物料衡算与能量衡算论述(25页)

合集下载

物料衡算和热量衡算

物料衡算和热量衡算

物料衡算和热量衡算1. 引言物料衡算和热量衡算是在工程设计和过程优化中常用的方法和工具。

物料衡算是指通过对物料的进出量、质量和组成等参数的分析,计算出物料的平衡以及物料流动过程中的相关参数。

热量衡算是指通过对热量的进出量、热平衡等参数的分析,计算出热量在系统中的平衡和流动情况。

本文将介绍物料衡算和热量衡算的基本概念、方法和应用。

2. 物料衡算2.1 物料平衡物料平衡是对物料流动系统中物料的进出量进行分析和计算的过程。

物料平衡的基本原理是质量守恒定律,即在封闭系统中,物料的质量不会发生净变化。

物料平衡可用于分析物料的流动路径、损耗情况以及优化物料的使用和回收。

2.2 物料衡算的方法常用的物料衡算的方法包括输入-输出法和组分衡算法。

- 输入-输出法:通过记录系统中物料的进出量,计算出物料的平衡情况。

该方法适用于物料流动较简单且没有复杂反应的系统。

具体步骤包括确定进料和产出物料的量和质量,计算进出物料的差值,并检查误差,使其趋近于零。

- 组分衡算法:通过对物料组分的平衡进行计算,得到物料的进出量。

该方法适用于需要考虑物料成分变化的系统。

具体步骤包括确定进料和产出物料的组分及其相对含量,计算进出物料组分的差值,并检查误差。

2.3 物料衡算的应用物料衡算在化工、冶金、环境工程等领域有广泛的应用,例如: - 在化工生产中,物料衡算可以用于优化原料的使用和能源的消耗,减少产品的损耗和废物的排放。

