机载激光雷达系统集成标定及应用

合集下载

机载激光雷达技术在公路勘察设计中的应用研究

机载激光雷达技术在公路勘察设计中的应用研究

公路勘察设计技术要求
精度要求
各项勘察设计工作应满足相应的精度要求, 确保数据的准确性和可靠性。
经济性要求
在满足技术要求的前提下,应尽可能降低工 程造价和运营成本。
安全性要求
公路勘察设计应充分考虑安全性因素,确保 道路建设和运营过程中的安全。
环保要求
公路勘察设计应遵循环境保护原则,减少对 自然环境的破坏和污染。
04 机载激光雷达技术在公路 勘察设计中的应用
数据采集与处理
数据采集
利用机载激光雷达技术进行高精 度、高密度的点云数据采集,覆 盖公路沿线及周边区域。
数据处理
对采集的点云数据进行预处理, 包括去噪、滤波、配准等操作, 提高数据质量。
公路地形地貌测绘
地形测绘
利用机载激光雷达技术获取的高精度 点云数据,绘制地形图,反映公路沿 线的地形起伏和地貌特征。
07 展望与建议
加大技术研发力度,提高技术成熟度
加大资金投入,鼓励科研机构和企业进行机载激 光雷达技术的研发,提高技术成熟度和稳定性。
加强与国际先进机构的合作与交流,引进先进技 术,缩短研发周期。
建立机载激光雷达技术研发平台,推动产学研用 一体化发展,加速技术成果转化。
加强数据处理与分析技术研究,提高数据质量
机载激光雷达技术作为一种先进的遥感技术,具有高精度、高分辨率和快 速获取地表信息的优势。
随着机载激光雷达技术的不断发展,其在公路勘察设计中的应用越来越广 泛。
研究意义
研究机载激光雷达技术在公路勘察设计中的应用,有助于提高公路勘察设计的效率 和精度,为公路建设提供更加科学、可靠的技术支持。
通过研究机载激光雷达技术在公路勘察设计中的应用,可以推动遥感技术的发展, 促进其在更多领域的应用。

多线激光雷达标定系统及标定方法与相关技术

多线激光雷达标定系统及标定方法与相关技术

本技术涉及多线激光雷达标定系统及标定方法,其特征在于:包括水平调平台、转接架、反光标靶、全站仪、电脑、激光测距仪和GPS天线;水平调平台设置在支撑架上,配置数显水平仪以监测和判断水平调平台调平;转接架具有垂直方向和水平方向连接激光雷达的连接结构并设有惯性测量单元IMU;反光标靶设置在转接架的相对位置、以形成约束激光束的区域;全站仪设置在转接架与反光标靶之间,形成高程测量结构;电脑设置在支撑架上,其I/O端口分别连接数显水平仪信号输出端、激光测距仪信号输出端、全站仪信号输出端和GPS天线信号输出端,形成自动监测结构,以监测激光反射率变化和读取记录惯性测量单元IMU姿态角。

具有标定效率高、标定精度高以及场地要求低、可执行性方便的特点。

技术要求1.多线激光雷达标定系统,其特征在于:包括水平调平台(1)、转接架(2)、反光标靶(3)、全站仪(4)、电脑(5)、激光测距仪和GPS天线(6);水平调平台(1)设置在支撑架(7)上,配置数显水平仪以监测和判断水平调平台调平;转接架(2)具有垂直方向和水平方向连接激光雷达的连接结构并设有惯性测量单元IMU;反光标靶(3)设置在转接架(2)的相对位置、以形成约束激光束的区域;全站仪(4)设置在转接架(2)与反光标靶(3)之间,形成高程测量结构;电脑(5)设置在支撑架(7)上,其I/O端口分别连接数显水平仪信号输出端、激光测距仪信号输出端、全站仪(4)信号输出端和GPS天线(6)信号输出端,形成自动监测结构,以监测激光反射率变化和读取记录惯性测量单元IMU姿态角。

2.根据权利要求1所述的多线激光雷达标定系统,其特征在于:转接架2呈状,其上面、侧面和底面各设有安装孔用于与水平调平台(1)连接,形成垂直方向和水平方向的激光雷达连接结构;转接架(2)固定在水平调平台(1)上;水平调平台(1)用于将激光雷达调平和激光束的对齐和调整。

3.根据权利要求1所述的多线激光雷达标定系统,其特征在于:水平调平台(1)由双轴倾斜台(1-2)和手动旋转台(1-1)组成;通过双轴倾斜台(1-2)可以调整台面的水平和倾斜情况;手动旋转台(1-1)用于调整激光头的朝向;转接架(2)中设有惯导板(2-1)。

