2012考研数一真题解析

合集下载

2012考研数一真题及解析

2012考研数一真题及解析
2012 年全国硕士研究生入学统一考试
数学一试题解析
一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求 的,请将所选项前的字母填在答.题.纸.指定位置上. (1)
【答案】: C
【解析】:
lim
x1
x2 x2
x 1
,所以
x
1 为垂直的
lim
x
x2 x x2 1
故 f (x) ex
(10)
【答案】: 2
2
【解析】:令 t x 1得 x
2x x2 dx
1
(t 1)
1 t2 dt
1
1 t2 dt
0
1
1
2
(11)
【答案】:1,1,1
【解析】:
grad
xy
z y
( 2,1,1)
y,
x
z y2
,
1
y
( 2,1,1)
1,1,1
(12)【答案】: 3 12
【 解 析 】: 由 曲 面 积 分 的 计 算 公 式 可 知 y2ds y2 1 (1)2 (1)2 dxdy 3 y2dxdy , 其 中
D
D
D ( x, y) | x 0, y 0,x y1。故原式
3
1
dy
1 y y2dx
3
1 y2 (1 y)dy
3
0
0
0
12
(13)
2
4
三、解答题:15—23 小题,共 94 分.请将解答写在答.题.纸.指定位置上.解答应写出文字说明、证明过程或
演算步骤.
(15)
【解析】:令 f x x ln 1 x cos x 1 x2 ,可得

考研数学一二维随机变量及其分布历年真题试卷汇编2_真题(含答案与解析)-交互

考研数学一二维随机变量及其分布历年真题试卷汇编2_真题(含答案与解析)-交互

考研数学一(二维随机变量及其分布)历年真题试卷汇编2(总分150, 做题时间180分钟)选择题1.[2009年] 设随机变量X与Y相互独立,且X服从标准正态分布N(0,1),Y(z)为随机变量Z=XY的分布函数,则函的概率分布P(Y=0)=P(Y=1)=1/2.记FZ数F(z)的间断点的个数为( ).ZSSS_SINGLE_SELAB1C2D3分值: 7.5答案:BF(z)=P(Z≤z)=P(XY≤z)=P(XY≤z|Y=0)P(Y=0)+P(XY≤z|Y=1)P(Y=1)Z=[P(XY≤z|Y=0)+P(XY≤z|Y=1)]/5.又X,Y相互独立,故 F(z)=[P(X·0≤z)+P(X≤z)]/2.Z(z)=[+ф(z)]/2=ф(z)/2.当z<0时, FZ(z)=[P(Ω)+P(X≤z)]/2=[1+ф(z)]/2.当z≥0时, FZ综上所述,得到因(z)只有一个间断点z=0.仅B入选.所以FZ2.[2012年] 设随机变量X与Y相互独立,且分别服从参数为1和参数为4的指数分布,则P(X<Y)=( ).SSS_SINGLE_SELA1/5B1/3C2/5D4/5分值: 7.5答案:A由题设有而X与Y相互独立,故f(x,y)=fX (x)fY(y)=则P(X<Y)= f(x,y)dxdy=∫0+∞∫x+∞4e-(x+4y)dxdy=一∫+∞e-x dx∫x+∞e-4y d(一4y)=∫0+∞e-x·e-4x dx=∫+∞e-5x dx=仅A入选.3.[2005年] 设二维随机变量(X,Y)的概率分布为若随机事件{X=0}与{X+Y=1}相互独立,则( ).SSS_SINGLE_SELAa=0.2,b=0.3Ba=0.4,b=0.1Ca=0.3,b=0.2Da=0.1,b=0.4分值: 7.5答案:B由=(a+0.4)+(b+0.1)=a+b+0.5=1(归一性)知,a+b=0.5.又由事件{X=0}与{X+Y=1}相互独立,有P(X=0,X+Y=1)=P(X=0)P(X+Y=1),而P(X=0,X+Y=1)=P(X=0,Y=1)=a,P(X=0)=a+0.4,P(X+Y=1)=P(X=0,Y=1)+P(X=1,Y=0)=a+b,故 a=(a+0.4)(a+b)=(a+0.4)×0.5.①所以a=0.4.从而b=0.5一a=0.1.填空题4.[2003年] 设二维随机变量(X,Y)的概率密度为则P(X+Y≤1)=______.SSS_FILL分值: 7.5答案:首先求出积分区域D ∩ G.D ∩ G实质上是G={(x,y)|0≤x≤y≤1}与D={(x,y)|x+y≤1}交集.可知,0≤x≤y≤1是在y=x上方的区域,而x+y≤1是直线x+y=1下方的区域.两者之交即为D ∩ G(见图),故5.[2015年] 设二维随机变量(X,Y)服从正态分布N(1,0;1,1;0),则P{XY—Y<0}=_______.SSS_FILL分值: 7.5答案:因(X,Y)~N(1,1;0,1;0),ρ=0,故X,Y相互独立,则P{XY—y<0}=P{(X一1)Y<0}=P{X一1<0,Y>0}+P{X一1>0,Y<0}=P{X<1}P{Y>0}+P{X>1}P{Y<0}.因X~N(1,1),故P{X<1}=P{X>1}=.因Y~N(0,1),故P{Y>0}=P{Y<0}=.所以6.[2006年] 设随机变量X与Y相互独立,且均服从区间[0,3]上的均匀分布,则P(max{X,Y}≤1)=______.SSS_FILL分值: 7.5答案:1/9P(max(X,Y)≤1)=P({X≤1}{Y≤1})=P(X≤1,Y≤1)=P(X≤1)P(Y≤1)=[(1一0)/(3—0)][(1一0)/(3一0)]=(1/3)×(1/3)=1/9.解答题[2008年] 设随机变量X与Y相互独立,X的概率分布为P(X=i)=1/3(i=一1,0,1),Y的概率密度为记Z=X+Y.SSS_TEXT_QUSTI7.求P(Z≤1/2|X=0);分值: 7.5答案:由于X,Y相互独立,有P(Z≤1/2 |X=0)=P(X+Y≤1/2|X=0)=P(y≤1/2|X=0)SSS_TEXT_QUSTI8.求Z的概率密度fZ(z).分值: 7.5答案:因X的可能取值为一1,0,1,而fY(y)取非零值的自变量的变化范围为0≤y≤1,一1≤z=x+y≤2.(1)当z≥2时,X,Y的所有取值均满足上式,故F(z)=P(Z≤z)=P(X+Y≤z)=1.(2)当z=x+y<一1时,X,Y的取值为空值,则P(X+Y≤z)==0.(3)当一1≤z<2时,下面用全概率公式求出FZ(z)的表示式:FZ(z)=P(Z≤z)=P(X+Y≤z)=P(X+Y≤z|X=一1)P(X=一1)+P(X+Y≤z|X=0)P(X=0)+P(X+Y≤z|X=1)P(X=1)(Fy(z)为y的分布函数),则fZ (z)=F'Z(z)=[FY(z+1)+fY(z)+fY(z—1)].当0<z+1<1或0<z<1或0<z—1<1,即一1<z<2时,FZ(z)=;其他情况下,fZ(z)=0.[2017年] 设随机变量X,Y相互独立,,Y的概率密度为fY(y)=SSS_TEXT_QUSTI9.求P{Y≤E(Y)};分值: 7.5答案:因E(Y)=∫-∞+∞yfY(y)dy=∫1y·2ydy=,故SSS_TEXT_QUSTI10.求Z=X+Y的概率密度.分值: 7.5答案:Z的分布函数FZ(Z)=P{X+Y≤z,X=0}+P{X+Y≤z,X=2} =P{X=0,Y≤z}+P{X=2,Y+2≤z}=,故Z的概率密度函数为[2014年] 设随机变量X的概率分布为P(X=1)=P(X=2)=,在给定X=i的条件下,随机变量y服从均匀分布U(0,i)(i=1,2).SSS_TEXT_QUSTI11.求Y的分布函数F(y);Y分值: 7.5答案:记U(0,i)的分布函数为F(x)(i=1,2),则i(y)=p(Y≤Y)=P(x=1)P(Y≤y|X=1)+P(X=2)P(Y≤y|X=2)于是FY因在X=i的条件下,Y服从均匀分布U(0,i)(i=1,2),故当y≤0时,(y)=0.Fi当0<y≤1时,当1<y<2时,当y≥2时,所以SSS_TEXT_QUSTI12.求期望E(Y).分值: 7.5答案:(y)可得概率密度函数为由Y的分布函数FY+∞yfy(y)dy=故E(Y)=∫-∞[2013年] 设随机变量X的概率密度为令随机变量,SSS_TEXT_QUSTI13.求y的分布函数;分值: 7.5答案:+∞f(x)dx=,得到a=9.此时,X的利用概率密度函数的归一性,由1=∫-∞概率密度为(y).由题设知,Y的取值范围为1≤Y≤2,故设Y的分布函数为FY(y)=P{Y≤y}=0;P(1≤Y≤2)=1.因而当y<1时,FY当1≤Y<2时,F(y)=P{Y≤y}=P{Y<1}+P{Y=1}+P{1<Y≤y}Y=0+P{X≥2}+P{1<X≤Y}=(y)=P{Y≤y}=P{Y≤2}=1.当Y≥2时,FY综上得到y的分布函数为SSS_TEXT_QUSTI14.求概率P{X≤Y}.分值: 7.5答案:由随机变量y的分段表示式易看出,满足x≤y的x的取值范围为x<2.因而所求概率为P{X≤Y}=P{X<2}=[2016年]设二维随机变量(X,Y)在区域D=((x,y)|0<x<1,x2<y<)上服从均匀分布.令SSS_TEXT_QUSTI15.写出(X,Y)的概率密度;分值: 7.5答案:易求得区域D的面积,故(X,Y)的概率密度SSS_TEXT_QUSTI16.问U与X是否相互独立?并说明理由;分值: 7.5答案:考查事件{U=0}与乘积的概率是否与事件{U=0}的概率的乘积相等.事实上,它们不相等.易求得显然,故U与X不独立.SSS_TEXT_QUSTI17.求Z=U+X的分布函数FZ(z).分值: 7.5答案:下面用全集分解法求f(u,v)的分布函数FZ(z)=P(Z≤z)=P(U+X≤z).FZ(z)=P(U+X≤z)=P(U=0,U+X≤z)+P(U=1,U+X≤z)=P(U=0,X≤z)+P(U=1,U≤z—1)=P(X>y,X≤z)+P(X≤Y,X≤z一1)注意到x取值的边界点为0,1,而U取值边界点也为0,1,因而z的取值的分段点为0,1,2.于是应分下述四种情况分别求出FZ(z)的表示式.①z<0时,则P(X≤z)==0,P(X≤z—1)==0,故FZ(z)=0.②0≤z<1时,③1≤z<2时,④z≥2时,FZ(z)=P(X>Y)+P(X≤y)=P(U=0)+P(U=1)=1.综上所述,Z的分布函数为[2009年] 袋中有一个红球、两个黑球、三个白球.现在有放回地从袋中取两次,每次取一个,以X,Y,Z分别表示两次取球所取得的红球、黑球与白球个数.SSS_TEXT_QUSTI18.求P(X=1|Z=0);分值: 7.5答案:(I)用缩减样本空间的方法求之.求时应注意两次取球取到的是不同类的球,要讲次序.因而两次都没取到白球(Z=0)的条件下,只能取红、黑两种球,且每次都要取到一个红球,其可能性为C11×C21+C21×C11=4,总的可能性为C 31×C31=3×3=9,故SSS_TEXT_QUSTI19.求二维随机变量(X,Y)的概率分布.分值: 7.5答案:由题设知X与Y的所有可能取值均为0,1,2,而取值的概率可由古典概率的计算公式得到.计算时要注意两次取球取到的是不同类的球要讲次序,取到的是同类的球不讲次序.故(X,Y)的概率分布为20.设随机变量X的概率密度为f(x)=e-|x|/2,一∞<x<+∞,问随机变量X 与|X|是否相互独立?为什么?SSS_TEXT_QUSTI分值: 7.5答案:因X和|X|为两个随机变量,下面证明对于给定的a(0<a<+∞),式P(X<x,Y<y)=P(X<x)P(Y<y)不成立,从而X与|X|不相互独立.事实上,因事件{|X|<a}包含在事件{X<a}之中,即{X<a} {|X|<a},故P(X<a,|X|<a)=P({X<a}∩{|X|<a})=P(|X|<a).又P(X<a)<1,P(|X|<a)>0,因而P(X<a)P(|X|<a)<P(|X|<a).于是P(X<a,|X|<a)=P(|X|<a)>P(X>a)P(|X|<a),故P(X>a,|X|<a)≠P(X<a)P(|X|<a) (0<a<+∞).可知,X与|X|不相互独立.1。

[考研类试卷]考研数学一(无穷级数)历年真题试卷汇编2.doc

[考研类试卷]考研数学一(无穷级数)历年真题试卷汇编2.doc

[考研类试卷]考研数学一(无穷级数)历年真题试卷汇编2一、选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1 (2000年)设级数收敛,则必收敛的级数为2 (2002年)设u n≠0,(n=1,2,3,…),且则级数(A)发散。

(B)绝对收敛.(C)条件收敛.(D)收敛性根据所给条件不能判定.3 (2004年)设为正项级数,下列结论中正确的是4 (2006年)若级数收敛,则级数5 (2009年)设有两个数列{a n},{b n},若则6 (2011年)设数列{a n}单调减少,无界,则幂级数的收敛域为(A)(一1,1].(B)[一1,1).(C)[0,2).(D)(0,2].7 (2013年)设令则8 (2015年)若级数条件收敛,则与x=3依次为幂级数的(A)收敛点,收敛点.(B)收敛点,发散点.(C)发散点,收敛点.(D)发散点,发散点.9 (2018年)(A)sin1+cos1.(B)2sin1+cos1.(C)2sin1+2cos1.(D)2sin1+3cos1.二、填空题10 (1997年)设幂级数的收敛半径为3,则幂级数的收敛区间为_____________________.11 (2003年)设则a2=____________.12 (2008年)已知幂级数在x=0处收敛,在x=一4处发散,则幂级数的收敛域为____________.13 (2017年)幂级数在区间(一1,1)内的和函数S(x)=____________.三、解答题解答应写出文字说明、证明过程或演算步骤。

14 (200l年)设试将f(x)展开成x的幂级数.并求级数的和.15 (2003年)将函数展开成x的幂级数,并求级数的和.16 (2004年)设有方程x n+nx一1=0,其中n为正整数,证明此方程存在唯一正实根x n,并证明当α>1时,级数收敛.17 (2005年)求幂级数的收敛区间与和函数f(x).18 (2006年)将函数展开成x的幂级数.18 (2007年)设幂级数内收敛,其和函数y(x)满足 y"一2xy'一4y=0,y(0)=0,y'(0)=119 证明a n+2n=1,2,…;20 求y(x)的表达式.21 (2008年)将函数f(x)=1—x2(0≤x≤π)展开成余弦级数,并求级数的和.22 (2009年)设a n为曲线y=x n与y=x n+1(n=1,2,…)所围成区域的面积,记求S1与S2的值.23 (2010年)求幂级数的收敛域及和函数.24 (2012年)求幂级数的收敛域及和函数.24 (2013年)设数列{a n)满足条件:a0=3,a1=1,a n-2一n(n一1)a n=0(n≥2),S(x)是幂级数的和函数.25 证明:S"(x)一S(x)=0;26 求S(x)的表达式.26 (2014年)设数列{a n},{b n}满足cosa n一a n=cosb n,且级数收敛.27 证明:28 证明:级数收敛.28 (2016年)已知函数f(x)可导,且f(0)=1,设数列{x n}满足x n+1=f(x n)(n=1,2,…).证明:29 级数绝对收敛;30 存在,且。

2012考研数学一真题及解析

2012考研数学一真题及解析

2012考研数学一真题及解析一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1) 【答案】:C【解析】:221lim1x x xx →+=∞-,所以1x =为垂直的 22lim 11x x xx →∞+=-,所以1y =为水平的,没有斜渐近线 故两条选C(2) 【答案】:C 【解析】:'222()(2)()(1)(22)()(1)(2)()x x nx x x nx x x nx f x e e e n e e e n e e ne n =--+---+---所以'(0)f =1(1)!n n -- (3) 【答案】:【解析】:由于(,)f x y 在()0,0处连续,可知如果22(,)limx y f x y x y →→+存在,则必有0(0,0)lim (,)0x y f f x y →→== 这样,220(,)limx y f x y x y →→+就可以写成2200(,)(0,0)lim x y f x y f x y ∆→∆→∆∆-∆+∆,也即极限220(,)(0,0)limx y f x y f x y ∆→∆→∆∆-∆+∆存在,可知lim 0x y ∆→∆→=,也即(,)(0,0)00f x y f x y o∆∆-=∆+∆+。

