2014年全国数学联赛江苏省预赛试题及参考答案

合集下载

2025年全国中学生数学奥林匹克竞赛(预赛)模拟卷(全国高中数学联赛一试)(解析版)

2025年全国中学生数学奥林匹克竞赛(预赛)模拟卷(全国高中数学联赛一试)(解析版)

2025年全国中学生数学奥林匹克竞赛(预赛)暨2025年全国高中数学联合竞赛 一试全真模拟试题1参考答案及评分标准说明:1.评阅试卷时,请依据本评分标准.填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1.已知函数()sin()f x x 是定义在R 上的偶函数,则cos(2) 的值为 . 答案:0.解:由于()sin()f x x 是偶函数,故()2k kZ ,所以 cos(2)cos cos sin 02k k. 2.若关于z 的复系数一元二次方程2i 0()z z R 的一个根为11z =,则另一个根2z .答案:i 12. 解:由题意得201i 1 ,解得i 12.因此12i 12i z z ,所以2i 12z . 3.设数列{}n a 的通项公式为2[log ]n a n n ,其中[]x 表示不超过x 的最大整数,则{}n a 的前32项和为 .答案:631.解:事实上,22[log ][log ]n a n n n n .而当1n 时,2[log ]0n ;当2,3n 时,2[log ]1n ;当4,5,6,7n 时,2[log ]2n ;当8,9,,15n 时,2[log ]3n ;当16,17,,31n 时,2[log ]4n ;当32n 时,2[log ]5n ,因此{}n a 的前32项和为321232102142831645631S .4.已知向量,a b的最小值为 .答案:2.解:设向量,a b的夹角为 ,其中(0,) ,则. 令254()((1,1))1x f x x x ,则222(2)(21)()(1)x x f x x .因此()f x 在11,2 单调递减,1,12单调递增,所以()f x 的最小值为142f .2,此时1cos 2 . 5.在梯形ABCD 中,,2260A D C A B B ,M 为CD 边点Q (异于的中点,动点P 在BC 边上,ABP 与CMP 的外接圆交于点P ),则BQ 的最小值为 .1.解:由熟知的结论,,,ABP CMP AME 的外接圆有唯一公共点,该公共点即为题中的点Q ,故点Q 在AME 的外接圆上,如图所示.而AME 是直角三角形,故其外接圆半径1R AD .在ABD中,由余弦定理,BD ,所以BQ1,此时P 在线段BC 上,且CP .6.已知双曲线 的两条渐近线互相垂直,过 的右焦点F 且斜率为3的直线与 交于,A B 两点,与 的渐近线交于,C D 两点.若||5AB ,则||CD .答案:.7.已知某圆台的侧面是一个圆环被圆心角为90 的扇形所截得的扇环,且圆台的侧面积为2 ,则该圆台体积的取值范围是 .答案:.解:设圆台上底面为圆1O ,半径为1R ,下底面为圆2O ,半径为2R ,圆台母线为l .由圆台的侧面积为2 可得21(222)π2lR R ,故212l R R ①.由侧面展开是圆心角为90 的扇形所截得的扇环,可得 11122222l R l l R,故2144l R R ②.因此圆台的高21)h R R ,圆台的体积2222121212211(()3)V R R h R R R R R R .结合①②可得222112R R.由于210R R,故21R R.令21x R R ,则12124124x R x x R x,进而可得3134V x x .令31()34f x x x x ,则43()304f x x .因此()f x在 上单调递增,故()f x f .所以V ,即圆台体积的取值范围是 . 8.用 表示11元集合{1,2,3,,10,2024}A 的三元子集的全体.对 中任意一个三元子集{,,}()T x y z x y z ,定义()m T y ,则()T m T的值为 .答案:990.解:不妨将集合A 视为{}1,2,3,,10,11 (这是因为,将“2024”改成“11”不影响每个()()m T T 的值).对每个T ,定义*{12|}T t t T ,则*T ,且*)12()(T m T m . 由于当T 遍历 的所有三元子集时,*T 也遍历 的所有三元子集,所以**311()666C 990()()(2)T T T T m T m T m T m T .二、解答题:本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤.9.(本题满分16分)已知,,0a b c ,二次函数2()f x ax bx c 存在零点,求a b cb c a的最小值.解:令,b c m n a a ,则,0m n 且1a b c mn b c a m n.由题意得240b ac ,即24m n,故m .考虑11()f m m m n,则()f m在) 上单调递增.所以()a b c f m n f n n b c a,当n m 时等号成立.因此a b c b c a. 10.(本题满分20分)在ABC 中,,30AB AC BAC .在AB 边上取五等分点12345,,,,T T T T T (12345,,,,,,A T T T T T B 顺次排列).记(1,2,3,4)k k BT C k ,求31141tan tan tan tan tan tan k k k A B 的值.解:在AB 延长线上任取一点D ,记05,A DBC B ,则所求式子即为410tan tan kk k.为方便,记05,T A T B .作CH AB 于点H ,则tan (04)k k CH k T H(这里及以下,有向线段的方向约定为AB方向).注意到,30AB AC BAC ,有111112tan tan 555k k k k k k AC T H T H T T ABCH CHCH CH , 故115tan tan (tan tan (04))2k k k k k .进而4411500055tan tan (ta )n tan (tan tan 22)k k k kk k575tan tan (252126211.(本题满分20分)已知A 是抛物线22(0)y px p 上一点(异于原点),斜率为1k 的直线1l 与抛物线恰有一个公共点A (1l 与x 轴不平行),斜率为2k 的直线2l 与抛物线交于,B C两点.若ABC 是正三角形,求12k k 的取值范围.解:设(,),(,),(,)A A B B C C A x y B x y C x y .设直线):(A A AB y y t x x −=−,代入抛物线22y px 得2220A A y p y y p x t t ,故2B A p y y t. 设直线):(A A AC y y s x x ,同理可得2C A py y s. 由AB AC 知2222111)(1()B A C A y y y y t s. 不妨设,,A B C 是绕着ABC 的重心逆时针排列的,则由3BAC知s t ,代入化简得)2A A p t y t p y t.结合t 0t 时B A y y 与C A y y 同号可知A py , 又22B C B C B C y y p k x x y y,进而121112B C AA y y k p k y t s y ,代入化简得1211k k0,t . 因此121111,,00,227k k.当t时,易知AC x 轴,B 位于坐标原点,此时12122B C A y y k k y.而0,t 均不符合题意.k k 的取值范围是1(1,0)0,7.因此,12。

高考数学专题知识点系列复习训练题及答案解析(珍藏版):01数列真题汇编与预赛典型例题

高考数学专题知识点系列复习训练题及答案解析(珍藏版):01数列真题汇编与预赛典型例题

专题01数列真题汇编与预赛典型例题1.【2018年全国联赛】设整数数列满足,且,则这样的数列的个数为.2.【2017年全国联赛】设两个严格递增的正整数数列满足,对任意正整数n,有。

则的所有可能值为___________。

3.【2016年全国联赛】设为1,2,…,100中的四个互不相同的数,满足.则这样的有序数组的个数为________. 4.【2014年全国联赛】已知数列满足.则___________. 5.【2013年全国联赛】已知数列共有九项,其中,,且对每个,均有.则这样的数列的个数为______.6.【2011年全国联赛】已知.则数列中整数项的个数为______. 7.【2010年全国联赛】已知是公差不为0的等差数列,是等比数列,其中,,且存在常数使得对每一个正整数都有.则________.8.【2019年全国联赛】设整数满足.记.求f的最小值.并确定使f=f0成立的数组的个数.9.【2018年全国联赛】已知实数列满足:对任意正整数n,有,其中S n表示数列的前n项和,证明:(1)对任意正整数n,有;(2)对任意正整数n,有.10.【2018年全国联赛】数列定义如下:a1是任意正整数,对整数n≥1,a n+1是与互素,且不等于的最小正整数.证明:每个正整数均在数列中出现.11.【2017年全国联赛】设数列定义为求满足的正整数r的个数。

12.【2016年全国联赛】设p与p + 2均为素数,p > 3.定义数列,其中,表示不小于实数x的最小整数.证明对,均有.13.【2014年全国联赛】已知数列满足.求正整数m使得.14.【2013年全国联赛】给定正数数列满足,,其中,.证明:存在常数,使得.15.【2013年全国联赛】给定正整数.数列定义如下:,对整数,.记.证明:数列中有无穷多项是完全平方数.16.【2012年全国联赛】已知数列的各项均为非零实数,且对于任意的正整数都有.(1)当时,求所有满足条件的三项组成的数列.(2)是否存在满足条件的无穷数列,使得若存在,求出这样的无穷数列的一个通项公式;若不存在,说明理由.17.【2011年全国联赛】 已知数列满足:,.(1)求数列的通项公式; (2)若,试比较与的大小. 18.【2011年全国联赛】证明:对任意整数,存在一个次多项式具体如下性质: (1)均为正整数;(2)对任意的正整数及任意个互不相同的正整数,均有.19.【2011年全国联赛】设是给定的正实数,.对任意正实数,满足的三元数组的个数记为.证明:.20.【2010年全国联赛】证明:方程恰有一个实数根,且存在唯一的严格递增正整数数列,使得.21.【2010年全国联赛】给定整数,设正实数满足,记.求证:.22.【2009年全国联赛】已知是实数,方程有两个实根,数列满足).(1)求数列的通项公式(用表示);(2)若,求的前项和.{}n a ()123,1a t t R t =-∈≠±()()()112321121n n n n n n t a t t a n N a t +++-+--=∈+-{}n a 0t >1n a +n a23.【2009年全国联赛】在非负数构成的数表中,每行的数互不相同,前六列中每列的三数之和为1,均大于1.如果的前三列构成的数表满足下面的性质:对于数表中的任意一列)均存在某个使得.①求证:(1)最小值)一定去自数表的不同列;(2)存在数表中唯一的一列)使得数表仍然具有性质().1.【2018年湖南预赛】如图,将一个边长为1的正三角形分成四个全等的正三角形,第一次挖去中间的一个小三角形,将剩下的三个小正三角形,再分别从中间挖去一个小三角形,保留它们的边,重复操作以上做法,得到的集合为谢尔宾斯基缕垫.设是第n次挖去的小三角形面积之和(如是第1次挖去的中间小三角形面积,是第2次挖去的三个小三角形面积之和),则前n次挖去的所有小三角形面积之和的值为____________________.2.【2016年吉林预赛】在公差不为0的等差数列中,,且成等比数列.则数列的通项公式为________.3.【2016年上海预赛】数列定义如下:,则____ _______。

