线性代数第五版高等教育出版社
高等代数第五版课后题答案及详解
高等代数第五版课后习题答案
【知识点】
若矩阵A的特征值为λ1,λ2,...,λn,那么|A|=λ1·λ2·...·λn
【解答】
|A|=1×2×...×n= n!
设A的特征值为λ,对于的特征向量为α。
则Aα= λα
那么(A²-A)α= A²α- Aα= λ²α- λα= (λ²-λ)α
所以A²-A的特征值为λ²-λ,对应的特征向量为α
A²-A的特征值为0 ,2,6,...,n²-n
函数(function),名称出自数学家李善兰的著作《代数学》。
之所以如此翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。
函数的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。
线性代数(第五版)课件
• 想搞软件工程,好,3D游戏的数学基础就 是以图形的矩阵运算为基础;当然,如果 你只想玩3D游戏可以不必掌握线代;想搞 图像处理,大量的图像数据处理更离不开 矩阵这个强大的工具,《阿凡达》中大量 的后期电脑制作没有线代的数学工具简直 难以想象。
• 想搞经济研究。好,知道列昂惕夫(Wassily Leontief)吗?哈佛大学教授,1949年用计 算机计算出了由美国统计局的25万条经济数 据所组成的42个未知数的42个方程的方程组, 他打开了研究经济数学模型的新时代的大门。
这些模型通常都是线性的,也就是说,它们
是用线性方程组来描述的,被称为列昂惕夫 “投入-产出”模型。列昂惕夫因此获得了 1973年的诺贝尔经济学奖。
• 相当领导,好,要会运筹学,运筹学的一 个重要议题是线性规划。许多重要的管理 决策是在线性规划模型的基础上做出的。 线性规划的知识就是线代的知识啊。比如, 航空运输业就使用线性规划来调度航班, 监视飞行及机场的维护运作等;又如,你 作为一个大商场的老板,线性规划可以帮 助你合理的安排各种商品的进货,以达到 最大利润。
§1 二阶与三阶行列式
我们从最简单的二元线性方程组出发,探 求其求解公式,并设法化简此公式.
一、二元线性方程组与二阶行列式
二元线性方程组
aa1211
x1 x1
a12 x2 a22 x2
b1 b2
由消元法,得
(a11a22 a a 12 21 ) x1 b1a22 a12b2
(a11a22 a a 12 21 ) x2 a11b2 b1a21
二、线性代数的课程特点
高度的抽象性和严密逻辑性,并缺乏直观 的思维模型.
开设时间为大一、大二年级. 线性代数课时短, 内容多. 理论多, 例题少.
线性代数(含全部课后题详细答案)4-3PPT课件
目
CONTENCT
录
• 课程介绍与教学目标 • 向量空间与线性变换 • 行列式与矩阵运算 • 特征值与特征向量 • 课后习题详解 • 课程总结与拓展延伸
01
课程介绍与教学目标
线性代数课程简介
线性代数是数学的一个分支, 研究线性方程组、向量空间、 矩阵等概念和性质。
简要介绍数值计算中常用的迭代法、插值 法、逼近法等基本方法,培养学生运用计 算机解决实际问题的能力。
简要介绍数学建模的基本思想和方法,通 过实例展示数学建模在解决实际问题中的 应用和价值。
THANK YOU
感谢聆听
05
课后习题详解
习题类型及解题思路
计算题
主要针对线性代数中的基本运算,如矩阵的加减、数乘和乘法等。解题思路通常是按照运算规则逐步进行,注意保持 矩阵的维度一致。
证明题
主要考察学生对线性代数基本定理和性质的理解和掌握。解题思路一般是从已知条件出发,结合相关定理和性质进行 推导,最终得出结论。
应用题
行列式性质
行列式具有线性性、交换性、倍加性 等基本性质,这些性质在行列式的计 算和证明中起到重要作用。
矩阵运算规则
矩阵加法
两个矩阵相加,要求它们具有相同的行数和列数, 对应元素相加。
矩阵数乘
一个数与矩阵相乘,将该数与矩阵中的每一个元素 相乘。
矩阵乘法
两个矩阵相乘,要求第一个矩阵的列数等于第二个 矩阵的行数,结果矩阵的行数等于第一个矩阵的行 数,列数等于第二个矩阵的列数。
将线性代数的知识应用于实际问题中,如求解线性方程组、矩阵的特征值和特征向量等。解题思路是首 先建立数学模型,将实际问题转化为线性代数问题,然后利用相关知识进行求解。
线性代数理工类第五版教材pdf
线性代数理工类第五版教材pdf简介《线性代数理工类第五版教材pdf》是一本广泛应用于理工类专业课程的线性代数教材,帮助学生理解和应用线性代数的基本原理和概念。
线性代数是一门研究向量空间、线性变换和矩阵的数学学科,它广泛应用于工程学、计算机科学、物理学、经济学等各个领域。
该教材是第五版,经过多年的修订和完善,内容更加全面和系统,有助于学生掌握线性代数的核心概念和技巧。
本文将对该教材的内容进行概述,并介绍其主要特点和优势。
内容概述《线性代数理工类第五版教材pdf》以清晰的结构和易于理解的语言,全面介绍了线性代数的基本原理和方法。
教材内容涵盖了以下主题:1.向量空间:介绍向量的定义、运算和性质,讲解线性无关性、基、维数等概念。
2.线性方程组:介绍线性方程组的解和解的性质,包括齐次线性方程组和非齐次线性方程组。
3.矩阵:讲解矩阵的定义、运算和性质,包括矩阵的逆、转置和行列式等概念。
4.线性变换:介绍线性变换的定义和性质,包括线性变换的表示、特征值和特征向量等概念。
5.特征值和特征向量:详细讲解特征值和特征向量的特点和应用。
6.二次型:介绍二次型的定义和性质,包括二次型的矩阵表示、规范型和合同变换等概念。
7.正交性和正交变换:讲解正交向量、正交矩阵和正交变换的概念和性质。
通过系统的讲解和大量的例题和习题,教材帮助学生深入理解线性代数的基本概念和方法,并培养其解决实际问题的能力。
特点和优势《线性代数理工类第五版教材pdf》具有以下特点和优势:1.全面的知识覆盖:教材内容涵盖了线性代数的核心知识,包括向量空间、线性方程组、矩阵、线性变换等内容,适用于理工类专业的各个方向。
2.易于理解的语言:教材采用简洁明了的语言,避免冗长的数学推导,使学生更容易理解和掌握线性代数的概念和方法。
3.丰富的例题和习题:教材提供了大量的例题和习题,覆盖各个难度级别,有助于学生巩固所学知识、培养解决问题的能力。
4.重视实际应用:教材在讲解线性代数的原理和概念的同时,注重将其应用于实际问题,帮助学生理解线性代数的实际意义和价值。
工程数学--线性代数课后题答案 第五版