由可微的定义可知(,)f x y 在(0,0)处可微。

(4) 【答案】:(D) 【解析】:2sin kx k eI e xdx =⎰看为以k 为自变量的函数,则可知()2'sin 0,0,k k I e k k π=≥∈,即可知2sin kx k eI e xdx =⎰关于k 在()0,π上为单调增函数,又由于()1,2,30,π∈,则123I I I <<,故选D(5)【答案】:(C )【解析】:由于()13411341111,,011011c c c c ααα--=-==-,可知134,,ααα线性相关。

2012年考研真题及答案(心理学)

2012年考研真题及答案(心理学)

2012年考研真题及答案(⼼理学)已公布,具体内容请各位考⽣查看如下: ⼀、单项选择题:1~65⼩题,每⼩题2分,共130分。

下列每题给出的四个选项中,只有⼀个选项是符合题⽬要求的。

请在答题卡上将所选项的字母涂⿊。

1、下列选项中,不属于⼼理状态的是( )A、感觉B、想象C、注意D、记忆 答案:D 考研解析:感觉、想象、注意都是⼼理状态,记忆则不然。

2、⼤脑两半球之间传递信息的神经结构是( )A、杏仁核B、内囊C、边缘系统D、胼胝体 答案:D 考研解析:胼胝体位于⼤脑半球纵裂的底部,连接左右两侧⼤脑半球的横⾏神经纤维束,是⼤脑半球中的连合纤维。

3、神经系统最⼩的单位是( )A、突触B、轴突C、神经元D、胞体 答案:C 考研解析:神经系统结构和功能的最⼩单位是神经元。

4、⼤部分⾊盲不能区分( )A、红和青B、红和黄C、红和蓝D、红和绿 答案:D 考研解析:⾊盲以红绿⾊盲较为多见,蓝⾊盲及全⾊盲较少见。

5、感受性提⾼的感觉适应现象是( )A、触觉适应B、嗅觉适应C、暗适应D、明适应 答案:D 考研解析:在暗适应时是出现感受性提⾼,⽽明适应是感受性降低。

6、当⼈看到下图,⼀般都只看到⼀些乱点,经提⽰这是⼀幅骑马图⽚后,⼈们就觉得像所提⽰的内容。

这主要体现的知觉特性是( ) (图略)A、知觉整体性B、知觉理解性C知觉恒常性、D、知觉选择性 答案:B 考研解析:⼈在知觉过程中不是被动的把知觉对象的特点登记下来,⽽是以过去的知识经验为依据,⼒求对知觉对象做出某种解释,使它具有⼀定的意义。

该题⽬体现了知觉的理解性。

7、⽴体电影利⽤知觉的( )A、运动视差B、纹理梯度C、线条透视D、双眼视差 答案:A 考研解析:⽴体电影是利⽤⼈双眼的视⾓差和会聚功能制作的可产⽣⽴体效果的电影。

8、⼀名5岁⼩⼉童向怀⾥抱的布娃娃讲妈妈曾给她讲过的故事,这种语⾔属于( )A、对话B、独⽩C、语⾔获得D、语⾔理解 答案:B 考研解析:独⽩是⼀个⼈⾃⾔⾃语,⾃问⾃答。

考研数学一(多元函数微分学)历年真题试卷汇编4(题后含答案及解析)

考研数学一(多元函数微分学)历年真题试卷汇编4(题后含答案及解析)

考研数学一(多元函数微分学)历年真题试卷汇编4(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.(2006年)若f(x,y)与φ(x,y)均为可微函数,且φ’y(x,y)≠0.已知(x0,y0)是f(x,y)在约束条件φ(x,y)=0下的一个极值点,下列选项正确的是A.若f’x(x0,y0)=0,则f’y(x0,y0)=0.B.若f’0(x0,y0)=0.则f’(x0,y0)≠0.C.若f’x(x0,y0)≠0,则f’y(x0,y0、)=0.D.若f’x(x0,y01)≠0,则f’y(x0,y0)≠0.正确答案:D解析:由拉格朗日乘数法知,若(x0,y0)是f(x.y)在约束条件φ(x,y)=0下的极值点。

则必有若f’x(x0,y0)≠0,由①式知,λ≠0,加之原题设φ’y(x,y)≠0,由②式知,λφ’(x0,y0)≠0,从而必有f’y(x0,y0)≠0,故应选(D).知识模块:多元函数微分学2.(2008年)函数在点(0,1)处的梯度等于A.iB.一iC.jD.一j正确答案:A解析:解1 由知则f’x(0,1)=1,f’(0,1)=0,所以gradf(0,1)=i 解2 由知则gradf(0.1)=i 知识模块:多元函数微分学3.(2010年)设函数z=z(x,y)由方程确定,其中F为可微函数,且F’2≠0,则A.x.B.z.C.一x.D.一z.正确答案:B解析:由隐函数求导公式得则解 2 等式分别对x,y求偏导得(1)式乘x2加(2)式乘xy得(一z)F’2+F’2(xzx+yzy)=0则xzx+yzy=z (F’2≠0) 知识模块:多元函数微分学4.(2011年)设函数f(x)具有二阶连续导数,且f(x)>0,f’(0)=0,则函数z=f(x)lnf(y)在点(0,0)处取得极小值的一个充分条件是A.f(0)>1,f”(0)>0.B.f(0)>1,f”(0)<0.C.f(0)<1,f”(0)>0.D.f(0)<1,f”(0)<0.正确答案:A解析:则AC—B2>0故应选(A).知识模块:多元函数微分学5.(2012年)如果f(x,y)在(0,0)处连续,那么下列命题正确的是A.若极限存在,则f(x,y)在(0,0)处可微.B.若极限存在,则f(x,y)在(0,0:)处可微.C.若f(x,y)在(0,0)处可微,则极限存在.D.若f(x,y)在(0,0)处可微,则极限存在.正确答案:B解析:解l 由f(x,y)在(0,0)处连续可知,如果存在,则必有又极限则由存在知即由微分的定义知f(x,y)在(0,0)处可微.解2 排除法:取f(x,y)=|x|+|y|,显然,存在,但f(x,y)=|x|+|y|在(0,0)处不可微,这是由于f(x,0)=|x|,而|x|在x=0处不可导,则fx(0,0)不存在.则排除(A);若取f(x,y)=x,显然,f(x,y)在(0,0)处可微,但不存在,则不存在,排除(C).又则不存在,排除(D).故应选(B).知识模块:多元函数微分学6.(2013年)曲面x2+cos(xy)+yz+x=0在点(0,1,一1)处的切平面方程为A.x—y+z=一2.B.x+y+z=0.C.x一2y+z=一3.D.x—y一z=0.正确答案:A解析:令F(x,y,z)=x2+cos(xy)一yz+x,则则所求切平面方程为x一(y 一1)+(z+1)=0即x—y+z=一2 知识模块:多元函数微分学7.(2017年)函数f(x,y,z)=x2y+z2在点(1,2,0)处沿向量n=(1,2,2)的方向导数为A.12.B.6.C.4.D.2.正确答案:D解析:fx(1,2,0)=2xy|(1,2,0)=4 fy(1,2,0)=x2|(1,2,0)=1 fz(1,2,0)=3z2|(1,2,0)=0 向量n={1,2,2}的方向余弦为则知识模块:多元函数微分学填空题8.(2003年)曲面z=x2+y2与平面2x+4y一z—0平行的切平面方程是_____________.正确答案:2x+4y—z=5解析:曲面z=x2+y2在点(x0,y0,z0)处切平面的法向量为n1={2x0,2y0,一1)而平面2x+4y一z=0的法向量为n2={2,4,一1}.由题设知n1//n2,则从而有x0=1,y0=2,代入z=x2+y2 得z0=5,n1={2,4,一1}则所求切平面方程为2(x一1)+4(y一2)一(z一5)=0即2x+4y—z=5 知识模块:多元函数微分学9.(2005年)设函数单位向量则正确答案:解析:ux(1,2,3)=uy(1,2,3)=uz(1,2,3)=则知识模块:多元函数微分学10.(2007年)设f(u,v)为二元可微函数,z=f(xy,yx),则正确答案:yxy-1f’1+y2lnyf’2.解析:由复合函数求导法知知识模块:多元函数微分学11.(2009年)设函数f(u,v)具有二阶连续偏导数,z=f(x,xy),则正确答案:f’2+xf”12+xyf”22解析:知识模块:多元函数微分学12.(2011年)设函数则正确答案:4解析:解1 △解2 由偏导数定义知知识模块:多元函数微分学13.(2012年)正确答案:(1,1,1)解析:知识模块:多元函数微分学14.(2014年)曲面z=z2(1一siny)+y2(1一sinx)在点(1,0,1)处的切平面方程为_____________.正确答案:2x—y一z=1.解析:由z=x2(1一siny)+y2(1一sinx)得z’x=2x(1一siny)一y2cosx,z’x(1,0)=2 z’y=一x2cosy+2y(1一sinx),z’ y(1,0)=一1所以,曲面z=x2(1一siny)+y2(1一sinx)在点(1.0.1)处的法向量为[*]=(2.一1,一1),该点处切平面方程为2(x-1)一y一(z一1)=0即2x—y一z=1.知识模块:多元函数微分学15.(2015年)若函数z=z(x,y)由方程ez+xyz+x+cosx=2确定,则dz|(0,1)=_____________.正确答案:一dx解析:将x=0,y=1代入ez+xyz+x+cosx=2 中得ez+1=2,则z=0.方程ez+xyz+x+cosx=2两端微分得ezdz+yzdx+xzdy+xydz+dx—sinxdx=0 将x=0,y=1.z=0代入上式得dx+dz=0则dz|(0,1)=一dx 知识模块:多元函数微分学16.(2016年)设函数f(u,v)可微,z=z(x,y)由方程(x+1)z—y2=x2f(x一z,y)确定,则dz|(0,1)=___________.正确答案:一dz+2dy.解析:解1 由原方程知,当x=0,y=1时,z=1.方程(x+1)z一y2=xf(x —z,y)两边求全微分zdx+(x+1)dz一2ydy=2xf(x一z,y)dx+x2[f’1·(dx一dz)+f’2dy] 将x=0,y=1,z=1代入上式得dz|(0,1)=-dx+2dy 解2 由原方程知,当x=0,y=1时,z=1.方程两边分别对x、y求偏导数,有把x=0,y=1,z=1代入上式得所以dz|(0,1)=-dx+2dy 知识模块:多元函数微分学解答题解答应写出文字说明、证明过程或演算步骤。

2012考研最全的电子书下载

2012考研最全的电子书下载

2012考研词汇速记指南(刘一男)-.pdf/file/clse0x9z#2012考研英语长难句与词汇突破(李玉枝).pdf/file/e659i5a7#2012考研英语阅读120篇(马德高).pdf/file/dn1twcgf#2012考研英语新大纲标准词汇掌上宝(周洁).pdf/file/e659iwto#2012考研英语五大题源报刊阅读150篇(刘雪明).pdf/file/dn1tpra9#2012考研英语核心词汇说文解词(词根乱序版)(曾鸣).pdf /file/dn1tn2ki#2012报考知识全集及政治理论基干知识全集-徐之明.pdf /file/clseyob1#2012考研政治核心点表解与真题解析(考研命题研究组).pdf /file/bhiojyn8#2012数学历年试题解析(数学三)(李永乐).pdf/file/dn1tvowk#2012数学历年试题解析(数学二)(李永乐).pdf/file/e6598v8j#2012数学基础过关660题(数学一)(李永乐).pdf/file/aqkl001a#2012数学基础过关660题(数学三)(李永乐).pdf/file/dn1tvlup#2012数学基础过关660题(数学二)(李永乐).pdf/file/bhio9evw#2012考研英语核心词汇30天突破(马德高).pdf/file/e6593rlj#2012考研英语高分写作(英语一、二)(王江涛).pdf/file/bhioxiee#2012考研英语分类阅读高分进阶(120篇).pdf/file/aqkldsgj#2012考研数学接力题典1800通关高分夺冠必备(汤家凤)-.pdf /file/bhio2nk1#2012考研数学基础题集(数一)(武忠祥).pdf/file/e659qeby#2012考研数学基础题集(数三)(武忠祥).pdf/file/aqklsaxn#2012考研数学基础题集(数二)(武忠祥).pdf/file/dn1tqhgf#2012考研数学基础轻松过500题(理工类)(潘正义).pdf/file/bhiopd4m#2012考研数学基础轻松过500题(经济类)(潘正义).pdf/file/bhiopn58#2012考研数学基础过关精选200题(恩波教育).pdf/file/bhiop4kw#2012考研数学基础核心讲义(理工类)(修订版)(陈文灯)-.pdf /file/dn1tqbfa#2012考研数学基础核心讲义(经济类)(修订版)(陈文灯)-.pdf /file/cls59uw1#2012考研数学复习指南(理工类)(修订版)(陈文灯)-.pdf /file/aqklshnp#2012考研数学复习指南(经济类)(修订版)(陈文灯)-.pdf /file/aqklj7gj#2012考研数学10年真题点评(数学一)(陈文灯).pdf/file/bhimghbk#2012考研数学10年真题点评(数学三)(陈文灯).pdf/file/e65jthcr#2012考研数学10年真题点评(数学二)(陈文灯).pdf/file/e65jpdez#2012考研数学复习大全(理工类)(蔡子华)-.pdf/file/aqkl4tvz#2012考研数学复习大全(经济类)(蔡子华)-.pdf/file/cls5dhl1#2012考研数学第一视频(理工类)(潘正义).pdf/file/e659zw2s#2012考研数学第一视频(经济类)(潘正义).pdf/file/clse3sug#2012考研高等数学辅导教材(黄庆怀).pdf/file/e65jp8tz#2012概率论与数理统计辅导讲义(曹显兵).pdf/file/e65jgear#2012考研英语核心词汇笔记(胡敏).pdf/file/t2d2ccbf68#2012考研英语拆分与组合翻译法(唐静).pdf/file/t2c18588e7#2012考研英语词汇速记宝典(徐绽).pdf/file/t2efa1e9e1#2012海天政治马克思主义基本原理核心教程(阮晔).pdf /file/t227f57dce#2012考研数学单选题解题方法与技巧(陈文灯).pdf /file/t246862c87#2012海天英语基础阅读突破(宫东风).pdf/file/f21e0b46132012考研数学必做客观题1500题精析(蔡子华).pdf /file/t247c6d9bb#2012考研数学必做主观题500题精析(蔡子华).pdf /file/t247592051#2012考研英语读真题记单词(胡敏)-.pdf/file/t2642ba076#2012考研英语复习指导(朱泰祺)-.pdf/file/t2716484d1#2012考研英语语法突破(胡敏).pdf/file/t25d423062#2012考研英语阅读理解精读100篇(印建坤).pdf/file/t2d7fcbdf4#2012考研英语阅读专项训练(王若平).pdf/file/t2e0b66e85#2012考研英语写作高分突破(热点话题100篇)(曾鸣).pdf /file/t24e31b215#2012考研英语英译汉四步定位翻译法(胡敏).pdf/file/t291789592#2012考研英语阅读理解110篇(肖克).pdf/file/t23b17841#2012考研英语阅读理解精读200篇(胡敏).pdf/file/t2e86beb60#2012考研政治早知道核心知识精粹及典型真题(李海洋).pdf /file/t27844941e#2012考研英语大纲词汇考点、用法及辨析(李玉枝).pdf /file/t2106e45b8#2012考研英语大纲核心词汇必备(王建华).pdf/file/t2272b3d02#2012考研英语命题人选题源阅读(王长喜).pdf/file/t22640c69#2012考研英语阅读题源大全(郭崇兴).pdf/file/t2bdc4caae#2012英语阅读精析100篇(赵敏).pdf/file/t233f00e7c#2012考研英语必记词组(郭崇兴).pdf/file/t2aab22d7f#2012考研英语词汇宝典(肖克).pdf/file/t28d6ba1b6#2012考研英语词汇词根+联想+图解记忆法(马德高).pdf/file/t26280c9f8#2012考研英语词汇词根+联想+语境记忆法(阅读版)(王长喜).pdf/file/t2758393a#2012考研英语词汇词根+联想记忆法(乱序版)(俞洪敏).pdf/file/t26c72375#2012考研英语词汇词根+联想记忆法(俞洪敏).pdf/file/t2292540b1#2012考研英语词汇活学活用巧链记(白洁).pdf/file/t24a7f0481#2012考研英语考前热点范文80篇(许小波).pdf/file/t2a5b66456#2012考研英语逻辑辨证记忆30天(3000核心词汇+500词组)(张纪元).pdf /file/t2426ad08f#2012思想政治理论历年试题解析(米鹏).pdf/file/t2458878c7#2012淘金式巧攻考研英语词汇(伍乐其)-.pdf/file/t29d9db9f5#数据结构考研指导/thread-1437578-1-1.html操作系统考研指导/thread-1437489-1-1.html计算机组成原理考研指导/thread-1437549-1-1.html完整版《数据结构1800题+答案》/thread-1432160-1-1.html计算机组成原理-研究生入学经典试卷(完全版)/thread-2335306-1-1.html计算机组成原理-研究生入学经典试卷答案/thread-2327332-1-1.html计算机网络重点知识完美总结整理/thread-2318065-1-1.html计算机操作系统常见题型解析及模拟题pdf格式/thread-2335264-1-1.html唐朔飞《计算机组成原理》课件/thread-2333458-1-1.html计算机组成原理PPT课件王爱英(清华)/thread-2315040-1-1.html操作系统学习资料汇总/thread-2317868-1-1.html05年清华计算机本科上课课件<数据结构>/thread-1469848-1-1.html白中英《计算机组成原理》第四版(立体化教材)课件2008.5制作/thread-2340302-1-1.html白中英《计算机组成原理》第四版(立体化教材)课后习题答案与自测题库2008.5作者更新/thread-2340326-1-1.html数据结构复习重点归纳/thread-1743383-1-1.html北京航空航天大学数据结构与程序设计02——07(无03)/thread-2350974-1-1.html北京航空航天大学2004——2008 (无2006)计算机专业技术基础/thread-2350970-1-1.html操作系统考试要点与真题精解/thread-2350951-1-1.html计算机操作系统学习指导与习题解析(PDF书籍下载)/thread-2350438-1-1.html《操作系统考研辅导教程》,计算机专业研究生入学考试全真题解(2)/thread-2350434-1-1.html操作系统学习指导与习题解答(PDF)/thread-2350431-1-1.html计算机操作系统课程及考研辅导/thread-1437564-1-1.html计算机操作系统学习指导与习题解答/thread-2350430-1-1.html研究生入学考试要点、真题解析与模拟试卷:数据结构/thread-2350429-1-1.html操作系统典型题解析与实战模拟/thread-2350427-1-1.html《计算机操作系统》试卷适用汤子瀛《操作系统》第二版/thread-2335255-1-1.html18所大学计算机专业(组成原理).chm/thread-2360106-1-1.html南京邮电大学2001___2006年数据结构考研试卷/thread-2351917-1-1.html理工科研究生入学考试试题精选(2)/thread-1435632-1-1.html计算机组成原理、计算机系统结构与数字逻辑试题精选/thread-2350442-1-1.html湖南大学2000-2006数据结构试题/thread-2351922-1-1.html北京交通大学02 05 07年数据结构真题/thread-2351974-1-1.html苏州大学99___06计算机综合题/thread-2351960-1-1.html[下载]: 操作系统学习辅导/thread-2304561-1-1.htmlC程序设计考研指导/thread-1437476-1-1.html【全美经典】离散数学/thread-2338065-1-1.html微机原理与接口技术习题与解析/thread-2304849-1-1.html微机原理与接口技术考研指导/thread-1437611-1-1.html离散数学考研指导/thread-1437514-1-1.html《计算机网络知识要点与习题解析》(谢希仁教材配套)/thread-2395268-1-1.html。

