考点】圆周角定理.【分析】连接BE,根据圆周角定理求出∠ABE的度数,由BC为直径得∠BEC=90°,再利用互余得到∠A的度数.【解答】解:连接BE,如图,∵∠DOE=40°,∴∠ABE=20°,∵BC为直径,∴∠BEC=90°,∴∠A=90°﹣∠ABE=90°﹣20°=70°,故答案为70°.14.在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是,则黄球的个数为24 个.【考点】概率公式.【分析】首先设黄球的个数为x个,根据题意得: =,解此分式方程即可求得答案.【解答】解:设黄球的个数为x个,根据题意得: =,解得:x=24,经检验:x=24是原分式方程的解;∴黄球的个数为24.故答案为:24;15.如图,在△ABC中,∠ACB=90°BC=2,将△ACB绕点C逆时针旋转60°得到△DCE(A和D,B和E分别是对应顶点),若AE∥BC,则△ADE的周长为1+.【考点】旋转的性质.【分析】根据旋转的性质得到∴CE=BC=2,AC=CD,∠BCE=∠ACD=60°,∠DCE=∠ACB=90°,推出△ACD是等边三角形,得到AD=AC,解直角三角形到底AE=CE=1,AC=CD=CE=,由勾股定理到底DE==,即可得到结论.【解答】解:∵将△ACB绕点C逆时针旋转60°得到△DCE,∴CE=BC=2,AC=CD,∠BCE=∠ACD=60°,∠DCE=∠ACB=90°,∴△ACD是等边三角形,∴AD=AC,∵AE∥BC,∴∠EAC=90°,∠AEC=∠BCE=60°,∴AE=CE=1,AC=CD=CE=,∴DE==,∴△ADE的周长=AE+AC+CE=1+,故答案为:1+.16.如图,已知点A的坐标为(m,0),点B的坐标为(m﹣2,0),在x轴上方取点C,使CB ⊥x轴,且CB=2AO,点C,C′关于直线x=m对称,BC′交直线x=m于点E,若△BOE的面积为4,则点E的坐标为(﹣2,2).【考点】坐标与图形变化-对称.【分析】先根据矩形的性质与轴对称的性质得出AB=C′D,再利用AAS证明△ABE≌△DC′E,得出AE=DE=﹣m.根据△BOE的面积为4,列出方程(2﹣m)(﹣m)=4,解方程即可.【解答】解:如图,设AE与CC′交于点D.∵点A的坐标为(m,0),在x轴上方取点C,使CB⊥x轴,且CB=2AO,∴CB=﹣2m.∵点C,C′关于直线x=m对称,∴CD=C′D,∵ABCD是矩形,AB=CD,∴AB=C′D.又∵∠BAE=∠C′DE=90°,∠AEB=DEC′,∴△ABE≌△DC′E,∴AE=DE,∴AE=AD=BC=﹣m.∵△BOE的面积为4,∴(2﹣m)(﹣m)=4,整理得,m2﹣2m﹣8=0,解得m=4或﹣2,∵在x轴上方取点C,∴﹣2m>0,∴m<0,∴m=4不合题意舍去,∵点E的坐标为(m,﹣m),∴点E的坐标为(﹣2,2).故答案为(﹣2,2).三、解答题(本题有8小题,共80分.解答需要写出必要的文字说明、演算步骤或证明过程)17.(1)计算:(﹣2)2+2×(﹣3)+20160.(2)化简:(m+1)2﹣(m﹣2)(m+2).【考点】整式的混合运算;零指数幂.【分析】(1)原式先计算乘方运算,再计算乘法及零指数幂运算即可得到结果;(2)原式利用完全平方公式,平方差公式计算即可得到结果.【解答】解:(1)原式=4﹣6+1=﹣1;(2)原式=m2+2m+1﹣m2+4=2m+5.18.如图,在⊙O中,弦AB=弦CD,AB⊥CD于点E,且AE<EB,CE<ED,连结AO,DO,BD.(1)求证:EB=ED.(2)若AO=6,求的长.【考点】弧长的计算;圆周角定理.【分析】(1)由AB=CD,根据圆心角、弧、弦的关系定理得出=,即+=+,那么=,根据圆周角定理得到∠CDB=∠ABD,利用等角对等边得出EB=ED;(2)先求出∠CDB=∠ABD=45°,再根据圆周角定理得出∠AOB=90°.又AO=6,代入弧长公式计算即可求解.【解答】(1)证明:∵AB=CD,∴=,即+=+,∴=,∵、所对的圆周角分别为∠CDB,∠ABD,∴∠CDB=∠ABD,∴EB=ED;(2)解:∵AB⊥CD,∴∠CDB=∠ABD=45°,∴∠AOD=90°.∵AO=6,∴的长==3π.19.如图,在平面直角坐标系中,已知点A(3,4),B(﹣3,0).(1)只用直尺(没有刻度)和圆规按下列要求作图.(要求:保留作图痕迹,不必写出作法)Ⅰ)AC⊥y轴,垂足为C;Ⅱ)连结AO,AB,设边AB,CO交点E.