第三章 矩阵的初等变换与线性方程组1. 把下列矩阵化为行最简形矩阵:(1)⎪⎪⎭⎫ ⎝⎛--340313021201; 解 ⎪⎪⎭⎫ ⎝⎛--340313021201(下一步: r 2+(-2)r 1, r 3+(-3)r 1. ) ~⎪⎪⎭⎫ ⎝⎛---020*********(下一步: r 2÷(-1), r 3÷(-2). ) ~⎪⎪⎭⎫ ⎝⎛--010*********(下一步: r 3-r 2. ) ~⎪⎪⎭⎫ ⎝⎛--300031001201(下一步: r 3÷3. ) ~⎪⎪⎭⎫ ⎝⎛--100031001201(下一步: r 2+3r 3. ) ~⎪⎪⎭⎫ ⎝⎛-100001001201(下一步: r 1+(-2)r 2, r 1+r 3. ) ~⎪⎪⎭⎫ ⎝⎛100001000001. (2)⎪⎪⎭⎫ ⎝⎛----174034301320;解 ⎪⎪⎭⎫ ⎝⎛----174034301320(下一步: r 2⨯2+(-3)r 1, r 3+(-2)r 1. ) ~⎪⎪⎭⎫ ⎝⎛---310031001320(下一步: r 3+r 2, r 1+3r 2. ) ~⎪⎪⎭⎫ ⎝⎛0000310010020(下一步: r 1÷2. ) ~⎪⎪⎭⎫ ⎝⎛000031005010. (3)⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311; 解 ⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311(下一步: r 2-3r 1, r 3-2r 1, r 4-3r 1. ) ~⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311(下一步: r 2÷(-4), r 3÷(-3) , r 4÷(-5). ) ~⎪⎪⎪⎭⎫ ⎝⎛-----22100221002210034311(下一步: r 1-3r 2, r 3-r 2, r 4-r 2. ) ~⎪⎪⎪⎭⎫ ⎝⎛---00000000002210032011.(4)⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132. 解 ⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132(下一步: r 1-2r 2, r 3-3r 2, r 4-2r 2. ) ~⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110(下一步: r 2+2r 1, r 3-8r 1, r 4-7r 1. ) ~⎪⎪⎪⎭⎫ ⎝⎛--41000410002020111110(下一步: r 1↔r 2, r 2⨯(-1), r 4-r 3. ) ~⎪⎪⎪⎭⎫ ⎝⎛----00000410001111020201(下一步: r 2+r 3. ) ~⎪⎪⎪⎭⎫ ⎝⎛--00000410003011020201. 2. 设⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A , 求A . 解 ⎪⎪⎭⎫ ⎝⎛100001010是初等矩阵E (1, 2), 其逆矩阵就是其本身.⎪⎪⎭⎫ ⎝⎛100010101是初等矩阵E (1, 2(1)), 其逆矩阵是 E (1, 2(-1)) ⎪⎪⎭⎫ ⎝⎛-=100010101. ⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=100010101987654321100001010A ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛=287221254100010101987321654. 3. 试利用矩阵的初等变换, 求下列方阵的逆矩阵:(1)⎪⎪⎭⎫ ⎝⎛323513123; 解 ⎪⎪⎭⎫ ⎝⎛100010001323513123~⎪⎪⎭⎫ ⎝⎛---101011001200410123 ~⎪⎪⎭⎫ ⎝⎛----1012002110102/102/3023~⎪⎪⎭⎫ ⎝⎛----2/102/11002110102/922/7003 ~⎪⎪⎭⎫ ⎝⎛----2/102/11002110102/33/26/7001 故逆矩阵为⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267.(2)⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023.解 ⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023 ~⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321 ~⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321 ~⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321 ~⎪⎪⎪⎭⎫ ⎝⎛----------10612631110`1022111000010000100021 ~⎪⎪⎪⎭⎫ ⎝⎛-------106126311101042111000010000100001故逆矩阵为⎪⎪⎪⎭⎫ ⎝⎛-------10612631110104211. 4. (1)设⎪⎪⎭⎫ ⎝⎛--=113122214A , ⎪⎪⎭⎫ ⎝⎛--=132231B , 求X 使AX =B ; 解 因为⎪⎪⎭⎫ ⎝⎛----=132231 113122214) ,(B A ⎪⎪⎭⎫ ⎝⎛--412315210 100010001 ~r , 所以 ⎪⎪⎭⎫ ⎝⎛--==-4123152101B A X . (2)设⎪⎪⎭⎫ ⎝⎛---=433312120A , ⎪⎭⎫ ⎝⎛-=132321B , 求X 使XA =B . 解 考虑A T X T =B T . 因为⎪⎪⎭⎫ ⎝⎛----=134313*********) ,(T T B A ⎪⎪⎭⎫ ⎝⎛---411007101042001 ~r , 所以 ⎪⎪⎭⎫ ⎝⎛---==-417142)(1T T T B A X , 从而 ⎪⎭⎫ ⎝⎛---==-4741121BA X . 5. 设⎪⎪⎭⎫ ⎝⎛---=101110011A , AX =2X +A , 求X . 解 原方程化为(A -2E )X =A . 因为⎪⎪⎭⎫ ⎝⎛---------=-101101110110011011) ,2(A E A ⎪⎪⎭⎫ ⎝⎛---011100101010110001~, 所以 ⎪⎪⎭⎫ ⎝⎛---=-=-011101110)2(1A E A X . 6. 在秩是r 的矩阵中,有没有等于0的r -1阶子式? 有没有等于0的r 阶子式?解 在秩是r 的矩阵中, 可能存在等于0的r -1阶子式, 也可能存在等于0的r 阶子式.例如, ⎪⎪⎭⎫ ⎝⎛=010*********A , R (A )=3. 0000是等于0的2阶子式, 010001000是等于0的3阶子式. 7. 从矩阵A 中划去一行得到矩阵B , 问A , B 的秩的关系怎样?解 R (A )≥R (B ).这是因为B 的非零子式必是A 的非零子式, 故A 的秩不会小于B 的秩.8. 求作一个秩是4的方阵, 它的两个行向量是(1, 0, 1, 0, 0), (1, -1, 0, 0, 0).解 用已知向量容易构成一个有4个非零行的5阶下三角矩阵:⎪⎪⎪⎪⎭⎫ ⎝⎛-0000001000001010001100001, 此矩阵的秩为4, 其第2行和第3行是已知向量.9. 求下列矩阵的秩, 并求一个最高阶非零子式:(1)⎪⎪⎭⎫ ⎝⎛---443112112013; 解 ⎪⎪⎭⎫ ⎝⎛---443112112013(下一步: r 1↔r 2. ) ~⎪⎪⎭⎫ ⎝⎛---443120131211(下一步: r 2-3r 1, r 3-r 1. ) ~⎪⎪⎭⎫ ⎝⎛----564056401211(下一步: r 3-r 2. ) ~⎪⎭⎫ ⎝⎛---000056401211, 矩阵的2秩为, 41113-=-是一个最高阶非零子式.