2012数一真题及答案解析

2012数一真题及答案解析

x + y x→0
2
2
y→0
(C)若 f (x, y) 在(0,0)处可微,则极限 lim f (x, y) 存在 x + y x→0
y→0
(D)若 f (x, y) 在(0,0)处可微,则极限 lim f (x, y) 存在
x + y x→0
2
2
y→0
【解析】若极限 lim f (x, y) 存在,又函数 f (x, y) 在(0,0)处连续,可得 f (0,0) = 0
⎜⎝
1 ⎟⎠
⎛1 0 0⎞
【解析】 Q = (α1 + α2,α2 ,α3 ) = (α1,α2,α3 )⎜⎜1
1
⎟ 0⎟
⎜⎝0 0 1⎟⎠

⎛ 1 0 0⎞−1
⎛1 0 0⎞
Q
−1
AQ
=
⎜ ⎜
1
1
⎟ 0⎟
(α1,α2,α3 )−1 A(α1,α2,α3 )⎜⎠
⎜ ⎝
0
3
1
2
1
3
⎛ 0 ⎞ ⎛ 0 ⎞ ⎛ 1 ⎞ ⎛ −1⎞
⎜⎟ ⎜⎟ ⎜ ⎟ ⎜ ⎟
(5)设 a1 = ⎜ 0 ⎟, a2 = ⎜ 1 ⎟, a3 = ⎜ −1⎟, a4 = ⎜ 1 ⎟ , c1, c2, c3, c4 为任意常数,
⎜⎝ c1 ⎟⎠
⎜⎝ c2 ⎟⎠
⎜⎝ c3 ⎟⎠
⎜⎝ c4 ⎟⎠
则下列向量组线性相关的是( )
∂x
∂y
f
(x,
y)
=
(x3
−x2+ y2
− 3x)e 2

f
x2+ y2
( x,

(word完整版)考研数学一历年真题汇总2489222,推荐文档

(word完整版)考研数学一历年真题汇总2489222,推荐文档

2009年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)当0x →时,()sin f x x ax =-与()()2ln 1g x x bx =-等价无穷小,则(A)11,6a b ==- (B)11,6a b ==(C)11,6a b =-=-(D)11,6a b =-=(2)如图,正方形(){},1,1x y x y ≤≤被其对角线划分为四个区域()1,2,3,4k D k =,cos kk D I y xdxdy =⎰⎰,则{}14max k k I ≤≤=(A)1I(B)2I (C)3I(D)4I(3)设函数()y f x =在区间[]1,3-上的图形为则函数()()0xF x f t dt =⎰的图形为1 ()f x-20 2 3-1O(A)(B)(C)(D)(4)设有两个数列{}{},n n a b ,若lim 0n n a →∞=,则 (A)当1nn b∞=∑收敛时,1n nn a b∞=∑收敛. (B)当1nn b∞=∑发散时,1n nn a b∞=∑发散.(C)当1nn b∞=∑收敛时,221n nn a b∞=∑收敛. (D)当1nn b∞=∑发散时,221n nn a b∞=∑发散.(5)设123,,ααα是3维向量空间3R 的一组基,则由基12311,,23ααα到基122331,,+++αααααα的过渡矩阵为(A)101220033⎛⎫ ⎪ ⎪ ⎪⎝⎭(B)120023103⎛⎫⎪⎪ ⎪⎝⎭(C)111246111246111246⎛⎫- ⎪ ⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭(D)111222111444111666⎛⎫-⎪ ⎪ ⎪- ⎪ ⎪ ⎪- ⎪⎝⎭(6)设,A B 均为2阶矩阵,**,A B 分别为,A B 的伴随矩阵,若2,3==A B ,则分块矩阵O A B O ⎛⎫ ⎪⎝⎭的伴随矩阵为 (A)**32O B A O ⎛⎫ ⎪⎝⎭(B)**23OB A O ⎛⎫⎪⎝⎭(C)**32O A B O ⎛⎫⎪⎝⎭(D)**23O A BO ⎛⎫⎪⎝⎭(7)设随机变量X 的分布函数为()()10.30.72x F x x -⎛⎫=Φ+Φ ⎪⎝⎭,其中()x Φ为标准正态分布函数,则EX =(A)0(B)0.3(C)0.7(D)1(8)设随机变量X 与Y 相互独立,且X 服从标准正态分布()0,1N ,Y 的概率分布为{}{}1012P Y P Y ====,记()Z F z 为随机变量Z XY =的分布函数,则函数()Z F z 的间断点个数为(A)0 (B)1 (C)2 (D)3二、填空题(9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.)(9)设函数(),f u v 具有二阶连续偏导数,(),z f x xy =,则2zx y∂=∂∂ . (10)若二阶常系数线性齐次微分方程0y ay by '''++=的通解为()12e xy C C x =+,则非齐次方程y ay by x '''++=满足条件()()02,00y y '==的解为y = .(11)已知曲线(2:0L y x x =≤≤,则Lxds =⎰ .(12)设(){}222,,1x y z xy z Ω=++≤,则2z dxdydz Ω=⎰⎰⎰ .(13)若3维列向量,αβ满足2T=αβ,其中T α为α的转置,则矩阵Tβα的非零特征值为 .(14)设12,,,m X X X L 为来自二项分布总体(),B n p 的简单随机样本,X 和2S 分别为样本均值和样本方差.若2X kS +为2np 的无偏估计量,则k = .三、解答题(15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分9分)求二元函数()22(,)2ln f x y x y y y =++的极值. (16)(本题满分9分)设n a 为曲线n y x =与()11,2,.....n y x n +==所围成区域的面积,记122111,n n n n S a S a ∞∞-====∑∑,求1S 与2S 的值.(17)(本题满分11分)椭球面1S 是椭圆22143x y +=绕x 轴旋转而成,圆锥面2S 是过点()4,0且与椭圆22143x y +=相切的直线绕x 轴旋转而成. (1)求1S 及2S 的方程. (2)求1S 与2S 之间的立体体积. (18)(本题满分11分)(1)证明拉格朗日中值定理:若函数()f x 在[],a b 上连续,在(,)a b 可导,则存在(),a b ξ∈,使得()()()()f b f a f b a ξ'-=-.(2)证明:若函数()f x 在0x =处连续,在()()0,0δδ>内可导,且()0lim x f x A +→'=,则()0f +'存在,且()0f A +'=.(19)(本题满分10分) 计算曲面积分()32222xdydz ydzdx zdxdyI xy z++=∑++⎰⎰Ò,其中∑是曲面222224x y z ++=的外侧.(20)(本题满分11分)设111111042--⎛⎫⎪=- ⎪ ⎪--⎝⎭A ,1112-⎛⎫ ⎪= ⎪ ⎪-⎝⎭ξ (1)求满足21=A ξξ的2ξ.231=A ξξ的所有向量2ξ,3ξ. (2)对(1)中的任意向量2ξ,3ξ证明123,,ξξξ无关. (21)(本题满分11分)设二次型()()2221231231323,,122f x x x ax ax a x x x x x =++-+-.(1)求二次型f 的矩阵的所有特征值;(2)若二次型f 的规范形为2212y y +,求a 的值.(22)(本题满分11分)袋中有1个红色球,2个黑色球与3个白球,现有回放地从袋中取两次,每次取一球,以,,X Y Z 分别表示两次取球所取得的红球、黑球与白球的个数.(1)求{}10p X Z ==.(2)求二维随机变量(),X Y 概率分布. (23)(本题满分11 分)设总体X 的概率密度为2,0()0,x xe x f x λλ-⎧>=⎨⎩其他,其中参数(0)λλ>未知,1X ,2X ,…n X 是来自总体X 的简单随机样本. (1)求参数λ的矩估计量. (2)求参数λ的最大似然估计量.2010年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1)极限2lim ()()xx xx a x b →∞⎡⎤⎢⎥-+⎣⎦= (A)1(B)e(C)e a b -(D)e b a -(2)设函数(,)z z x y =由方程(,)0y zF x x=确定,其中F 为可微函数,且20,F '≠则z z xy x y∂∂+∂∂= (A)x (B)z (C)x -(D)z -(3)设,m n 为正整数,则反常积分0⎰的收敛性(A)仅与m 取值有关 (B)仅与n 取值有关(C)与,m n 取值都有关(D)与,m n 取值都无关(4)2211lim()()nnx i j nn i n j →∞==++∑∑=(A)121(1)(1)xdx dy x y ++⎰⎰(B)11(1)(1)xdx dy x y ++⎰⎰(C)11001(1)(1)dx dy x y ++⎰⎰ (D)112001(1)(1)dx dy x y ++⎰⎰(5)设A 为m n ⨯型矩阵,B 为n m ⨯型矩阵,若,=AB E 则 (A)秩(),m =A 秩()m =B (B)秩(),m =A 秩()n =B(C)秩(),n =A 秩()m =B(D)秩(),n =A 秩()n =B(6)设A 为4阶对称矩阵,且20,+=A A 若A 的秩为3,则A 相似于(A)1110⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭(B)1110⎛⎫⎪⎪ ⎪- ⎪⎝⎭(C)1110⎛⎫⎪- ⎪ ⎪- ⎪⎝⎭(D)1110-⎛⎫⎪- ⎪ ⎪- ⎪⎝⎭ (7)设随机变量X 的分布函数()F x =00101,21e 2x x x x -<≤≤->则{1}P X == (A)0 (B)1(C)11e 2--(D)11e --(8)设1()f x 为标准正态分布的概率密度2,()f x 为[1,3]-上均匀分布的概率密度,()f x =12()()af x bf x 0x x ≤> (0,0)a b >> 为概率密度,则,a b 应满足(A)234a b += (B)324a b +=(C)1a b +=(D)2a b +=二、填空题(9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上.)(9)设20e ,ln(1),ttx y u du -==+⎰求220t d ydx == .(10)2π⎰= .(11)已知曲线L 的方程为1{[1,1]},y x x =-∈-起点是(1,0),-终点是(1,0), 则曲线积分2Lxydx x dy +⎰= .(12)设22{(,,)|1},x y z x y z Ω=+≤≤则Ω的形心的竖坐标z = . (13)设123(1,2,1,0),(1,1,0,2),(2,1,1,),T T T α=-==ααα若由123,,ααα形成的向量空间的维数是2,则α= .(14)设随机变量X 概率分布为{}(0,1,2,),!CP X k k k ===L 则2EX = . 三、解答题(15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.)(15)(本题满分10分)求微分方程322e xy y y x '''-+=的通解. (16)(本题满分10分) 求函数221()()e xt f x x t dt -=-⎰的单调区间与极值.(17)(本题满分10分) (1)比较1ln [ln(1)]nt t dt +⎰与1ln (1,2,)n t t dt n =⎰L 的大小,说明理由.(2)记1ln [ln(1)](1,2,),n n u t t dt n =+=⎰L 求极限lim .n x u →∞(18)(本题满分10分)求幂级数121(1)21n nn x n -∞=--∑的收敛域及和函数. (19)(本题满分10分)设P 为椭球面222:1S x y z yz ++-=上的动点,若S 在点P 的切平面与xoy 面垂直,求P 点的轨迹,C并计算曲面积分,I ∑=其中∑是椭球面S 位于曲线C 上方的部分.(20)(本题满分11分)设11010,1,111a λλλ⎛⎫⎛⎫ ⎪ ⎪=-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A b 已知线性方程组=A x b 存在两个不同的解.(1)求,.a λ(2)求方程组=A x b 的通解.(21)(本题满分11分)设二次型123(,,)T f x x x =A x x 在正交变换x y =Q 下的标准形为2212,y y +且Q 的第三列为.T(1)求.A(2)证明+A E 为正定矩阵,其中E 为3阶单位矩阵. (22)(本题满分11分) 设二维随机变量()X Y +的概率密度为2222(,)e ,,,x xy y f x y A x y -+-=-∞<<∞-∞<<∞求常数及A 条件概率密度|(|).Y X f y x(23)(本题满分11 分) 设总体X其中(0,1)θ∈未知,以i N 来表示来自总体X 的简单随机样本(样本容量为n )中等于i 的个数(1,2,3),i =试求常数123,,,a a a 使31i i i T a N ==∑为θ的无偏估计量,并求T 的方差.2011年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)1、 曲线432)4()3()2)(1(----=x x x x x y 的拐点是( ) A (1,0) B (2,0) C (3,0) D (4,0)2、设数列{}n a 单调减少,且0lim =∞→n n a 。