(2)在(1)作出图形后,直接判断△AOE与△BOE的面积大小关系.【考点】作图—复杂作图;坐标与图形性质.【分析】(1)过点A作AC⊥y轴于C,连接AB交y轴于E,如图,(2)证明△ACE≌△BOE,则AE=BE,于是根据三角形面积公式可判断△AOE的面积与△BOE的面积相等.【解答】解:(1)如图,(2)∵A(3,4),B(﹣3,0),∴AC=OB=3,在△ACE和△BOE中,,∴△ACE≌△BOE,∴AE=BE,∴△AOE的面积与△BOE的面积相等.20.某校举办初中生演讲比赛,每班派一名学生参赛,现某班有A,B,C三名学生竞选,他们的笔试成绩和口试成绩分别用两种方式进行了统计,如表和图1:学生A B C笔试成绩(单位:分)859590口试成绩(单位:分)90 8085(1)请将表和图1中的空缺部分补充完整.(2)竞选的最后一个程序是由本年级段的300名学生代表进行投票,每票计1分,三名候选人的得票情况如图2(没有弃权票,每名学生只能推荐一人),若将笔试、口试、得票三项测试得分按3:4:3的比例确定最后成绩,请计算这三名学生的最后成绩,并根据最后成绩判断谁能当选.【考点】条形统计图;扇形统计图;加权平均数.【分析】(1)根据条形统计图找出A的口试成绩,填写表格即可;找出C的笔试成绩,补全条形统计图即可;(2)由300分别乘以扇形统计图中各学生的百分数即可得到各自的得分,再根据加权平均数的计算方法计算可得.【解答】解:(1)由条形统计图得:A同学的口试成绩为90;补充直方图,如图所示:A B C笔试859590口试908085(2)三名同学得票情况是,A:300×35%=105;B:300×40%=120;C:300×25%=75,∴==93, ==96.5,==83.5,∵>>,∴B学生能当选.21.如图,在△ABC中,AB=AC,作AD⊥AB交BC的延长线于点D,作CE⊥AC,且使AE∥BD,连结DE.(1)求证:AD=CE.(2)若DE=3,CE=4,求tan∠DAE的值.【考点】全等三角形的判定与性质;平行四边形的判定与性质.【分析】(1)利用已知条件证明△BAD≌△ACE,根据全等三角形的对应边相等即可解答;(2)由△BAD≌△ACE,得到BD=AE,AD=CE,从而证明四边形ABDE为平行四边形,再证明∠EDA=∠BAD=90°,最后根据三角函数即可解答.【解答】解:(1)∵AB=AC,∴∠B=∠BCA,∵AE∥BD,∴∠CAE=∠BCA,∴∠B=∠CAE,又∵AD⊥AB,CE⊥AC,∴∠BAD=∠ACE=90°,在△BAD和△ACE中,,∴△BAD≌△ACE.∴AD=CE.(2)∵△BAD≌△ACE,∴BD=AE,AD=CE,∵AE∥BD,∴四边形ABDE为平行四边形.∴DE∥AB,∴∠EDA=∠BAD=90°,∴.又∵AD=CE=4,DE=3,∴tan∠DAE=.22.某校准备去楠溪江某景点春游,旅行社面向学生推出的收费标准如下:人数m0<m≤100100<m≤200m>200收费标准(元/人)908070已知该校七年级参加春游学生人数多于100人,八年级参加春游学生人数少于100人.经核算,若两个年级分别组团共需花费17700元,若两个年级联合组团只需花费14700元.(1)两个年级参加春游学生人数之和超过200人吗?为什么?(2)两个年级参加春游学生各有多少人?【考点】二元一次方程组的应用.【分析】(1)设两个年级参加春游学生人数之和为a人,分两种情况讨论,即a>200和100<a≤200,即可得出答案;(2)设七年级参加春游学生人数有x人,八年级参加春游学生人数有y人,根据两种情况的费用,即100<x≤200和x>200分别列方程组求解,即可得出答案.【解答】解:(1)设两个年级参加春游学生人数之和为a人,若a>200,则a=14700÷70=210(人).若100<a≤200,则a=14700÷80=183(不合题意,舍去).则两个年级参加春游学生人数之和等于210人,超过200人.(2)设七年级参加春游学生人数有x人,八年级参加春游学生人数有y人,则①当100<x≤200时,得,解得.②当x>200时,得,解得(不合题意,舍去).则七年级参加春游学生人数有120人,八年级参加春游学生人数有90人.23.实验室里,水平桌面上有甲、乙两个圆柱形容器(容器足够高),底面半径之比为1:2,用一个管子在甲、乙两个容器的15厘米高度处连通(即管子底端离容器底15厘米).