激光雷达的标定方法

激光雷达的标定方法

激光雷达的标定方法激光雷达(Lidar)的标定是指通过确定激光雷达传感器的内外参数,将激光雷达返回的点云数据与实际场景进行对齐的过程。

标定是激光雷达应用的关键步骤之一,正确的标定可以提高激光雷达的精度和稳定性。

下面将介绍几种常见的激光雷达标定方法。

一、外标定外标定指的是确定激光雷达的位置和方向参数。

常用的外标定方法有靶标法和特征匹配法。

1.靶标法:这是一种基于测量标定板的方法。

首先在场景中放置一个标定板,然后使用激光雷达采集到标定板上的点云数据。

通过分析点云数据,可以计算出激光雷达与标定板之间的相对位置和方向关系。

这种方法需要在标定板上放置多个标定点,通过多个标定点的测量结果来提高标定的精度。

2.特征匹配法:这是一种基于特征点的方法。

在场景中放置一些具有明显特征的物体,比如建筑物的角点或窗户等。

然后使用激光雷达采集到这些物体上的点云数据。

通过提取物体上的特征点并与实际场景进行匹配,可以计算出激光雷达的位置和方向参数。

这种方法对场景中的特征要求较高,需要有足够明显的特征点才能进行标定。

二、内标定内标定指的是确定激光雷达传感器的内部参数,主要包括激光雷达的内外参数和畸变参数。

常用的内标定方法有角度标定法和距离标定法。

1.角度标定法:这是一种通过计算角度值来确定内部参数的方法。

首先将激光雷达放在一个已知的位置上,然后在不同的角度下采集点云数据。

通过分析点云数据中的角度信息,可以得到激光雷达的内部参数,比如水平和垂直角度分辨率等。

2.距离标定法:这是一种通过计算距离值来确定内部参数的方法。

首先将激光雷达放在一个已知的距离上,然后在不同的距离下采集点云数据。

通过分析点云数据中的距离信息,可以得到激光雷达的内部参数,比如最大探测距离和距离分辨率等。

三、联合标定联合标定是指将内标定和外标定结合起来进行的标定方法。

通过同时确定激光雷达的内部参数和外部参数,可以提高标定的精度和鲁棒性。

联合标定常用的方法有多视图几何标定法和捆绑调整法。

《机载激光雷达》课件

《机载激光雷达》课件
发展趋势
随着技术的不断进步和应用需求的不断增加,机载激光雷达技术将不断向更高精 度、更高效率、更安全可靠的方向发展。
THANKS
感谢观看
《机载激光雷达》PPT课件
目 录
• 机载激光雷达简介 • 机载激光雷达技术 • 机载激光雷达应用案例 • 机载激光雷达的挑战与未来发展
01 机载激光雷达简 介
定义与特点
总结词
机载激光雷达是一种集激光测距、全球定位系统(GPS)和惯性测量单元( IMU)于一体的遥感技术。
详细描述
机载激光雷达通过向地面发送激光脉冲并接收反射回来的信号,能够获取高精 度的三维地形数据。它具有高分辨率、高精度、快速获取数据等优点,广泛应 用于地形测绘、城市规划、资源调查等领域。
地震灾害评估
利用机载激光雷达技术,评估地震灾害对建筑物 和基础设施的影响,为灾后重建提供技术支持。
考古探测
遗址区地形测绘
通过机载激光雷达技术,获取遗址区高精度、高分辨率的地形数 据,为考古研究提供基础资料。
遗址区建筑物结构分析
利用机载激光雷达数据,分析遗址区建筑物的结构特点,为文物修 复和保护提供依据。
激光发射与接收
激光发射器根据不同的应用需求 ,发射不同波长的激光束,常见 的波长有近红外、中红外和远红
外等。
接收器通常使用光电倍增管或雪 崩二极管等光电传感器,用于接 收反射回来的光束,并将其转换
为电信号。
激光雷达通过测量反射回来的光 束与发射光束的时间差,计算出
目标的距离信息。
数据处理与分析
1
遗址区植物种类鉴定
通过分析机载激光雷达数据,鉴定遗址区植物种类,为环境考古和 生态研究提供数据支持。
04 机载激光雷达的 挑战与未来发展

机载激光雷达系统的应用与数据后处理技术

机载激光雷达系统的应用与数据后处理技术

机载激光雷达系统的应用与数据后
处理技术
机载激光雷达系统(LIDAR)是一种可以通过激光束发射到地面或悬崖表面的距离测量装置,用于采集三维立体地形数据,并能够在精确的垂直和水平方向上测量距离。