- 在冶金过程中,物料衡算可以用于优化矿石的选矿和冶炼过程,提高生产效率和产品质量。

- 在环境工程中,物料衡算可以用于分析和优化废物处理和排放过程,减少对环境的污染。

3. 热量衡算3.1 热量平衡热量平衡是对热量在系统中的分布和流动进行分析和计算的过程。

热量平衡的基本原理是热力学第一定律,即能量守恒定律。

热量衡算可以用于分析热量的传递、损失和利用情况,以及优化热能的使用和节约。

3.2 热量衡算的方法常用的热量衡算的方法包括输入-输出法和能量平衡法。

物料衡算和能量衡算概述

物料衡算和能量衡算概述

物料衡算和能量衡算概述物料衡算和能量衡算是在工程和科学领域中经常用到的两个概念。

物料衡算是指在工程过程中对物料流动进行计算和分析的过程,而能量衡算则是对能量转移和转换进行计算和分析的过程。

物料衡算涉及到物料的流动和传递。

在工业过程中,物料(例如原材料、中间产品和最终产品)通过不同的装置和管道进行运输和处理。

物料衡算可以帮助工程师们了解物料在系统中的流动情况,如流速、流量和浓度等。

通过对物料衡算的分析,可以得到物料在不同过程中的质量变化和传递速率等重要参数,从而为工艺设计和控制提供依据。

能量衡算则是对能量的转移和转换进行计算和分析。

在能源系统中,能量以各种形式进行传递和转化,如热能、电能、化学能等。

能量衡算可以帮助工程师们了解能源在系统中的利用情况,如能量的输入、输出和转换效率等。

通过对能量衡算的分析,可以提高能源系统的效率,减少能源浪费,并优化系统的设计和控制。

物料衡算和能量衡算常常是相互关联的,尤其是在工业过程中。

物料的流动往往伴随着能量的转移和转换,例如在化工生产中,物料的传递往往伴随着能量的输入和输出。

因此,在进行物料衡算时,也需要考虑能量的变化和转换。

相反地,在进行能量衡算时,也需要考虑物料的流动和传递。

总而言之,物料衡算和能量衡算是工程和科学领域中重要的分析工具。

通过物料衡算和能量衡算,可以深入了解物料和能量在系统中的流动和转移情况,从而优化工艺设计和能源利用效率。

这对于提高工程效率、降低成本和保护环境都具有重要意义。

物料衡算和能量衡算是工程和科学领域中非常重要的分析工具。

它们可以为工程师们提供关键的信息和数据,用于优化工艺设计、提高能源效率、降低成本并保护环境。

在物料衡算中,关键的概念包括物料流动、物料传递和物料质量变化。

物料流动是指物料在系统中通过管道、设备和机械的运输过程。

物料的传递是指物料从一个位置或系统到另一个位置或系统的移动过程。

物料的质量变化包括物料的添加、消耗、转化和转移等。

物料衡算与能量衡算概论

物料衡算与能量衡算概论

物料衡算与能量衡算概论物料衡算与能量衡算是在工业领域中广泛应用的两个重要概念。

物料衡算是指对物质流动的量与质进行测量、监测和分析的过程,用来确定物料的输入、输出以及处理过程中的损耗情况。

而能量衡算则是指对能量流动的量和质进行测量、监测和分析的过程,用来确定能源的输入、输出以及转化利用的效率。

物料衡算和能量衡算在工业生产中都具有重要的作用。

首先,它们可以帮助企业确定物料和能量的浪费情况,找出能源的低效率使用和损耗问题,从而提出改善措施,节约物料和能源,降低生产成本。

其次,物料衡算和能量衡算可以帮助企业优化生产流程,提高产能和效率。

通过对物料和能量的输入、输出以及处理过程的分析,企业可以找出生产过程中不必要的浪费和瓶颈,并进行改进和优化。

此外,物料衡算和能量衡算也可以帮助企业监测和评估环境压力,实施环境保护措施,达到可持续发展的目标。

物料衡算和能量衡算的方法和技术主要包括数据采集、监测和分析。

在物料衡算中,通常会采集和监测物料的进出量、质量以及转化过程中的损耗情况。

常用的方法有称量、计量、流量计、采样等。

在能量衡算中,通常会采集和监测能源的进出量、质量以及转化过程中的损耗情况。

常用的方法有电表、气表、温度计、压力表等。

通过这些数据的分析,可以得出物料和能源的流动情况,评估效率和损耗,并进一步进行改进和优化。

需要注意的是,物料衡算和能量衡算虽然互相关联,但并不完全一致。

物料衡算主要关注物质流动的量和质,而能量衡算则关注能量流动的量和质。

在实际应用中,物料衡算和能量衡算往往结合起来进行,通过对物料和能量的双重衡算,可以更全面地了解生产过程中的问题和优化方向。

综上所述,物料衡算和能量衡算是工业生产中重要的概念和方法。

它们的应用可以帮助企业节约物料和能源,提高生产效率,降低成本。

同时,物料衡算和能量衡算也有助于企业实施环境保护措施,实现可持续发展。

因此,在现代工业生产中应该重视物料衡算和能量衡算,积极推广和应用。

化工设计概论第三章_物料衡算与能量衡算

化工设计概论第三章_物料衡算与能量衡算

化工设计概论第三章_物料衡算与能量衡算物料衡算与能量衡算是化工设计中非常重要的环节,它们是进行化工过程的关键步骤,对化工产品的质量和产量有着直接的影响。

本章将介绍物料衡算与能量衡算的概念、原则和方法,并结合实际案例进行详细说明。

一、物料衡算物料衡算是指在化工过程中对物料的输入、输出量进行定量分析和计算,以确定每种物料的用量和流量。

物料衡算的目的是保证化工过程中物料的平衡,确保物料的流动和转化符合设计要求。

物料衡算的基本原则是质量守恒定律和能量守恒定律。

根据质量守恒定律,物理系统中的物质质量是不变的,即输入物质的总质量等于输出物质的总质量。

根据能量守恒定律,物理系统中的能量总量是不变的,即输入能量的总量等于输出能量的总量。

物料衡算的方法主要有两种:物质衡算和元素衡算。

物质衡算是根据物料的化学组成进行衡算,以化学方程式为基础,通过分子计数法和平衡方程法计算物料的输入和输出量。

元素衡算是根据物料中各元素的含量进行衡算,以确定每种元素的输入和输出量。

物料衡算的步骤一般包括以下几个方面:确定衡算参考物质,编写化学方程式,计算输入物质的总质量,计算输出物质的总质量,计算每种物质的输入和输出量。

在实际衡算过程中,还需要考虑补料和损耗等因素,对补料和损耗进行补偿。

二、能量衡算能量衡算是指在化工过程中对能量的输入、输出量进行定量分析和计算,以确定每种能量的用量和转化效率。

能量衡算的目的是保证化工过程中能量的平衡,以提高能量利用效率。

能量衡算的基本原则是能量守恒定律和能量转化效率的最大化。

根据能量守恒定律,物理系统中的能量总量是不变的,即输入能量的总量等于输出能量的总量。