已知只有乙容器中有水,水位高2厘米,如图所示.现同时向甲、乙两个容器注水,平均每分钟注入乙容器的水量是注入甲容器水量的k倍.开始注水1分钟,甲容器的水位上升a厘米,且比乙容器的水位低1厘米.其中a,k均为正整数,当甲、乙两个容器的水位都到达连通管子的位置时,停止注水.甲容器的水位有2次比乙容器的水位高1厘米,设注水时间为t分钟.(1)求k的值(用含a的代数式表示).(2)当甲容器的水位第一次比乙容器的水位高1厘米时,求t的值.(3)当甲容器的水位第二次比乙容器的水位高1厘米时,求a,k,t的值.【考点】二元一次方程的应用;一元一次方程的应用.【分析】(1)根据“开始注水1分钟,甲容器的水位上升a厘米,且比乙容器的水位低1厘米”,即可得出a、k之间的关系式,变形后即可得出结论;(2)根据两容器水位间的关系列出a、k、t的代数式,将(1)的结论代入其内整理后即可得出结论;(3)由(1)中的k=4﹣结合a、k均为正整数即可得出a、k的值,经检验后可得出a、k 值合适,再将乙容器内水位上升的高度转换成甲容器内水位上升的高度结合水位上升的总高度=单位时间水位上升的高度×注水时间即可得出关于t的一元一次方程,解之即可得出结论.【解答】解:(1)根据题意得:a+1=2+,解得;k=4﹣.(2)根据题意得:at=1+2+,∵k=4﹣,∴at=3+(4﹣)=3+at﹣t,∴t=3.(3)∵k=4﹣,且a、k均为正整数,∴或.∵a<=5,k<4,∴或符合题意.①当时,15+(14﹣2)×4=at+akt=2t+4t,解得:t=;②当时,15+(14﹣2)×4=at+akt=4t+12t,解得:t=.综上所述:a、k、t的值为2、2、或4、3、.24.如图,在平面直角坐标系中,点A,B分别是y轴正半轴,x轴正半轴上两动点,OA=2k,OB=2k+3,以AO,BO为邻边构造矩形AOBC,抛物线y=﹣x2+3x+k交y轴于点D,P为顶点,PM⊥x轴于点M.(1)求OD,PM的长(结果均用含k的代数式表示).(2)当PM=BM时,求该抛物线的表达式.(3)在点A在整个运动过程中.①若存在△ADP是等腰三角形,请求出所有满足条件的k的值.②当点A关于直线DP的对称点A′恰好落在抛物线y=﹣x2+3x+k的图象上时,请直接写出k 的值.【考点】二次函数综合题.【分析】(1)点D在y=﹣x2+3x+k上,且在y轴上,即y=0求出点D坐标,根据抛物线顶点公式,求出即可;(2)先用k表示出相关的点的坐标,根据PM=BM建立方程即可;(3)①先用k表示出相关的点的坐标,根据△ADP是等腰三角形,分三种情况,AD=AP,DA=DP,PA=PD计算;②由点P,D坐标求出直线PD解析式,根据PD⊥AA′,且A(0,2k),确定出AA′解析式,继而求出交点,再求出A′的坐标即可.【解答】解:(1)把x=0,代入,∴y=k.∴OD=k.∵,∴PM=k+3.(2)∵,∴OM=2,BM=OB﹣OM=2k+3﹣2=2k+1.又∵PM=k+3,PM=BM,∴k+3=2k+1,解得k=2.∴该抛物线的表达式为.(3)①Ⅰ)当点P在矩形AOBC外部时如图1,过P作PK⊥OA于点K,当AD=AP时,∵AD=AO﹣DO=2k﹣k=k,∴AD=AP=k,KA=KO﹣AO=PM﹣AO=k+3﹣2k=3﹣k KP=OM=2,在Rt△KAP中,KA2+KP2=AP2∴(3﹣k)2+22=k2,解得.Ⅱ)当点P在矩形AOBC内部时当PD=AP时,过P作PH⊥OA于H,AD=k,HD=,又∵HO=PM=k+3,∴,解得k=6.当DP=DA时,过D作PQ⊥PM于Q,PQ=PM﹣QM=PM﹣OD=k+3﹣k=3DQ=OM=2,DP=DA=k,在Rt△DQP中,.∴.即:,k=6,k=.②∵P(2,k+3),D(0,k)∴直线PD解析式为y=x+k,∵A(0,2k),∴直线AA′的解析式为y=﹣x+2k,∴直线PD和直线AA′的交点为(k, k),∴A′(k, k),∵A′在抛物线y=﹣x2+3x+k上,∴﹣×(k)2+3×k+k=k,∴k=或k=0(舍)。

【精选五套高考模拟卷】2019年浙江省温州市高考数学二模试卷(理科)含答案解析

【精选五套高考模拟卷】2019年浙江省温州市高考数学二模试卷(理科)含答案解析