它具有快速、准确的优势,常被用于航空遥感,如飞行路线规划、地形精细化、地形分析、细粒度地理信息系统(GIS)数据建模等。

机载激光雷达系统的数据后处理技术是一种特定的技术,它可以将采集的原始数据进行组织和处理,以便在地图中显示出有用的信息。

一般来说,机载激光雷达系统的数据后处理技术包括去噪、点云拟合、投影、点云滤波等步骤。

其中,去噪是将激光雷达扫描时产生的噪声滤除,以确保数据的准确性;而点云拟合则是根据不同的地形状态,使用拟合算法对点云进行处理,以得到正确的数据;投影则是将采集到的数据投影到坐标系上,以便绘制出地图;最后,点云滤波是去除数据中的异常点,以获得更加准确的数据。

机载激光雷达系统的应用主要是用于航空遥感,如飞行路线规划、地形精细化、地形分析、细粒度地理信息系
统(GIS)数据建模等。

在飞行路线规划中,激光雷达系统可以帮助确定安全的飞行路线;在地形精细化方面,它可以提供准确的地形数据,以便精细化地图;在地形分析方面,它可以帮助研究人员分析地形结构,以更好地了解地表情况;在GIS数据建模方面,它可以帮助研究人员建立准确的地理信息模型,以便进行更好的地理信息分析。

机载激光雷达测量技术及应用

机载激光雷达测量技术及应用
空间三维信息的获取提供了全新的技术手段,这项 技术的出现是继全球定位系统(GPS)以来在遥感测 绘领域的又一场技术革命。
机载激光雷达系统(LIDAR_LightDetectionAnd Ranging)是集激光扫描仪、POS定位定姿系统、高分 辨率数码相机、嵌入式计算机于一体的新型主动式 快速测量系统,能够快速、精确地获取地表三维空间 信息和真彩色影像。这些数据可广泛应用于公路、 铁路、电力、石油、国土、应急测绘、林业、文物保护等 多个领域。 2 工程应用 2.1 任务情况
《1∶500、1∶1000、1∶2000地形图航空摄影测 6 GB7931-2008
量外业规范》 《1∶500、1∶1000、1∶2000地形图航空摄影测 7 GB7930-2008 量内业规范》 8 GB18316-2008 《数字测绘成果质量检查与验收》 9 GB/T24356-2009 《测绘成果质量检查与验收》
2.4 机载激光雷达系统
本项目采用小型机载激光雷达系统,具体技术 指标如表 2所示:
表 2 SE-J1200A型激光雷达主要技术参数
仪器型号
视场角 数据获取方式
激光波长 扫描频率 眼睛安全度 垂直精度 影像水平精度 扫描方式 操作航高
焦距 有效操作距离
相机视场角 像素
像素尺寸 像幅大小 相机校准
SE-J1200A
60° 多次回波 1550nm 50~300kHz 人眼安全 优于 14cm @700m航高 优于 52cm @600m航高
线扫描 400~1800m40mm 150m43° 8000万像素
5.2μm 10328×7760
已检校
2.5 点云数据生产方案 2.5.1 点云数据计算
(1)解算飞行航迹

探讨机载激光雷达系统在测绘领域的应用

探讨机载激光雷达系统在测绘领域的应用

探讨机载激光雷达系统在测绘领域的应用广泛应用于测绘领域的机载激光雷达系统不仅操作较为复杂且具有极强的综合性,该系统的运行需要多种系统同时运行辅助进行,如激光扫描系统、航拍系统、卫星定位系统等。

笔者结合多年的实际工作经验并结合相关资料,对机载激光雷达系统的现状、技术及应用等作了简要分析,以期为相关从业或研究人员提供借鉴与参考。

标签:机载激光雷达系统;应用现状;技术一、机载激光雷达系统的应用现状据有关文献记载,机载激光雷达系统最早出现于二十多年前,在美国的航天领域中被用于测量物体间的距离。