能量转化效率是指能量输入与输出的比值,衡量能量转化过程的效果。

提高能量转化效率有助于降低能源消耗和环境污染。

能量衡算的方法主要有两种:热力衡算和焓能衡算。

热力衡算是根据化学反应的热效应进行衡算,以热平衡方程为基础,计算输入和输出热量的总量。

焓能衡算是根据物料的热焓变化进行衡算,以焓平衡方程为基础,计算输入和输出焓能的总量。

物料衡算和能量衡算概述

物料衡算和能量衡算概述

物料衡算和能量衡算概述物料衡算和能量衡算是工程和科学领域中常用的方法,用于描述和研究物质和能量的流动。

物料衡算关注物质的进出和转化过程,而能量衡算关注能量的转化和利用情况。

本文将对物料衡算和能量衡算进行概述,并介绍其在不同领域中的应用。

1. 物料衡算物料衡算是对物质的进出和转化过程进行量化和分析的方法。

它主要基于质量守恒定律,即不可创造或破坏物质。

物料衡算通常涉及以下几个方面的内容:1.1 进料和出料物料衡算中的进料和出料是指物质从系统的外部进入或离开系统的过程。

进料和出料可以是固体、液体或气体,可以通过不同的方式进行,如输送带、管道或容器。

衡算这些进料和出料的数量和质量可以帮助我们了解物质的流动情况和系统的整体效率。

1.2 转化和反应物料衡算还涉及物质的转化和反应过程。

在这些过程中,我们可以追踪和量化物质的变化,以及转化或生成的产物。

这对于研究化学反应、工艺过程和生态系统中的物质转化至关重要。

物料衡算可以帮助我们优化转化过程,提高反应效率,并监测环境中的物质循环。

1.3 混合和分离物料衡算还涉及物质的混合和分离过程。

在这些过程中,不同组分的物质可以混合在一起,或者通过特定的方法进行分离。

衡算混合物和分离物的组分和比例可以帮助我们优化混合和分离过程,并控制产品的质量和纯度。

1.4 废物和排放物料衡算还关注废物和排放物的产生和处理。

在生产和工艺过程中,废物和排放物可能对环境造成负面影响。

通过衡算废物和排放物的产生量和组分,我们可以找到减少和处理这些废物的方法,以减少对环境的影响。

2. 能量衡算能量衡算是对能量的转化和利用过程进行量化和分析的方法。

它基于能量守恒定律,即能量既不能创造也不能破坏,只能从一种形式转化为另一种形式。

能量衡算通常涉及以下几个方面的内容:2.1 能量流动能量衡算关注能量的流动。

能量可以通过传导、传热、传质和传动等方式在系统中传递和转移。

衡算能量流动的路径、速度和效率可以帮助我们了解能量转化的过程和系统的能量利用效率。

化工生产过程物料衡算和能量衡算

化工生产过程物料衡算和能量衡算

化工生产过程物料衡算和能量衡算一、物料衡算物料衡算主要是对物料在生产过程中的流动进行定量分析和计算。

它包括物料的进出口流量、过程中的转化和损失等方面。

物料衡算的目的是确定物料的流动情况,以控制和优化生产过程。

物料衡算通常涉及以下几个方面:1.原料的输入和产物的输出:从化工生产过程的角度来看,物料衡算的第一步是确定原料的输入和产物的输出。

这可以通过物料的质量或体积以及流量来衡量。

2.过程中的转化:化工生产过程中,原料经过一系列的化学反应、物理过程和分离步骤,转化成所需的产物。

物料衡算需要确定过程中每个反应、过程或分离步骤涉及的物料流量和转化率,以及产物的纯度和收率。

3.丢失与损耗:化工生产过程中常常存在物料的丢失和损耗,如挥发、固体颗粒的落地损失等。

物料衡算需要考虑这些损耗,并尽量减少它们的发生。

物料衡算的重要性在于通过对物料流动的定量分析,可以帮助工程师了解和控制生产过程中的物料转化、损耗和产物生成情况,从而优化生产过程。

二、能量衡算能量衡算是对化工生产过程中能量转换的定量分析和计算。

它涉及到能源的输入与输出以及能量的转化。

能量衡算可用于改善能源效率,减少能源消耗和废弃物的排放。

能量衡算主要包括以下几个方面:1.能源输入:能源是化工生产过程中的重要驱动力之一,常见的能源包括电能、燃料、蒸汽等。

能量衡算需要确定能源的类型、质量或热值、消耗量和运用效率。

2.能量转化:化工生产过程中会发生能量的转化,如化学反应产生的热能、电能转化为机械能等。

能量衡算需要考虑这些能量转化过程,并计算能量的转化率和损耗。

3.能源的输出:化工生产过程中也会有能源的输出,如废热、废气、废水等。

能量衡算需要确定这些能源输出的类型、质量或热值、排放量以及处理方式。

能量衡算的目的是优化能源的利用,提高能源效率,减少能源消耗和环境污染。

通过定量分析和计算能量流动,能量衡算可以帮助工程师了解和控制能源输入与输出,寻找能源转化和能耗的瓶颈,提出改进方案,提高生产过程的能量利用率。

物料衡算和能量衡算

物料衡算和能量衡算

由上述可得100kg混合原料可制得的热麦汁量为:
(73.16÷12)×100=609.66(kg)
又知汁在20℃时的相对密度为1.084,而100℃热麦汁比
20℃时的麦汁 体积增加1.04倍,故热麦汁(100℃)体积为:
(609.66÷1.084)×1.04=584.92L
(2) 添加酒花量: 609.66×0.2%=1.22kg
和在数值上是相等的原理来绘制的,平衡图
的内容包括:物料名称、质量、成品质量、
物料的流向、投料顺序等项。绘制物料平衡
图时,实线箭头表示物料主流向,必要时用
细实线表示物料支流向,见下图。
图6-2 班产12.5 吨原汁猪肉物料平衡图
(2)物料平衡表 ▪ 物料平衡表是物料平衡计算的另一种表示形式,
其内容与平衡图相同,其格式 如下:
全年生产天数为300天,设旺季生产240天,淡季生产 60天。旺季每天糖化数为7次,淡季每天生产次数为5次,则 全年糖化次数为:
240×7+60×5=1980(次) 计算的基础数据可算出每次投料量及其他项目的物料平衡。 (1)每次糖化的原料量为: 混合原料: (30000000/1980)×(100/513.92)=2948.3(kg) 大麦: 2948.3×0.75=2211.2(kg) 大米: 2948.3×0.25=737.1(kg) (2)热麦汁量: (609.66/100)×2948.3=17974.6(L) (3)冷麦汁量: (541.05/100)×2948.3=15951.77(L) (4)酒花用量: (1.22/100)×2948.3=35.97(kg) (5)发酵成品液: (532.39/100)×2948.3=15696(L) (6)清酒液:(524.41/100)×2948.3=15461(L)