浙江省温州市2019年高考数学二模试卷(理科)(解析版)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5},集合A={1,2,3},B={3,4,5},则A∩∁U B=()A.{3} B.{1,2,4,5} C.{1,2} D.{1,3,5}2.已知实数x,y满足,则z=x﹣y()A.最小值为﹣1,不存在最大值B.最小值为2,不存在最大值C.最大值为﹣1,不存在最小值D.最大值为2,不存在最小值3.直线l1:mx+y﹣1=0与直线l2:(m﹣2)x+my﹣1=0,则“m=1”是“l1⊥l2”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件4.已知某个几何体的三视图如下,根据图中标出的尺寸,可得这个几何体的体积是()A.4 B.C.8 D.5.设集合S={A0,A1,A2,A3},在S上定义运算⊕为:A i⊕A j=A k,其中k为i+j被4除的余数,i,j=0,1,2,3.若(A2⊕A3)⊕A m=A0,则m的值为()A.0 B.1 C.2 D.36.点P到图形C上所有点的距离的最小值称为点P到图形C的距离,那么平面内到定圆C的距离与到圆C外的定点A的距离相等的点的轨迹是()A.射线 B.椭圆 C.双曲线的一支 D.抛物线7.数列{a n}是递增数列,且满足a n+1=f(a n),a1∈(0,1),则f(x)不可能是()A .f (x )=B .f (x )=2x ﹣1C .f (x )=D .f (x )=log 2(x+1)8.棱长为2的正方形ABCD ﹣A 1B 1C 1D 1中,E 为棱CC 1的中点,点P ,Q 分别为面A 1B 1C 1D 1和线段B 1C 上的动点,则△PEQ 周长的最小值为( )A .2B .C .D .2二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)9.以椭圆=1的焦点为顶点,长轴顶点为焦点的双曲线的渐近线方程是 ,离心率为 .10.函数的图象如图所示,则ω= ,φ= .11.已知等差数列{a n }的公差为﹣3,且a 3是a 1和a 4的等比中项,则通项a n = ,数列{a n }的前n 项和S n 的最大值为 .12.设奇函数f (x )=,则a+c 的值为 ,不等式f (x )>f (﹣x )在x ∈[﹣π,π]上的解集为 .13.若正数a ,b 满足log 2a=log 5b=lg (a+b ),则的值为 . 14.若存在x 0∈[﹣1,1]使得不等式10002124+≤+∙-x x x a 成立,则实数a 的取值范围是 .15.如图,矩形ABCD 中,AB=3,AD=4,M ,N 分别为线段BC ,CD 上的点,且满足,若,则x+y 的最小值为 .三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.在△ABC中,角A,B,C所对的边分别为a,b,c,已知=,sinA=.(Ⅰ)求sinC的值;(II)设D为AC的中点,若△ABC的面积为8,求BD的长.17.如图,矩形ABCD中, =λ(λ>1),将其沿AC翻折,使点D到达点E的位置,且二面角C﹣AB ﹣E为直二面角.(1)求证:平面ACE⊥平面BCE;(2)设F是BE的中点,二面角E﹣AC﹣F的平面角的大小为θ,当λ∈[2,3]时,求cosθ的取值范围.18.已知二次函数f(x)=ax2+bx+c(a>0)的图象过点(1,0).(1)记函数f(x)在[0,2]上的最大值为M,若M≤1,求a的最大值;(2)若对任意的x1∈[0,2],存在x2∈[0,2],使得f(x1)+f(x2)>a,求的取值范围.19.已知椭圆=1(a>b>0)的两个焦点为F1,F2,焦距为2,设点P(a,b)满足△PF1F2是等腰三角形.(1)求该椭圆方程;(2)过x轴上的一点M(m,0)作一条斜率为k的直线l,与椭圆交于点A,B两点,问是否存在常数k,使得|MA|2+|MB|2的值与m无关?若存在,求出这个k的值;若不存在,请说明理由.20.设正项数列{a n}满足:a1=1,且对任意的n,m∈N+,n>m,均有a2n+m a2n﹣m=n2﹣m2成立.(1)求a2,a3的值,并求{a n}的通项公式;(2)(ⅰ)比较a2n﹣1+a2n+1与2a2n的大小;(ⅱ)证明:a2+a4+…+a2n>.2019年浙江省温州市高考数学二模试卷(理科)参考答案与试题解析一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U={1,2,3,4,5},集合A={1,2,3},B={3,4,5},则A∩∁U B=()A.