2014年全国高中数学联赛江苏赛区复赛参考答案与评分标准(加试)

2014年全国高中数学联赛江苏赛区复赛参考答案与评分标准(加试)

取正整数 k1 满足 1- 1k1>cos nt,由(1)可知存在正整数 n,使得 cos n>1- 1k1>22001145. 这与使 cosn>22001145成立的正整数 n 的个数是 t 矛盾.
所以存在无穷多个正整数 n,使得 cosn>22001145.
………………………50 分
2014 年全国高中数学联赛江苏赛区复赛试4 卷(加试)参考答案 第 4 页 共 4 页
从而 n<36,又因为 n 为偶数,所以 n≤34.
……………… 40 分
(3)证明 n=34 能取到.
不妨设凸 34 边形内角中只有两个值 x 和 x-20°,它们相间出现,各为一半,
有 17(2x-20°)=32×180°,x=301570°<180°.x-20°>0,
知存在满足条件的凸 34 边形.
({x}=x-[x],[x]表示不大于 x 的最大整数). 将区间[0,1)分成 M 个小区间:[0,M1 ),[M1 ,M2 ),…,[MM-1,1), 由抽屉原理可知,一定存在 1≤i<j≤M+1,使得{iα},{jα}在同一个小区间,
因此,|{jα}-{iα}|<M1 ,从而|nα-([jα]-[iα])|<M1 ,
而当 n 为偶数时,且 x1,x2,…,xn 中一半取 2,一半取 8 时,等号成立. 故当且仅当 n 为偶数,且 x1,x2,…,xn 中一半取 2,一半取 8 时等号成立.
…………………………… 40 分
2014 年全国高中数学联赛江苏赛区复赛试2 卷(加试)参考答案 第 2 页 共 4 页
Printed with FinePrint trial version - purchase at
⎩⎨⎧ 由①②知,必须有

2007-2014年全国高中数学联赛江苏赛区初赛试题

2007-2014年全国高中数学联赛江苏赛区初赛试题
⑴ 与 都是锐角三角形;⑵ 是锐角三角形, 是钝角三角形;
⑶ 是钝角三角形, 是锐角三角形;⑷ 与 都是钝角三角形.
5.设 , 是夹角为 的异面直线,则满足条件“ , ,且 ”的平面 , 有对.
6. 设集合 , ,其中符号 表示不大于 的最大整数,则 .
7.同时投掷三颗骰子,至少有一颗骰子掷出6点的概率是
12、已知各项为整数的数列{an}满足a3=-1,a7=4,前6项依次成等差数列,从第5项起依次成等比数列.
(1)求数列{an}的通项公式;
(2)求出所有的正整数m,使得am+am+1+am+2=amam+1am+2.
13、如图,圆内接五边形ABCDE中,AD是外接圆的直径,BE⊥AD,垂足H,过点H作平行于CE的直线,与直线AC、DC分别交于点F、G.
14.(1)正六边形被 条互不交叉(端点可以重合)的对角线分割成 个三角形.将每个三角形区域涂上红、蓝两种颜色之一,使得有公共边的三角形涂的颜色不同.怎样分割并涂色可以使红色三角形个数与蓝色三角形个数的差最大?
(2)凸 边形被 条互不交叉(端点可以重合)的对角线分割成 个三角形.将每个三角形区域涂上红、栏两种颜色之一,使得有公共边的三角形涂的颜色不同.在上述分割并涂色的所有情形中,红色三角形个数与蓝色三角形个数之差的最大值是多少?证明你的结论.
13、 如图,半径为 的圆 上有一定点 , 为圆 上的动点.在射线 上有一动点 , .线段 交圆 于另一点 , 为线段的 中点.求线段 长的取值范围.
14、设是 正整数, 是方程 的两个根.证明:存在边长是整数且面积为 的直角三角形.
2011年全国高中数学联赛江苏赛区初赛题
一、填空题(本题共10小题,满分70分,每小题7分.要求直接将答案写在横线上)

2014年全国高中数学联赛试题及答案详解(A卷)

2014年全国高中数学联赛试题及答案详解(A卷)

2013
解:由题设
an

2(n 1) n
an1

2(n 1) n

2n n 1 an2


2(n 1) n

2n n 1

23 2
a1

2n1 (n
1)

记数列{an} 的前 n 项和为 Sn ,则
Sn =
2 + 2 × 3 + 22 × 4 + + 2n−1(n +1)
2015 2013


2015

2013
5. 正四棱锥 P ABCD 中,侧面是边长为 1 的正三角形,M , N 分别是边 AB, BC 的中
点,则异面直线 MN 与 PC 之间的距离是

答案: 2 . 4
解:设底面对角线 AC, BD 交于点 O ,过点 C 作直
线 MN 的垂线,交 MN 于点 H . 由 于 PO 是 底 面 的 垂 线 , 故 PO CH , 又
解:记 f (z) (z )2 z .则
f (z1) f (z2 ) (z1 )2 z1 (z2 )2 z2
(z1 z2 2)(z1 z2 ) z1 z2 .

假如存在复数 z1, z2 ( z1 , z2 1, z1 ≠ z2 ) ,使得 f (z1) f (z2 ) ,则由①知,
连接的情况数.
(1) 有 AB 边:共 25 32 种情况.
(2) 无 AB 边,但有 CD 边:此时 A , B 可用折线连接当且仅当 A 与 C , D 中至少一
点相连,且 B 与 C , D 中至少一点相连,这样的情况数为 (22 1)(22 1) 9 .

2014年全国高中数学联赛江苏赛区初赛参考答案与评分细则(定稿)

2014年全国高中数学联赛江苏赛区初赛参考答案与评分细则(定稿)