2012年考研199管理类联考综合数学真题以及答案

2012年考研199管理类联考综合数学真题以及答案

2012年1月真题一、问题求解:第1~15小题,每小题3分,共45分。

下列每题给出的,,,,A B C D E 五个选项中,只有一项是符合试题要求的。

请在答题卡上将所选项的字母涂黑。

1、某商品定价200元,受金融危机影响,连续2次降价20%后的售价为( ).114 B.120 C.128 D.144E.160A2、如图2,三个边长为1的正方形所组成区域(实线区域)的面积( )32333A. 32 B.3 C.3 3 D.3 E.3424---3、在一次捐赠活动中,某人将捐赠的物品打包成件,其中帐篷和食品共320件,帐篷比食品多80件,则帐篷的件数是( )A.180B.200C.220D.240E.2604、如图,三角形ABC 是直角三角形,,,为正方形,已知,,a b c 分别是为,,的边长,则:( )222222333333 ...22.22 A a b c B a b c C a b c D a b c E a b c=+=+=+=+=+5、如图,一个储物罐的下半部分是底面直径与高均是20m的圆柱体,上半部分(顶部)是半球形的,已知底面与项部的造价是400元/,侧面的造价是300元/,该储物罐的造价是()万元A.56.52B.62.8C.75.36D.87.92E.100.486、在一次商品促销活动中,主持人出示了一个9位数,让顾客猜测商品的价格,商品的价格是该9位数中从左到右面相邻的3个数字组成的3位数,若主持人出示的是的513535319,则一顾客猜中价格的概率是()11121.....96572A B C D E7、某商店经营15种商品,每次在橱窗内陈列5种,若每两次陈列的商品不完全相同,则最多可陈列()次.3000 B.3003 C.4000 D.4003 E.4300A8、甲、乙、丙三个地区公务员参加一次测评,其人数和如下表:三个地区按平均分从高到低的排列顺序为()A.乙、丙、甲B. 乙、甲、丙C. 甲、丙、乙D.丙、甲、乙E. 丙、乙、甲地区/分数6 7 8 9 甲 10 10 10 10 乙 15 15 10 20 丙101015159、经统计,某机构的一个安检口每天中午办理安检手续的乘客人数及对应的概率如下表: 安检口2天中至少有1天中午办理安检手续的乘客人数大于15人的概率是( )顾客人数 0--5 6--10 11--15 16--20 21--25 26以上 概率0.10.20.20.250.20.05.0.2.0.25 .0.4 .0.5 E. 0.75A B C D10、某人在保险柜中存放了M 元现金,第一天取出它的,以后每天取出的前一天所取的,共取了7天,保险柜中剩余的现金为( )77766222.....[1()]33333M M M M A B C D E M- 11、在直角坐标系中,若平面区域D 中虽有的点的坐标(),x y 均满足:,,,则面积是( )999.(14).9(4).9(3).(2).(1)44444A B C D E πππππ+--++ 12、某单位春季植树100棵,前2天安排乙组植树,其余任务由甲、乙两组共用3天完成,已知甲组每天比乙组多植树4棵,则甲组每天植树( )棵A.11B.12C.13D.15E.17 13、有两队打羽毛球,每队派出3男2女参加5局单打比赛,第二局和第四局为女生,那么每队派队员出场的方式有几种?( )A. 12B.10C.8D.6E.414、若32x x ax b +++能被232x x -+整除,则( ).4,4.4,4.10,8.10,8.2,0A a b B a b C a b D a b E a b ===-=-==-=-==-=15、某公司计划运送180台电视机和110台洗衣机下乡,现有两种货车,甲种货车每辆最多可载40台电视机和10台洗衣机,乙种货车每辆最多可载20台电视机和20台洗衣机,已知甲、乙两种货车的租金分别是每辆400元和360元,则最少的运费是( )元A. 2560B.2600C.2640D.2680E.2720二、充分性条件判断:第16~25小题小题,每小题3分,共30分。

考研数学历年真题(1987-2012)年数学一_可直接打印(纯试题)

考研数学历年真题(1987-2012)年数学一_可直接打印(纯试题)