物料衡算与能量衡算概论(PPT 83页)

物料衡算与能量衡算概论(PPT 83页)
对温标。 其0度为-459.67℉(-460℉)。 • 四种温度的关系:
• 二)压力(压强) • 三)流量 • 四)组成
3.1 物料衡算 3.2 能量衡算 3.3 化工模拟软件在化工设计中的应用
本 章要求
• 掌握非反应过程的物料衡算及反应过程 的物料衡算;
• 掌握装置的物料衡算; • 掌握以反应热效应为基础的计算方法,
• ③作物料衡算可以检查各物料的计量、分析测定数据是 否正确;检查生产运行是否正常。
• ④作系统各设备及管路的物料衡算时,可以检查出生产 上的薄弱环节或限制部位。从而找出相应的强化措施。
• ⑤物料衡算和能量衡算是传统最优化和经济核算的基础 。
• ⑥物料衡算和能量衡算的方程往往用于求取生产过程中 的某些未知量或操作条件。
一、物料衡算依据 1. 理论依据——质量守恒定律
物料衡 算范围
单元操作的物料衡算——化工设备设计的前提 化工过程的物料衡算——化工过程设计的前提
物料衡算的一般表达式为:
输入量-输出量+生成量-消耗量=积累量
对稳定操作过程,积累量=0 输入量-输出量+生成量-消耗量=0
对无化学反应的过程: 输入量-输出量=积累量 对无化学反应的稳定操作过程:输入量=输出量
化工过程基本参数
过程参数:生产过程中影响过程运行和状态的物理量。 一)温度
表示物体冷热程度的物理量。温标。 1、摄氏温标,℃
水的正常冰点:0℃ 水的正常沸点:100℃ 其间均分100等份 其单位为℃ 2、开尔文温标,K(又叫热力学温度,热力学温标)
单位是“开尔文”,英文是“Kelvin”简称“开”,国际代号“K”。开 尔文是为了纪念英国物理学家Lord Kelvin而命名的。
物料、能量衡算的目的和内容