2014年全国高中数学联赛江苏赛区初赛参考答案与评分细则一、填空题(本题满分70分,每小题7分)1.若x ≥2,则函数f (x )=x +1x +1的最小值是 .答案:73.2.已知函数f (x )=e x .若f (a +b )=2,则f (3a )·f (3b )的值是 . 答案:8.3.已知数列{a n }是各项均不为0的等差数列,公差为d ,S n 为其前n 项和,且满足a n 2=S 2n -1,n ∈N *,则数列{a n }的通项a n = . 答案:2n -1.4.若函数f (x )=⎩⎨⎧2x 2-3x , x ≥0,-2x 2+ax ,x <0是奇函数,则实数a 的值是_________. 答案:-3. 5.已知函数f (x )=|lg|x -103||.若关于x 的方程f 2(x )-5f (x )-6=0的实根之和为m ,则f (m )的值是 . 答案:1.6.设α、β都是锐角,且cos α=55,sin(α+β)=35,则cos β等于 . 答案:2525.说明:若学生得出255或2525,255,本题得4分.7.四面体ABCD 中,AB =3,CD =5,异面直线AB 和CD 之间的距离为4,夹角为60°,则四面体ABCD 的体积为 . 答案:53.8.若满足∠ABC =π3,AC =3,BC =m 的△ABC 恰有一解,则实数m 的取值范围是 .答案:(0,3]∪{23}.9.设集合S ={1,2,…,8},A ,B 是S 的两个非空子集,且A 中最大的数小于B 中的最小数,则这样的集合对(A ,B )的个数是 . 答案:769.10.如果正整数m 可以表示为x 2-4y 2 (x ,y ∈Z ),那么称m 为“好数”.问1,2,3,…,2014中“好数”的个数为 . 答案:881.二、解答题(本题满分80分,每小题20分)11.已知a ,b ,c 为正实数,a x =b y =c z ,1x +1y +1z=0,求abc 的值.证明:设a x =b y =c z =p >0,则a =1xp ,b =1yp ,c =1zp .…………………… 10分所以abc =1xp·1yp·1zp =111x y zp++. …………………… 15分因为1x +1y +1z=0,所以abc =0p =1. …………………… 20分12.已知F 1,F 2分别是双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左右焦点,点B 的坐标为(0,b ),直线F 1B 与双曲线C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M .若MF 2=12F 1F 2,求双曲线C 的离心率.解:设双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的半焦距长为c ,则点F 1,F 2的坐标分别(-c ,0),(c ,0).从而直线F 1B 的方程为x -c +y b=1,双曲线C :x 2a 2-y 2b 2=1的渐近线方程为x 2a 2-y 2b 2=0.联立⎩⎨⎧x -c +yb =1,x 2a 2-y2b 2=0,消去y 得,b 2x 2-2a 2cx -a 2c 2=0.由韦达定理得:线段PQ 中点的坐标(a 2c b 2,c 2b ). ………………………… 10分因此PQ 中垂线的方程是:y -c 2b =-c b (x -a 2cb2).在上式中,令y =0,得M (c +a 2cb 2,0). ………………………… 15分另一方面,由MF 2=12F 1F 2,则M (2c ,0),或M (0,0)(舍去),由此可得,c +a 2cb2=2c ,即a =b ,故e =2. ………………………… 20分13.如图,已知△ABC 是锐角三角形,以AB 为直径的圆交边AC 于点D ,交边AB 上的高CH于点E .以AC 为直径的半圆交BD 的延长线于点G .求证:AG =AE .证明:连结BE ,CG . 因为AB 为直径,所以∠AEB =90°,BG ⊥AC . 又EH ⊥AB ,在△AEB 中,由射影定理得 AE 2=AH ·AB . 因为AC 为直径,所以∠AGC =90°.在△AGC 中,由射影定理得AG 2=AD ·AC . …………10分因为∠BDC =∠BHC =90°, 所以B ,C ,D ,H 四点共圆,从而由割线定理知AH ·AB =AD ·AC . …………………… 15分 所以AE 2=AG 2,即AE =AG . …………………… 20分14.(1)正六边形被3条互不交叉(端点可以重合)的对角线分割成4个三角形.将每个三角形区域涂上红、蓝两种颜色之一,使得有公共边的三角形涂的颜色不同.怎样分割并涂色可以使红色三角形个数与蓝色三角形个数的差最大?(2) 凸2016边形被2013条互不交叉(端点可以重合)的对角线分割成2014个三角形.将每个三角形区域涂上红、蓝两种颜色之一,使得有公共边的三角形涂的颜色不同.在上述分割并涂色的所有情形中,红色三角形个数与蓝色三角形个数之差的最大值是多少?证明你的结论.ABCDEFABCDGE HABCDGEH解:(1)3条对角线分得4个三角形,相邻的两个涂色相异,则既有红 色三角形,又有蓝色三角形.不妨设红色三角形多于蓝色三角形.则蓝色三角形至少有1个,红色三角形最多3个,红色三角形个数与蓝色三角形个数之差不超过3-1=2.如图连接AC ,CE ,EA ,△ACE 涂蓝色,其余3个三角形涂红色,差为2. 故红色三角形个数与蓝色三角形个数之差的最大值为2. …………………… 5分 (2)2013条互不交叉(端点可以重合)的对角线分割成2014个三角形.每个三角形区域涂红、蓝两种颜色之一,使得有公共边的三角形涂的颜色不同.设红色三角形多于蓝色三角形.每个蓝色三角形三条边中至少有一条对角线,即三条边中对角线的条数只能为1、2或3.每条对角线只属于一个蓝色三角形.设边中恰含k (k =1,2,3)条对角线的蓝色三角形的个数为m k ,则对角线条数m 1+2m 2+3m 3=2013, 蓝色三角形个数m 1+m 2+m 3=3m 1+3m 2+3m 33≥m 1+2m 2+3m 33= 20133 =671,红色三角形个数≤2013-671=1343,红色三角形个数与蓝色三角形个数之差≤1343-671=672. ……………………10分 注意到凸6边形中红色三角形个数与蓝色三角形个数之差的最大值为2,此时6边形的边均为红色; 假定凸3k 边形中,红色三角形个数与蓝色三角形个 数之差的最大值为k 且凸3k 边形的边均为红色.则凸3(k +1)边形A 1A 2A 3…A 3k A 3k +1A 3k +2A 3k +3中的凸3k 边形A 1A 2A 3…A 3k 按假定涂色,红色三角形个数与蓝色三角形个数之差最大值为k 且边A 1A 3k 为红色.如图,则△A 1A 3k A 3k +2区域涂蓝色,△A 3k A 3k +1A 3k +2区域涂红色,△A 1A 3k +2A 3k +3区域涂红色,凸3(k +1)边形中红色三角形个数与蓝色三角形个数之差的值为k +2-1= k +1.即按上述方法涂色,凸2016边形中红色三角形个数与蓝色三角形个数之差为20163 = 672.所以凸2016边形中红色三角形个数与蓝色三角形个数之差的最大值为672.……………………20分ABCDEFA 1A 3k +1A 3kA 3k +2A 3k +3。

2014年普通高等学校招生全国统一考试数学试题(江苏卷,解析版)

2014年普通高等学校招生全国统一考试数学试题(江苏卷,解析版)

2014年普通高等学校招生全国统一考试〔江苏卷〕答案解析数 学Ⅰ一、填空题:本大题共14小题,每一小题5分,共70分.请把答案直接填写在答题卡相应位置上. 1、集合}4,3,1,2{A --=,}3,2,1{B -=,如此B A = ▲ . 【答案】}3,1{-【解析】根据集合的交集运算,两个集合的交集就是所有既属于集合A 又属于集合B 的元素组成的集合,从所给的两个集合的元素可知,公共的元素为-1和3,所以答案为}3,1{-【点评】此题重点考查的是集合的运算,容易出错的地方是审错题目,把交集运算看成并集运算。

属于根底题,难度系数较小。

2、复数2)25(i z -=(i 为虚数单位〕,如此z 的实部为▲ .【答案】21【解析】根据复数的乘法运算公式,i i i i z 2021)2(2525)25(222-=+⨯⨯-=-=,实部为21,虚部为-20。

【点评】此题重点考查的是复数的乘法运算公式,容易出错的地方是计算粗心,把12-=i 算为1。

属于根底题,难度系数较小。

〔第33、右图是一个算法流程图,如此输出的n 的值是▲ . 【答案】5【解析】根据流程图的判断依据,此题202>n是否成立,假设不成立,如此n 从1开始每次判断完后循环时,n 赋值为1+n ;假设成立,如此输出n 的值。

此题经过4次循环,得到203222,55>===n n ,成立,如此输出的n 的值为5【点评】此题重点考查的是流程图的运算,容易出错的地方是判断循环几次时出错。

属于根底题,难度系数较小。

4、从6,3,2,1这4个数中一次随机地取2个数,如此所取2个数的乘积为6的概率是▲ .【答案】31【解析】将随机选取2个数的所有情况“不重不漏〞的列举出来:〔1,2〕,〔1,3〕〔1,6〕,〔2,3〕,〔2,6〕,〔3,6〕,共6种情况,满足题目乘积为6的要求的是〔1,6〕和〔2,3〕,如此概率为31。