1987年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)当x =_____________时,函数2xy x =⋅取得极小值.(2)由曲线ln y x =与两直线e 1y x =+-及0y =所围成的平面图形的面积是_____________.1x =(3)与两直线 1y t =-+及121111x y z +++==都平行且过原点的平面方程为_____________.2z t =+(4)设L 为取正向的圆周229,x y +=则曲线积分2(22)(4)Lxy y dx x x dy -+-⎰Ñ= _____________. (5)已知三维向量空间的基底为123(1,1,0),(1,0,1),(0,1,1),===ααα则向量(2,0,0)=β在此基底下的坐标是_____________.二、(本题满分8分)求正的常数a 与,b 使等式201lim 1sin x x bx x →=-⎰成立.三、(本题满分7分)(1)设f 、g 为连续可微函数,(,),(),u f x xy v g x xy ==+求,.u v x x ∂∂∂∂(2)设矩阵A 和B 满足关系式2,+AB =A B 其中301110,014⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 求矩阵.B四、(本题满分8分)求微分方程26(9)1y y a y ''''''+++=的通解,其中常数0.a >五、选择题(本题共4小题,每小题3分,满分12分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设2()()lim1,()x af x f a x a →-=--则在x a =处 (A)()f x 的导数存在,且()0f a '≠ (B)()f x 取得极大值(2)设()f x 为已知连续函数0,(),s t I t f tx dx =⎰其中0,0,t s >>则I 的值(A)依赖于s 和t (B)依赖于s 、t 和x (C)依赖于t 、x ,不依赖于s(D)依赖于s ,不依赖于t(3)设常数0,k >则级数21(1)nn k nn ∞=+-∑ (A)发散 (B)绝对收敛(C)条件收敛(D)散敛性与k 的取值有关(4)设A 为n 阶方阵,且A 的行列式||0,a =≠A 而*A 是A 的伴随矩阵,则*||A 等于 (A)a(B)1a(C)1n a -(D)n a六、(本题满分10分) 求幂级数1112n nn x n ∞-=∑g 的收敛域,并求其和函数.七、(本题满分10分) 求曲面积分2(81)2(1)4,I x y dydz y dzdx yzdxdy ∑=++--⎰⎰其中∑是由曲线13()0z y f x x ⎧=≤≤⎪=⎨=⎪⎩绕y 轴旋转一周而成的曲面,其法向量与y 轴正向的夹角恒大于.2π八、(本题满分10分)设函数()f x 在闭区间[0,1]上可微,对于[0,1]上的每一个,x 函数()f x 的值都在开区间(0,1)内,且()f x '≠1,证明在(0,1)内有且仅有一个,x 使得().f x x =九、(本题满分8分) 问,a b 为何值时,现线性方程组123423423412340221(3)2321x x x x x x x x a x x b x x x ax +++=++=-+--=+++=-有唯一解,无解,有无穷多解?并求出有无穷多解时的通解.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在一次实验中,事件A 发生的概率为,p 现进行n 次独立试验,则A 至少发生一次的概率为____________;而事件A 至多发生一次的概率为____________.(2)有两个箱子,第1个箱子有3个白球,2个红球, 第2个箱子有4个白球,4个红球.现从第1个箱子中随机地取1个球放到第2个箱子里,再从第2个箱子中取出1个球,此球是白球的概率为____________.已知上述从第2个箱子中取出的球是白球,则从第一个箱子中取出的球是白球的概率为____________.(3)已知连续随机变量X的概率密度函数为221(),xx f x -+-=则X 的数学期望为____________,X 的方差为____________.十一、(本题满分6分)设随机变量,X Y 相互独立,其概率密度函数分别为()X f x = 1001x ≤≤其它,()Y f y = e 0y - 00y y >≤,求2Z X Y =+的概率密度函数.1988年全国硕士研究生入学统一考试数学(一)试卷一、(本题共3小题,每小题5分,满分15分)(1)求幂级数1(3)3nnn x n ∞=-∑的收敛域. (2)设2()e ,[()]1x f x f x x ϕ==-且()0x ϕ≥,求()x ϕ及其定义域. (3)设∑为曲面2221x y z ++=的外侧,计算曲面积分333.I x dydz y dzdx z dxdy ∑=++⎰⎰Ò二、填空题(本题共4小题,每小题3分,满分12分.把答案填在题中横线上) (1)若21()lim (1),tx x f t t x→∞=+则()f t '= _____________.(2)设()f x 连续且31(),x f t dt x -=⎰则(7)f =_____________.(3)设周期为2的周期函数,它在区间(1,1]-上定义为()f x =22x1001x x -<≤<≤,则的傅里叶()Fourier 级数在1x =处收敛于_____________.(4)设4阶矩阵234234[,,,],[,,,],==A αγγγB βγγγ其中234,,,,αβγγγ均为4维列向量,且已知行列式4,1,==A B 则行列式+A B = _____________.三、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x 可导且01(),2f x '=则0x ∆→时,()f x 在0x 处的微分dy 是 (A)与x ∆等价的无穷小 (B)与x ∆同阶的无穷小 (C)比x ∆低阶的无穷小(D)比x ∆高阶的无穷小(2)设()y f x =是方程240y y y '''-+=的一个解且00()0,()0,f x f x '>=则函数()f x 在点0x 处 (A)取得极大值(B)取得极小值 (C)某邻域内单调增加(D)某邻域内单调减少(3)设空间区域2222222212:,0,:,0,0,0,x y z R z x y z R x y z Ω++≤≥Ω++≤≥≥≥则 (A)124xdv dv ΩΩ=⎰⎰⎰⎰⎰⎰(B)124ydv ydv ΩΩ=⎰⎰⎰⎰⎰⎰(C)124zdv zdv ΩΩ=⎰⎰⎰⎰⎰⎰(D)124xyzdv xyzdv ΩΩ=⎰⎰⎰⎰⎰⎰(4)设幂级数1(1)nn n a x ∞=-∑在1x =-处收敛,则此级数在2x =处 (A)条件收敛(B)绝对收敛(C)发散(D)收敛性不能确定(5)n 维向量组12,,,(3)s s n ≤≤αααL 线性无关的充要条件是 (A)存在一组不全为零的数12,,,,s k k k L 使11220s s k k k +++≠αααL (B)12,,,s αααL 中任意两个向量均线性无关(C)12,,,s αααL 中存在一个向量不能用其余向量线性表示 (D)12,,,s αααL 中存在一个向量都不能用其余向量线性表示四、(本题满分6分)设()(),x yu yf xg y x=+其中函数f 、g 具有二阶连续导数,求222.u u x yx x y ∂∂+∂∂∂五、(本题满分8分)设函数()y y x =满足微分方程322e ,xy y y '''-+=其图形在点(0,1)处的切线与曲线21y x x =--在该点处的切线重合,求函数().y y x = 六、(本题满分9分)设位于点(0,1)的质点A 对质点M 的引力大小为2(0kk r>为常数,r 为A 质点与M 之间的距离),质点M沿直线y =自(2,0)B 运动到(0,0),O 求在此运动过程中质点A 对质点M 的引力所作的功.七、(本题满分6分)已知,=AP BP 其中100100000,210,001211⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦B P 求5,.A A八、(本题满分8分)已知矩阵20000101x ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦A 与20000001y ⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B 相似. (1)求x 与.y(2)求一个满足1-=P AP B 的可逆阵.P九、(本题满分9分)设函数()f x 在区间[,]a b 上连续,且在(,)a b 内有()0,f x '>证明:在(,)a b 内存在唯一的,ξ使曲线()y f x =与两直线(),y f x a ξ==所围平面图形面积1S 是曲线()y f x =与两直线(),y f x b ξ==所围平面图形面积2S 的3倍.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)设在三次独立试验中,事件A 出现的概率相等,若已知A 至少出现一次的概率等于19,27则事件A 在一次试验中出现的概率是____________. (2)若在区间(0,1)内任取两个数,则事件”两数之和小于65”的概率为____________. (3)设随机变量X 服从均值为10,均方差为0.02的正态分布,已知22(),(2.5)0.9938,u xx du φφ-==⎰则X 落在区间(9.95,10.05)内的概率为____________.十一、(本题满分6分)设随机变量X 的概率密度函数为21(),(1)X f x x π=-求随机变量1Y =-的概率密度函数().Y f y1989年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)已知(3)2,f '=则0(3)(3)lim2h f h f h→--= _____________.(2)设()f x 是连续函数,且1()2(),f x x f t dt =+⎰则()f x =_____________.(3)设平面曲线L为下半圆周y =则曲线积分22()Lx y ds +⎰=_____________.(4)向量场div u 在点(1,1,0)P 处的散度div u =_____________.(5)设矩阵300100140,010,003001⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦A I 则矩阵1(2)--A I =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)当0x >时,曲线1siny x x= (A)有且仅有水平渐近线 (B)有且仅有铅直渐近线(C)既有水平渐近线,又有铅直渐近线(D)既无水平渐近线,又无铅直渐近线(2)已知曲面224z x y =--上点P 处的切平面平行于平面2210,x y z ++-=则点的坐标是 (A)(1,1,2)- (B)(1,1,2)- (C)(1,1,2)(D)(1,1,2)--(3)设线性无关的函数都是二阶非齐次线性方程的解是任意常数,则该非齐次方程的通解是 (A)11223c y c y y ++(B)1122123()c y c y c c y +-+(C)1122123(1)c y c y c c y +---(D)1122123(1)c y c y c c y ++--(4)设函数2(),01,f x x x =≤<而1()sin ,,nn S x bn x x π∞==-∞<<+∞∑其中102()sin ,1,2,3,,n b f x n xdx n π==⎰L 则1()2S -等于(A)12- (B)14-(C)14 (D)12(5)设A 是n 阶矩阵,且A 的行列式0,=A 则A 中 (A)必有一列元素全为0 (B)必有两列元素对应成比例 (C)必有一列向量是其余列向量的线性组合(D)任一列向量是其余列向量的线性组合三、(本题共3小题,每小题5分,满分15分)(1)设(2)(,),z f x y g x xy =-+其中函数()f t 二阶可导,(,)g u v 具有连续二阶偏导数,求2.zx y ∂∂∂(2)设曲线积分2()cxy dx y x dy ϕ+⎰与路径无关,其中()x ϕ具有连续的导数,且(0)0,ϕ=计算(1,1)2(0,0)()xy dx y x dy ϕ+⎰的值.(3)计算三重积分(),x z dv Ω+⎰⎰⎰其中Ω是由曲面z =与z =所围成的区域.四、(本题满分6分) 将函数1()arctan 1xf x x+=-展为x 的幂级数.五、(本题满分7分) 设0()sin ()(),xf x x x t f t dt =--⎰其中f 为连续函数,求().f x六、(本题满分7分)证明方程0ln e x x π=-⎰在区间(0,)+∞内有且仅有两个不同实根. 七、(本题满分6分)问λ为何值时,线性方程组13x x λ+=123422x x x λ++=+ 1236423x x x λ++=+有解,并求出解的一般形式.八、(本题满分8分)假设λ为n 阶可逆矩阵A 的一个特征值,证明 (1)1λ为1-A 的特征值. (2)λA为A 的伴随矩阵*A 的特征值.九、(本题满分9分) 设半径为R 的球面∑的球心在定球面2222(0)x y z a a ++=>上,问当R 为何值时,球面∑在定球面内部的那部分的面积最大?十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上)(1)已知随机事件A 的概率()0.5,P A =随机事件B 的概率()0.6P B =及条件概率(|)0.8,P B A =则和事件A B U 的概率()P A B U =____________.(2)甲、乙两人独立地对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为____________. (3)若随机变量ξ在(1,6)上服从均匀分布,则方程210x x ξ++=有实根的概率是____________.十一、(本题满分6分)设随机变量X 与Y 独立,且X 服从均值为1、标准差(均方差)的正态分布,而Y 服从标准正态分布.试求随机变量23Z X Y =-+的概率密度函数.1990年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)2x t=-+(1)过点(1,21)M-且与直线34y t=-垂直的平面方程是_____________.1z t=-(2)设a为非零常数,则lim()xxx ax a→∞+-=_____________.(3)设函数()f x=111xx≤>,则[()]f f x=_____________.(4)积分222e yxdx dy-⎰⎰的值等于_____________.(5)已知向量组1234(1,2,3,4),(2,3,4,5),(3,4,5,6),(4,5,6,7),====αααα则该向量组的秩是_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设()f x是连续函数,且e()(),xxF x f t dt-=⎰则()F x'等于(A)e(e)()x xf f x----(B)e(e)()x xf f x---+(C)e(e)()x xf f x---(D)e(e)()x xf f x--+(2)已知函数()f x具有任意阶导数,且2()[()],f x f x'=则当n为大于2的正整数时,()f x的n阶导数()()nf x是(A)1![()]nn f x+(B)1[()]nn f x+(C)2[()]nf x(D)2![()]nn f x(3)设a为常数,则级数21sin()[nnan∞=∑(A)绝对收敛(B)条件收敛(C)发散(D)收敛性与a的取值有关(4)已知()f x在0x=的某个邻域内连续,且()(0)0,lim2,1cosxf xfx→==-则在点0x=处()f x(A)不可导(B)可导,且(0)0f'≠(C)取得极大值(D)取得极小值(5)已知1β、2β是非齐次线性方程组=AX b的两个不同的解1,α、2α是对应其次线性方程组=AX0的基础解析1,k、2k为任意常数,则方程组=AX b的通解(一般解)必是(A)1211212()2k k-+++ββααα(B)1211212()2k k++-+ββααα(C)1211212()2k k-+++ββαββ(D)1211212()2k k++-+ββαββ三、(本题共3小题,每小题5分,满分15分)(1)求12ln(1).(2)xdxx+-⎰(2)设(2,sin),z f x y y x=-其中(,)f u v具有连续的二阶偏导数,求2.zx y∂∂∂(3)求微分方程244e xy y y -'''++=的通解(一般解).四、(本题满分6分) 求幂级数(21)nn n x∞=+∑的收敛域,并求其和函数.五、(本题满分8分) 求曲面积分2SI yzdzdx dxdy =+⎰⎰其中S 是球面2224x y z ++=外侧在0z ≥的部分.六、(本题满分7分)设不恒为常数的函数()f x 在闭区间[,]a b 上连续,在开区间(,)a b 内可导,且()().f a f b =证明在(,)a b 内至少存在一点,ξ使得()0.f ξ'> 七、(本题满分6分) 设四阶矩阵1100213401100213,0011002100010002-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦B C 且矩阵A 满足关系式1()-''-=A E C B C E其中E 为四阶单位矩阵1,-C 表示C 的逆矩阵,'C 表示C 的转置矩阵.将上述关系式化简并求矩阵.A八、(本题满分8分)求一个正交变换化二次型22212312132344448f x x x x x x x x x =++-+-成标准型.九、(本题满分8分)质点P 沿着以AB 为直径的半圆周,从点(1,2)A 运动到点(3,4)B 的过程中受变力F r 作用(见图).F r的大小等于点P 与原点O 之间的距离,其方向垂直于线段OP 且与y 轴正向的夹角小于.2π求变力F r 对质点P 所作的功.十、填空题(本题共3小题,每小题2分,满分6分.把答案填在题中横线上) (1)已知随机变量X 的概率密度函数1()e ,2xf x x -=-∞<<+∞则X 的概率分布函数()F x =____________.(2)设随机事件A 、B 及其和事件的概率分别是0.4、0.3和0.6,若B 表示B 的对立事件,那么积事件AB 的概率()P AB =____________.(3)已知离散型随机变量X 服从参数为2的泊松()Poisson 分布,即22e {},0,1,2,,!k P X k k k -===L 则随机变量32Z X =-的数学期望()E Z =____________.十一、(本题满分6分)设二维随机变量(,)X Y 在区域:01,D x y x <<<内服从均匀分布,求关于X 的边缘概率密度函数及随机变量21Z X =+的方差().D Z1991年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设21cos x t y t=+=,则22d ydx =_____________.(2)由方程xyz =(,)z z x y =在点(1,0,1)-处的全微分dz =_____________.(3)已知两条直线的方程是1212321:;:.101211x y z x y zl l ---+-====-则过1l 且平行于2l 的平面方程是_____________. (4)已知当0x →时123,(1)1ax +-与cos 1x -是等价无穷小,则常数a =_____________.(5)设4阶方阵52002100,00120011⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦A 则A 的逆阵1-A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)曲线221e 1ex x y --+=- (A)没有渐近线 (B)仅有水平渐近线(C)仅有铅直渐近线(D)既有水平渐近线又有铅直渐近线(2)若连续函数()f x 满足关系式20()()ln 2,2tf x f dt π=+⎰则()f x 等于 (A)e ln 2x (B)2e ln 2x (C)e ln 2x +(D)2e ln 2x +(3)已知级数12111(1)2,5,n n n n n a a ∞∞--==-==∑∑则级数1n n a ∞=∑等于(A)3 (B)7(C)8(D)9(4)设D 是平面xoy 上以(1,1)、(1,1)-和(1,1)--为顶点的三角形区域1,D 是D 在第一象限的部分,则(cos sin )Dxy x y dxdy +⎰⎰等于(A)12cos sin D x ydxdy ⎰⎰(B)12D xydxdy ⎰⎰(C)14(cos sin )D xy x y dxdy +⎰⎰(D)0(5)设n 阶方阵A 、B 、C 满足关系式,=ABC E 其中E 是n 阶单位阵,则必有 (A)=ACB E (B)=CBA E (C)=BAC E (D)=BCA E三、(本题共3小题,每小题5分,满分15分)(1)求20).x π+→(2)设n r 是曲面222236x y z ++=在点(1,1,1)P 处的指向外侧的法向量,求函数u =P 处沿方向n r 的方向导数.(3)22(),x y z dv Ω++⎰⎰⎰其中Ω是由曲线 220y zx ==绕z 轴旋转一周而成的曲面与平面4z =所围城的立体.四、(本题满分6分)过点(0,0)O 和(,0)A π的曲线族sin (0)y a x a =>中,求一条曲线,L 使沿该曲线O 从到A 的积分3(1)(2)Ly dx x y dy +++⎰的值最小.五、(本题满分8分)将函数()2(11)f x x x =+-≤≤展开成以2为周期的傅里叶级数,并由此求级数211n n∞=∑的和. 六、(本题满分7分)设函数()f x 在[0,1]上连续,(0,1)内可导,且1233()(0),f x dx f =⎰证明在(0,1)内存在一点,c 使()0.f c '=七、(本题满分8分)已知1234(1,0,2,3),(1,1,3,5),(1,1,2,1),(1,2,4,8)a a ===-+=+αααα及(1,1,3,5).b =+β (1)a 、b 为何值时,β不能表示成1234,,,αααα的线性组合?(2)a 、b 为何值时,β有1234,,,αααα的唯一的线性表示式?写出该表示式.八、(本题满分6分)设A 是n 阶正定阵,E 是n 阶单位阵,证明+A E 的行列式大于1.九、(本题满分8分)在上半平面求一条向上凹的曲线,其上任一点(,)P x y 处的曲率等于此曲线在该点的法线段PQ 长度的倒数(Q 是法线与x 轴的交点),且曲线在点(1,1)处的切线与x 轴平行.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)若随机变量X 服从均值为2、方差为2σ的正态分布,且{24}0.3,P X <<=则{0}P X <=____________.(2)随机地向半圆0y a <<为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点和该点的连线与x 轴的夹角小于4π的概率为____________.十一、(本题满分6分)设二维随机变量(,)X Y 的密度函数为(,)f x y =(2)2e 0,00 x y x y -+>>其它求随机变量2Z X Y =+的分布函数.1992年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)设函数()y y x =由方程ecos()0x yxy ++=确定,则dydx=_____________.(2)函数222ln()u x y z =++在点(1,2,2)M -处的梯度grad Mu =_____________.(3)设()f x =211x -+0x x ππ-<≤<≤,则其以2π为周期的傅里叶级数在点x π=处收敛于_____________.(4)微分方程tan cos y y x x '+=的通解为y =_____________.(5)设111212121212,n n n n n n a b a b a b a b a b a b a b a b a b ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦A L L L L L L L其中0,0,(1,2,,).i i a b i n ≠≠=L 则矩阵A 的秩()r A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)当1x →时,函数1211e 1x x x ---的极限 (A)等于2 (B)等于0(C)为∞(D)不存在但不为∞(2)级数1(1)(1cos )(nn an∞=--∑常数0)a >(A)发散 (B)条件收敛(C)绝对收敛(D)收敛性与a 有关(3)在曲线23,,x t y t z t ==-=的所有切线中,与平面24x y z ++=平行的切线 (A)只有1条 (B)只有2条 (C)至少有3条(D)不存在(4)设32()3,f x x x x =+则使()(0)n f存在的最高阶数n 为(A)0 (B)1 (C)2(D)3(5)要使12100,121⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭ξξ都是线性方程组=AX 0的解,只要系数矩阵A 为(A)[]212-(B)201011-⎡⎤⎢⎥⎣⎦(C)102011-⎡⎤⎢⎥-⎣⎦(D)011422011-⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦三、(本题共3小题,每小题5分,满分15分)(1)求x x →(2)设22(e sin ,),xz f y x y =+其中f 具有二阶连续偏导数,求2.zx y ∂∂∂(3)设()f x = 21e xx -+ 00x x ≤>,求31(2).f x dx -⎰四、(本题满分6分) 求微分方程323e xy y y -'''+-=的通解.五、(本题满分8分)计算曲面积分323232()()(),x az dydz y ax dzdx z ay dxdy ∑+++++⎰⎰其中∑为上半球面z =.六、(本题满分7分)设()0,(0)0,f x f ''<=证明对任何120,0,x x >>有1212()()().f x x f x f x +<+七、(本题满分8分)在变力F yzi zxj xyk =++r r r r 的作用下,质点由原点沿直线运动到椭球面2222221x y z a b c++=上第一卦限的点(,,),M ξηζ问当ξ、η、ζ取何值时,力F r所做的功W 最大?并求出W 的最大值.八、(本题满分7分)设向量组123,,ααα线性相关,向量组234,,ααα线性无关,问: (1)1α能否由23,αα线性表出?证明你的结论. (2)4α能否由123,,ααα线性表出?证明你的结论. 九、(本题满分7分)设3阶矩阵A 的特征值为1231,2,3,λλλ===对应的特征向量依次为1231111,2,3,149⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ξξξ又向量12.3⎛⎫⎪= ⎪ ⎪⎝⎭β(1)将β用123,,ξξξ线性表出. (2)求(nn A β为自然数).十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上) (1)已知11()()(),()0,()(),46P A P B P C P AB P AC P BC ======则事件A 、B 、C 全不发生的概率为____________. (2)设随机变量X 服从参数为1的指数分布,则数学期望2{e }XE X -+=____________.十一、(本题满分6分)设随机变量X 与Y 独立,X 服从正态分布2(,),N Y μσ服从[,]ππ-上的均匀分布,试求Z X Y =+的概率分布密度(计算结果用标准正态分布函数Φ表示,其中22()e)t xx dt --∞Φ=⎰.1993年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上) (1)函数1()(2(0)xF x dt x =->⎰的单调减少区间为_____________.(2)由曲线223212x y z +==绕y 轴旋转一周得到的旋转面在点处的指向外侧的单位法向量为_____________.(3)设函数2()()f x x x x πππ=+-<<的傅里叶级数展开式为01(cos sin ),2n n n a a nx b nx ∞=++∑则其中系数3b 的值为_____________. (4)设数量场u =则div(grad )u =_____________.(5)设n 阶矩阵A 的各行元素之和均为零,且A 的秩为1,n -则线性方程组=AX 0的通解为_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)设sin 2340()sin(),(),xf x t dtg x x x ==+⎰则当0x →时,()f x 是()g x 的(A)等价无穷小 (B)同价但非等价的无穷小 (C)高阶无穷小(D)低价无穷小(2)双纽线22222()x y x y +=-所围成的区域面积可用定积分表示为(A)402cos 2d πθθ⎰(B)404cos 2d πθθ⎰(C)2θ(D)2401(cos 2)2d πθθ⎰(3)设有直线1158:121x y z l --+==-与2:l 623x y y z -=+=则1l 与2l 的夹角为 (A)6π(B)4π (C)3π(D)2π(4)设曲线积分[()e ]sin ()cos x Lf t ydx f x ydy --⎰与路径无关,其中()f x 具有一阶连续导数,且(0)0,f =则()f x 等于(A)e e 2x x --(B)e e 2x x --(C)e e 12x x-+-(D)e e 12x x-+-(5)已知12324,369t ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦Q P 为三阶非零矩阵,且满足0,=PQ 则 (A)6t =时P 的秩必为1(B)6t =时P 的秩必为2 (C)6t ≠时P 的秩必为1(D)6t ≠时P 的秩必为2三、(本题共3小题,每小题5分,满分15分) (1)求21lim(sincos ).x x x x →∞+(2)求.x(3)求微分方程22,x y xy y '+=满足初始条件11x y ==的特解.四、(本题满分6分) 计算22,xzdydz yzdzdx z dxdy ∑+-⎰⎰Ò其中∑是由曲面z =与z =.五、(本题满分7分)求级数20(1)(1)2n nn n n ∞=--+∑的和.六、(本题共2小题,每小题5分,满分10分) (1)设在[0,)+∞上函数()f x 有连续导数,且()0,(0)0,f x k f '≥><证明()f x 在(0,)+∞内有且仅有一个零点. (2)设,b a e >>证明.b a a b >七、(本题满分8分)已知二次型22212312323(,,)2332(0)f x x x x x x ax x a =+++>通过正交变换化成标准形22212325,f y y y =++求参数a 及所用的正交变换矩阵.八、(本题满分6分)设A 是n m ⨯矩阵,B 是m n ⨯矩阵,其中,n m <I 是n 阶单位矩阵,若,=AB I 证明B 的列向量组线性无关.九、(本题满分6分)设物体A 从点(0,1)出发,以速度大小为常数v 沿y 轴正向运动.物体B 从点(1,0)-与A 同时出发,其速度大小为2,v 方向始终指向,A 试建立物体B 的运动轨迹所满足的微分方程,并写出初始条件.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)一批产品共有10个正品和2个次品,任意抽取两次,每次抽一个,抽出后不再放回,则第二次抽出的是次品的概率为____________.(2)设随机变量X 服从(0,2)上的均匀分布,则随机变量2Y X =在(0,4)内的概率分布密度()Y f y =____________.十一、(本题满分6分)设随机变量X 的概率分布密度为1()e ,.2xf x x -=-∞<<+∞ (1)求X 的数学期望EX 和方差.DX(2)求X 与X 的协方差,并问X 与X 是否不相关? (3)问X 与X 是否相互独立?为什么?1994年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)011limcot ()sin x x xπ→-= _____________.(2)曲面e 23xz xy -+=在点(1,2,0)处的切平面方程为_____________.(3)设e sin ,xx u y -=则2u x y ∂∂∂在点1(2,)π处的值为_____________.(4)设区域D 为222,x y R +≤则2222()Dx y dxdy a b +⎰⎰=_____________.(5)已知11[1,2,3],[1,,],23==αβ设,'=A αβ其中'α是α的转置,则n A =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设4342342222222sin cos ,(sin cos ),(sin cos ),1x M xdx N x x dx P x x x dx x ππππππ---==+=-+⎰⎰⎰则有 (A)N P M << (B)M P N << (C)N M P <<(D)P M N <<(2)二元函数(,)f x y 在点00(,)x y 处两个偏导数00(,)x f x y '、00(,)y f x y '存在是(,)f x y 在该点连续的 (A)充分条件而非必要条件 (B)必要条件而非充分条件(C)充分必要条件(D)既非充分条件又非必要条件(3)设常数0,λ>且级数21nn a ∞=∑收敛,则级数1(1)nn ∞=-∑(A)发散(B)条件收敛 (C)绝对收敛(D)收敛性与λ有关(4)2tan (1cos )lim2,ln(12)(1)x x a x b x c x d e -→+-=-+-其中220,a c +≠则必有(A)4b d = (B)4b d =- (C)4a c =(D)4a c =-(5)已知向量组1234,,,αααα线性无关,则向量组 (A)12233441,,,++++αααααααα线性无关 (B)12233441,,,----αααααααα线性无关 (C)12233441,,,+++-αααααααα线性无关 (D)12233441,,,++--αααααααα线性无关三、(本题共3小题,每小题5分,满分15分)(1)设2221cos()cos()t x t y t t udu==-⎰,求dydx 、22d y dx 在t =. (2)将函数111()ln arctan 412x f x x x x +=+--展开成x 的幂级数.(3)求.sin(2)2sin dxx x +⎰四、(本题满分6分)计算曲面积分2222,Sxdydz z dxdy x y z +++⎰⎰其中S 是由曲面222x y R +=及,(0)z R z R R ==->两平面所围成立体表面的外侧.五、(本题满分9分)设()f x 具有二阶连续函数,(0)0,(0)1,f f '==且2[()()][()]0xy x y f x y dx f x x y dy '+-++=为一全微分方程,求()f x 及此全微分方程的通解.六、(本题满分8分)设()f x 在点0x =的某一邻域内具有二阶连续导数,且0()lim 0,x f x x →=证明级数11()n f n ∞=∑绝对收敛.七、(本题满分6分)已知点A 与B 的直角坐标分别为(1,0,0)与(0,1,1).线段AB 绕x 轴旋转一周所成的旋转曲面为.S 求由S 及两平面0,1z z ==所围成的立体体积.八、(本题满分8分) 设四元线性齐次方程组(Ⅰ)为122400x x x x +=-=,又已知某线性齐次方程组(Ⅱ)的通解为12(0,1,1,0)(1,2,2,1).k k +- (1)求线性方程组(Ⅰ)的基础解析.(2)问线性方程组(Ⅰ)和(Ⅱ)是否有非零公共解?若有,则求出所有的非零公共解.若没有,则说明理由. 九、(本题满分6分) 设A 为n 阶非零方阵*,A 是A 的伴随矩阵,'A 是A 的转置矩阵,当*'=A A 时,证明0.≠A十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)已知A 、B 两个事件满足条件()(),P AB P AB =且(),P A p =则()P B =____________. (2)设相互独立的两个随机变量,X Y 具有同一分布率,且X 的分布率为则随机变量max{,}Z X Y =的分布率为____________.十一、(本题满分6分)设随机变量X 和Y 分别服从正态分布2(1,3)N 和2(0,4),N 且X 与Y 的相关系数1,2xy ρ=-设,32X Y Z =+ (1)求Z 的数学期望EZ 和DZ 方差.(2)求X 与Z 的相关系数.xz ρ (3)问X 与Y 是否相互独立?为什么?1995年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)2sin 0lim(13)xx x →+=_____________.(2)202cos x d x t dt dx⎰= _____________.(3)设()2,⨯=a b c g 则[()()]()+⨯++a b b c c a g =_____________.(4)幂级数2112(3)n n nn nx ∞-=+-∑的收敛半径R =_____________. (5)设三阶方阵,A B 满足关系式16,-=+A BA A BA 且100310,41007⎡⎤⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦A 则B =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内)(1)设有直线:L 321021030x y z x y z +++=--+=,及平面:4220,x y z π-+-=则直线L(A)平行于π (B)在π上 (C)垂直于π(D)与π斜交(2)设在[0,1]上()0,f x ''>则(0),(1),(1)(0)f f f f ''-或(0)(1)f f -的大小顺序是 (A)(1)(0)(1)(0)f f f f ''>>- (B)(1)(1)(0)(0)f f f f ''>-> (C)(1)(0)(1)(0)f f f f ''->>(D)(1)(0)(1)(0)f f f f ''>->(3)设()f x 可导,()()(1sin ),F x f x x =+则(0)0f =是()F x 在0x =处可导的 (A)充分必要条件 (B)充分条件但非必要条件(C)必要条件但非充分条件 (D)既非充分条件又非必要条件(4)设(1)ln(1nn u =-则级数 (A)1nn u∞=∑与21nn u∞=∑都收敛(B)1nn u∞=∑与21nn u∞=∑都发散(C)1nn u∞=∑收敛,而21nn u∞=∑发散 (D)1nn u∞=∑收敛,而21nn u∞=∑发散(5)设11121311121321222321222312313233313233010100,,100,010,001101a a a a a a a a a a a a a a a a a a ⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦A B P P 则必有(A)12AP P =B (B)21AP P =B (C)12P P A =B(D)21P P A =B三、(本题共2小题,每小题5分,满分10分) (1)设2(,,),(,e ,)0,sin ,yu f x y z x z y x ϕ===其中,f ϕ都具有一阶连续偏导数,且0.z ϕ∂≠∂求.du dx(2)设函数()f x 在区间[0,1]上连续,并设1(),f x dx A =⎰求11()().xdx f x f y dy ⎰⎰四、(本题共2小题,每小题6分,满分12分)(1)计算曲面积分,zdS ∑⎰⎰其中∑为锥面z =在柱体222x y x +≤内的部分.(2)将函数()1(02)f x x x =-≤≤展开成周期为4的余弦函数.五、(本题满分7分)设曲线L 位于平面xOy 的第一象限内,L 上任一点M 处的切线与y 轴总相交,交点记为.A 已知,MA OA =且L 过点33(,),22求L 的方程.六、(本题满分8分)设函数(,)Q x y 在平面xOy 上具有一阶连续偏导数,曲线积分2(,)Lxydx Q x y dy +⎰与路径无关,并且对任意t恒有(,1)(1,)(0,0)(0,0)2(,)2(,),t t xydx Q x y dy xydx Q x y dy +=+⎰⎰求(,).Q x y七、(本题满分8分)假设函数()f x 和()g x 在[,]a b 上存在二阶导数,并且()0,()()()()0,g x f a f b g a g b ''≠====试证:(1)在开区间(,)a b 内()0.g x ≠(2)在开区间(,)a b 内至少存在一点,ξ使()().()()f f g g ξξξξ''=''八、(本题满分7分)设三阶实对称矩阵A 的特征值为1231,1,λλλ=-==对应于1λ的特征向量为101,1⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦ξ求.A九、(本题满分6分)设A 为n 阶矩阵,满足('=AA I I 是n 阶单位矩阵,'A 是A 的转置矩阵),0,<A 求.+A I十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上) (1)设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则2X 的数学期望2()E X =____________.(2)设X 和Y 为两个随机变量,且34{0,0},{0}{0},77P X Y P X P Y ≥≥=≥=≥=则{max(,)0}P X Y ≥=____________.十一、(本题满分6分)设随机变量X 的概率密度为()X f x = e 0x - 0x x ≥<,求随机变量e X Y =的概率密度().Y f y1996年全国硕士研究生入学统一考试数学(一)试卷一、填空题(本题共5小题,每小题3分,满分15分.把答案填在题中横线上)(1)设2lim()8,xx x a x a→∞+=-则a =_____________.(2)设一平面经过原点及点(6,3,2),-且与平面428x y z -+=垂直,则此平面方程为_____________. (3)微分方程22e xy y y '''-+=的通解为_____________. (4)函数ln(u x =+在点(1,0,1)A 处沿点A 指向点(3,2,2)B -方向的方向导数为_____________.(5)设A 是43⨯矩阵,且A 的秩()2,r =A 而102020,103⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦B 则()r AB =_____________.二、选择题(本题共5小题,每小题3分,满分15分.每小题给出的四个选项中,只有一个符合题目要求,把所选项前的字母填在题后的括号内) (1)已知2()()x ay dx ydyx y +++为某函数的全微分,a 则等于 (A)-1 (B)0 (C)1(D)2(2)设()f x 具有二阶连续导数,且0()(0)0,lim1,x f x f x→'''==则 (A)(0)f 是()f x 的极大值 (B)(0)f 是()f x 的极小值(C)(0,(0))f 是曲线()y f x =的拐点(D)(0)f 不是()f x 的极值,(0,(0))f 也不是曲线()y f x =的拐点 (3)设0(1,2,),n a n >=L 且1n n a ∞=∑收敛,常数(0,),2πλ∈则级数21(1)(tan )n n n n a n λ∞=-∑ (A)绝对收敛(B)条件收敛(C)发散(D)散敛性与λ有关(4)设有()f x 连续的导数22,(0)0,(0)0,()()(),x f f F x x t f t dt '=≠=-⎰且当0x →时,()F x '与k x 是同阶无穷小,则k 等于(A)1 (B)2 (C)3 (D)4(5)四阶行列式112233440000000a b a b a b b a 的值等于(A)12341234a a a a b b b b -(B)12341234a a a a b b b b + (C)12123434()()a a b b a a b b --(D)23231414()()a a b b a a b b --三、(本题共2小题,每小题5分,满分10分) (1)求心形线(1cos )r a θ=+的全长,其中0a >是常数.四、(本题共2小题,每小题6分,满分12分)(1)计算曲面积分(2),Sx z dydz zdxdy ++⎰⎰其中S 为有向曲面22(01),z x y x =+≤≤其法向量与z 轴正向的夹角为锐角.(2)设变换 2u x y v x ay =-=+可把方程2222260z z z x x y y ∂∂∂+-=∂∂∂∂简化为20,zu v∂=∂∂求常数.a五、(本题满分7分) 求级数211(1)2nn n ∞=-∑的和.六、(本题满分7分)设对任意0,x >曲线()y f x =上点(,())x f x 处的切线在y 轴上的截距等于01(),xf t dt x ⎰求()f x 的一般表达式.七、(本题满分8分)设()f x 在[0,1]上具有二阶导数,且满足条件(),(),f x a f x b ''≤≤其中,a b 都是非负常数,c 是(0,1)内任意一点.证明()2.2b f c a '≤+设,T A =-I ξξ其中I 是n 阶单位矩阵,ξ是n 维非零列向量,Tξ是ξ的转置.证明 (1)2=A A 的充分条件是 1.T=ξξ (2)当1T=ξξ时,A 是不可逆矩阵. 九、(本题满分8分)已知二次型222123123121323(,,)55266f x x x x x cx x x x x x x =++-+-的秩为2, (1)求参数c 及此二次型对应矩阵的特征值. (2)指出方程123(,,)1f x x x =表示何种二次曲面.十、填空题(本题共2小题,每小题3分,满分6分.把答案填在题中横线上)(1)设工厂A 和工厂B 的产品的次品率分别为1%和2%,现从由A 和B 的产品分别占60%和40%的一批产品中随机抽取一件,发现是次品,则该次品属A 生产的概率是____________.(2)设,ξη是两个相互独立且均服从正态分布2)N 的随机变量,则随机变量ξη-的数学期望()E ξη-=____________.十一、(本题满分6分)设,ξη是两个相互独立且服从同一分布的两个随机变量,已知ξ的分布率为1(),1,2,3.3P i i ξ=== 又设max(,),min(,).X Y ξηξη==(1)写出二维随机变量的分布率:(2)求随机变量X 的数学期望().E X。