随着科技水平的进一步提高,机载激光雷达系统的应用范围也逐渐由简单的测量扩大到更多的领域中。

近年来,机载激光雷达系统在世界各国各领域范围内的市场份额逐渐增大。

与美国、德国等具代表性的国家相比,我国引入机载激光雷达系统的时间较晚,但发展速度却十分迅速,现阶段,机载激光雷达系统已被广泛应用于我国地质勘测、城市建设等方面。

除此之外,我国相关研究人员正致力于研究如何将与之相关的激光扫描系统等应用于交通领域。

二、机载激光雷达测量技术概述(一)主要特点及性能测量技术是机载激光雷达系统最先开发的技术之一,也是迄今为止最高效的技术性能之一。

其不仅能够高度覆盖测量范围,高效率进行测量,而且其测量数据十分精确。

准确来说,机载激光雷達技术的测量误差能够严格控制在十五厘米以内。

此外,其测量过程中所得出的点云数据还能够准确反映所勘测地区的地形、地貌等,为测量人员的实际测量降低难度,进一步提高了测量数据的精确性。

除此之外,机载激光雷达在应用于测量时使用的测量方法是主动测量,对所要测量的区域进行实地勘测。

使用机载激光雷达进行测量的最大优点是其工作的开展不受周围环境及天气状况的影响,无论是白天或是黑夜,或是浓雾、阴雨等天气,均能够正常开展工作。

与此同时,机载激光雷达的测量技术具有较强的穿透力,应用于植被茂盛的地区时,也能够直接穿过植被测量被植被所覆盖的区域,且不会出现其测量结果因植被的影响而不准确的情况。