物料衡算与能量衡算概述

物料衡算与能量衡算概述

物料衡算与能量衡算概述物料衡算和能量衡算是工程和科学领域中常用的两种衡算方法。

它们通过对物质和能量的流动、转化和交换进行计量和分析,帮助我们深入了解和优化各种过程。

物料衡算是对物质流动进行计量和分析的方法。

它涉及到物质的进入、转化、分配和产出。

物料衡算可以应用于各种领域,如化学工程、环境工程、制造业等。

通过物料衡算,我们可以了解物质的流动路径、转化效率、丢失情况等,从而优化生产过程、减少资源浪费和环境污染。

物料衡算的基本原理是质量守恒定律。

质量守恒定律指出,在封闭系统中,物料的总质量是恒定的。

根据这一原理,我们可以建立物料衡算的数学模型,通过收集输入、输出和转化过程中的数据,计算出不同组分的质量变化和物料平衡。

能量衡算是对能量流动进行计量和分析的方法。

它涉及到能量的转换、传输和耗散过程。

能量衡算可以应用于热力学、能源工程、电力系统等领域。

通过能量衡算,我们可以了解能量的流向、转化效率、损耗情况等,从而提高能源利用效率、降低能源消耗和环境影响。

能量衡算的基本原理是能量守恒定律。

能量守恒定律指出,在封闭系统中,能量是守恒的,不能被创造或毁灭。

根据这一原理,我们可以建立能量衡算的数学模型,通过收集输入、输出和转化过程中的能量数据,计算出能量的变化和能量平衡。

物料衡算和能量衡算是相互关联的。

在许多实际问题中,物料和能量是同时存在和相互转化的。

比如,在化学反应过程中,原料物料进入反应器,经过反应转化为产物,并伴随能量的释放或吸收。

这时,物料衡算和能量衡算可以结合起来,共同揭示反应过程中物质和能量的变化和平衡。

总之,物料衡算和能量衡算是重要的工程和科学分析方法,通过对物质和能量的衡量和分析,帮助我们深入了解和优化各种过程。

物料衡算和能量衡算的应用可以促进可持续发展和资源节约的实现。

物料衡算和能量衡算作为工程和科学领域中的重要分析方法,广泛应用于化工、环境、制造等许多领域。

通过物料和能量的衡算,我们可以深入了解和优化各种过程,并促进可持续发展和资源节约的实现。

第四章物料衡算和能量衡算

第四章物料衡算和能量衡算
Q =U 2. 流动体系的能量衡算方程——物料连续通过边界进出
能量输入速率-能量输出速率=能量积累速率
连续稳定流动过程的总能量衡算方程为: U g z1 u2 (p)v Q W 2
Hgz1 2u2QW s
3. 热量衡算式及说明
⑴ 热量衡算式
在反应器、蒸馏塔、蒸发器、换热器等化工设备中,W、Ek、
设计化工单元操作:闪蒸罐,间歇精馏器,蒸馏器,液-液抽提精馏 器,侧线塔,压缩机,结晶器,旋流器,减压设备,溶解器,膨胀机, 闪蒸,带有固体的闪蒸,LNG多股流换热器,精确核算型换热器, 简单换热器,严格空冷器模型,加热/冷却曲线,混合器,相包络, 管道,聚合物反应器,泵,回流泵,阀,刮膜式蒸发器,平衡反应器, 转换反应器,吉布斯反应器,塞流反应器,平推流反应器,全混流反 应器, 间歇式反应器,固态颗粒分离器,分裂器,单变量控制器, 多变量的控制器,物流计算器,流程优化器,过程数据,用户自定义 操作单元,(电解质模块,SIMSCI外接的模块)等。 用户扩展功能:用户自定义物流属性包;增加用户组份数据;增加热 力学计算方法;增加自定义操作单元模块120个;增加自定义计算模 型7个;增加自定义电解质模型20个等。 分析工具:工况研究、优化器、单相变量控制器、多相变量控制器、 加热/冷却曲线等。
目前用的较多的化工流程模拟计算软件有PRO/II、HYSYS、 ASPEN PLUS等。
PRO/II 流程模拟软件 PRO/II 由美国模拟科学(SIMSCI)公司研发提供的。是目前石
油化工行业最全面的流程模拟软件,已被广泛地应用于化学过程的严 格的质量和能量平衡。
西安石油大学2006年也购买了该软件,20个用户终端。 PRO/II流程模拟软件功能特点
化工设计
第四章 物料衡算与能量衡算 Chart4 materiel balance and energy balance