{3} B.{1,2,4,5} C.{1,2} D.{1,3,5}【分析】由全集U及B,求出B的补集,找出A与B补集的交集即可.【解答】解:∵全集U={1,2,3,4,5},集合A={1,2,3},B={3,4,5},∴∁U B={1,2},则A∩∁U B={1,2},故选:C.【点评】此题考查了交、并、补集的混合运算,熟练掌握各自的定义是解本题的关键.2.已知实数x,y满足,则z=x﹣y()A.最小值为﹣1,不存在最大值B.最小值为2,不存在最大值C.最大值为﹣1,不存在最小值D.最大值为2,不存在最小值【分析】作出不等式组对应的平面区域,利用z的几何意义进行求解即可.【解答】解:作出不等式组对应的平面区域如图:由z=x﹣y,得y=x﹣z表示,斜率为1纵截距为﹣z的一组平行直线,平移直线y=x﹣z,当直线y=x﹣z经过点A时,即和直线AD:x﹣y=﹣1平行时,直线y=x﹣z的截距最大,此时z最小,最小为﹣1,无最大值,故选:A.【点评】本题主要考查线性规划的基本应用,利用z的几何意义是解决线性规划问题的关键,注意利用数形结合来解决.3.直线l1:mx+y﹣1=0与直线l2:(m﹣2)x+my﹣1=0,则“m=1”是“l1⊥l2”的()A.充分不必要条件B.充要条件C.必要不充分条件D.既不充分也不必要条件【分析】对m分类讨论,利用两条直线相互垂直的充要条件即可得出.【解答】解:当m=0时,两条直线分别化为:y﹣1=0,2x+1=0,此时两条直线相互垂直,∴m=0.当m≠0时,若l1⊥l2,则﹣m(﹣)=﹣1,解得m=1.综上可得:m=0,或m=1,故“m=1”是“l1⊥l2”的充分不必要条件,故选:A.【点评】本题考查了简易逻辑的判定方法、两条直线相互垂直的充要条件,考查了推理能力与计算能力,属于基础题.4.已知某个几何体的三视图如下,根据图中标出的尺寸,可得这个几何体的体积是()A.4 B.C.8 D.【分析】由三视图知该几何体是一个四棱锥,由三视图求出几何元素的长度,由锥体的体积公式求出几何体的体积.【解答】解:根据三视图可知几何体是一个四棱锥,底面是一个矩形:两条边分别是4、2,且四棱锥的高是2,∴几何体的体积V==,故选:B.【点评】本题考查三视图求几何体的体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.5.设集合S={A0,A1,A2,A3},在S上定义运算⊕为:A i⊕A j=A k,其中k为i+j被4除的余数,i,j=0,1,2,3.若(A2⊕A3)⊕A m=A0,则m的值为()A.0 B.1 C.2 D.3【分析】根据新定义进行推理计算即可.【解答】解:∵2+3=5,5除4的余数为1,∴A2⊕A3=A1,则A1⊕A m=A0,则1+m是4的倍数,则m=3,故选:D.【点评】本题主要考查推理的应用,根据新定义是解决本题的关键.比较基础.6.点P到图形C上所有点的距离的最小值称为点P到图形C的距离,那么平面内到定圆C的距离与到圆C外的定点A的距离相等的点的轨迹是()A.射线 B.椭圆 C.双曲线的一支 D.抛物线【分析】根据题意可知|PC|﹣r=|PA|,即P到C与A的距离之差为常数,故而P在双曲线上运动.【解答】解:设圆C的半径为r,由题意可知P到圆C的距离为|PC|﹣r,∴|PC|﹣r=|PA|,即|PC|﹣|PA|=r.∴P点轨迹为以A,C为焦点的双曲线靠近A点的一只.故选:C.【点评】本题考查了圆锥曲线的定义,属于基础题,7.数列{a n}是递增数列,且满足a n+1=f(a n),a1∈(0,1),则f(x)不可能是()A.f(x)=B.f(x)=2x﹣1 C.f(x)= D.f(x)=log2(x+1)【分析】A.由a1∈(0,1),可得>a n,即可判断出数列{a n}的单调性;B.由a1∈(0,1),不妨取a1=,则a2=﹣1=﹣1,即可判断出数列{a n}的单调性;C:f(x)=,令2x﹣x2≥0,可得得0≤x≤2.由f(x)==,利用二次函数的单调性及其a1∈(0,1),即可判断出数列{a n}的单调性;D.利用几何画板画出图象y=log2(x+1),y=x,可知:在x∈(0,1)时,log2(x+1)>x,即可判断出数列{a n}的单调性.【解答】解:对于A.∵a1∈(0,1),∴>a n,可得数列{a n}是递增数列;对于B.∵a1∈(0,1),不妨取a1=,则a2=﹣1=﹣1,因此数列{a n}不是递增数列;对于C:f(x)=,令2x﹣x2≥0,解得0≤x≤2.