激光雷达测量技术在电力行业中的应用

激光雷达测量技术在电力行业中的应用
激光雷达测量技术在电力行业中的应用
摘要:近年来,在超高压架空送电线路设计的路径优化阶段越来越多的应用高精度的地理数据进行线路的优化选线,机载激光雷达数据是其中之一。现阶段采取传统的航空摄影测量方式的超高压电力线路测量,仍存在无法穿透植被覆盖地区直接获取地面高程信息,也不能准确的测量植被、森林高度的问题。激光雷达是20世纪初最重要的测量技术之一。由于激光雷达能够穿透植被覆盖层,而且有的激光系统集成了GPS、MU等设备,能够快速的获取测区的地形、地貌数据,获得植被的高度数据,是目前工程测量最新的手段。
(2)减少建筑物和障碍物拆迁
在输电线路的选择和设计中肯定会涉及到很多建筑物和障碍物的影响,通过对不同地物对输电线路的影响程度以及设计成本等一系列的要求,需要针对不同的地物进行躲避。随着电网技术的不断发展,架空输电线路对环境的影响和威胁逐渐的减少,但是在输电线路的选择过程中一定尽量躲避重要的人口稠密区、工况设施和矿藏。对自然保护区、生态补偿区、风景名胜区、机场等重要设施等有可能输电线路会对其造成影响的区域要及时的躲避。以保证输电线路的架设对其造成影响,并降低对环境的破坏。
依托于激光雷达数据的高精度正射影像和激光点云,设计人员在软件中可以很好的判读地物,减少对环境的影响,包括减少线ห้องสมุดไป่ตู้建设造成的森林砍伐、农田占用、建筑物和障碍物拆迁、填挖土石方量等。减少对环境影响的原则包括:
(1)减少森林砍伐和占用农田
工程通过林区长度较长,选线中应尽量避开林木密集区、经济作物区,难以避让的,原则按高跨处理,尽量减少林木砍伐,对于集中林场和较密集的林地应釆用高跨处理,树木自然生长高度按15米确定。高跨时要对跨越的树高、树种予以测量和记录,不允许穿越自然保护区的核心区及试验区,若无法避免通过缓冲区,必须取得相关部门的批准文件。工程在经过西林县马畔、古障、普合、那劳附近的国家级公益林区、省级猫街雉类自然保护区时要尤其注意。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光雷达RW0600 民用相机 小型惯导 集成控制单元
360°:侧面扫描 轻巧:作业灵活 高点频:清晰描述
需求、预算、性能、配置→定制化
软件配套ss-NAV
主要功能: ➢ 航线规划设计; ➢ 系统参数控制; ➢ 工作状态监控; ➢ 点云实时显示; ➢ 飞行员导航; ➢ 飞行轨迹管理; ➢ 相机曝光同步监控; ➢ 航线自由切换; ➢ 自由点返航; ➢ LOG日志记录; ➢ ……
飞行航线设计
• 平行航线飞行、往返飞行、井字飞行; • 不同航高航线飞行;
集成标定参数计算
• 人工标志提取、自然地物坐标提取; • LiDAR安置角及偏心参数计算、相机外方位元素计算;
不合 格
单机出厂
单机功能性测试
单机标定
合格
系统集成
集成标定
合格
精度报告及参数
精度飞行验证
合格
系统出厂
不合 格
不合 格
精度高 扫描速度快 大比例尺成图
系统轻巧 灵捷作业 经济性
定制化的LiDAR系统集成
名称
E+AP激光电 力巡检系统 (28kg)
E+RA激光电 力巡检系统 (15kg)
产品
传感器
定制雷达AP0500 工业相机 高精度惯导 环境变量传感器 定制化软件配套 集成控制柜
特色
定制化:硬件+软件 大视场:完整电力走廊 倾斜扫描:侧面信息 高点频:清晰描述
飞行员导航
全局导航界面
放大导航界面
数据预处理软件UI-AP
主要功能: ➢ 点云数据解码; ➢ 扫描仪坐标系点云解
算; ➢ 激光+轨迹大地坐标
系点云融合解算; ➢ 点云滤波、去噪; ➢ 点云浏览显示; ➢ 相机文件制作; ➢ 点云格式转换
XYZI/LAS/PTX/PLR;
三、集成标定及精度评估
291874.966 4225611.27 51.5 291874.908 4225611.135 51.537 -0.058 0.135 -0.037
7
291871.828 4225622.647 51.53 291871.796 4225622.527 51.537 -0.032 -0.120 0.007
统计
平均值m 中误差m
0.058 0.045
0.109 0.033 0.05 0.028
飞行高度300m,GNSS信号良好情况下,系统精度轻松达到: 平面:<5cm高程:<3cm
点云与影像匹配误差
同名点选择: ➢ 人工布设标志板(中心全反射片5cm×5cm); ➢ 自然地物(房角、斑马线、电力塔脚点等);
• 激光扫描仪与位置姿态测量系统飞行标定技术; • 摄影测量相机与位置姿态测量系统飞行标定技术
协同控制存储技 术
• 多传感器协同控制监控监控技术; • 多元传感器的数据存储技术;
典型LiDAR系统集成
名称
AP3500激 光雷达系统 (45kg)
产品
传感器
激光雷达AP3500 工业相机 高精度惯导 稳定平台 集成控制单元
AP0500激 光雷达系统 (18kg)
激光雷达AP0500 工业相机/民用相机 惯导系统 集成控制单元
SKY-Lark无 人机雷ห้องสมุดไป่ตู้系
统 (7.0 kg)
激光雷达AP0300 惯性测量单元 uIMU 索尼a7相机 BD970板卡+AV37天线
特色
配置高、精度高 作业效率高 大面积作业
4
291943.91 4225584.53 51.41 291943.955 4225584.45 51.434 -0.045 0.08 -0.024
5
291877.88 4225591.92 51.42 291878.02 4225591.81 51.333 -0.140 0.110 0.087
6
0.07
0.11
4
434862.500 4460020.470 -0.07
0.12
0.14
5
434849.040 4460038.230 0.30
-0.11
0.32
6
434821.390 4460043.920 -0.13
飞行航高300m,经过标定后的点云与影像匹配 中误差25cm,优于两倍的网格密度。
No.
X
Y
dX/m dY/m dXY/m
1
434874.120 4460023.190 0.13
-0.12
0.18
2
434874.030 4460032.540 0.08
0.15
0.17
3
434864.840 4460036.070 0.09
什么是集成标定?
• 确定多元传感器之间相对几何关系的过程; • LiDAR安置角及偏心距、相机外方位元素;
集成标定场的选择
• 人工布设标志点的标定场; • 柏油马路、停车场,或者具有喷绘标志的机场跑道;
人工标志的布设
• 布设不少于18个人工标志,其中9个参与计算9个检核; • 覆盖激光扫描70°视场角;
标定场的布设
为了保证系统出厂标定的精度,选择机场跑道及人工布设标志板结合的集成标定环境。
控制点坐标提取
每 个 标 志 板 上 要 求 不 少 于 个 激 光 脚 点
8
激光精度评定
点号 1 2
RTK测量点
X
Y
292004.18
4225575
292007.56 4225602.16
Z 51.46 51.41
北科天绘机载LiDAR系统 集成\标定及应用
集成关键技术
多元传感器时间 同步技术
• 激光扫描仪、摄影相机、惯性测量单元间的时间同步; • PPS秒脉冲+UTC时间信号的时间同步技术;
激光扫描仪单机 标定技术
• 激光扫描仪测距加乘常数、测距强度标定技术; • 激光扫描仪测角几何标定技术;
系统集成标定技 术
Lidar测量点
x
y
z
292004.118 4225575.189 51.446
292007.529 4225602.12 51.389
x' 0.063 0.031
DELT
y'
z'
-0.189 0.014
0.040 0.021
3
291961.83 4225605.3 51.42 291961.84 4225605.403 51.433 -0.010 -0.103 -0.013
8
291868.629 4225636.017 51.57 291868.684 4225636.092 51.589 0.055 0.075 0.019
9
291865.666 4225649.387 51.62 291865.572 4225649.237 51.64 -0.094 -0.15 0.020
相关文档
最新文档