【点评】此题主要考查的知识是概率,题目很平稳,考生只需用列举法将所有情况列举出来,再将满足题目要求的情况选出来即可。

2014年江苏高考数学真题及答案

2014年江苏高考数学真题及答案

2014年江苏高考数学真题及答案一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应.....位置上.... 1. 已知集合A ={4,3,1,2--},}3,2,1{-=B ,则=B A ▲.2. 已知复数2)i 25(+=z (i 为虚数单位),则z 的实部为▲.3. 右图是一个算法流程图,则输出的n 的值是▲.4. 从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是▲.5. 已知函数x y cos =与)2sin(ϕ+=x y (0≤πϕ<),zxxk 它们的图象有一个横坐标为3π的交点,则ϕ的值是▲.6. 设抽测的树木的底部周长均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有▲株树木的底部周长小于100cm.7. 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,则6a 的值是▲.8. 设甲、乙两个圆柱的底面分别为1S ,2S ,体积分别为1V ,2V ,若它们的侧面积相等,且4921=S S ,则21V V的值是▲.9. 在平面直角坐标系xOy 中,直线032=-+y x 被圆4)1()2(22=++-y x 截得的弦长为▲.10. 已知函数,1)(2-+=mx x x f 若对于任意]1,[+∈m m x ,都有0)(<x f 成立,则实数m 的取值范围是▲.11. 在平面直角坐标系xOy 中,若曲线xbax y +=2(a ,b 为常数) zxxk 过点)5,2(-P ,且该曲线在点P 处的切线与直线0327=++y x 平行,则b a +的值是▲.12. 如图,在平行四边形ABCD 中,已知8=AB ,5=AD ,PD CP 3=,2=⋅BP AP ,则AD AB ⋅的值是▲.202>n组距13. 已知)(x f 是定义在R 上且周期为3的函数,当)3,0[∈x 时,|212|)(2+-=x x x f .若函数a x f y -=)(在区间]4,3[-上有10个零点(互不相同),则实数a 的取值范围是▲.14. 若△ABC 的内角满足C B A sin 2sin 2sin =+,则C cos 的最小值是▲.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,学科网解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知),2(ππα∈,55sin =α.(1)求)4sin(απ+的值;(2)求)265cos(απ-的值.16.(本小题满分14分)如图,在三棱锥ABC P -中,D ,E ,F 分zxxk 别为棱AB AC PC ,,的中点.已知AC PA ⊥,,6=PA .5,8==DF BC求证: (1)直线//PA 平面DEF ;(2)平面⊥BDE 平面ABC .(第16题)PD C EFB A17.(本小题满分14分)如图,在平面直角坐标系xOy 中,21,F F 分别是椭圆)0(12322>>=+b a by a x 的左、右焦点,顶点B 的坐标为),0(b ,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结C F 1.(1)若点C 的坐标为)31,34(,且22=BF ,求椭圆的方程;(2)若,1AB C F ⊥求椭圆离心率e 的值.18.(本小题满分16分)如图,为了保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形学科网保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m. 经测量,点A 位于点O 正北方向60m 处, 点C 位于点O 正东方向170m 处(OC 为河岸),34tan =∠BCO .(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?19.(本小题满分16分)已知函数x x x f -+=e e )(,其中e 是自然对数的底数. (1)证明:)(x f 是R 上的偶函数;(2)若关于x 的不等式)(x mf ≤1e -+-m x 在),0(+∞上恒成立,学科网求实数m 的取值范围;(3)已知正数a 满足:存在),1[0+∞∈x ,使得)3()(030x x a x f +-<成立.试比较1e -a 与1e -a 的大小,并证明你的结论.20.(本小题满分16分)设数列}{n a 的前n 项和为n S .若对任意正整数n ,学科网总存在正整数m ,使得m n a S =,则称}{n a 是“H 数列”.(1)若数列}{n a 的前n 项和n n S 2=(∈n N *),证明:}{n a 是“H 数列”;(2)设}{n a 是等差数列,其首项11=a ,公差0<d .若}{n a 是“H 数列”,求d 的值; (3)证明:对任意的等差数列}{n a ,总存在两个“H 数列”}{n b 和}{n c ,使得n n n c b a += (∈n N *)成立.2014年江苏省高考数学试卷参考答案与试题解析一、填空题(本大题共14小题,每小题5分,共计70分)1.(5分)(2014•江苏)已知集合A={﹣2,﹣1,3,4},B={﹣1,2,3},则A∩B={﹣1,3} .2.(5分)(2014•江苏)已知复数z=(5+2i)2(i为虚数单位),则z的实部为21 .3.(5分)(2014•江苏)如图是一个算法流程图,则输出的n的值是 5 .4.(5分)(2014•江苏)从1,2,3,6这4个数中一次随机抽取2个数,则所取2个数的乘积为6的概率是.P=.5.(5分)(2014•江苏)已知函数y=cosx与y=sin(2x+φ)(0≤φ<π),它们的图象有一个横坐标为的交点,则φ的值是.的交点,可得.根据的交点,.,∴,+,..6.(5分)(2014•江苏)为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有24 株树木的底部周长小于100cm.=7.(5分)(2014•江苏)在各项均为正数的等比数列{a n}中,若a2=1,a8=a6+2a4,则a6的值是 4 .,=8.(5分)(2014•江苏)设甲、乙两个圆柱的底面积分别为S1,S2,体积分别为V1,V2,若它们的侧面积相等,且=,则的值是.=,,它们的侧面积相等,==..9.(5分)(2014•江苏)在平面直角坐标系xOy中,直线x+2y﹣3=0被圆(x﹣2)2+(y+1)2=4截得的弦长为.=,=2=10.(5分)(2014•江苏)已知函数f(x)=x2+mx﹣1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的取值范围是(﹣,0).,,解得﹣(﹣11.(5分)(2014•江苏)在平面直角坐标系xOy中,若曲线y=ax2+(a,b为常数)过点P (2,﹣5),且该曲线在点P处的切线与直线7x+2y+3=0平行,则a+b的值是﹣3 .(,(,,解得:12.(5分)(2014•江苏)如图,在平行四边形ABCD中,已知AB=8,AD=5,=3,•=2,则•的值是22 .=3,=+,=﹣,=3,=2解:∵=3=+,=﹣,•=+)•(﹣|•﹣|••=22=+,=﹣,是解答的关键.13.(5分)(2014•江苏)已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是(0,).|的图象如图:由图象可知,)14.(5分)(2014•江苏)若△ABC的内角满足sinA+sinB=2sinC,则cosC的最小值是.b=2c(bcosC==≥=≤cosC<的最小值是.二、解答题(本大题共6小题,共计90分)15.(14分)(2014•江苏)已知α∈(,π),sinα=.(1)求sin(+α)的值;(2)求cos(﹣2α)的值.(﹣,=﹣=+cos+cos sin=∴sin(+.,.,∴cos(﹣=cos cos2+sin sin2=(.16.(14分)(2014•江苏)如图,在三棱锥P﹣ABC中,D,E,F分别为棱PC,AC,AB的中点,已知PA⊥AC,PA=6,BC=8,DF=5.求证:(1)直线PA∥平面DEF;(2)平面BDE⊥平面ABC.的中点,∴DE=PA=3的中点,∴EF=BC=417.(14分)(2014•江苏)如图,在平面直角坐标系xOy中,F1,F2分别为椭圆+=1(a>b>0)的左、右焦点,顶点B的坐标为(0,b),连接BF2并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,连接F1C.(1)若点C的坐标为(,),且BF2=,求椭圆的方程;(2)若F1C⊥AB,求椭圆离心率e的值.的坐标为(,,即,(则椭圆的方程为x+b+﹣x=∵A(∴C()==×(.18.(16分)(2014•江苏)如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区,规划要求:新桥BC与河岸AB垂直;保护区的边界为圆心M在线段OA上并与BC相切的圆,且古桥两端O和A到该圆上任意一点的距离均不少于80m,经测量,点A位于点O正北方向60m处,点C位于点O正东方向170m处(OC为河岸),tan∠BCO=.(1)求新桥BC的长;(2)当OM多长时,圆形保护区的面积最大?.,∴CE=OP=m∴PC=PQ=∴R=MQ=m=∴136﹣﹣x≥80.19.(16分)(2014•江苏)已知函数f(x)=e x+e﹣x,其中e是自然对数的底数.(1)证明:f(x)是R上的偶函数;(2)若关于x的不等式mf(x)≤e﹣x+m﹣1在(0,+∞)上恒成立,求实数m的取值范围;(3)已知正数a满足:存在x0∈[1,+∞),使得f(x0)<a(﹣x03+3x0)成立,试比较e a ﹣1与a e﹣1的大小,并证明你的结论.m≤m≤,当且仅当.=e+﹣>)﹣,﹣=0①a∈(()20.(16分)(2014•江苏)设数列{a n}的前n项和为S n,若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”.(1)若数列{a n}的前n项和为S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0,若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n(n∈N*)成立.,,即,解得,则,三、附加题(本大题包括选做题和必做题两部分)(一)选择题(本题包括21、22、23、24四小题,请选定其中两个小题作答,若多做,则按作答的前两个小题评分)【选修4-1:几何证明选讲】21.(10分)(2014•江苏)如图,AB是圆O的直径,C,D是圆O上位于AB异侧的两点,证明:∠OCB=∠D.【选修4-2:矩阵与变换】22.(10分)(2014•江苏)已知矩阵A=,B=,向量=,x,y为实数,若A=B,求x+y的值.=BA=,向量==B,,∴x=﹣∴x+y=【选修4-3:极坐标及参数方程】23.(2014•江苏)在平面直角坐标系xOy中,已知直线l的参数方程为(t为参数),直线l与抛物线y2=4x相交于A,B两点,求线段AB的长.的参数方程为∴|AB|==8【选修4-4:不等式选讲】24.(2014•江苏)已知x>0,y>0,证明(1+x+y2)(1+x2+y)≥9xy.≥3,+y≥≥3(二)必做题(本部分包括25、26两题,每题10分,共计20分)25.(10分)(2014•江苏)盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为x1,x2,x3,随机变量X表示x1,x2,x3中的最大数,求X的概率分布和数学期望E(X).P=,P26.(10分)(2014•江苏)已知函数f0(x)=(x>0),设f n(x)为f n﹣1(x)的导数,n∈N*.(1)求2f1()+f2()的值;(2)证明:对任意n∈N*,等式|nf n﹣1()+f n()|=都成立.代入式子求值;代入所给的式子求解验证.,∴xf代入上式得,)f))x+)对任意成立,则上式成立;,=,x+代入上式得,(f)(+=±,(f)都成立.。

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联赛一试(A卷)试题(含答案)

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联赛一试(A卷)试题(含答案)