物料衡算与能量衡算概述

物料衡算与能量衡算概述

物料衡算与能量衡算概述物质衡算是指在化学等相关领域中,对物质的转化过程进行计算、推导和分析的过程。

这种衡算分为平衡和不平衡两种情况。

在平衡衡算中,假设没有产生或消失物质的情况下,通过观察、实验和数据收集,可以建立起物质之间的关系,并用化学方程式表示。

通过分析化学方程式中的反应物和生成物的摩尔比例关系,可以计算出物质的应有摩尔数或质量。

平衡衡算通常用于确定反应物和生成物的物质量之间的关系。

在能量衡算中,主要计算的是物质转化中伴随的能量变化。

能量衡算是根据能量守恒定律,在一个封闭系统中分析物质变化的能量转移过程。

通过考虑反应实际发生时的热交换、温度变化或焓变化等因素,可以计算出反应的能量变化。

能量衡算通常用于评估反应的热效应、反应的热力学性质和计算化学反应的热平衡常数。

在物质衡算和能量衡算中,常用的计算方法包括摩尔计算、质量计算和体积计算。

通过摩尔计算可以确定反应物和生成物之间的摩尔比例关系。

质量计算则是根据物质的质量和摩尔质量之间的关系计算出物质的摩尔数或质量。

体积计算则是根据反应物和生成物的摩尔比例关系以及气体的状态方程计算出气体的体积。

物质衡算和能量衡算在化学 reaction 的研究中非常重要。

通过衡算,可以了解化学反应的定量关系,探究反应热力学性质,预测反应的产物以及确定反应的条件和效率。

这种衡算方法在工业生产、环境保护和药物研发等领域具有重要的应用价值。

物料衡算和能量衡算是化学等领域研究中非常重要的工具和方法。

在化学反应和化学工艺过程中,通过对物质的转化和能量的转移进行衡算和计算,可以深入了解反应的过程和性质,为科学研究和工程实践提供重要的指导和依据。

物料衡算是通过观察、实验和数据收集,对物质的转化过程进行计算和推导的方法。

关于物质衡算的基本规则是质量守恒和摩尔守恒。

质量守恒是指在一个封闭系统中,物质不能被创造也不能被消灭,因此,反应物的质量必须等于生成物的质量。

摩尔守恒是指在一个反应中,摩尔比例关系是恒定的,反应物和生成物之间的摩尔比必须符合化学方程式中的系数。

物料衡算和能量衡算概述

物料衡算和能量衡算概述

物料衡算和能量衡算概述物料衡算和能量衡算是重要的工程技术方法,用于分析和评估生产过程中的物质流动和能源消耗情况。

物料衡算是计算和跟踪物料进入和离开系统的方法,而能量衡算则是评估能源在系统中的利用情况。

物料衡算的基本原理是物质守恒定律,即在一个封闭的系统中,物质的总量应保持恒定。

通过跟踪物料的进出流量,并对物料在过程中的转化和转移进行记录和检测,可以更好地了解生产过程中物质的变化情况。

物料衡算可应用于各种行业,例如化工、制造业和环境工程等。

能量衡算是评估能源利用情况的方法,其基本原理是能量守恒定律,即能量在一个封闭的系统中不会凭空消失或产生。

通过分析能源输入和输出的数量和质量,并计算能源在不同过程中的转化损失,可以评估能源利用的效率和效益。

能源衡算在能源管理和环境保护中起到了重要作用,可帮助企业降低能源消耗和减少环境污染。

物料衡算和能量衡算常常结合使用,相互补充。

通过将物料流和能量流结合起来分析,可以更精确地评估生产过程中的资源利用效率,并提出改进措施。

这些技术方法对于企业实施节能减排、提高生产效率和降低生产成本具有重要意义。

总之,物料衡算和能量衡算是分析和评估生产过程中物质流动和能源消耗的重要工程技术方法。

它们基于守恒定律的原理,通过计算和跟踪物料和能量的进出流量,评估资源利用效率,为企业的持续发展和可持续发展做出贡献。

物料衡算和能量衡算是工程领域中的重要方法,用于分析和评估生产过程中的物质流动和能源消耗情况。

这些衡算方法的应用范围广泛,可以应用于各个行业和领域,包括制造业、化工、能源与环境等。

下面将对物料衡算和能量衡算进行更详细的介绍。

物料衡算是一种计算和追踪物料进入和离开系统的方法,目的是了解物料在生产过程中的变化情况。

物料衡算基于物质守恒定律,即在一个封闭的系统中,物质的总量应保持不变。

通过记录和追踪每个物料的进出流量,并对物料在过程中的转化和转移进行计算和检测,可以更好地了解生产过程中物质的变化情况。

化工设计物料衡算和热量衡算

化工设计物料衡算和热量衡算

化工设计物料衡算和热量衡算化工设计物料衡算和热量衡算是化工工程设计中非常重要的内容。

物料衡算是指在化工工程中对物料的流动进行计算和衡量的过程,而热量衡算则是指对化工工程中的热量流动进行计算和衡量的过程。

下面将详细介绍这两个内容。

首先,物料衡算是化工工程设计中的一个必不可少的环节。

物料衡算要基于反应的化学反应原理或工艺流程,计算出物料的各项数据,如流量、摩尔质量、摩尔仓数等。

具体的衡算步骤包括:确定物料的基本特性,如摩尔质量、密度等;确定物料的流动量和流速;根据反应方程式和反应器的驱动力,计算出反应速率;进一步计算出反应器的物料应用时间(HRT),以衡量物料在反应器中的停留时间。

物料衡算的目的是为了选择合适的设备和工艺流程,以确保化工工程的安全运行。

通过物料衡算,可以计算出物料在不同设备中的流速和停留时间,从而判断是否需要增加搅拌装置或延长反应器的体积等改进措施。

此外,物料衡算还能帮助设计人员确定各种物料转移设备的大小和形式,以满足工艺流程的需求。

其次,热量衡算是物料衡算的重要组成部分,也是化工工程中的关键环节。

热量衡算要根据物料的热力学特性及其运动过程,计算出热量的流动和传递。

具体的衡算步骤包括:测定物料的初始和终止温度;计算物料的比热容和比焓;计算物料在设备中的热量传递和损失;计算过程中发生的温度变化和热量变化;计算设备的热损失和热水平;最终评估设备的热效率。