(2)⎪⎪⎭⎫ ⎝⎛-------815073*********; 解 ⎪⎪⎭⎫ ⎝⎛-------815073*********(下一步: r 1-r 2, r 2-2r 1, r 3-7r 1. ) ~⎪⎭⎫ ⎝⎛------15273321059117014431(下一步: r 3-3r 2. ) ~⎪⎭⎫ ⎝⎛----0000059117014431, 矩阵的秩是2,71223-=-是一个最高阶非零子式.(3)⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812. 解 ⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812(下一步: r 1-2r 4, r 2-2r 4, r 3-3r 4. ) ~⎪⎪⎪⎭⎫ ⎝⎛------02301024205363071210(下一步: r 2+3r 1, r 3+2r 1. ) ~⎪⎪⎪⎭⎫ ⎝⎛-0230114000016000071210(下一步: r 2÷16r 4, r 3-16r 2. )~⎪⎪⎪⎭⎫ ⎝⎛-02301000001000071210 ~⎪⎪⎪⎭⎫ ⎝⎛-00000100007121002301, 矩阵的秩为3, 070023085570≠=-是一个最高阶非零子式. 10. 设A 、B 都是m ⨯n 矩阵, 证明A ~B 的充分必要条件是R (A )=R (B ).证明 根据定理3, 必要性是成立的.充分性. 设R (A )=R (B ), 则A 与B 的标准形是相同的. 设A 与B 的标准形为D , 则有A ~D , D ~B .由等价关系的传递性, 有A ~B .11. 设⎪⎪⎭⎫ ⎝⎛----=32321321k k k A , 问k 为何值, 可使 (1)R (A )=1; (2)R (A )=2; (3)R (A )=3.解 ⎪⎪⎭⎫ ⎝⎛----=32321321k k k A ⎪⎪⎭⎫ ⎝⎛+-----)2)(1(0011011 ~k k k k k r . (1)当k =1时, R (A )=1;(2)当k =-2且k ≠1时, R (A )=2;(3)当k ≠1且k ≠-2时, R (A )=3.12. 求解下列齐次线性方程组:(1)⎪⎩⎪⎨⎧=+++=-++=-++02220202432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛--212211121211~⎪⎪⎭⎫ ⎝⎛---3/410013100101,于是 ⎪⎪⎩⎪⎪⎨⎧==-==4443424134334x x x x x x x x ,故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x (k 为任意常数).(2)⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有A =⎪⎪⎭⎫ ⎝⎛----5110531631121~⎪⎪⎭⎫⎝⎛-000001001021,于是 ⎪⎩⎪⎨⎧===+-=4432242102x x x xx x x x ,故方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10010*********k k x x x x (k 1, k 2为任意常数).(3)⎪⎩⎪⎨⎧=-+-=+-+=-++=+-+07420634072305324321432143214321x x x x x x x x x x x x x x x x ;解 对系数矩阵A 进行初等行变换, 有 A =⎪⎪⎪⎭⎫⎝⎛-----7421631472135132~⎪⎪⎪⎭⎫ ⎝⎛1000010000100001,于是 ⎪⎩⎪⎨⎧====0004321x x x x ,故方程组的解为⎪⎩⎪⎨⎧====00004321x x x x .(4)⎪⎩⎪⎨⎧=++-=+-+=-+-=+-+03270161311402332075434321432143214321x x x x x x x x x x x x x x x x .解 对系数矩阵A 进行初等行变换, 有 A =⎪⎪⎪⎭⎫⎝⎛-----3127161311423327543~⎪⎪⎪⎪⎪⎭⎫⎝⎛--000000001720171910171317301,于是 ⎪⎪⎩⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x xx x ,故方程组的解为⎪⎪⎪⎪⎪⎭⎫⎝⎛--+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛1017201713011719173214321k k x x x x (k 1, k 2为任意常数).13. 求解下列非齐次线性方程组:(1)⎪⎩⎪⎨⎧=+=+-=-+83111021322421321321x x x x x x x x ;解 对增广矩阵B 进行初等行变换, 有B =⎪⎪⎭⎫ ⎝⎛--80311102132124~⎪⎭⎫⎝⎛----600034111008331,于是R (A )=2, 而R (B )=3, 故方程组无解.(2)⎪⎩⎪⎨⎧-=+-=-+-=+-=++69413283542432z y x z y x z y x z y x ;解 对增广矩阵B 进行初等行变换, 有 B =⎪⎪⎪⎭⎫⎝⎛-----69141328354214132~⎪⎪⎪⎭⎫ ⎝⎛--0000000021101201, 于是 ⎪⎩⎪⎨⎧=+=--=zz z y z x 212,即 ⎪⎪⎭⎫⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛021112k z y x (k 为任意常数).(3)⎪⎩⎪⎨⎧=--+=+-+=+-+12222412w z y x w z y x w z y x ;解 对增广矩阵B 进行初等行变换, 有B =⎪⎪⎭⎫ ⎝⎛----111122122411112~⎪⎪⎭⎫⎝⎛-00000010002/102/12/11,于是 ⎪⎪⎩⎪⎪⎨⎧===++-=0212121w z z y y z y x ,即 ⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x (k 1, k 2为任意常数).(4)⎪⎩⎪⎨⎧-=+-+=-+-=+-+2534432312w z y x w z y x w z y x .解 对增广矩阵B 进行初等行变换, 有B =⎪⎪⎭⎫ ⎝⎛-----253414312311112~⎪⎭⎫ ⎝⎛----000007/57/97/5107/67/17/101,于是 ⎪⎪⎩⎪⎪⎨⎧==--=++=w w z z w z y w z x 757975767171,即 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛00757610797101757121k k w z y x (k 1, k 2为任意常数).14. 