2024年全国中学生数学奥林匹克竞赛(预赛)暨2024年全国高中数学联合竞赛一试(A 卷)参考答案及评分标准说明:1. 评阅试卷时,请依据本评分标准. 填空题只设8分和0分两档;其他各题的评阅,请严格按照本评分标准的评分档次给分,不得增加其他中间档次.2. 如果考生的解答方法和本解答不同,只要思路合理、步骤正确,在评卷时可参考本评分标准适当划分档次评分,解答题中第9小题4分为一个档次,第10、11小题5分为一个档次,不得增加其他中间档次.一、填空题:本大题共8小题,每小题8分,满分64分.1. 若实数1m 满足98log (log )2024m ,则32log (log )m 的值为 . 答案:4049.解:323898log (log )log (3log )12log (log )1220244049m m m .2. 设无穷等比数列{}n a 的公比q 满足01q .若{}n a 的各项和等于{}n a 各项的平方和,则2a 的取值范围是 .答案:1,0(0,2)4. 解:因为数列{}n a 的各项和为11a q,注意到{}n a 各项的平方依次构成首项为21a 、公比为2q 的等比数列,于是2{}n a 的各项和为2121a q. 由条件知211211a a q q,化简得11a q . 当(1,0)(0,1)q 时,22111(1),0(0,2)244a q q q . 3. 设实数,ab 满足:集合2{100}A x x x a R 与3{}B x bx b R 的交集为[4,9],则a b 的值为 .答案:7.解:由于2210(5)25x x a x a ,故A 是一个包含[4,9]且以5x 为中点的闭区间,而B 是至多有一个端点的区间,所以必有[1,9]A ,故9a .进一步可知B 只能为[4,) ,故0b 且34b b ,得2b .于是7a b .4. 在三棱锥P ABC 中,若PA 底面ABC ,且棱,,,AB BP BC CP 的长分别为1,2,3,4,则该三棱锥的体积为 .答案:34. 解:由条件知PA AB ,PA AC .因此PA AC .在ABC 中,22219131cos 22132AB BC AC B AB BC ,故sin B .所以1sin 2ABC S AB BC B 又该三棱锥的高为PA ,故其体积为1334ABC V S PA . 5. 一个不均匀的骰子,掷出1,2,3,4,5,6点的概率依次成等差数列.独立地先后掷该骰子两次,所得的点数分别记为,a b .若事件“7a b ”发生的概率为17,则事件“a b ”发生的概率为 . 答案:421. 解:设掷出1,2,,6 点的概率分别为126,,,p p p .由于126,,,p p p 成等差数列,且1261p p p ,故16253413p p p p p p . 事件“7a b ”发生的概率为1162561P p p p p p p . 事件“a b ”发生的概率为2222126P p p p . 于是22221216253411()()()333P P p p p p p p . 由于117P ,所以21143721P . 6. 设()f x 是定义域为R 、最小正周期为5的函数.若函数()(2)x g x f 在区间[0,5)上的零点个数为25,则()g x 在区间[1,4)上的零点个数为 .答案:11.解:记2x t ,则当[0,5)x 时,[1,32)t ,且t 随x 增大而严格增大.因此,()g x 在[0,5)上的零点个数等于()f t 在[1,32)上的零点个数.注意到()f t 有最小正周期5,设()f t 在一个最小正周期上有m 个零点,则()f t 在[2,32)上有6m 个零点,又设()f t 在[1,2)上有n 个零点,则625m n ,且0n m ,因此4,1m n .从而()g x 在[1,4)上的零点个数等于()f t 在[2,16)[1,16)\[1,2) 上的零点个数,即311m n .7. 设12,F F 为椭圆 的焦点,在 上取一点P (异于长轴端点),记O 为12PF F 的外心,若12122PO F F PF PF ,则 的离心率的最小值为 .答案 解:取12F F 的中点M ,有12MO F F ,故120MO F F . 记1212,,PF u PF v F F d ,则121212PO F F PM F F MO F F 12211()()2PF PF PF PF 222v u , 222121222cos PF PF uv F PF u v d ,故由条件知222222v u u v d ,即22232u v d . 由柯西不等式知222281(3)1()33d u v u v (当3v u 时等号成立).所以 的离心率d e u v .当::u v d 时, 的离心率e 取到最小值8. 若三个正整数,,a b c 的位数之和为8,且组成,,a b c 的8个数码能排列为2,0,2,4,0,9,0,8,则称(,,)a b c 为“幸运数组”,例如(9,8,202400)是一个幸运数组.满足10a b c 的幸运数组(,,)a b c 的个数为 .答案:591.解:对于幸运数组(,,)a b c ,当10a b c 时,分两类情形讨论. 情形1:a 是两位数,,b c 是三位数.暂不考虑,b c 的大小关系,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置还未填,任选其中两个填2,最后三个位置填写4,8,9,这样的填法数为3255C C 3!600 .再考虑其中,b c 的大小关系,由于不可能有b c ,因此b c 与b c 的填法各占一半,故有300个满足要求的幸运数组.情形2:,a b 是两位数,c 是四位数.暂不考虑,a b 的大小关系,类似于情形1,先在,,a b c 的非最高位(五个位置)中选三个位置填0,剩下五个位置填2,2,4,8,9,这样的填法数为600.再考虑其中,a b 的大小关系.若a b ,则必有20a b ,c 的四个数字是0,4,8,9的排列,且0不在首位,有33!18 种填法,除这些填法外,a b 与a b 的填法各占一半,故有600182912个满足要求的幸运数组. 综上,所求幸运数组的个数为300291591 .二、解答题:本大题共3小题,满分56分.解答应写出文字说明、证明过程或演算步骤.9. (本题满分16分) 在ABC 中,已知sin cos sin cos cos 22A AB B C,求cos C 的值.解:由条件知cos 44C A B. …………4分 假如44A B,则2C ,cos 0C ,但sin 04A ,矛盾. 所以只可能44A B .此时0,2A B ,2C A . …………8分注意到cos 04C A ,故2C ,所以,42A B ,结合条件得cos cos 2sin 22sin cos 244C A A A A2C ,又cos 0C ,化简得28(12cos )1C ,解得cos C…………16分 10.(本题满分20分)在平面直角坐标系中,双曲线22:1x y 的右顶点为A .将圆心在y 轴上,且与 的两支各恰有一个公共点的圆称为“好圆”.若两个好圆外切于点P ,圆心距为d ,求d PA 的所有可能的值. 解:考虑以0(0,)y 为圆心的好圆2220000:()(0)x y y r r .由0 与 的方程消去x ,得关于y 的二次方程2220002210y y y y r .根据条件,该方程的判别式22200048(1)0y y r ,因此220022y r .…………5分对于外切于点P 的两个好圆12, ,显然P 在y 轴上.设(0,)P h ,12, 的半径分别为12,r r ,不妨设12, 的圆心分别为12(0,),(0,)h r h r ,则有2211()22h r r ,2222()22h r r .两式相减得2212122()h r r r r ,而120r r ,故化简得122r r h. …………10分 进而221211222r r r r ,整理得 221122680r r r r .① 由于12d r r ,(1,0)A ,22212()114r r PA h ,而①可等价地写为2212122()8()r r r r ,即228PA d ,所以d PA…………20分 11.(本题满分20分)设复数,z w 满足2z w ,求2222S z w w z 的最小可能值.解法1:设i (,)z a b a b R ,则2i w a b ,故2222242(1)i 642(3)i S a a b b a a a b b a ,22222464a a b a a b2222(1)5(3)5a b a b . ①…………5分记1t a .对固定的b ,记255B b ,求22()(4)f t t B t B 的最小值.由()(4)f t f t ,不妨设2t .我们证明0()()f t f t ,其中0t . 当0[2,]t t 时,04[2,4]t t ,22200()()()((4))((4))f t f t B t B t B t2222220000(4)((4))(28)(28)t t t t t t t t0 (用到02t t 及228y x x 在[2,) 上单调增). …………10分当0[,)t t 时,22200()()(4)(4)f t f t t B t B t B222200(4)(4)t t t t 000()8t t t t t t0 (用到04t t ). …………15分所以200()(4)1616S f t B t .当0b (①取到等号),011a t 时,S 取到最小值16.…………20分解法2:设1i,1i (,)R z x y w x y x y ,不妨设其中0x . 计算得2222(41)(24)i z w x x y x y ,2222(41)(24)i w z x x y x y .所以22Re(2)Re(2)S z w w z 22224141x x y x x y . …………5分利用a b a b ,可得8S x ,① 亦有22222212(1)2(1)S x y x y x . ②…………10分注意到方程282(1)x x 2.当2x 时,由①得816S x .当02x 时,由②得222(1)2(12))16S x .因此当2,0x y 时,S 取到最小值16. …………20分 解法3:因为2w z =−,所以我们有222(2)2411z z z z z22(2)26411z z z z z从而上两式最右边各项分别是z 到复平面中实轴上的点1−1−,33+的距离,所以把i z x y =+换成其实部x 时,都不会增大.因此只需 考虑函数22()2464f x x x x x +−+−+在R 上的最小值.…………10分因为1313−−<<−+<,因此我们有以下几种情况:1.若1x≤−,则2()24f x x x=−,在这一区间上的最小值为(116f−=+;2.若(13x∈−−,则()88f x x=−+,在这一区间上的最小值为(316f=−+…………15分3.若31x∈−,则2()24f x x x=−+,在这一区间上的最小值为((3116f f=−+=−+;4.若13x∈− ,则()88f x x=−,在这一区间上的最小值为(116f−+=−+;5.若3x≥+,则2()24f x x x=−,在这一区间上的最小值为(316f=+.综上所述,所求最小值为((3116f f=−+=−.…………20分。

全国高中数学联赛省级预赛模拟试题

全国高中数学联赛省级预赛模拟试题

全国高中数学联赛省级预赛模拟试题第Ⅰ卷(选择题 共60分)参考公式1.三角函数的积化和差公式sinα•cosβ=[sin(α+β)+sin(α-β)],cosα•sinβ=[sin(α+β)-sin(α-β)],cosα•cosβ=[cos(α+β)+cos(α-β)],sinα•sinβ=[cos(α+β)-cos(α-β)].2.球的体积公式V球=πR3(R为球的半径)。

一、选择题(每小题5分,共60分)1.设在xOy平面上,0<y≤x2,0≤x≤1所围成图形的面积为。

则集合M={(x,y)|x≤|y|}, N={(x,y)|x≥y2|的交集M∩N所表示的图形面积为A. B. C.1 D.2.在四面体ABCD中,设AB=1,CD=,直线AB与直线CD的距离为2,夹角为。

则四面体ABCD的体积等于A. B. C. D.3.有10个不同的球,其中,2个红球、5个黄球、3个白球。

若取到一个红球得5分,取到一个白球得2分,取到一个黄球得1分,那么,从中取出5个球,使得总分大于10分且小于15分的取法种数为A.90 B.100 C.110 D.1204.在ΔABC中,若(sinA+sinB)(cosA+cosB)=2sinC,则A.ΔABC是等腰三角形,但不一定是直角三角形B.ΔABC是直角三角形,但不一定是等腰三角形C.ΔABC既不是等腰三角形,也不是直角三角形D.ΔABC既是等腰三角形,也是直角三角形5.已知f(x)=3x2-x+4, f(g(x))=3x4+18x3+50x2+69x+48.那么,整系数多项式函数g(x)的各项系数和为A.8 B.9 C.10 D.116.设0<x<1, a,b为正常数。

则的最小值是A.4ab B.(a+b)2 C.(a-b)2 D.2(a2+b2)7.设a,b>0,且a2008+b2008=a2006+b2006。

则a2+b2的最大值是A.1 B.2 C.2006 D.20088.如图1所示,设P为ΔABC所在平面内一点,并且AP=AB+AC。

2014年高中数学联赛试题及其解答

2014年高中数学联赛试题及其解答

加试
一、(本题满分 40 分)设实数a、b、c满足a + b + c = 1,abc>0,求证:ab + bc + ca< √ + 。
证明方法一:因为abc>0,故a、b、c全为正数,或一正两负。 (Ⅰ)若a、b、c中一正两负,不妨设a>0,b、c<0,则ab + bc + ca = a(b + c) + bc = a(b + c) + bc = [1 − (b + c)](b + c) + bc = (b + c) − b − − <0< √ + 。
解答:我们考虑存在复数z 、z ,|z |、|z |<1,z ≠ z ,使得(z + α) + αz =
(z + α) + αz 的充要条件。此时
(z + α) + αz = (z + α) + αz
⇔ α(z − z ) = (z − z )(z + z + 2α)
⇔ α[(z − z ) + 2(z − z )] = (z − z )(z + z )
3、若函数f(x) = x + a|x − 1|在[0, + ∞)上单调递增,则实数a的取值范围是

x − ax + a,x ∈ 0,1
解答:根据条件知f(x) =
。f(x)在 0,1 单调递增的充要
x + ax − a,x ∈ 1, + ∞
条件为 ≤ 0 ⇔ a ≤ 0;f(x)在 1, + ∞ 单调递增的充要条件为− ≤ 1 ⇔ a ≥ −2。故实数