南开大学数学分析 2008-2012年考研真题及答案解析

南开大学数学分析 2008-2012年考研真题及答案解析

目录Ⅰ历年考研真题试卷 (2)南开大学2008年招收攻读硕士学位研究生入学考试试卷 (2)南开大学2009年招收攻读硕士学位研究生入学考试试卷 (4)南开大学2010年招收攻读硕士学位研究生入学考试试卷 (6)南开大学2011年招收攻读硕士学位研究生入学考试试卷 (8)南开大学2012年招收攻读硕士学位研究生入学考试试卷 (10)Ⅱ历年考研真题试卷答案解析 (12)南开大学2008年招收攻读硕士学位研究生入学考试试卷答案解析 (12)南开大学2009年招收攻读硕士学位研究生入学考试试卷答案解析 (19)南开大学2010年招收攻读硕士学位研究生入学考试试卷答案解析 (28)南开大学2011年招收攻读硕士学位研究生入学考试试卷答案解析 (36)南开大学2012年招收攻读硕士学位研究生入学考试试卷答案解析 (44)Ⅰ历年考研真题试卷南开大学2008年招收攻读硕士学位研究生入学考试试卷考试专业:陈省身数学研究所基础数学、概率论与数理统计、应用数学;数学科学学院基础数学、计算数学、概率论与数理统计、应用数学、生物信息学、统计学专业考试科目:701数学分析一、计算题1.求极限2.求和3.已知4.设则x=?5.设区域,计算二、设x1>-6,证明数列收敛,并求其极限。

三、设,并且使得,求证,使得四、设f(x)在[α,+∞)一致连续且广义积分收敛,求证五、设f(x)在(-∞,+∞)可微,并且满足,其中0<m<1。

认取实数证明级数收敛。

六、证明:函数项级数(1)在(0,+∞)收敛,但不一致收敛;(2)和函数f(x)在(0,+∞)任意次可导七、作变换,将方程变换为ω关于自变量u、v的方程。

八、求由曲面将球体分成两部分的体积之比(α>0)。

九、设f(x)是(0,+∞)上具有二阶连续导数的正函数,且,有界,则。

2012考研真题及答案解析专题一...

2012考研真题及答案解析专题一...

2012考研真题及答案解析专题一、单项选择题:1~65小题,每小题2分,共130分。

下列每题给出的四个选项中,只有一个选项是符合题目要求的。

请在答题卡上将所选项的字母涂黑。

1、不属于心理状态的是:A、感觉B、想象C、注意D、记忆2、大脑两半球之间传递信息的神经结构是:A、杏仁核B、内囊C、边缘系统D、胼胝体3、神经系统最小的单位是:A、突触B、轴突C、神经元D、胞体4、大部分色盲不能区分:A、红青B、红黄C、红蓝D、红绿5、感受性提高的感觉适应现象是:A、触觉适应B、嗅觉C、暗觉D、明觉6、当人看到下图,一般都只看到一些乱点,经提示这是一幅骑马图片后,人们就觉得像所提示的内容。

这主要体现的知觉特性是:A、知觉整体性B、知觉理解性C知觉恒常性、D、知觉选择性7、立体电影利用知觉的A、运动视差B、纹理梯度C、线条透视D、双眼视差8、5岁小孩给娃娃讲妈妈讲过的故事,这种语言属于:A、对话B、独白C、语言获得D、语言理解9、安德森提出语言产生三阶段,包括:A、构造、转化、执行B、概念化、公式化、发音C、构造、转化、发音D、概念化、公式化、执行10、在沙赫特和辛格的情绪唤醒模型中,对情绪产生起关键作用的因素是:A、注意B、认知C、生理变化D、情境11、人对同一个目的同时产生两种对应的动机是:A、双趋冲突B、双避冲突C、趋避冲突D、多重趋避冲突2.12、根据马斯洛的需要层次理论,人的需要从低级到高级的正确排序:A、生理需要、安全的需要、尊重的需要、归属与爱的需要、自我实现的需要B、生理需要、安全的需要、归属与爱的需要、尊重的需要、自我实现的需要C、生理需要、归属与爱的需要、安全的需要、尊重的需要、自自我实现的需要D、生生理需要、归属与爱的需要、尊重的需要、安全的需要、自自我实现的需要13、某生学业成绩好,但其他表现一般,根据斯滕伯格的成功智力理论,其在校表现优异智力是:A、分析性智力B、创造性智力C、实践智力D、综合性智力14、下列属于晶体智力的是:A、形成抽象概念的能力B、发现复杂关系的能力C、理解词汇能力D、知觉的速度15、最具核心意义的个性心理特点是:A、能力B、气质C、性格D、兴趣16、根据奥尔波特的人格特质理论,构成个体独特性的重要特质属于:A、首要特质B、中心特质C、根源特质D、共同特质17、根据人对问题思考的速度的差异,卡根等将认真风格类型划分为:A、场独立性与依存性B、冲动型与沉思型C、同时性与继时性D、整体加工与部分加工18、让吸烟上瘾的人扮演因吸烟患肺癌接受治疗,之后他戒了烟。

2012年考研数学一真题解析

2012年考研数学一真题解析

2012年全国硕士研究生入学统一考试数学(一)试卷一、选择题(1-8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 曲线221x xy x +=-渐进线的条数(A )0 (B)1 (C)2 (D)3【考点分析】:曲线的渐近线条数。

【求解过程】:C⏹ 方法一:利用函数图像的平移,将已知的函数的渐近线条数转化为简单的基本函数的渐进线条数。

由于22(1)111(1)(1)11x x x x x y x x x x x ++====+--+--, 可知,221x x y x +=- 的图像是由1y x=的图像向由右平移一个单位,再向上平移一个单位所得。

由于图像平移并不改变其渐进线的条数。

1y x=有两条渐进线,其中一条为水平渐近线0y =,一条为垂直渐近线0x =。

所以221x xy x +=-也有两条渐近线,选择C 。

【相关补充】:函数平移口诀:上加下减,左加右减。

例如,把函数()y f x =依次做以下四次的平移:(1)向上平移1个单位,(2)向下平移2个单位(3)向左平移1个单位(4)向右平移2个单位。

则新函数的解析式为(12)12(1)1y f x f x =+-+-=--。

⏹ 方法二:直接求解函数的渐近线。

因为 22lim 1,1x x xx →∞+=- 所以1y = 为水平渐进线。

又由于有水平渐进线,所以一定不存在同一趋向下的斜渐进线。

又因为221lim ,1x x xx →+=∞-所以1x =为垂直渐进线。

综上所述,221x xy x +=-也有两条渐近线,选择C 。

【相关补充】:斜渐进线的求解步骤:1) 考察是否有lim ()x f x →±∞=∞?若是,则转2)2) 考察是否有()limx f x a x→±∞=(常数)?,若是,则转3) 3) 是否有lim[()]x f x ax b →±∞-=存在?若是,则()y f x =有斜渐进线y ax b =+,上述任何一个步骤中,若否,则无斜渐进线。