写出一个以⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=1042013221c c x为通解的齐次线性方程组. 解 根据已知, 可得⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛10420132214321c c x x x x ,与此等价地可以写成⎪⎩⎪⎨⎧==+-=-=2413212211432c x c x c c x c c x ,或 ⎩⎨⎧+-=-=432431432x x x x x x ,或 ⎩⎨⎧=-+=+-04302432431x x x x x x ,这就是一个满足题目要求的齐次线性方程组.15. λ取何值时, 非齐次线性方程组⎪⎩⎪⎨⎧=++=++=++23213213211λλλλλx x x x x x x x x .(1)有唯一解; (2)无解; (3)有无穷多个解?解 ⎪⎪⎭⎫⎝⎛=21111111λλλλλB⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011 ~λλλλλλλλλλr. (1)要使方程组有唯一解, 必须R (A )=3. 因此当λ≠1且λ≠-2时方程组有唯一解.(2)要使方程组无解, 必须R (A )<R (B ), 故 (1-λ)(2+λ)=0, (1-λ)(λ+1)2≠0. 因此λ=-2时, 方程组无解.(3)要使方程组有有无穷多个解, 必须R (A )=R (B )<3, 故 (1-λ)(2+λ)=0, (1-λ)(λ+1)2=0. 因此当λ=1时, 方程组有无穷多个解.16. 非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212222λλx x x x x x x x x当λ取何值时有解?并求出它的解.解 ⎪⎪⎭⎫ ⎝⎛----=22111212112λλB ~⎪⎪⎪⎭⎫ ⎝⎛+-----)2)(1(000)1(32110121λλλλ. 要使方程组有解, 必须(1-λ)(λ+2)=0, 即λ=1, λ=-2.当λ=1时,⎪⎪⎭⎫ ⎝⎛----=121111212112B ~⎪⎪⎭⎫⎝⎛--000001101101,方程组解为⎩⎨⎧=+=32311x x x x 或⎪⎩⎪⎨⎧==+=3332311x x x x x x , 即 ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛001111321k x x x (k 为任意常数).当λ=-2时,⎪⎪⎭⎫ ⎝⎛-----=421121212112B ~⎪⎪⎭⎫⎝⎛--000021102101,方程组解为⎩⎨⎧+=+=223231x x x x 或⎪⎩⎪⎨⎧=+=+=33323122x x x x x x ,即 ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛022111321k x x x (k 为任意常数).17. 设⎪⎩⎪⎨⎧--=-+--=--+=-+-1)5(4224)5(2122)2(321321321λλλλx x x x x x x x x .问λ为何值时, 此方程组有唯一解、无解或有无穷多解? 并在有无穷多解时求解.解 B =⎪⎪⎭⎫ ⎝⎛---------154224521222λλλλ~⎪⎪⎭⎫ ⎝⎛---------)4)(1()10)(1(0011102452λλλλλλλλ. 要使方程组有唯一解, 必须R (A )=R (B )=3, 即必须 (1-λ)(10-λ)≠0,所以当λ≠1且λ≠10时, 方程组有唯一解. 要使方程组无解, 必须R (A )<R (B ), 即必须 (1-λ)(10-λ)=0且(1-λ)(4-λ)≠0, 所以当λ=10时, 方程组无解.要使方程组有无穷多解, 必须R (A )=R (B )<3, 即必须 (1-λ)(10-λ)=0且(1-λ)(4-λ)=0,所以当λ=1时, 方程组有无穷多解.此时,增广矩阵为B ~⎪⎪⎭⎫⎝⎛-000000001221,方程组的解为⎪⎩⎪⎨⎧==++-=3322321 1x x x x x x x ,或 ⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛00110201221321k k x x x (k 1, k 2为任意常数).18. 证明R (A )=1的充分必要条件是存在非零列向量a 及非零行向量b T , 使A =ab T .证明 必要性. 由R (A )=1知A 的标准形为 )0 , ,0 ,1(001000000001⋅⋅⋅⎪⎪⎪⎭⎫⎝⎛⋅⋅⋅=⎪⎪⎪⎭⎫⎝⎛⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅, 即存在可逆矩阵P 和Q , 使)0 , ,0 ,1(001⋅⋅⋅⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅=PAQ , 或11)0 , ,0 ,1(001--⋅⋅⋅⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅=Q P A . 令⎪⎪⎪⎭⎫ ⎝⎛⋅⋅⋅=-0011P a , b T =(1, 0, ⋅⋅⋅, 0)Q -1, 则a 是非零列向量, b T 是非零行向量, 且A =ab T .充分性. 因为a 与b T 是都是非零向量, 所以A 是非零矩阵, 从而R (A )≥1. 因为1≤R (A )=R (ab T )≤min{R (a ), R (b T )}=min{1, 1}=1, 所以R (A )=1.19. 设A 为m ⨯n 矩阵, 证明(1)方程AX =E m 有解的充分必要条件是R (A )=m ; 证明 由定理7, 方程AX =E m 有解的充分必要条件是R (A )=R (A , E m ),而|E m|是矩阵(A,E m)的最高阶非零子式,故R(A)=R(A,E m)=m.因此,方程AX=E m有解的充分必要条件是R(A)=m.(2)方程YA=E n有解的充分必要条件是R(A)=n.证明注意,方程YA=E n有解的充分必要条件是A T Y T=E n 有解.由(1)A T Y T=E n有解的充分必要条件是R(A T)=n.因此,方程YA=E n有解的充分必要条件是R(A)=R(A T)=n.20.设A为m⨯n矩阵,证明:若AX=AY,且R(A)=n,则X=Y.证明由AX=AY,得A(X-Y)=O.因为R(A)=n,由定理9,方程A(X-Y)=O只有零解,即X-Y=O,也就是X=Y.。
高教社2024高等数学第五版教学课件-9.3 矩阵的定义与运算
例2 含有个未知量个方程的线性方程组
11 1 + 12 2 + ⋯ + 1 = 1
21 1 + 22 2 + ⋯ + 2 = 2
⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯
1 1 + 2 2 + ⋯ + =
把它的系数 ( = 1,2, ⋯ , ; = 1,2, ⋯ , )与常数项 ( = 1,2, ⋯ , )按照
⋮
2
⋯
⋯
⋱⋯Leabharlann 12⋮
称为行列矩阵,简称 × 矩阵.矩阵通常用大写字母, , , ⋯,表示.例
如,上述矩阵可以记为或× ,也可记为 = [ ].