2014年全国初中数学竞赛预赛试题及参考答案

2014年全国初中数学竞赛预赛试题及参考答案

2014年全国初中数学竞赛预赛试题及参考答案(竞赛时间:2014年3月2日上午9:00--11:00)一、选择题(共6小题,每小题6分,共36分)以下每小题均给出了代号为A,B,C,D的四个选项,其中有且只有一个选项是正确的. 请将正确选项的代号字母填入题后的括号里,不填、多填或错填都得0分)1.若是最大的负整数,是绝对值最小的有理数,是倒数等于它本身的自然数,则的值为【】(A)2013(B)2014(C)2015(D)0【答】D.解:最大的负整数是-1,∴=-1;绝对值最小的有理数是0,∴=0;倒数等于它本身的自然数是1,∴=1.∴==0.2. 已知实数满足则代数式的值是【】(A)(B)3(C)(D)7【答】A.解:两式相减得3.如图,将表面展开图(图1)还原为正方体,按图2所示摆放,那么,图1 中的线段MN在图2中的对应线段是【】(A)(B)(C)(D)【答】C.解:将图1中的平面图折成正方体,MN和线段c重合.不妨设图1中完整的正方形为完整面,△AMN和△ABM所在的面为组合面,则△AMN和△ABM所在的面为两个相邻的组合面,比较图2,首先确定B点,所以线段d 与AM重合,MN与线段c重合.4. 已知二次函数的图象如图所示,则下列7个代数式,,,,,,中,其值为正的式子的个数为【】(A)2个(B)3个(C)4个(D)4个以上【答】C.解:由图象可得:,,,∴,,.抛物线与轴有两个交点,∴.当=1时,,即.当=时,,即.从图象可得,抛物线对称轴在直线=1的左边,即,∴.因此7个代数式中,其值为正的式子的个数为4个.5. 如图,Rt△OAB的顶点O与坐标原点重合,∠AOB=90°,AO=2BO,当A点在反比例函数(x>0)的图象上移动时,B点坐标满足的函数解析式为【】(A)(x<0)(B)(x<0)(C)(x<0)(D)(x<0)【答】B.解:如图,分别过点分别做轴的垂线,那么∽,则,故.6.如图,四边形ABHK是边长为6的正方形,点C、D在边AB上,且AC=DB=1,点P是线段CD上的动点,分别以AP、PB为边在线段AB的同侧作正方形AMNP和正方形BRQP,E、F分别为MN、QR的中点,连接EF,设EF 的中点为G,则当点P从点C运动到点D时,点G移动的路径长为【】(A)1 (B)2 (C)3 (D)6【答】B.解:设KH中点为S,连接PE、ES、SF、PF、PS,可证明四边形PESF 为平行四边形,∴G为PS的中点, 即在点P运动过程中,G始终为PS的中点,所以G的运行轨迹为△CSD的中位线,∵CD=AB-AC-BD=6-1-1=4,∴点G移动的路径长为=2.二、填空题(共6小题,每小题6分,共36分)7.已知,化简得.【答】.解:∵,∴,,原式=.8. 一个不透明的袋子中有除颜色外其余都相同的红、黄、蓝色玻璃球若干个,其中红色玻璃球有6个,黄色玻璃球有9个,已知从袋子中随机摸出一个蓝色玻璃球的概率为,那么,随机摸出一个为红色玻璃球的概率为.【答】.解:设口袋中蓝色玻璃球有个,依题意,得,即=10,所以P(摸出一个红色玻璃球)=.9. 若,则= .【答】8.解:∵,∴.则,即.∴10.如图,在Rt△OAB中,∠AOB=30°,AB=2,将Rt△OAB绕O点顺时针旋转90°得到Rt△OCD,则AB扫过的面积为.【答】.解:∵Rt△OAB中,∠AOB=30°,AB=2,∴AO=CO=,BO=DO=4,∴阴影部分面积====.11.如图,在矩形ABCD中,AB=3,BC=4,点E是AD上一个动点,把△BAE沿BE向矩形内部折叠,当点A的对应点A1恰落在∠BCD的平分线上时,CA1= .【答】.解:过A1作A1M⊥BC,垂足为M,设CM=A1M=x,则BM=4-x,在Rt△A1BM中,,∴=,∴x =A1M=,∴在等腰Rt△A1CM中,C A1=.12.已知a、b、c、d是四个不同的整数,且满足a+b+c+d =5,若m是关于x的方程(x-a)(x-b)(x-c)(x-d)=2014中大于a、b、c、d的一个整数根,则m的值为.【答】20.解:∵(m-a)(m-b)(m-c)(m-d)=2014,且a、b、c、d是四个不同的整数,由于m是大于a、b、c、d的一个整数根,∴(m-a)、(m-b)、(m-c)、(m-d)是四个不同的正整数. ∵2014=1×2×19×53,∴(m-a)+(m-b)+(m-c)+(m-d)=1+2+19+53=75.又∵a+b+c+d =5,∴m =20.三、解答题(第13题14分,第14题16分,第15题18分,共48分)13.某学校为九年级数学竞赛获奖选手购买以下三种奖品,其中小笔记本每本5元,大笔记本每本7元,钢笔每支10元,购买的大笔记本的数量是钢笔数量的2倍,共花费346元,若使购买的奖品总数最多,则这三种奖品的购买数量各为多少?解:设购买小笔记本x本,大笔记本y本,钢笔z支,则有,.易知0<x≤69,0<y≤49,0<z≤34,……………………………………4分∴,,即.∵x,y,z均为正整数,≥0,即0<z≤14∴z只能取14,9和4 (8)分①当z为14时,=2,=28. .②当z为9时,=26,=18. .③当z为4时,=50,=8. .综上所述,若使购买的奖品总数最多,应购买小笔记本50本,大笔记本8本,钢笔4支.……………………………………………………………………14分14.如图,在矩形ABCD中,AD=8,直线DE交直线AB于点E,交直线BC于F,AE=6.(1)若点P是边AD上的一个动点(不与点A、D重合),设DP为x,四边形AEHP的面积为y,试求y与x的函数解析式;(2)若AE=2EB.①求圆心在直线BC上,且与直线DE、AB都相切的⊙O的半径长;②圆心在直线BC上,且与直线DE及矩形ABCD的某一边所在直线都相切的圆共有多少个?(直接写出满足条件的圆的个数即可.)14、解:(1)在Rt中,…………………………………………………………5分(2)①∽.………………………7分若⊙与直线DE、AB都相切,且圆心在AB的左侧,过点作于,则可设. 解得…………………10分若⊙与直线DE、AB都相切,且圆心在AB的右侧,过点作于,则可设解得即满足条件的圆的半径为或6.…………………………………………13分②6个.………………………………………………………………………………………16分15. 如图1,等腰梯形OABC的底边OC在x轴上,AB∥OC,O为坐标原点,OA =AB=BC,∠AOC=60°,连接OB,点P为线段OB上一个动点,点E为边OC中点.(1)连接PA、PE,求证:PA=PE;(2)连接PC,若PC+P E=,试求AB的最大值;(3)在(2)在条件下,当AB取最大值时,如图2,点M坐标为(0,-1),点D为线段OC上一个动点,当D点从O点向C点移动时,直线MD与梯形另一边交点为N,设D点横坐标为m,当△M NC为钝角三角形时,求m的范围.解:(1)证明:如图1,连接AE.…………………………………………………………5分(2)∵PC+P E=,∴PC+PA=.显然有OB=AC≤PC+P A=.……………7分在Rt△B OC中,设AB=OA=BC=x,则OC=2x,OB=,∴≤,∴≤2.即AB的最大值为2.…………………………10分(3) 当AB取最大值时,AB=OA=BC=2,OC=4.分三种情况讨论:①当N点在OA上时,如图2,若CN⊥M N时,此时线段OA上N点下方的点(不包括N、O)均满足△M NC为钝角三角形.过N作NF⊥x轴,垂足为F,∵A点坐标为(1,),∴可设N点坐标为(,),则D F=a-m,NF=,FC=4-a. ∵△O MD∽△FN D∽△FCN,∴.解得,,即当0<<时,△M NC为钝角三角形; (14)分②当N点在AB上时,不能满足△M NC为钝角三角形; (15)分③当N点在BC上时,如图3,若CN⊥M N时,此时BC上N点下方的点(不包括N、C)均满足△M NC为钝角三角形.∴当<<4时,△M NC为钝角三角形.综上所述,当0<<或<<4时,△M NC为钝角三角形 (1)。

2014年高考江苏数学试题及答案(word解析版)

2014年高考江苏数学试题及答案(word解析版)