考研数学一(向量代数和空间解析几何、多元函数微分学)历年真题

考研数学一(向量代数和空间解析几何、多元函数微分学)历年真题

考研数学一(向量代数和空间解析几何、多元函数微分学)历年真题试卷汇编1(题后含答案及解析)题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.[2018年] 过点(1,0,0)与(0,1,0),且与曲面z=x2+y2相切的平面方程为( ).A.z=0与x+y-z=1B.z=0与2x+2y一z=2C.y=x与x+y一z=1D.y=x与2x+2y一z=2正确答案:B解析:设切点的坐标为(x0,y0,x02+y02),由题意可知切平面的法向量为n=(2x0,2y0,一1),则切平面的方程为2x0(x—x0)+2y0(y—y0)一[z一(x02+y02)]=0 ,即2x0x+2y0y-z一(x02+y02)=0.(*)将点(1,0,0)与(0,1,0)代入上式得解得x0=y0=0或x0=y0=1.将x0,y0的值代入(*)式,可得z=0或2x+2y-z=2.仅B入选.知识模块:向量代数和空间解析几何2.设直线L:及平面π:4x-2y+z一2=0,则直线L( ).A.平行于πB.在π上C.垂直于πD.与π斜交正确答案:C解析:易求得直线L的方向向量为而平面π的法向量为,n=(4,一2,1),故s与n共线,即l的方向向量s与平面π的法向量n平行.因而直线L和平面π垂直.仅C入选.知识模块:向量代数和空间解析几何3.[2002年] 设有三个不同平面的方程ai1x+ai2y+ai3z=bi,i=1,2,3,它们所组成的线性方程组的系数矩阵与增广矩阵的秩为2,则这三个平面可能的位置关系为( ).A.B.C.D.正确答案:B解析:由题设,建立线性方程组系数矩阵和增广矩阵的秩相等且为2,小于未知数个数3.由线性方程组解的理论知,此方程组有无穷多组解,即三个平面有无穷多个交点.对照四个选项,A只有一个交点,C、D无交点,只有B符合要求.仅B入选.知识模块:向量代数和空间解析几何4.设矩阵是满秩的,则直线( ).A.相交于一点B.重合C.平行但不重合D.异面正确答案:A解析:因秩,又经初等行变换得到而经初等行变换,矩阵的秩不变,故两行向量(a1一a2,b1一b2,c1一c2),(a2一a3,b2一b3,c2一c3)线性无关,所以它们不共线.因而两直线的方向向量不平行,也不重合.B、C不能入选.又因两直线分别过点M3(a3,b3,c3),M1(a1,b1,c1).而三向量=(a3-a1,b3-b1,c3-c1),s1=(a1一a2,b1—b2,c1一c2),s2=(a2一a3,b2—b3,c2一c3)共面.这是因为故此两直线不是异面直线,而是共面直线.又因它们不平行,所以必相交.仅A入选.知识模块:向量代数和空间解析几何5.[2008年] 设A为三阶实对称矩阵,如果二次曲面方程[x,y,z]A[x,y,z]T=1在正交变换下的标准方程的图形如图所示,则A的正特征值的个数为( ).A.0B.1C.2D.3正确答案:B解析:由图可知二次曲面为旋转双叶双曲面,其标准方程应为从而方程左端对应二次型的正惯性指数为1,即正特征值的个数为1.仅B入选.知识模块:向量代数和空间解析几何6.[2016年] 设二次型f(x1,x2,x3)=x12+x22+x32+4x1x2+4x1x3+4x2x3,则f(x1,x2,x3)=2在空间直角坐标下表示的二次曲面为( ).A.单叶双曲面B.双叶双曲面C.椭球面D.柱面正确答案:B解析:由f(x1,x2,x3)=x12+x22+x32+4x1x2+4x1x3+4x2x3易求得其矩阵为易知A的特征值为λ1=a+(n一1)b=1+(3—1)×2=5,λ2=λ3=a—b=1—2=一1.或直接计算由|λE—A|==(λ一5)(λ+1)2=0得到λ1=5,λ2=λ3=一1.故此二次型在正交变换X=QY下的标准形为f(y1,y2,y3)=5y12一y22一y32,因而f(y1,y2,y3) 5y12一y22一y32=2,表示双叶双曲面.仅B入选.知识模块:向量代数和空间解析几何7.二元函数在点(0,0)处( ).A.连续,偏导数存在B.连续,偏导数不存在C.不连续,偏导数存在D.不连续,偏导数不存在正确答案:C解析:仅C入选.二元函数f(x,y)在点(0,0)处不连续.这是因为当y=kx 时,有k取不同值时,也不同,故不存在,因而在点(0,0)处f(x,y)不连续.或由点(x,y)沿直线y=x趋于点(0,0)时极限存在但不等于f(0,0)=0证之.事实上,有由偏导数的定义知,fx’(0,0)=,再由对称性有fy’(0,0)=0,故f(x,y)在点(0,0)处的两个偏导数都存在.知识模块:多元函数微分学8.[2012年] 如果函数f(x,y)在点(0,0)处连续,则下列命题正确的是( ).A.若极限存在,则f(x,y)在点(0,0)处可微B.若极限存在,则f(x,y)在点(0,0)处可微C.若f(x,y)在点(0,0)处可微,则极限存在D.若f(x,y)在点(0,0)处可微,则极限存在正确答案:B解析:设(k为常数),则,因而f(x,y)~k(x2+y2)(x→0,y→0).因f(x,y)在点(0,0)处连续,故又则故f(x,y)在点(0,0)处可微.仅B入选.知识模块:多元函数微分学9.[2002年] 考虑二元函数f(x,y)在点(x0,y0)处下面4条性质:(1)f(x,y)在点(x0,y0)处连续;(2)f(x,y)在点(x0,y0)处的两个偏导数连续;(3)f(x,y)在点(x0,y0)处可微;(4)f(x,y)在点(x0,y0)处的两个偏导数存在.若用“P=>Q”表示可由性质P推出性质Q,则有( ).A.(2)=>(3)=>(1)B.(3)=>(2)=>(1)C.(3)=>(4)=>(1)D.(3)=>(1)=>(4)正确答案:A解析:若f(x,y)在点(x0,y0)处的两个偏导数连续,则f(x,y)在点(x0,y0)处可微,而f(x,y)在(x0,y0)处可微时,又必有f(x,y)在(x0,y0)处连续.因而有(2)=>(3)=>(1).仅A入选.知识模块:多元函数微分学10.[2005年] 设有三元方程xy—zlny+exz=1,根据隐函数存在定理,存在点(0,1,1)的一个邻域,在此邻域内该方程( ).A.只能确定一个具有连续偏导数的隐函数z=z(x,y)B.可确定两个具有连续偏导数的隐函数y=y(x,z)和z=z(x,y)C.可确定两个具有连续偏导数的隐函数x=x(y,z)和z=z(x,y)D.可确定两个具有连续偏导数的隐函数x=x(y,z)和y=y(x,z)正确答案:D解析:仅D入选.F(x,y,z)=0,其中F(x,y,z)=xy—zlny+exy一1.显然,F在点(0,1,1)附近对x,y,z均有连续偏导数,且F(0,1,1)=0.相应的三个偏导数为F’z|(0,1,1)=(lny+xexz)|(0,1,1)=0,F’y|(0,1,1)==一1≠0,F’x|(0,1,1)=(y+zexz)|(0,1,1)=2≠0.由隐函数存在定理知,在点(0,1,1)的一个邻域内,由方程F(x,y,z)=xy—zlny+exz一1=0可以确定两个具有连续偏导数的隐函数y=y(x,z),x=x(y,z).知识模块:多元函数微分学11.[2010] 设函数z=z(x,y)由方程确定,其中F为可微函数,且F’z≠0,则= ( ).A.xB.zC.一xD.一z正确答案:B解析:用直接法求之.设,在方程两边对x求偏导.由于x是x,y的函数,求关于x的偏导数时必须也要对z求偏导,得到易解得再在方程两边对y求偏导,同样必须对z也要对y求偏导,得到解得则仅B入选.知识模块:多元函数微分学12.[2005年] 设函数u(x,y)=φ(x+y)+φ(x—y)+∫x-yx+yψ(t)dt,其中φ具有二阶导数,ψ具有一阶导数,则必有( ).A.B.C.D.正确答案:B解析:知识模块:多元函数微分学填空题13.设(a×n)·c=2,则[(a+b)×(b+c)]·(c+a)=______.正确答案:4解析:由叉积对加法的分配律得[(a+b)×(b+c)]·(c+a)=[(a×b)+(a×c)+(b×b)+(b×c)]·(c+a),其中b×b=0.再由点积对加法的分配律得原式=(a×b)·c+(a ×b)·a+(a×c)·c+(a×c)·a+(b×c)·c+(b×c)·a.由混合积的性质知,若a,b,c中有两个相同,则(a×b)·c=0,且(a×b)·c中相邻两向量互换,混合积变号,从而原式=2(a×b)·c=4.知识模块:向量代数和空间解析几何14.设一平面过原点及点A(6,一3,2),且与平面4x—y+2z=8垂直,则此平面方程为______.正确答案:2x+2y-3z=0解析:已知平面的法向量n1=(4,一1,2),又,由可取所求平面的法向量为n=(2,2,一3).由点法式得所求平面方程为2(x一6)+2(y+3)一3(z一2)=2x+2y 一3z=0.知识模块:向量代数和空间解析几何15.[2006年] 点(2,1,0)到平面3x+4y一5z=0的距离d=______.正确答案:解析:由点到平面的距离公式得到知识模块:向量代数和空间解析几何16.[2007年] 设f(u,v)为二元可微函数,z=f(xy,yx),则=______.正确答案:f’1·yxy-1+f’2·yxlny解析:设u=xy,v=yx,得到=f’1`yxy-1+f’2·yxlny.知识模块:多元函数微分学17.[2009年] 设函数f(u,v)具有二阶连续偏导数,z=f(x,xy),则=______.正确答案:xf’’22+f’2+xyf’’22解析:=f’1(x,xy)+yf’2,则=xf’12+f’2(x,xy)+yxf’’22(x,xy)=xf’’22+f’2+xyf’’22.知识模块:多元函数微分学18.[2011年]设函数F(x,y)=则=______.正确答案:4解析:故知识模块:多元函数微分学19.[2015年] 若函数z=z(x,y)由方程ez+xyz+x+cosx=2确定,则dz|(0,1)=______.正确答案:-dx解析:在所给方程两边求全微分,得到d(ez+xyz+z+cosx)=dez+d(xyz)+dx+dcosx=d(2)=0,ezdz+xydz+xzdy+yzdx+dx—sinx dx=0,整理得(ez+xy)dz=(sinx—yz-1)dx-xzdy,将x=0,y=1代入所给方程得到ez+1=2,得到z=0.将x=0,y=1,z=0代入式①,得到知识模块:多元函数微分学解答题解答应写出文字说明、证明过程或演算步骤。

浙江理工大学数学分析考研真题2007—2012、2017—2019年

浙江理工大学数学分析考研真题2007—2012、2017—2019年

四(15 分)、设 f 为区间 I 上严格凸函数.证明:若 x0 I 为 f 的极小值点,则 x0 为 f 在 I 上唯
一的极小值点.
五(15 分)、求椭圆 x 2 y 2 1绕 y 轴旋转所得旋转曲面的面积(假设 a b ). a2 b2
六(15
分)、把函数
f
(x)
1 x, x 3,
0 x 2, 在 (0,4) 上展开成余弦级数.
(D) f (0) 为极大值
8.设函数 f (x) (x 1)(x 2)(x 3) ,则方程 f "(x) 0 有( ).
(A)三个实根 (B)二个实根 (C)一个实根 (D)无实根
9.已知曲线 y ax3 bx 2 cx d 有一个拐点,其中 a 0 ,且在拐点处有一水平切线, 则 a , b , c 之间的关系是( ). (A) a b c 0 (B) b2 6ac 0 (C) b2 4ac 0 (D) b2 3ac 0
na对任给的??0存在自然数n使得对所有自然数p都有an?p?an??b对任给的??0存在唯一自然数n使当mn?n时都有am?an??c存在??0及自然数n使当mn?n时都有am?an??d对任给自然数n存在??0使得对所有自然数p都有an?p?an??2??xsin1x4
浙江理工大学
二 OO 八年硕士学位研究生招生入学考试试题
2 x4
七(15 分)、证明函数项级数
x2
在 (0,) 上收敛,但不一致收敛.进一
n1 [1 (n 1)x 2 ](1 nx 2 )
步问,该函数项级数在区间[ ,) 上一致收敛吗?(其中 0 是一个正实数)
第 1 页,共 2 页
八(15
分)、计算积分
I

2012考研数一真题答案及详细解析

2012考研数一真题答案及详细解析

2012年(数一)真题答案解析一、选择题Cl) C解函数y=X +x x z —l 的间断点为x =土l 由lim y =lim x 2 +x 工]X 丑Cx +l)(x�, ==, 故X =l 是垂直渐近线.又lim y =lim X (x+ l ) 1 =—,故X =-l 不是渐近线.工-I 工-1(x + 1) (x -1) 2 考察x -=时函数的极限1 —+1X 由lim y = lim = 1 , 故y =l 是水平渐近线.x-=工-= 1 1-—X 2 y 2因为lim —=limx +x =O, 故无斜渐近线.工-00X x -00 X (x 2 -1) 故应选C,有2条渐近线.(2)A解J '(x)=矿(e 红-2)(e 3x —3)…(e"x -n ) + (e x -1) (2 e 2x ) (e 3x -3)…(e 杠-n )+……+ce—l)(e 2x -2)(e 3x -3)···(ne 杠)当X =O 时e 工—1=0故J '(0) = 1• (1—2) (1 -3)…0-n )=(—l)n -1 (n —1) ! 故应选A .(3)Bf (x,y) 解A项用枚举法:设f (x,y )=l x l +I Y I 则lim x -。

l x l +I Y I 存在,y 一o 但儿(0,0),儿(0,0)都不存在即f (x,y )在(0,0)处不可微.A错误B项.由lim f (x,y) 工-o x z + y z =AC存在),则lim f (x,y ) =0, x 一o y-0 y 一0又f (x ,y )在点(0,0)处连续,故f (O,O )=0; X -0 且时f(x,y )是x 2+ y z 的高阶无穷小y-o:. lim f (x,y )—f (O,O ) f (x ,y) =lim =O.B 正确芦心2+ y 2�=g 心:2 + y 2 C、D项用枚举法.f (x,y )=x 满足条件,但lim f (x ,y) f (x ,y) 与lim 2 芦gl x l +I Y I�二g X + y 2 错误.故应选B.(4)D均不存在故C、D 解I 2 =『:六矿sin x d x =『矿sin x d x +厂矿sinxdx=!1 +厂矿sinxd x O 兀又兀<x<加时e x 2sin x < 0故厂心血d x < o 故l2< l1Ia =厂矿sinx dx =厂矿sinxdx +厂矿sinx dx = 12 +厂产sinx dx 0 02又纭<x<玩时e "'2sinx > 0 故厂矿si nx dx > 0 故12< Ia, Ia =厂尸sinx dx = I: 矿sinx dx +厂矿sinx dx = 11 +厂产sinx dx 厂e x 2si n x d x =『六e 工2sinx d x + f "矿sinx dx =『lt穴矿sin .x d x +『穴"e"五)'sin (t +:)d(t +亢)=厂矿sinx dx --J : e <工妇)2 si n xdx = J: [e 工2_ e (x 五)2 ]sin x d x > 0:. 13 > I 1 综上I a>I 1 > 12. 故应选D .(5)C解0 1 -1 l a 1,a3,a4I = O -1 1 =C11 C1 c3 c4 1 -1 =O-1 1 故U1,U3,U4线性相关.故应选C.(6)B 1 O O 1 O 0 解Q =(a,+a,,a,心)=(a,,a,,a,+ I o ]=+ I o ] 0 0 1 0 0 1 Q 一'A Q = [i � �r P -'A P[三三子]=[—又��][1 I J [上三�]=[I I J 故应选B.(7)A e -x,X>0,解八(x)= { o,X¾O , 由X,Y相互独立,故fy (y )=t e 五,y>O ,o , y�o. f (x ,y ) =八(x )•八(y )= {4e 玉如,x>O ,y>O , 0 ' 其他P{X<Y}= JI f (x ,y )d xd y= II 4e 玉+4y )dx d y (8)D <y 1 5.故应选A.解设两段木棒的长度为x,y 则X +y =1⇒ y =-x + 1由定理:若y =a x +b 则I P x Y I = 1,若心a <O则p xy = -1,®a >O 则p xy = 1.故px y =—1. 故应选D.1 2 .. l +x(l —X)2 s m x -x l —xl+x + 2x =l n-s m x -x l —X Cl+工:)(1—x) l+x =l n +x 1—x 1 +x 1 1 =l n1 十—sm x —x -x l —x I+x XE (O,l) /} 1 } } f (x) = + + + -cosx —1l+x 1—.r (1—x)2 O +x )2 x E (0,1)1 广(x)=—+ 12 2 —+O+x)2 Cl-x)2 (1—x)3 Cl+x)3 + s inx x E (0 , 1)因为O< 1 1 1 X <}时,>o, 1 (l-x)2-(l+x )2 (1-x)3-(l+x )3 > O,sinx > 0,故J"(x)> 0.又因为J'(x)在[O'1)是连续的,故J'(x)在[0,1)上是单调增加的,f I (X ) > f I (0) = 2 > 0 同理,f(x )在[O,1)上也是单调增加的,f(x )>f(O)=O,故F(x)在[O,1)上是单调增加的,F(x)> F (O) =O; 又因为F(x )是偶函数,则F(x)> O ,x E (—1,1) ,x #-0. 又因为F(O)=O, 故F(x )�o,即原不等式成立,证毕.(16)解先求出驻点叮^迁王丑+Y 2,-2+_v 2 —=e 一一+x e ——亡• (—x)=Cl -x 2)e-—广0.2 、丿。