由f(x)==,可知:当0≤x≤1时,函数f(x)单调递增;当1≤x≤2时,函数f(x)单调递减.∵a1∈(0,1),∴数列{a n}是递增数列;对于D.利用几何画板画出图象y=log2(x+1),y=x,可知:在x∈(0,1)时,log2(x+1)>x,∴a n+1=log2(a n+1)>a n,因此数列{a n}是递增数列.故选:B.【点评】本题考查了数列的单调性,考查了数形结合方法、推理能力与计算能力,属于中档题.8.棱长为2的正方形ABCD﹣A1B1C1D1中,E为棱CC1的中点,点P,Q分别为面A1B1C1D1和线段B1C上的动点,则△PEQ周长的最小值为()A.2 B. C. D.2【分析】由题意,△PEQ周长取得最小值时,P在B1C1上,在平面B1C1CB上,设E关于B1C的对称点为M,关于B1C1的对称点为N,求出MN,即可得出结论.【解答】解:由题意,△PEQ周长取得最小值时,P在B1C1上,在平面B1C1CB上,设E关于B1C的对称点为M,关于B1C1的对称点为N,则EM=2.EN=,∠MEN=135°,∴MN==.故选:B.【点评】本题考查棱柱的结构特征,考查对称点的运用,考查余弦定理,考查学生的计算能力,属于中档题.二、填空题(本大题共7小题,多空题每题6分,单空题每题4分,共36分)9.以椭圆=1的焦点为顶点,长轴顶点为焦点的双曲线的渐近线方程是y=±x ,离心率为.【分析】由椭圆=1的焦点坐标为(,0),长轴顶点为(±2,0),求出双曲线的标准方程,由此能求出结果.【解答】解:∵椭圆=1的焦点坐标为(,0),长轴顶点为(±2,0),∴以椭圆=1的焦点为顶点,长轴顶点为焦点的双曲线的标准方程为:=1,∴双曲线的渐近线方程是y=±x,离心率e==.故答案为:,.【点评】本题考查双曲线的渐近线方程和离心率的求法,是基础题,解题时要认真审题,注意椭圆、双曲线的性质的合理运用.10.函数的图象如图所示,则ω= 2 ,φ= .【分析】通过函数的图象,求出T然后求出ω,利用图象经过(π,0)求出φ的值.【解答】2,解:由图象可知T=π,,则ω=2,∵函数经过点(π,1),∴1=2sin(2×π+φ),sinφ=,|φ|<,故φ=;故答案为2,.【点评】本题是基础题,考查三角函数的图象的应用,学生的视图能力,注意角的范围的应用.11.已知等差数列{a n}的公差为﹣3,且a3是a1和a4的等比中项,则通项a n= ﹣3n+15 ,数列{a n}的前n项和S n的最大值为30 .【分析】由题意可得(a1﹣6)2=a1(a1﹣6),解之可得a1,代入通项公式得到a n=﹣3n+15,再判断数列{a n}的前n项和S n的最大值的n的情况,即可求出,【解答】解:由题意可得(a1﹣6)2=a1(a1﹣9),解得a1=12,∴a n=12+(n﹣1)×(﹣3)=﹣3n+15,∴a n=﹣3n+15≥0,解得n≤5,∴S5=5×12+=30,故答案为:﹣3n+15,30.【点评】本题考查等差数列的前n项和公式和等比中项的定义,属基础题.12.设奇函数f(x)=,则a+c的值为0 ,不等式f(x)>f(﹣x)在x∈[﹣π,π]上的解集为.【分析】根据函数奇偶性的定义和性质求出a,b,c的值,利用分类讨论的思想进行求解即可得到结论.【解答】解:∵f(x)是奇函数,∴f(0)=0,即f(0)=acos0﹣sin0+c=a+c=0,即a+c=0,则f(x)=,若x<0,则﹣x>0,则f(﹣x)=acosx+sinx﹣a=﹣cosx﹣bsinx﹣a,则a=﹣1,b=﹣,c=1,即f(x)=,若0≤x≤π,则由f(x)>f(﹣x)得﹣cosx﹣sinx+1>cosx+sinx﹣1,即cosx+sinx<1,即cos(x﹣)<,∵0≤x≤π,∴﹣≤x﹣≤,则<x﹣≤,即<x≤π,若﹣π≤x<0,则由f(x)>f(﹣x)得cosx﹣sinx﹣1>﹣cosx+sinx+1,即cosx﹣sinx>1,即cos(x+)>,∵﹣π≤x<0,∴﹣≤x+<,则﹣<x+<,即﹣<x<0,综上不等式的解集为,故答案为:.【点评】本题主要考查不等式的求解,根据函数奇偶性的性质求出a,b,c的值,利用分类讨论的思想结合三角函数的图象和性质是解决本题的关键.13.若正数a,b满足log2a=log5b=lg(a+b),则的值为 1 .【分析】设log2a=log5b=lg(a+b)=k,可得a=2k,b=5k,a+b=10k,可得a+b=ab.