热量衡算的目的是为了保证化工工程的热平衡和能量效率。

通过热量衡算,可以计算出各个设备和工艺过程的热量损失和热交换,从而判断是否需要增加散热装置或回收热量等改进措施。

此外,热量衡算还能帮助设计人员确定各种热交换设备的大小和形式,以满足工艺流程的需求。

总结来说,物料衡算和热量衡算是化工工程设计中非常重要的内容。

物料衡算可以帮助设计人员选择合适的设备和工艺流程,确保化工工程的安全运行;热量衡算则可以保证化工工程的热平衡和能量效率。

通过物料衡算和热量衡算,设计人员可以更好地优化工艺流程,提高化工工程的效率和经济性。

化工设计之物料衡算及热量衡算

化工设计之物料衡算及热量衡算

化工设计之物料衡算及热量衡算化工设计中的物料衡算和热量衡算是非常重要的步骤,可以帮助工程师确定所需的原料数量和能源消耗。

本文将讨论物料衡算和热量衡算的原理、方法和应用。

一、物料衡算物料衡算是指根据化工过程的原理和条件,计算出所需原料的数量。

1.原料衡算的原理在化工过程中,根据反应式、反应的平衡常数、物料的摩尔平衡和原料的纯度等信息,可以得出原料的物质平衡方程。

2.原料衡算的方法(1)平衡更新法:根据反应式及其他物质平衡方程,利用线性方程组求解方法,逐步逼近平衡条件,得出原料数量的近似解。

(2)摩尔关系法:利用反应的摩尔比例来计算原料的摩尔数量。

根据反应的平衡常数和其他物质平衡方程,可以得到原料的摩尔数量。

3.原料衡算的应用物料衡算在化工过程中有广泛的应用。

例如,在合成反应中,根据反应需求,确定所需原料的摩尔数量;在萃取过程中,根据溶剂和溶质的摩尔比例,计算溶液中的溶质浓度。

二、热量衡算热量衡算是指根据化工过程的热力学原理和条件,计算出所需的能量消耗。

1.热量衡算的原理根据热力学定律,可以计算化学反应的焓变,并以此来确定反应所需的热量。

热量衡算也需要考虑其他因素,如物料的温度、压力变化等。

2.热量衡算的方法(1)焓变法:根据反应的焓变和反应的摩尔比例,计算出反应所需的热量。

焓变可以通过实验测量或热力学数据库来获取。

(2)能量平衡法:考虑物料流动和热交换等因素,通过能量平衡方程求解,计算出能量的输入和输出。

3.热量衡算的应用热量衡算在化工过程中的应用非常广泛。

例如,在高温燃烧反应中,需要计算反应所需的燃料气体的热量;在蒸汽发生器中,需要计算蒸汽的产生量和燃料的热量供应。

物料衡算和热量衡算是化工设计中不可或缺的两个步骤,可以帮助工程师确定原料的用量和能量消耗,从而优化过程设计、提高生产效率和节约能源。

在进行衡算时,需要准确地获取物料的性质数据,合理地选择计算方法,并考虑到实际操作条件的变化,以保证设计结果的可靠性和实用性。

物料衡算与能量衡算

物料衡算与能量衡算

物料衡算与能量衡算1. 物料衡算物料衡算是工程领域中常用的一种方法,用于计算和监控某个过程中物料的输入和输出量。

通过物料衡算,可以更好地了解和控制生产过程,提高效率和降低成本。

1.1 物料衡算的基本原理物料衡算是基于质量守恒定律和物质平衡原理的。

它假设在封闭系统中,物质不会消失或增加,而只是在不同的环节中进行转化或流动。

物料衡算的基本原理可以总结为以下几点:•输入与输出平衡:在一个过程中,物料的输入必须等于输出,以保持物质的平衡。

•流程损失:衡算中还需要考虑到流程中可能出现的损失情况,例如,物料的挥发、泄漏或转化等。

•衡算精度:物料衡算的精度取决于输入和输出的测量方法和设备的准确性。

1.2 物料衡算的应用物料衡算广泛应用于许多工程领域,特别是化工、环境工程和材料科学等领域。

以下是物料衡算的一些常见应用:•生产过程优化:通过衡算输入和输出物料的量,可以找到生产过程中的瓶颈和不合理之处,并进行优化。

•污染物排放控制:衡算工业生产过程中的污染物排放量,以制定有效的污染物控制策略。

•资源回收与利用:通过衡算废弃物的产生量和回收利用量,可以实施有效的资源回收和利用方案。

2. 能量衡算能量衡算是工程领域中另一种重要的计算方法,用于计算和监控能量的输入和输出量。

能量衡算有助于优化能源利用,减少能源消耗,以及改善环境影响。

2.1 能量衡算的基本原理能量衡算基于能量守恒定律,即能量在一个封闭系统中不能被创造或破坏,只是在不同形式之间进行转化。

能量衡算的基本原理可以总结如下:•输入与输出平衡:在一个能量系统中,能量的输入必须等于输出,以保持能量的平衡。

•能量转化和传递:能量衡算需要考虑能量在系统内的转化和传递过程,例如,燃烧产生的热能转化为电能或机械能等。

•能量损失:衡算中还需考虑能量的损失情况,例如,摩擦、传热过程中的损失等。

2.2 能量衡算的应用能量衡算在工程领域有广泛的应用,尤其在能源领域和环境领域。

以下是能量衡算的一些常见应用:•能源管理:通过衡算能源的输入和输出量,可以制定有效的能源管理策略,降低能源消耗和成本。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例如100℃、latm时液体水转变成水汽的焓变∆H等于40.6kJ/mol,称为在该温度和压力下水的汽 化潜热。
2)化学反应过程的能量衡算。
主要讨论反应热的计算方法 1、反应热及其表示
恒压反应热 Qp=∆Hr 恒容反应热 Qv=∆Ur(T) 2、反应热的计算 反应热可以用实验方法测定,也可用已有的实验数据进行计算。 根据盖斯(Hess)定律,化学反应热只决定于物质的初态和终态,与过 程的途径无关,反应热可用简单的热量加和法求取。 (1)由标准生成热∆Hfo计算标准反应热∆Hro
连续稳定流动过程的总能量衡算方程为:
U gz 1 u 2 ( pv) Q W 2
H

gz

1 2
u 2

Q
Ws
3 热量衡算的步骤
① 建立单位时间为基准的物料流程图或物料平衡表。 ②选定计算基准温度和计算相态:可选0℃(273K)、25℃(298K)
或其他温度作为基准温度。 ③在物料流程图上标明已知温度、压力、相态等条件,查出或
第二章 物料衡算和能量衡算
第二章 物料衡算和能量衡算
导言 计算前的准备工作 2.1 物料衡算 2.2 能量衡算
导言
一、能量的形式和概念
1、动能(K) 表示物体作相对于环境运动所具有的能量。
2、势能(Z)
k 1 mv2 2
z mgh 表示物体在重力场中受重力作用而具有的能量。
3、内能(U)
2.2 能量衡算
以物料衡算为基础,能量衡算的步骤与物料衡算相同。
1. 能量衡算的目的
解决问题: ⑴ 确定物料输送机械和其他操作机械所需功率。 ⑵ 确定各单元过程所需热量或冷量及其传递速率 ⑶ 化学反应所需的放热速率和供热速率。 ⑷ 做好余热综合利用。
2.能量衡算的基本方程式
根据热力学第一定律,能量衡算方程可写为:
(1)热量衡算时要先根据物料的变化和走向,认真分析热 量间的关系,然后根据热量守衡定律列出热量关系式
(2)要弄清楚过程中出现的热量形式,以便搜集有关的物 性数据。
(3)计算结果是否正确适用,关键在于数据的正确性和可靠性。 (4)间歇操作设备,传热量随时间而变化,因此要用不均衡系数
将设备的热负荷由kJ/台换算为kJ/h。 (5)选定设备的换热面积要大于理论计算。