2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共 4 页,包含填空题(第 1 题—第14 题)、解答题(第15 题第20 题).本卷满分160 分,考试时间为120 分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5 毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5 毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.5.请保持答题卡卡面清洁,不要折叠、破损.一律不准使用胶带纸、修正液、可擦洗的圆珠笔.参考公式:圆柱的体积公式:V圆柱sh ,其中s为圆柱的表面积,h 为高.圆柱的侧面积公式:S圆柱=cl ,其中 c 是圆柱底面的周长,l 为母线长.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题.卡.相.应.位.置.上...(1)【2014 年江苏,1,5 分】已知集合 A { 2 ,1,3,4} ,B { 1,2,3} ,则 A B _______ .【答案】{ 1,3}【解析】由题意得 A B { 1,3} .(2)【2014 年江苏,2,5 分】已知复数【答案】21 z(5 2i) (i 为虚数单位),则z的实部为_______. 22【解析】由题意 2 2z (5 2i) 25 2 5 2i (2i) 21 20i ,其实部为21.(3)【2014 年江苏,3,5 分】右图是一个算法流程图,则输出的n 的值是_______.【答案】 5n 的最小整数解.2n 20 整数解为n 5,因此输出的n 5 .【解析】本题实质上就是求不等式 2 20(4)【2014 年江苏,4,5 分】从1,2 ,3,6这4个数中一次随机地取 2 个数,则所取 2 个数的乘积为 6 的概率是_______.【答案】 13【解析】从1,2,3,6这4个数中任取 2 个数共有 2C4 6 种取法,其中乘积为 6 的有1,6 和2,3 两种取法,因此所求概率为 2 1P .6 3(5)【2014 年江苏,5,5 分】已知函数y cos x与y sin(2 x )(0 ≤) ,它们的图象有一个横坐标为的3 交点,则的值是_______.【答案】6【解析】由题意cos sin(2 )3 3 ,即2 1sin( )3 2,2kk ( 1) ,(k Z ) ,因为0 ,所3 6以.6(6)【2014 年江苏,6,5 分】为了了解一片经济林的生长情况,随机抽测了其中60 株树木的底部周长(单位:cm),所得数据均在区间[80 ,130] 上,其频率分布直方图如图所示,则在抽测的60 株树木中,有株树木的底部周长小于100 cm.【答案】241【解析】由题意在抽测的60 株树木中,底部周长小于100 cm 的株数为(0.015 0.025) 10 60 24 .(7)【2014 年江苏,7,5 分】在各项均为正数的等比数列{ }a 中,若na8 a6 2a4 ,则a2 1 ,a的值是________.6【答案】 4【解析】设公比为q ,因为a2 1,则由a8 a6 2a4 得 6 4 2 2 4 2 2 0q q a ,q q ,解得2 2q ,所以4a6 a2q 4 .(8)【2014 年江苏,8,5 分】设甲、乙两个圆柱的底面积分别为S,S ,体积分别为1 2 V ,V ,若它们的侧面积相1 2等,且S1S294,则V1V2的值是_______.【答案】 32【解析】设甲、乙两个圆柱的底面和高分别为r 、h ,r2、h2 ,则2 r1h1 2 r2 h2 ,1 1 h r1 2h r2 1,又2S r1 12S r2 294,所以r1r232,则2 2 2V r h r h r r r1 1 1 1 1 12 12 2 2V r h r h r r r2 2 2 2 2 2 1 232.(9)【2014 年江苏,9,5 分】在平面直角坐标系xOy 中,直线x 2 y 3 0 被圆长为________.2 2(x2) (y1) 4 截得的弦【答案】 2 555【解析】圆 2 2(x 2) (y1) 4 的圆心为 C (2, 1) ,半径为r 2 ,点C 到直线x 2y 3 0 的距离为2 2 ( 1)3 3d ,所求弦长为2 251 22 2 9 2 55l 2 r d 2 4 .5 5(10)【2014 年江苏,10,5 分】已知函数f (x) x mx 1,若对任意x [m,m 1],都有 f (x) 0 成立,则实2数m 的取值范围是________.【答案】 2 0,2【解析】据题意2 2f (m) m m 1 02f (m 1) (m 1) m(m 1) 1 0,解得22m 0 .(11)【2014 年江苏,11,5 分】在平面直角坐标系xOy 中,若曲线 2 by axx( a,b 为常数)过点P(2 ,5) ,且该曲线在点P 处的切线与直线7x 2 y 3 0 平行,则 a b 的值是________.【答案】 3【解析】曲线y ax 2 bxb b过点P(2, 5) ,则4a 5 ①,又y'2ax 22 x,所以b 74a ②,由①②解得4 2ab11,所以 a b 2 .(12)【2014 年江苏,12,5 分】如图,在平行四边形ABCD 中,已知,AB 8 ,AD 5 ,CP 3PD ,AP BP 2 ,则AB AD 的值是________.【答案】22【解析】由题意,1AP AD DP AD AB ,43 3BP BC CP BC CD AD AB ,4 4所以1 3AP BP (AD AB) (AD AB)4 42 13 2AD AD AB AB ,2 16即 1 32 25 64AD AB ,解得AD AB 22 .2 16(13)【2014 年江苏,13,5 分】已知 f (x) 是定义在R上且周期为 3 的函数,当x [0 ,3) 时, 2 1f (x) x 2x .2 若函数y f ( x) a 在区间[ 3,4] 上有10 个零点(互不相同),则实数 a 的取值范围是________.【答案】0 1,22【解析】作出函数21f(x)x2x,x[0,3)的图象,可见21f(0),当x1时,21f(x)极大,27f,方程f(x)a0在x[3,4]上有10个零点,即函数y f(x)和图象与直线(3)2y a在[3,4]上有10个交点,由于函数f(x)的周期为3,因此直线y a与函数21f(x)x2x,x[0,3)的应该是4个交点,则有21a(0,).2(14)【2014年江苏,14,5分】若ABC的内角满足sin A2sin B2sin C,则cos C的最小值是_______.【答案】624【解析】由已知sin A2sin B2sin C及正弦定理可得a2b2c,cosC222a b c2ab2ab223a2b22ab26ab22ab62 8ab8ab4,当且仅当223a2b,即ab23时等号成立,所以cos C的最小值为624.二、解答题:本大题共6小题,共计90分.请在答.题.卡.指.定.区.域.内.作答,解答时应写出必要的文字说明、证明过程或演算步骤.(15)【2014年江苏,15,14分】已知2,,sin55.(1)求sin的值;4(2)求cos26的值.解:(1)∵sin5,,,∴25225cos1sin5,210s i n s i n c o s c o s s i n(c o s s i n).444210(2)∵43sin22sin cos cos2cos sin,,sin22sin cos cos2cos sin2255∴3314334 cos2cos cos2sin sin2666252510.(16)【2014年江苏,16,14分】如图,在三棱锥P ABC中,D,E,F分别为棱PC,AC,AB的中点.已知PA AC,PA6,BC8,DF5.(1)求证:直线PA∥平面DEF;(2)平面BDE⊥平面ABC.解:(1)∵D,E为PC,AC中点∴DE∥PA∵PA平面DEF,DE平面DEF∴PA∥平面DEF.(2)∵D,E为PC,AC中点,∴DE1PA3∵E,F为AC,AB中点,∴1 4EF BC,22∴DE2EF2DF2,∴DEF90°,∴DE⊥EF,∵DE//PA,PA AC,∴DE AC,∵AC EF E,∴DE⊥平面ABC,∵DE平面BDE,∴平面BDE⊥平面ABC.(17)【2014年江苏,17,14分】如图,在平面直角坐标系xOy中,F,F分别是椭圆1222yx a b221(0)a b的左、右焦点,顶点B的坐标为(0,b),连结B F并延长交椭圆于点A,过点A作x轴的垂线交椭圆于另一点C,2连结F C.1(1)若点C的坐标为41,,且33B F22,求椭圆的方程;(2)若F C AB,求椭圆离心率e的值.1316 1解:(1)∵ 4 1C ,,∴3 3 9 9 9a b2 2,∵ 2 2 2 2BF b c a ,∴22 ( 2) 2 2a ,∴b,2 1∴椭圆方程为 2 x y .2 12(2)设焦点F1( c,0) ,F2 (c,0) ,C(x,y) ,∵A,C 关于x 轴对称,∴A(x ,y) ,∵B,F ,A三点共线,∴2b ybc x,即bx cy bc 0①∵y b FC AB ,∴ 1 1x c c ,即 2 0xc by c ②①②联立方程组,解得xyca2b c2 22bc2b c2 2∴Ca c 2bc2 2,2 2 2 2b c b cC 在椭圆上,∴2 2a c 2bc2 2b c b c2 2 2 2a b2 21,化简得5c a ,∴c 52 2a 5, 故离心率为55.(18)【2014 年江苏,18,16 分】如图,为保护河上古桥OA,规划建一座新桥BC,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段O A 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m.经测量,点 A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),tan 4BCO .3(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?.解:解法一:(1)如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系x Oy.由条件知A(0, 60),C(170, 0),直线BC 的斜率 4k -tan BCO .BC3又因为AB⊥BC,所以直线AB 的斜率 3k .设点 B 的坐标为(a,b),AB4则k BC= b 0 4a 170 3 ,k AB= 60 3ba 0 4,解得a=80,b=120.所以BC= 2 2(170 80) (0 120) 150 .因此新桥BC 的长是150 m.(2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d≤60.)