即可得出.【解答】解:设log2a=log5b=lg(a+b)=k,∴a=2k ,b=5k ,a+b=10k, ∴ab=10k, ∴a+b=ab ,则=1.故答案为:1.【点评】本题考查了对数与指数的运算性质,考查了推理能力与计算能力,属于中档题.14.若存在x 0∈[﹣1,1]使得不等式10002124+≤+∙-x x x a 成立,则实数a 的取值范围是 [0,] .【分析】将不等式进行等价转化,利用换元法,结合基本不等式的性质进行转化求解,建立不等式关系进行求解即可得到结论.【解答】解:不等式|4﹣a2+1|≤2等价为≤2,即|2+﹣a|≤2,即﹣2≤2+﹣a ≤2,即a ﹣2≤2+≤2+a ,设t=2,当x 0∈[﹣1,1]是t ∈[,2],设y=t+,则函数在[,1]上是减函数,在[1,2]上是增函数, 则当t=1时,函数取得最小值y=1+1=2,当t=2或t=,函数取得最大值y=+2=,则2≤y ≤, ∵即a ﹣2≤y ≤2+a ,∴若[a ﹣2,a+2]与[2,]没有公共点,则a+2<2或a ﹣2>,即a<0或a>,则若[a﹣2,a+2]与[2,]有公共点,则0≤a≤,故答案为:[0,]【点评】本题主要考查不等式恒成立问题,将不等式进行转化,利用不等式求出不等式的范围,建立不等式关系是解决本题的关键.15.如图,矩形ABCD中,AB=3,AD=4,M,N分别为线段BC,CD上的点,且满足,若,则x+y的最小值为.【分析】由题意建立平面直角坐标系,设点M(3,a),N(b,4),0<a<4,0<b<3;求得b=,a=,从而可得+=(x+y﹣1)2,再设x+y=m,则x=m﹣y;利用判别式即可求出m的最小值.【解答】解:由题意建立如图所示坐标系,如图所示;设点M(3,a),N(b,4),且0<a<4,0<b<3;∵=(3,4),=(3,a),=(b,4);又∵=x+y,∴(3,4)=x(3,a)+y(b,4),即,∴b=,a=,∴+=+=+=1,即+=(x+y﹣1)2,设x+y=m,则x=m﹣y;则+=(m﹣1)2,即25y2﹣18my+9m2﹣144(m﹣1)2=0,故△=(18m)2﹣4×25×(9m2﹣144(m﹣1)2)≥0,即24m2﹣50m+25≥0,解得,m≥或m≤(舍去);∴x+y的最小值.故答案为:.【点评】本题考查了平面向量的应用问题,也考查了数形结合的思想与转化思想的应用问题,是较难的题目.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.在△ABC中,角A,B,C所对的边分别为a,b,c,已知=,sinA=.(Ⅰ)求sinC的值;(II)设D为AC的中点,若△ABC的面积为8,求BD的长.【分析】(1)利用向量的数量积和正玄定理得出sinBcosA=sinAcosB,根据三角公式得出A=B,根据诱导公式求解即可.(2)利用面积公式,以及余弦定理求解即可.【解答】解:在△ABC中,∵ =,∴cbcosA=cacosB,即bcosA=acosB,sinBcosA=sinAcosB,sin(A﹣B)=0,∴A=B,∵sinA=.∴sinC=sin(π﹣2A)=sin(2A)=2sinAcosA=2××=.(2)设AC=BC=m,∵△ABC的面积为8,∴×=,m=3,cosC=,根据余弦定理得出:BD2=m2×=m2=BD=.【点评】本题考查了向量数量积以及正弦定理和余弦定理的运用,在判断三角形形状时,要注意对角的范围进行分析,即求角的大小需要两个条件:该角的一个三角函数值和该角的范围,缺一不可,正、余弦定理是解三解形必用的数学工具17.如图,矩形ABCD中, =λ(λ>1),将其沿AC翻折,使点D到达点E的位置,且二面角C﹣AB ﹣E为直二面角.(1)求证:平面ACE⊥平面BCE;(2)设F是BE的中点,二面角E﹣AC﹣F的平面角的大小为θ,当λ∈[2,3]时,求cosθ的取值范围.【分析】(Ⅰ)推导出AB⊥BC,BC⊥AE,从而AE⊥平面BCE,由此能证明平面ACE⊥平面BCE.(Ⅱ)以E为坐标原点,以AD长为一个单位长度,建立空间直角坐标系,利用向量法能求出cosθ的取值范围.