H

n
T2 T1
C
p
dT
2、相变过程的能量衡算
汽化和冷凝、熔化和凝固、升华和凝华等相变过程往往伴有显著的内能和焓 的变化,常成为过程热量的主体,不容忽视。
在恒定的温度和压力下,单位质量或摩尔的物质发生相的变化时的焓变称为
相变热。三种相变的相变热:
①汽化潜热(∆Hv) ②熔化潜热(∆Hm) ③升华潜热(∆Ht)
计算每个物料的焓值,标注在图上。 ④ 列出热量衡算式,用数学方法求解。 ⑤ 当生产过程及物料组成较复杂时,可列出热量衡算表。
4.热量衡算有两种情况
1)无化学反应过程的能量衡算; 2)化学反应过程的能量衡算。
1)无化学反应过程的能量衡算
1、无相变的变温变压过程
Qv

U

n
T2 T1
Cv
dT
Qp
二、三种化工模拟软件的对比
一般认为,PROII在炼油工业应用更为准确些,因其数据库中有不少经验数 据;而ASPEN在化工领域表现更好。
HYSYS主要用于天然气的加工处理及炼油工业。 Aspen plus 计算较准确,数据库比较完善。不过由于它考虑的方面非常全面,
所以学起来比较费劲。
三、化工模拟软件存在问题
6.热量衡算举例
不得不告别手算时代
一、 化工模拟软件在化工设计中的应用
计算机用于化工设计的主要环节: 物性数据检索(物理性质、热力学性质数据); 化工过程模拟设计(CAPD); 计算机辅助绘图设计(CAD); 计算机辅助工程(CAE)等
目前用的较多的化工流程模拟计算软件: PRO/II、HYSYS、ASPEN PLUS等。
Q+W=E =Ek+Ep+U
其中W = Wt +Ws,
Wt为流动功,Ws为轴功;
(1) 封闭体系的能量衡算方程
封闭体系特点:与环境只有能量交换,而无物质交换,则:
U = Q + W 若体系与环境没有功的交换,即W = 0,则: Q =U
(2)流动体系的能量衡算方程——物料连续通过边界进出
能量输入速率-能量输出速率=能量积累速率
∆Hro=Σ生成热μi(∆Hfo)i-Σ反应热μi(∆Hfo)i (2)由标准燃烧热∆Hco计算标准反应热∆Hro
∆Hro=Σ反应物μi(∆Hco)i-Σ产物μi(∆Hco)i
3、两种基准 按计算焓时的基准区分,主要有两种, (1)第一种基准
若已知标准反应热,则可选298K,latm为反应物及产物的计算 基准。对非反应物质另选适当的温度为基准(如反应器的进口温度, 或平均热容表示的参考温度)。例详见陈声宗教材P54 (2)第二种基准
2、EB与HB之间的关系 流程压力水平不高,而且压力变化也不大,系统能量只考
虑其热焓,而忽略其动能、势能等机械能,在这种情况下:
EBHB
3、在HB计算中,压力对焓值的影响 热焓是状态函数,严格而言,它同时与温度和压力有关。但温度对焓值 的影响更加显著。在压力水平不高且压力变化不大的化工流程中,一般 认为焓值只是温度的函数,以简化计算。
还没有成熟的化工软件可用于石油化工过程部分主要装置的模拟(如催化裂化、加 氢裂化的反应部分)。
国际上大的从事流程模拟的公司在模型上实行技术封锁,我国的石化企业长 期几乎完全依赖外国相关产品,现有产品价格昂贵。
以组成反应物及产物的元素,在25℃,1atm 时的焓为零,非反 应分子以任意适当的温度为基准,也要画一张有所有流股组分 ni 和 Hi 的表,只是在这张表中反应物或产物的Hi,是各物质25℃的生成 热与物质由25℃变到它进口状态或出口状态所需显热和潜热之和。 例详见陈声宗教材P55
5.进行热量衡算注意事项
表示物体内分ห้องสมุดไป่ตู้、原子能量的宏观尺度。
4、热(Q)
物体与环境之间由于温差而引起传递的能量。
5、功(W)
物体与环境之间由于矢量位移而引起传递的能量。
二、MB、HB、EB三者之间的关系
1、MB与HB之间的关系
MB有可能能单独(不依赖HB而独立)求解;
HB一般不能单独求解;(间壁式换热器除外)
当MB不能独立求解时,它就必须与HB联合起来,求解CB。
相关文档
最新文档