特别地,
当 = 1时,矩阵只有一行,即 = (11
12
⋯ 1 ),称为行矩阵;
当 = 1时,矩阵只有一列,即 = ⋮ ,称为列矩阵;
12
22
⋮
2
11
⋯ 1
21
⋯ 2
, = ⋮
⋱
⋮
1
⋯
12
22
⋮
2
⋯ 1
⋯ 2
⋱
⋮
⋯
其 中 = 1 1 + 2 2 + ⋯ + = σ=1 ( = 1, 2, ⋯ , ; = 1, 2, ⋯ , ) ,
素可以是零也可以不是零.同时,上(或下)三角矩阵一定是方阵.上三角矩
阵和下三角矩阵统称为三角矩阵.
3.对角矩阵
若一个阶方阵既是上三角矩阵,又是下三角矩阵,则称其为阶对
角矩阵( = 0, ≠ , , = 1,2, ⋯ , ),记为.对角矩阵是非零元素(如
线性代数课后答案__同济第五版
行列式
1
2
3
4
5
6
7
8
9
10
11
12
13
第二章
矩阵及其运算
14
15
16
17
18
19
20
21
22
23
24
25
26
27
第三章
矩阵的初等变换与线性方程组
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
得方程(AE)x0 的基础解系 p1(1 1 1)T 向量 p1 就是对应于特征值1 的特 征值向量.
(2) 2
1 2 1 3 3
3 3 ; 6
1 2 3 解 | A E | 2 1 3 ( 1)( 9) 3 3 6
P1ABPA1ABABA
72
即 AB 与 BA 相似
2 0 1 14 设矩阵 A 3 1 x 可相似对角化 求 x 4 0 5
解 由
2 0 1 | A E | 3 1 x ( 1)2( 6) 4 0 5
得 A 的特征值为 16 231 因为 A 可相似对角化 所以对于 231 齐次线性方程组(AE)x0 有两个 线性无关的解 因此 R(AE)1 由
解 根据施密特正交化方法
1 b1 a1 0 1 1
1 [b1,a2] 1 b2 a2 b1 3 [b1,b1] 3 2 1 1 [b ,a ] [b ,a ] b3 a3 1 3 b1 2 3 b2 1 3 [b1,b1] [b2,b2] 5 3 4
线性代数第五版答案
第六章 线性空间与线性变换1. 验证所给矩阵集合对于矩阵的加法和乘数运算构成线性空间, 并写出各个空间的一个基. (1) 2阶矩阵的全体S 1;解 设A B 分别为二阶矩阵, 则A B S 1 因为(AB )S 1 kA S 1所以S 1对于矩阵的加法和乘数运算构成线性空间.⎪⎭⎫⎝⎛=00011ε ⎪⎭⎫ ⎝⎛=00102ε ⎪⎭⎫ ⎝⎛=01003ε ⎪⎭⎫ ⎝⎛=10004ε 是S 1的一个基.(2)主对角线上的元素之和等于0的2阶矩阵的全体S 2;解 设⎪⎭⎫ ⎝⎛-=a c b a A ⎪⎭⎫ ⎝⎛-=d f e d B A B S 2因为2)(S d a a c b c d a B A ∈⎪⎭⎫⎝⎛++++-=+2S ka kc kb ka kA ∈⎪⎭⎫ ⎝⎛-=所以S 2对于矩阵的加法和乘数运算构成线性空间.⎪⎭⎫ ⎝⎛-=10011ε ⎪⎭⎫ ⎝⎛=00102ε ⎪⎭⎫ ⎝⎛=01003ε 是S 2的一个基.(3) 2阶对称矩阵的全体S 3. 解 设A B S 3 则A T A B T B 因为(A B )T A T B T A B (A B )S 3 (kA )TkA T kA kA S 3所以S3对于加法和乘数运算构成线性空间.⎪⎭⎫ ⎝⎛=00011ε ⎪⎭⎫ ⎝⎛=01102ε ⎪⎭⎫ ⎝⎛=10003ε 是S 3的一个基.2. 验证: 与向量(0 0 1)T不平行的全体3维数组向量, 对于数组向量的加法和乘数运算不构成线性空间. 解 设V {与向量(0 0 1)T不平行的全体三维向量} 设r 1(1 1 0)Tr 2(10 1)T则r 1 r 2V 但r 1r 2(0 0 1)T V 即V 不是线性空间.3. 设U 是线性空间V 的一个子空间, 试证: 若U 与V 的维数相等, 则U V 证明 设12n为U 的一组基, 它可扩充为整个空间V 的一个基, 由于dim(U )dim(V ) 从而12n 也为V 的一个基, 则: 对于x V 可以表示为x k 11k 22k rr显然, x U , 故V U ,而由已知知U V 有U V4. 设V r 是n 维线性空间V n 的一个子空间, a 1a 2a r 是V r 的一个基. 试证: V n 中存在元素a r1a n , 使a 1a 2a r , a r1a n成为V n 的一个基.证明 设r n, 则在V n 中必存在一向量a r 1V r , 它不能被a 1 a 2a r 线性表示, 将a r 1添加进来, 则a 1 a 2a r1是线性无关的. 若r 1n , 则命题得证,否则存在a r2L (a 1 a 2a r 1) 则a 1a 2a r 2线性无关, 依此类推, 可找到n 个线性无关的向量a 1 a 2a n , 它们是V n 的一个基.5. 在R 3中求向量(37 1)T在基1(1 35)T2(63 2)T3(310)T下的坐标. 解 设1 23是R 3的自然基则 (1 2 3)(1 2 3)A (123)(123)A1其中⎪⎪⎭⎫⎝⎛=025133361A ⎪⎪⎭⎫⎝⎛-----=-1528981553621A因为 ⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛=-173) , ,(173) , ,(1321321A αααεεεα⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-----=173152898155362) , ,(321ααα⎪⎪⎭⎫⎝⎛-=1548233) , ,(321ααα所以向量在基123下的坐标为(33 82 154)T.6. 在R 3取两个基 1(1 2 1)T2(2 3 3)T3(3 7 1)T1(314)T2(521)T3(116)T试求坐标变换公式. 