2012年考研英语数学资料下载地址合集

2012年考研英语数学资料下载地址合集

考研英语考研英语考研英语词汇、作文、听力、阅读、语法、完型、翻译、新题型等资料下载;考研英语真题模拟题;考研英语大纲;考研英语mp3、辅导资料、视频教程等资料。

真题讨论区∙写作∙讨论∙分享∙推荐∙转帖∙阅读∙词汇∙语法热门资料:(单击进入下载!)2012年考研英语精华资料大全,需要考研资料的先看这里(2011.08.01更新!) . 大家版词典级32年考研英语真题及答案全集(1980-2011年)2011.6.27有所修正2012年考研英语备考战略指导:提纲挈领式的方法+资料推荐(2011.7.6补充!)挨个点击进去下载:2011年考研英语(一)考试大纲(完整版)2011年考研英语(二)考试大纲(完整版)全国硕士研究生入学统一考试---英语(一)英语(二)考试分析大家版2011年考研英语一错千金(真题答案及解析)考研英语备考战略指导:提纲挈领式的方法+资料推荐真题:大家网原创精品:大家版词典级32年考研英语真题及答案全集(1980-2011年) 2012版黄皮书:《历年考研英语真题解析及复习思路》PDF电子书下载(张剑)张剑版1986年——2004年考研英语真题解析下载(黄皮书上的增值服务)【2011张剑】历年考研英语真题解析及复习思路2010年4月出版【配套光碟】考研英语历年真题详解及复习指南(新东方版本绿皮解析,2012版)新东方绿皮真题解析配套光盘内容之一:考研英语十年真题文章录音新东方绿皮解析配套光盘内容之二:新东方名师辅导视频(2012版完整阅读完形写作翻译)新东方:2012刘一男新版5500词汇1-78讲SWF版本下载2012最新刘一男考研词汇5500(avi格式)【原创】2012新版刘一男5500词MP3版2012新东方考研英语基础班全套视频免费下载2012新东方考研英语基础语法视频及讲义下载(屠浩民)2012 新东方考研英语基础语法&高级语法&长难句音频和讲义下载2011年新东方考研英语强化班(全套完整版)2011年新东方考研英语基础班视频及讲义下载(词汇语法写作阅读~!)2011年新东方考研英语基础班:完形&翻译&长难句突破视频及讲义下载2011年新东方考研英语新版完形基础班(张销民)2011年新东方考研英语新版写作基础班2012新东方考研英语写作强化班-王江涛新东方张满胜英语语法新思维初级网络课堂(35.0课时) SWF格式新东方写作新思维套装课程(基础和高级共62课时) SWF格式附带讲义词汇:2012版《考研英语词汇星火式巧记·速记·精炼》全三册电子书及配套mp3下载2012版星火英语《30篇文章贯通考研词汇》(附字幕音频及精美电子书下载)2012版宫东风序列之一:《词汇速记标准全书》PDF电子书下载2012新东方考研英语词汇词根+联想记忆法(乱序版-俞洪敏)胡敏:《2012考研英语读真题记单词》PDF电子书下载考研词汇速记指南(刘一男)PDF电子书下载2012考研英语核心词汇说文解词(词根乱序版)(曾鸣)PDF电子书下载2012考研英语长难句与词汇突破(李玉技)PDF电子书下载考研英语核心词汇及词组,精简例句版(绝对值)2012考研英语大纲词汇考点、用法及辨析(新东方李玉技)PDF电子书下载文都徐绽:《2012考研英语词汇速记宝典》电子书下载2012年考研英语词汇活学活用巧链记PDF电子书下载2012考研英语词汇词根+联想+图解记忆法(星火英语马德高)PDF电子书下载2012淘金式巧攻考研英语词汇(华研外语)PDF电子书下载2012考研英语必记词组(郭崇兴)PDF电子书下载新航道·2012考研英语核心词汇笔记(胡敏)PDF电子书下载2012年考研英语大纲核心词汇必备(王建华)PDF电子书下载发点词汇类的收藏资料!阅读:2012版考试虫长难句:《考研英语阅读基本功难句过关》PDF电子书下载胡敏:《2012考研英语阅读理解精读200篇》PDF电子书下载2012版宫东风序列之三:《真题长难句分析》PDF电子书下载2012版宫东风序列之四:《阅读基础过关》PDF电子书下载2012考研英语阅读理解精读100篇(基础版)PDF电子书下载(新东方应建坤)2012考研英语阅读专项训练PDF电子书下载(考试虫书系)2012年赵敏考研英语:英语阅读精析100篇PDF电子书下载2012考研英语阅读理解110篇PDF电子书下载(肖克)我要考研:2012考研英语基础阅读突破(宫东风)PDF电子书下载写作:考试虫系列:《2012考研英语万能作文》PDF电子书下载新东方王江涛:《2012考研英语高分写作》PDF电子书下载2012版宫东风序列之二:《写作核心词汇》PDF电子书下载世纪高教曾鸣:2012考研英语写作高分突破(热点话题100篇)pdf电子书下载近10年考研英语真题作文范文大汇总(20篇,打印背诵版,包括张剑及新东方的范文)2012考研英语考前热点范文80篇(长喜英语)PDF电子书下载其他:2012考研英语拆分与组合翻译法(唐静)PDF电子书下载——新东方大愚英语学习丛书胡敏:《2012考研英语英译汉四步定位翻译法》PDF电子书下载新航道2012考研英语语法突破(胡敏)PDF电子书下载2012考研英语命题人选题源阅读(长喜英语)PDF电子书下载2012考研英语复习指导(朱泰祺)PDF电子书下载考研英语阅读题源大全(星火英语)PDF电子书下载——郭崇兴,2011年出版2011年考研英语历年全真试题解析新东方下载2011年夏徛荣点评考研英语历年真题详解完整版下载其他辅导班:2012头狼考研英语长线基础班视频下载2012年文登考研英语导学班:石春帧第1—4讲2012年海天考研英语导学班:宫东风第1—10讲2012年海天考研英语语法班音频及讲义下载(王国清)2012年文都考研英语高分规划课何凯文1—5讲视频及讲义下载2012文都考研英语高分词汇导学徐绽第1—5讲2012年考研英语词汇精讲徐绽1—30讲2012文都考研英语长难句精讲班何凯文1—16讲视频及讲义下载2012年海文考研英语基础词汇1—112012年海文考研英语基础阅读第1—10讲2012海天考研英语基础班:宫东风疑难句第1—8讲2011年考研英语文都长难句精讲班视频下载2011年领航考研英语词汇基础班视频2011年考研英语太奇词汇专项班视频下载2011年考研英语英语基础班视频太奇下载2011年考研英语阅读基础班视频启航黄涛下载2012年考研考研英语心得、考研数学心得、考研政治心得、考研心得体会、考研感悟、跨专业考研、在职考研经验、同等学历考研心得、医学考研心得、法学考研心得、考研高分经验、考研状元谈经验、名校考研经验、考研经验交流。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【答案】 3 12
【考点】曲面积分的计算 【难易度】★★★★ 【详解】本题涉及到的主要知识点:
8 第 8 页,共 21 页
梦想不会辜负每一个努力的人
曲面积分公式:
x 1
的间断点只有
x
1 .
由于 lim y ,故 x 1是垂直渐近线. x1
(而 lim y lim x(x 1) 1 ,故 x 1不是渐近线). x1 x1 (x 1)(x 1) 2
1 1
又 lim y lim x 1,故 y 1是水平渐近线.(无斜渐近线)
x
x 1
1 x2
综上可知,渐近线的条数是 2.故选 C.
lim
x0
f (x, y) x2 y2
lim x0
f
(x, y) f (0, 0) x2 y2
A
y0
y0
由极限与无穷小的关系
f (x, y) f (0, 0) x2 y2
A
o(1)
x y
0 0

其中 o(1) 为无穷小. f (x, y) f (0, 0) A(x2 y2) (x2 y2)o(1)
【答案】D 【考点】定积分的基本性质 【难易度】★★★ 【详解】本题涉及到的主要知识点:
b
c
b
设 a c b ,则 f (x)dx f (x)dx f (x)dx .
a
a
c
在本题中,
I1
0
ex2
sin
xdx

I2
2 0
ex2
sin
xdx ,
I3
3 ex2 sin xdx
0
I2 I1
y0
可微,但 lim x0
x2
x
y2
不存在.
y0
(4)设 I K
k ex2 sin xdx(k 1, 2,3) ,则有
0
(
)
3
第 3 页,共 21 页
梦想不会辜负每一个努力的人
(A) I1 I2 I3 (B) I3 I2 I1 (C) I2 I3 I1 (D) I2 I1 I3
梦想不会辜负每一个努力的人
2012 年全国硕士研究生入学统一考试数学一试题解析
一、选择题:1 8 小题,每小题 4 分,共 32 分.下列每题给出的四个选项中,只有一个选项符合 题目要求的,请将所选项前的字母填在答.题.纸.指定位置上.
(1) 曲线 y x2 x 渐近线的条数为 x2 1
()
(A) 0
0 x 0 y o()( 0) ,
其中 x2 y2 0 .因此 f (x, y) 在 (0, 0) 可微.故选(B).
(A)不正确,如 f (x, y) x y 满足条件,但 f (x, y) 在 (0, 0) 不存在偏导数,故不可微.(C)
不正确,如 f (x, y) x 在 (0, 0) 可微,但 lim x 不存在.(D)也不正确,如 f (x, y) x 在 (0, 0) x0 x y
(D)2 ,3,4
n 个 n 维向量相关 1,2, ,n 0
在本题中,显然
4 第 4 页,共 21 页
梦想不会辜负每一个努力的人
0 1 1 1,3,4 0 1 1 0 ,
c1 c2 c3
所以1,3,4 必线性相关.故选 C.
1 0 0
(6)

A

3
阶矩阵,P

3
阶可逆矩阵,且
p1 AP
0
2
ex2
sin
xdx
0
I2
I1 ,
I3 I2
3 2
ex2
sin
xdx
0
I3
I2

I3 I1
3 ex2 sin xdx
2 ex2 sin xdx
3 ex2 sin xdx
2
3 e(t )2 sin(t )dt
2
3 ex2 sin xdx
2
3 [ex2
2
e(x )2 ]sin
PX Y ( )
(A) 1 5
(B) 1 3
【答案】A
【考点】常见随机变量的分布
【难易度】★★★
【详解】本题涉及到的主要知识点:
(C) 2 3
若随机变量
X
的概率密度为
f
(x)
ex ,
x 0,
0, x 0,
(D) 4 5
则称 X 服从参数为 ( 0) 的指数分布.
在本题中,依题设知 X ,Y 的概率密度分别为
ex , x 0,
4e4y , y 0,
fX
(x)
0,
x 0,
fY ( y)
0,
y 0,
又 X 与Y 相互独立,从而 X 与Y 的联合概率密度为
4e(x4 y) , x 0, y 0,
f (x, y) fX (x) fY ( y)
0,
其他
于是 P X Y
xdx
0
I3
I1
因此 I2 I1 I3 .故选 D.
0
0
1
1
(5)设 1
0
,
2
1
,3
1
,4
1
,其中 C1,C2 ,C3,C4 为任意常数,则下列向
C1
C2
C3
C4
量组线性相关的为( )
(A)1,2 ,3 (B) 1,2 ,4 (C)1,3,4
【答案】C 【考点】向量组的线性相关与线性无关 【难易度】★★ 【详解】本题涉及到的主要知识点:
x
xx0
渐近线( lim[ f (x) (ax b)] 0 , a,b 为常数)。 x
(iii)注意:如果
(1) lim f (x) 不存在; x x
(2) lim f (x) a ,但 lim[ f (x) ax]不存在,可断定 f (x) 不存在斜渐近线。
x x
x
在本题中,函数
y
x2 x2
y0
(C) 若 f (x, y) 在 (0, 0) 处可微,则极限 lim f (x, y) 存在 x0 x y
y0
()
2 第 2 页,共 21 页
梦想不会辜负每一个努力的人
(D)

f (x, y) 在 (0, 0) 处可微,则
极限 lim x0
f (x, y) 存在 x2 y2
y0
【答案】B 【考点】全微分存在的必要条件和充分条件 【难易度】★★★ 【详解】本题涉及到的主要知识点:
0
【答案】 2
【考点】定积分的换元积分法
【难易度】★★★
【详解】本题涉及到的主要知识点:
b
第一类换元法 f [ (t )] t( d)t
a
f (x )d x
7 第 7 页,共 21 页
梦想不会辜负每一个努力的人
在本题中,
2
x
2x x2 dx =
2
x
1 (x 1)2 dx t x 1
f (x, y)dxdy
4e(x4 y)dxdy
dx4e(x4 y)dy 1 NhomakorabeaD
x y
0
x
5
故选 A.
(8)将长度为1m 的木棒随机地截成两段,则两段长度的相关系数为
(A) 1 【答案】D
(B) 1 2
(C) 1 2
(D) 1
【考点】相关系数的性质
【难易度】★★
【详解】本题涉及到的主要知识点:
【详解一】本题涉及到的主要知识点:
f
(x0 )
lim
x0
y lim f (x0 x) f (x0 ) .
x x0
x
在本题中,按定义
f (0) lim f (x) f (0) lim (ex 1)(e2x 2) (enx n)
x0 x 0
x0
x
(1) (2) [(n 1)] (1)n1(n 1)!.故选 A.
1
(t 1)
1 t2 dt
0
0
1
1
t
1 t2 dt
1
1 t2 dt 0 ,
1
1
22
1
其中
1 t2 dt 是半单位圆的面积.
1
(11)
grad (xy +
z y
)
|(2,1,1)
【答案】 1,1,1
【考点】梯度 【难易度】★★★ 【详解】本题涉及到的主要知识点:
gradf (x, y, z) (f , f , f ) x y z
在本题中,记 u xy z ,则 y
u x
y

u y
x
z y2

u z
1 y
gradu
|(2,1,1)
(
f x
,
f y
,
f z
)
|(2,1,1)
(1,1,1)
因此
grad(xy +
z y
)
|(2,1,1)
(1,1,1)
(12)设 x, y, z x y z 1, x 0, y 0, z 0,则 y2ds
二、填空题:9 14 小题,每小题 4 分,共 24 分.请将答案写在答.题.纸.指定位置上. (9)若函数 f (x) 满足方程 f (x) f (x) 2 f (x) 0 及 f (x) f (x) 2ex ,则 f (x)
【答案】 ex
【考点】二阶常系数齐次线性微分方程 【难易度】★★ 【详解】本题涉及到的主要知识点:
(B) 1
(C) 2
(D) 3
【答案】C
【考点】函数图形的渐近线
相关文档
最新文档