【解答】(本题15分)证明:(Ⅰ)∵二面角C﹣AB﹣E为直二面角,AB⊥BC,∴BC⊥AE平面,∴BC⊥AE…(2分)∵AE⊥CE,BC∩CE=C,∴AE⊥平面BCE…(4分)∵AE⊂平面ACE,∴平面ACE⊥平面BCE…(6分)解:(Ⅱ)如图,以E为坐标原点,以AD长为一个单位长度,建立如图空间直角坐标系,则AB=λ…(8分)则设平面EAC的法向量为则,取x=1,则…(10分)同理设平面FAC的法向量为…(12分)∴…(14分)∵…(15分)【点评】本题考查面面垂直的证明,考查二面角的余弦值的取值范围的求法,是中档题,解题时要认真审题,注意向量法的合理运用.18.已知二次函数f(x)=ax2+bx+c(a>0)的图象过点(1,0).(1)记函数f(x)在[0,2]上的最大值为M,若M≤1,求a的最大值;(2)若对任意的x1∈[0,2],存在x2∈[0,2],使得f(x1)+f(x2)>a,求的取值范围.【分析】(1)方法一:由f(x)是开口向上的抛物线,可得:M=max{f(0),f(2)},即,两式相加可得a的最大值;方法二: =,结合M≤1,可得a的最大值(2)存在,使,结合二次函数的图象和性质,分类讨论,最后综合讨论结果,可得答案.【解答】解:(1)∵f(x)过点(1,0),∴f(1)=a+b+c=0,…(1分)∴c=﹣a﹣b,f(x)=ax2+bx﹣a﹣b∵f(x)是开口向上的抛物线,∴M=max{f(0),f(2)}…(3分)∴…(5分)两式相加得a≤1,即a的最大值为1…(6分)解法二:由解得: =≤=1 …(6分)(2)由题意,存在,使,∴…(8分)∵a+b+c=0∴f(x)=ax2+bx﹣a﹣b其对称轴为①当,即时,f(x)在[0,2]上单调递增,∴∴>0均符合题意…(10分)②当,即时,f(x)在[0,]上递减,在[,2]上递增且f(0)<f(2),∴∴由得:,符合题意…(12分)③当,即时,f(x)在[0,]上递减,在[,2]上递增且f(0)≥f(2),∴由得:∴符合题意…(13分)④当即时,f(x)在[0,2]上单调递减,∴,∴均符合题意…(14分)综上所述:∴或…(15分)【点评】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.19.已知椭圆=1(a>b>0)的两个焦点为F1,F2,焦距为2,设点P(a,b)满足△PF1F2是等腰三角形.(1)求该椭圆方程;(2)过x轴上的一点M(m,0)作一条斜率为k的直线l,与椭圆交于点A,B两点,问是否存在常数k,使得|MA|2+|MB|2的值与m无关?若存在,求出这个k的值;若不存在,请说明理由.【分析】(Ⅰ)根据题意,有,由此能求出椭圆方程.(Ⅱ)联立方程组,得:(3+4k2)x2﹣8k2mx+4m2﹣12=0,由此利用根的判别式、韦达定理、弦长公式,结合已知条件推导出|MA|2+|MB|2=7与m无关符合题意.【解答】(本题15分)解:(Ⅰ)∵椭圆=1(a>b>0)的两个焦点为F1,F2,焦距为2,设点P(a,b)满足△PF1F2是等腰三角形,∴根据题意,有…(4分)解得:,故所求椭圆方程为.…(6分)(Ⅱ)联立方程:,整理得:(3+4k2)x2﹣8k2mx+4m2﹣12=0在△>0的情况下有:…(9分)令﹣24k2+18=0,得,即…(13分)此时|MA|2+|MB|2=7与m无关符合题意,…(15分)【点评】本题考查椭圆方程的求法,考查满足条件的实数是否存在的判断与证明,是中档题,解题时要认真审题,注意根的判别式、韦达定理、弦长公式的合理运用.20.设正项数列{a n}满足:a1=1,且对任意的n,m∈N+,n>m,均有a2n+m a2n﹣m=n2﹣m2成立.(1)求a2,a3的值,并求{a n}的通项公式;(2)(ⅰ)比较a2n﹣1+a2n+1与2a2n的大小;(ⅱ)证明:a2+a4+…+a2n>.【分析】(1)先令m=1,求得a3,n=m+2,求得a2,分类讨论n为奇数或偶数,分别求得通项公式,(2)a2n﹣1+a2n+1与2a2n的通项公式,化简、比较大小,采用分析法,写出所以偶数项和奇数项整理即可.【解答】解:(1)令m=1,得,从而,所以,令n=m+2,得从而,,又=,∴,,从而,∴当n为偶数时,;令n=m+1,,可知当n为奇数时,综上可得(n∈N+).(2)(i)a2n﹣1+a2n+1﹣2a2n==<0,所以a2n﹣1+a2n+1<2a2n(ii)即证明由(i)得,,…,将上述的n个式子相加,得所以,所以,只需证,事实上,当k=0,1,2,…,n时,+﹣1﹣=﹣≥0,(∵,1),∴从而数学高考模拟试卷(理科)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档