解 设123是R 3的自然基则 (1 2 1)(1 2 3)B (1 2 3)(1 2 1)B1(121)(123)A (121)B 1A其中 ⎪⎪⎭⎫ ⎝⎛=131732121A , ⎪⎪⎭⎫⎝⎛-=614121153B 设任意向量在基123下的坐标为(x 1 x 2x 3)T 则⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=-3211321321321) , ,() , ,(x x x A B x x x βββαααα故在基123下的坐标为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛'''-3211321x x x A B x x x ⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛---=32149910726313941811913x x x .7. 在R 4中取两个基e 1(1000)T e 2(0100)Te 3(0010)T e 4(0001)T1(2111)T2(0310)T3(5321)T3(6613)T(1)求由前一个基到后一个基的过渡矩阵; 解 由题意知⎪⎪⎪⎭⎫⎝⎛-=3101121163316502) , , ,() , , ,(43214321e e e e αααα从而由前一个基到后一个基的过渡矩阵为⎪⎪⎪⎭⎫⎝⎛-=3101121163316502A(2)求向量(x 1 x 2x 3 x 4)T在后一个基下的坐标;解 因为⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=-43211432143214321) , , ,() , , ,(x x x x A x x x x αααααe e e e向量在后一个基下的坐标为 ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛-4321143213166123501301112x x x x y y y y ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-------=432126937180092391213327912271x x x x . (3)求在两个基下有相同坐标的向量. 解 令⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-------4321432126937180092391213327912271x x x x x x x x ,解方程组得⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛11114321k x x x x (k 为常数)8. 说明xOy 平面上变换⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛y x A y x T 的几何意义, 其中(1)⎪⎭⎫ ⎝⎛-=1001A ; 解 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛y x y x y x T 1001 所以在此变换下T ()与关于y 轴对称(2)⎪⎭⎫ ⎝⎛=1000A ; 解 因为⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛y y x y x T 01000所以在此变换下T ()是在y 轴上的投影(3)⎪⎭⎫ ⎝⎛=0110A ; 解 因为⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛x y y x y x T 0110所以在此变换下T ()与关于直线y x 对称(4)⎪⎭⎫ ⎝⎛-=0110A .解因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛x y y x y x T 0110 所以在此变换下T ()是将顺时针旋转2π9. n 阶对称矩阵的全体V 对于矩阵的线性运算构成一个2)1(+n n 维线性空间. 给出n 阶矩阵P , 以A 表示V 中的任一元素, 变换T (A )P TAP 称为合同变换. 试证合同变换T 是V 中的线性变换. 证明 设A B V 则A T A B T BT (A B )P T (A B )P P T (A B )T P[(A B )P ]TP (AP BP )TP(P TA P TB )PP T AP P T BP T (A )T (B )T (kA )P T(kA )P kP TAP kT (A )从而, 合同变换T 是V 中的线性变换.10. 函数集合V 3{(a 2x2a 1x a 0)e x | a 2 a 1 a 0 R }对于函数的线性运算构成3维线性空间, 在V 3中取一个基1x 2e x2xe x3e x求微分运算D 在这个基下的矩阵. 解 设 1D (1)2xexx 2e x 2212D (2)e x xe x32e x3 3D(3)易知123线性无关, 故为一个基.由 ⎪⎪⎭⎫⎝⎛=110012001) , ,() , ,(321321αααβββ知即D 在基123下的矩阵为⎪⎪⎭⎫ ⎝⎛=110012001P11. 2阶对称矩阵的全体.。
线性代数及其应用第五版电子版
线性代数及其应用第五版电子版
线性代数及其应用第五版电子版是针对中等教育阶段学科“线性代数”的一本电子版书籍,主要包括以下内容:
一、矩阵的性质
1、矩阵的行列式及其作用
2、组合的行,列必定在矩阵中有一种极端情形
3、矩阵的法向量及其特征
4、矩阵的行列式与特征值之间的关系
5、全秩矩阵及其几何解释
二、矩阵的运算
1、矩阵的加法与减法
2、矩阵的乘法,以及乘法的解释
3、矩阵式的特殊解释
4、矩阵的逆
5、基底的变换
三、向量的运算
1、距离的计算
2、标量积及其应用
3、空间里的垂直性质
4、空间里的基底变换
5、空间里的坐标变换
四、线性方程组
1、线性方程组的特点
2、系数矩阵的特征
3、求解线性方程组的方法
4、线性方程组的概念
5、未定系数的求解
五、空间矩阵和向量
1、空间矩阵的特点
2、变换矩阵的应用
3、列变换和行变换
4、空间向量的计算
5、空间矩阵的运算
线性代数及其应用第五版电子版涵盖了线性代数的各个方面,包括矩阵的性质、矩阵的运算、向量的运算、线性方程组的求解、空间矩阵
和向量的应用等,为线性代数的大家提供了一本理论讲解及实际应用的完美融合的书籍,为深入理解线性代数奠定了坚实的基础。
高等代数第五版习题答案
高等代数第五版习题答案高等代数是一门重要的数学学科,它是数学的基础之一,也是应用数学和理论数学的桥梁。
对于学习高等代数的学生来说,理解和掌握习题的解答方法是非常重要的。
本文将为大家提供《高等代数第五版》习题的答案,帮助大家更好地学习和应用高等代数知识。
第一章:线性方程组和矩阵1. 解答过程略。
2. 解答过程略。
3. 解答过程略。
第二章:线性空间1. 解答过程略。
2. 解答过程略。
3. 解答过程略。
第三章:线性变换和矩阵1. 解答过程略。
2. 解答过程略。
3. 解答过程略。
第四章:特征值和特征向量1. 解答过程略。
2. 解答过程略。
3. 解答过程略。
第五章:正交性和对称矩阵2. 解答过程略。
3. 解答过程略。
第六章:二次型1. 解答过程略。
2. 解答过程略。
3. 解答过程略。
第七章:线性空间的同构1. 解答过程略。
2. 解答过程略。
3. 解答过程略。
第八章:线性空间的直和1. 解答过程略。
2. 解答过程略。
3. 解答过程略。
第九章:线性算子的标准形1. 解答过程略。
2. 解答过程略。
3. 解答过程略。
第十章:线性算子的Jordan标准形1. 解答过程略。
2. 解答过程略。
通过提供习题答案,希望能够帮助大家更好地理解和掌握高等代数的知识。
然而,仅仅依靠习题答案是不够的,学习高等代数还需要进行大量的练习和思考。
在解答习题的过程中,可以尝试不同的方法和思路,培养自己的逻辑思维和问题解决能力。
此外,还可以参考一些相关的数学工具和资源,如数学软件、参考书籍和在线学习平台。
这些资源可以帮助学生更好地理解和应用高等代数的知识,提高学习效果。
总之,高等代数是一门重要的数学学科,掌握其基本概念和解题方法对于学习和应用数学都具有重要意义。
通过提供习题答案,希望能够帮助大家更好地学习和应用高等代数知识。
但记住,理解和掌握知识的过程需要自己的努力和思考,习题答案只是一个辅助工具。
祝愿大家在学习高等代数的道路上取得好成绩!。
线性代数课程简介
线性方程组的增广矩阵表示法
将系数矩阵和常数向量合并为一个增广矩阵。
线性方程组的向量表示法
将未知数表示为向量,通过向量运算来表示 线性方程组。
高斯消元法求解过程
高斯消元法的基本思想
通过对方程组进行初等行变换,将其化为阶梯形矩阵,从而求解 未知数。
高斯消元法的步骤
数值计算
正交变换在数值计算中可用于求解线性方程 组、特征值问题等。
信号处理
正交变换在信号处理中可用于信号分解、滤 波等。
07
二次型与正定矩阵
二次型概念及标准型
二次型定义
二次型是一个二次齐次多项式, 其一般形式为$f(x_1, x_2, ..., x_n) = sum_{i=1}^{n}sum_{ j=1}^{n}a_ {ij}x_ix_j$,其中$a_{ij}$是系数, $x_i$和$x_j$是变量。
05
线性变换与矩阵对
角化
线性变换定义及性质
线性变换定义
线性变换是一种特殊的映射,它保持向量空间中的加法和数 乘运算封闭性。即对于任意向量v和w以及标量k和l,有 T(kv + lw) = kT(v) + lT(w)。
保持向量加法
T(v + w) = T(v) + T(w)。
保持原点不动
T(0) = 0。
01
正定矩阵定义:对于任意非零向量$X$,都有$X^TAX > 0$,则称对称矩阵$A$是正定的。
02
正定矩阵的性质
03
正定矩阵的特征值都是正数。
04
正定矩阵的行列式大于零。
05
正定矩阵可逆,且逆矩阵也是正定的。
06
工程数学--线性代数课后题答案_第五版2
必要性: 因为 AT=A, BT=B, 且(AB)T=AB, 所以
AB=(AB)T=BTAT=BA. 10. 求下列矩阵的逆矩阵:
(1) ⎜⎝⎛12 52⎟⎠⎞ ;
解 A=⎜⎝⎛12 52⎟⎠⎞ . |A|=1, 故 A−1 存在. 因为
A*
=⎜⎝⎛
A11 A12
A21 A22
⎟⎠⎞
=
⎜⎛ ⎝
5 −2
2 1
−14⎟⎠⎞⎜⎝⎛03
−11⎟⎠⎞⎜⎝⎛11
02⎟⎠⎞
=1 12
⎜⎛ ⎝
6 3
06⎟⎠⎞⎜⎝⎛11
02⎟⎠⎞
=
⎛ ⎜⎜ ⎝
1 1 4
1⎞
0⎟⎟ ⎠
.
(4) ⎜⎜⎝⎛ 010
1 0 0
100⎟⎟⎠⎞X ⎜⎜⎝⎛001
0 0 1
100⎟⎟⎠⎞ = ⎜⎜⎝⎛ 112
−4 0 −2
−031⎟⎟⎠⎞ .
⎛ 35 ⎞ =⎜⎜⎝469⎟⎟⎠ .
(2) (1 2 3)⎜⎜⎝⎛123⎟⎟⎠⎞ ;
解 (1 2 3)⎜⎜⎝⎛123⎟⎟⎠⎞ =(1×3+2×2+3×1)=(10).
⎛2⎞ (3)⎜⎜⎝13⎟⎟⎠(−1 2) ;
解
⎜⎜⎝⎛132⎟⎟⎠⎞(−1
2)
= ⎜⎛ 12××((−−11))
⎜ ⎝
3×(−1)
⎜⎝1 −1 1 ⎟⎠⎜⎝ 0 5 1⎟⎠ ⎜⎝2 9 0⎟⎠ 1. 计算下列乘积:
(1) ⎜⎜⎝⎛ 154
3 −2 7
013⎟⎟⎠⎞⎜⎜⎝⎛172⎟⎟⎠⎞ ;
解
⎛4 ⎜⎜⎝15
3 −2 7
1⎞⎛7⎞ 03⎟⎟⎠⎜⎜⎝12⎟⎟⎠
第五版 线性代数(赵树嫄)第一章 行列式
D a21 a22 a23 a11a22a33a12a23a31a13a21a32 a31 a32 a33 a11a23a32a12a21a33a13a22a31
《线性代数》(第五版)教学课件
首页 上一页 下一页 结束
三阶行列式
(二)三阶行列式
a11 a12 a13
任意一个排列经过一个对换后奇偶性改变
定理12 n个数码(n1)共有n!个n级排列 其中奇偶排列各占一半
举例 对排列21354施以对换(1 4)后得到排列24351 N(21354)2 而N(24351)5 可见对换后奇偶性改变
《线性代数》(第五版)教学课件
首页 上一页 下一页 结束
(一)排列与逆序 (二)n阶行列式的定义
《线性代数》(第五版)教学课件
首页 上一页 下一页 结束
(一)排列与逆序
n级排列
由n个不同数码1 2 n组成的有序数组i1 i2 in 称为一 个n级排列
定义11(逆序数)
在一个n级排列i1 i2 in中 如果有较大的数it排在较小的 数is前面(isit) 则称it与is构成一个逆序 一个n级排列中逆序的 总数 称为它的逆序数 记为N(i1 i2 in)
a10 例 5 D 1 a 0 0 的充分必要条件是什么?
411
a10 解 D 1 a 0 a2 1
411
当且仅当a210 即|a|1时 D0 因此可得D0的充分必 要条件是|a|1
《线性代数》(第五版)教学课件
首页 上一页 下一页 结束
§12 n阶行列式
a22 a32
a23 a33
a24 a34
a41 a42 a43 a44
工程数学-线性代数第五版课后习题答案
第二章 矩阵及其运算13. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x ,求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y . 3. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换. 解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .2.设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫ ⎝⎛--=150421321B ,求3AB -2A 及A T B .解⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T.1. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635.(2)⎪⎪⎭⎫ ⎝⎛123)321(;解⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解)21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142.(4)⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ;解⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解 ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.4. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫⎝⎛=+5222B A ,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B )(A -B )≠A 2-B 2.5. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E .(3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .6. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k.解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k .7.设⎪⎪⎭⎫⎝⎛=λλλ001001A ,求A k .解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA kk kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫.用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ,由数学归纳法原理知:⎪⎪⎪⎪⎭⎫⎝⎛-=---k k kk k k k k k k k A λλλλλλ0002)1(121.8. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB , 从而B T AB 是对称矩阵.9. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB , 即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以 AB =(AB )T =B T A T =BA . 10. 求下列矩阵的逆矩阵:(1)⎪⎭⎫⎝⎛5221;解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为⎪⎭⎫⎝⎛--=⎪⎭⎫⎝⎛=1225*22122111A A A A A ,故 *||11A A A =-⎪⎭⎫⎝⎛--=1225.(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ;解 ⎪⎭⎫ ⎝⎛-=θθθθc o s s i ns i n c o s A . |A |=1≠0, 故A -1存在. 因为 ⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛=θθθθc o s s i n s i n c o s *22122111A A A A A , 所以 *||11A A A =-⎪⎭⎫⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎭⎫⎝⎛---145243121;解⎪⎪⎭⎫⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A ,所以*||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解⎪⎪⎪⎭⎫ ⎝⎛=n a a a A0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n a a a A 10011211.11. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232.(2)⎪⎭⎫⎝⎛-=⎪⎪⎭⎫⎝⎛--234311*********X ;解1111012112234311-⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111.(4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X .解11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012.12. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x ,故⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x ,故有⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1), 所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A )可逆, 且 (E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ). 另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ), 两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A (A -E )=2E , 或 E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E , 或 E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2, 即 |A ||A -E |=2, 故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E ⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1, )3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*.证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有|A *|=|A |n |A -1|=|A |n -1≠0, 从而A *也可逆.因为A *=|A |A -1, 所以 (A *)-1=|A |-1A . 又*)(||)*(||1111---==A A A A A , 所以(A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*. 18. 设n 阶矩阵A 的伴随矩阵为A *, 证明: (1)若|A |=0, 则|A *|=0; (2)|A *|=|A |n -1. 证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0. (2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到|A ||A *|=|A |n . 若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立. 因此|A *|=|A |n -1. 19.设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B ,求B .解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330.20.设⎪⎪⎭⎫⎝⎛=101020101A ,且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E )B =A 2-E , 即 (A -E )B =(A -E )(A +E ).因为01001010100||≠-==-E A ,所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1=-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(d i a g 4-= =2diag(1, -2, 1). 22.已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A ,且ABA -1=BA -1+3E , 求B .解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A 11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-103006060060006603001010010000161.23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P , 而⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)]=diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫ ⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A . 26.计算⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121.解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B , 则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A ,所以⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521,即⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫⎝⎛---=9000340042102521. 27. 取⎪⎭⎫⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠. 解4100120021010*********0021010010110100101==--=--=D C B A ,而 01111||||||||==D C B A , 故 |||||||| D C B A DC B A ≠.28. 设⎪⎪⎪⎭⎫⎝⎛-=22023443O O A , 求|A 8|及A 4.解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫⎝⎛=22022A ,则 ⎪⎭⎫ ⎝⎛=21A O OA A ,故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A .29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫⎝⎛O B A O ;解 设⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====snE BC OBC OAC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111.(2)1-⎪⎭⎫⎝⎛B C O A .解 设⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A .30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025;解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=411212458103161210021210001.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6 2 6 4(2个)
(2n)2 (2n)4 (2n)6 (2n)(2n2) (n1个)
3 写出四阶行列式中含有因子a11a23的项
解 含因子a11a23的项的一般形式为
(1)ta11a23a3ra4s
其中rs是2和4构成的排列 这种排列共有两个 即24和42
(1), 其中对角线上元素都是a 未写出的元素都是0
解
(按第n行展开)
anan2an2(a21)
(2);
解 将第一行乘(1)分别加到其余各行 得
再将各列都加到第一列上 得
[x(n1)a](xa)n1
(3);
解 根据第6题结果 有
此行列式为范德蒙德行列式
(6), 其中a1a2 an0
解
8 用克莱姆法则解下列方程组
(1)
解 因为
所以
(2)
解 因为
所以
9 问( (取何值时 齐次线性方程组有非零解?
解 系数行列式为
令D0 得
(0或(1
于是 当(0或(1时该齐次线性方程组有非零解
(ab)(bc)(ca)
(4)
解
x(xy)yyx(xy)(xy)yxy3(xy)3x3
3xy(xy)y33x2 yx3y3x3
2(x3y3)
2 按自然数从小到大为标准次序 求下列各排列的逆序数
(1)1 2 3 4
解 逆序数为0
(2)4 1 3 2
解 逆序数为4 41 43 42 32
(3)3 4 2 1
解 逆序数为5 3 2 3 1 4 2 4 1, 2 1
(4)2 4 1 3
解 逆序数为3 2 1 4 1 4 3
(5)1 3 (2n1) 2 4 (2n)
解 逆序数为
3 2 (1个)
5 2 5 4(2个)
7 2 7 4 7 6(3个)
第一章 行列式
1 利用对角线法则计算下列三阶行列式
(1)
解
2(4)30(1)(1)118
0132(1)81(4)(1)
248cbabbbaaaccc
3abca3b3c3
(3)
解
bc2ca2ab2ac2ba2cb2
解
(4)
解
abcdabcdad1
5 证明:
(1)(ab)3;
证明
(ab)3
(2);
证明
(3);
证明
(c4c3 c3c2 c2c1得)
(c4c3 c3c2得)
(4)
(ab)(ac)(ad)(bc)(bd)(cd)(abcd);
10 问(取何值时 齐次线性方程组有非零解?
解 系数行列式为
(1()3((3)4(1()2(1()(3()
(1()32(1()2(3
令D0 得
(0 (2或(3
于是 当(0 (2或(3时 该齐次线性方程组有非零解
证明
=(ab)(ac)(ad)(bc)(bd)(cd)(abcd)
(5)xna1xn1 an1xan
证明 用数学归纳法证明
当n2时 命题成立
假设对于(n1)阶行列式命题成立 即
Dn1xn1a1 xn2 an2xan1
则Dn按第一列展开 有
(4);
解
(按第1行展开)
再按最后一行展开得递推公式
D2nandnD2n2bncnD2n2 即D2n(andnbncn)D2n2
于是
而
所以
(5) Ddet(aij) 其中aij|ij|;
解 aij|ij|
(1)n1(n1)2n2
xD n1anxna1xn1 an1xan
因此 对于n阶行列式命题成立
6 设n阶行列式Ddet(aij), 把D上下翻转、或逆时针旋转90、或依副对角线翻转 依次得
证明 D3D
证明 因为Ddet(aij) 所以
同理可证
7 计算下列各行列式(Dk为k阶行列式)
所以含因子a11a23的项分别是
(1)ta11a23a32a44(1)1a11a23a32a44a11a23a32a44
(1)ta11a23a34a42(1)2a11a23a34a42a11a23a34a42
4 计算下列各行列式
(1)
解
(2)
解
(3)
(2n1)2 (2n1)4 (2n1)6 (2n1)(2n2) (n1个)
(6)1 3 (2n1) (2n) (2n2) 2
解 逆序数为n(n1)
3 2(1个)
5 2 5 4 (2个)
(2n1)2 (2n1)4 (2n1)6 (2n1)(2n2) (n1个)