由条件知,直线BC 的方程为 4 ( 170)y x ,即4x 3y 680 0 ,3由于圆M 与直线BC 相切,故点M (0,d)到直线BC 的距离是r,即因为O 和A 到圆M 上任意一点的距离均不少于80 m,| 3d 680 | 680 3d r .5 5所以r d≥80r (60 d )≥80,即680 3d5680 3d5d 80≥(60 d ) 80≥,解得10 ≤ d ≤35 .故当d=10 时,680 3dr 最大,即圆面积最大.所以当OM = 10 m 时,圆形保护区的面积最大.5解法二:(1)如图,延长OA, CB 交于点F.因为tan∠BCO = 43 .所以sin∠FCO = 45,cos∠FCO = 35.因为OA =60,OC=170,所以OF= O C tan∠FCO =6803 .CF=OC850cos FCO 3,4从而500AF OF OA .因为O A⊥OC,所以cos∠AFB =sin∠FCO =3 45,又因为A B⊥BC,所以BF =AFcos∠AFB == 4003,从而BC= C F-BF=150.因此新桥B C 的长是150 m.(2)设保护区的边界圆M 与BC 的切点为D,连接M D ,则MD ⊥BC,且MD 是圆M 的半径,并设MD =r m,OM =d m(0 ≤d≤60.) 因为O A⊥OC,所以sin∠CFO =cos∠FCO,故由(1)知,sin∠CFO = MD MD r 3MF OF OM 680 5d3所以680 3dr .5因为O和A 到圆M 上任意一点的距离均不少于80 m,所以r d≥80r (60 d )≥80,即680 3d5680 3d5d 80≥(60 d )≥80,解得10 ≤ d ≤35 ,故当d=10 时,680 3dr 最大,即圆面积最大.所以当OM = 10 m 时,圆形保护区的面积最大.5(19)【2014 年江苏,19,16 分】已知函数( ) e ex xf x 其中e 是自然对数的底数.(1)证明: f (x) 是R上的偶函数;(2)若关于x的不等式mf (x) ≤ e m 1在(0 ,) 上恒成立,求实数m 的取值范围;x(3)已知正数 a 满足:存在你的结论.x0 [1,) ,使得 3 ea 1 与f (x ) a( x 3x ) 成立.试比较0 0 0a e 1 的大小,并证明解:(1)x R, f ( x) e e f (x) ,∴ f (x) 是R上的偶函数.x x(2)由题意,(e e ) e 1x x x m ≤,∵x (0 ,) ,∴e x e x 1 0 ,x x xm ≤m ,即(e e 1) e 1即 e 1xm ≤对x (0 ,) 恒成立.令 e ( 1)t t ,则xe e 1x x m1 t≤对任意t (1,) 恒成立.t t 12∵ 1 1 1 1t t ≥,当且仅当t 2 时等号成立,∴ 1m ≤.2 2 3t t 1 (t 1) (t 1) 1 1 3t 1 1t 1(3)f '( x) e e ,当x 1 时 f '( x) 0 ∴ f (x) 在(1,) 上单调增,令x xh(x) a( x 3x) ,h '( x) 3ax( x 1) ,33∵a 0 ,x 1,∴h '(x) 0 ,即h( x) 在x (1,) 上单调减,∵存在x0 [1,) ,使得f x a x x ,∴ f (1) e 1 2a ,即 1 e 1 ( ) ( 3 ) a .30 0 0e 2 e∵ a a a a ,设m(a) (e 1)ln a a 1 ,则m '(a ) e 1 1 e 1 a e-1ln ln ln e (e 1)ln 1e 1 a 1e a aa 1,1 1a e .当2 e 1 1e a e 1时,m '(a) 0 ,m(a) 单调增;当 a e 1 时,m '(a) 0 ,m(a ) 单调2 e减,因此m( a) 至多有两个零点,而m(1) m(e) 0 ,∴当 a e 时,m(a) 0 ,a e 1 e a 1 ;当1 e 1 ea 时,m(a) 0 ,2 e a e 1 e 1 ;当a e 时,m(a) 0 ,aa e 1 e a 1 .(20)【2014 年江苏,20,16 分】设数列{ }a 的前n 项和为S.若对任意的正整数n,总存在正整数m,使得n n S a ,n m则称{}a 是“H 数列”.nn(1)若数列{ a } 的前n 项和S 2 (n N) ,证明:{ a } 是“H 数列”;n n n(2)设{ a } 是等差数列,其首项n a1 1,公差 d 0 .若{a } 是“H 数列”,求d 的值;n(3)证明:对任意的等差数列{ }a ,总存在两个“H数列”{b } 和{c } ,使得 a b c (n N) 成立.n n n n n n解:(1)当n ≥ 2 时,n n 1 n 1a S S 1 2 2 2 ,当n 1时,n n n a1 S1 2 ,∴n 1时,S a ,当n≥2时,1 1 S a ,∴{a } 是“H 数列”.n n 1 n(2)n(n 1) n(n 1)S na d n d ,对n N,m N使n 12 2S a ,即n mn(n 1)n d 1 (m 1)d ,25取n 2 得1 d (m1)d ,m 2 1d,∵d 0 ,∴m 2 ,又m N ,∴m 1,∴d 1.(3)设{}a 的公差为d,令n b a1 (n 1)a1 (2 n) a1 ,对n N ,nb b a ,n 1 n 1c (n 1)(a d) ,n 1对n N ,c c a d ,则n 1 n 1 b c a1 (n 1)d a ,且{ b } ,{c } 为等差数列.n n n n n{ b } 的前n 项和nn(n 1)T na ( a ) ,令n 1 12T (2 m)a ,则n 1n(n 3)m 2 .2当n 1时m 1;当n 2 时m 1;当n≥3时,由于n 与n 3 奇偶性不同,即n(n 3) 非负偶数,m N .因此对n ,都可找到m N ,使T b 成立,即{b } 为“H 数列”.n m n{c } 的前n项和nn(n 1)R (a d ) ,令n 12c (m 1)(ad ) R ,则n 1 mmn(n 1)21∵对n N ,n(n 1) 是非负偶数,∴m N ,即对n N ,都可找到m N ,使得R c 成立,n m 即{ }c 为“H 数列”,因此命题得证.n数学Ⅱ注意事项考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷只有解答题,供理工方向考生使用.本试,21 题有A、B、C、D 4 个小题供选做,每位考生在4 个选做题中选答 2 题.若考生选做了3题或4题,则按选做题中的前 2 题计分.第22、23 题为必答题.每小题10 分,共40 分.考试时间30 分钟.考试结束后,请将答题卡交回.2.答题前,请您务必将自己的姓名、准考证号用0.5 毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请在答题卡上按照顺序在对应的答题区域内作答,在其他位置作答一律无效.作答必须用0.5 毫米黑色墨水的签字笔.请注意字体工整,笔迹清楚.4.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.【选做】本题包括A、B、C、D 四小题,请选.定.其.中.两.题.,并.在.相.应.的.答.题.区.域.内.作.答.,若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.(21-A )【2014 年江苏,21-A,10 分】(选修4-1:几何证明选讲)如图,AB 是圆O 的直径,C、 D 是圆O 上位于AB 异侧的两点.证明:∠OCB =∠D.解:因为B,C 是圆O 上的两点,所以OB=OC.故∠OCB =∠B.又因为C, D 是圆O 上位于AB 异侧的两点,故∠B,∠D 为同弧所对的两个圆周角,所以∠B=∠D.因此∠OCB =∠D.(21-B )【2014 年江苏,21-B,10 分】(选修4-2:矩阵与变换)已知矩阵1 2 1 1A ,B ,向量1 x2 12y,x,y为实数,若Aα= Bα,求x,y的值.解:2 y 2A ,2 xy2 yBα,由Aα= Bα得4 y2y 2 2 y,解得 1 4x ,y .2 xy 4 y, 2(21-C)【2014 年江苏,21-C,10 分】(选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知直线l的参数方程为2x 1 t ,2(t 为参数),直线l 与抛物线2y 2 t2y2 4x交于A,B 两点,求线段A B 的长.解:直线l:x y 3 代入抛物线方程 2 4y x 并整理得x2 10x 9 0 ,∴交点 A (1,2) ,B(9 ,6) ,故| AB| 8 2 .(21-D )【2014 年江苏,21-D,10 分】(选修4-5:不等式选讲)已知x 0 ,y 0 ,证明: 2 21 x y 1 x y 9xy .解:因为x>0, y>0, 所以1+ x+y 2≥33 xy2 0 ,1+x2+y≥2 2 2 2 23 3 33 x y 0 ,所以(1+ x+y )( 1+x +y) ≥3 xy 3 x y =9 xy.2≥33 xy2 0 ,1+x2+y≥【必做】第22、23 题,每小题10 分,计20 分.请把答案写在.答.题.卡.的.指.定.区.域.内...(22)【2014 年江苏,22,10 分】盒中共有9 个球,其中有 4 个红球, 3 个黄球和 2 个绿球,这些球除颜色外完全相同.6(1)从盒中一次随机取出 2 个球,求取出的 2 个球颜色相同的概率P;(2)从盒中一次随机取出 4 个球,其中红球、黄球、绿球的个数分别记为x,x ,x ,随机变量X 表示1 2 3 x ,x ,x 1 2 3中的最大数,求X 的概率分布和数学期望E(X ) .解:(1)一次取 2 个球共有 2C 36 种可能情况, 2 个球颜色相同共有92 2 2C C C 10 种可能情况,4 3 2∴取出的 2 个球颜色相同的概率10 5P .36 18(2)X 的所有可能取值为4,3,2 ,则C 14P X ;( 4) 4C 12649C C C C 133 1 3 1P( X 3) 4 5 3 6 ;C 633911P( X 2) 1 P(X 3) P(X 4) .∴X 的概率分布列为:14X 2 3 4P 1114 13631126故X 的数学期望( ) 2 11 3 13 4 1 20E X .14 63 126 9(23)【2014 年江苏,23,10 分】已知函数sin xf (x) (x 0)x ,设 f (x) 为nf x 的导数,n N.n1 ( )(1)求2f f 的值;1 22 2 2(2)证明:对任意的n N,等式 2nf f 成立.n 1 n4 4 4 2解:(1)由已知,得sin x cosx sin xf (x) f (x)1 0 2x x x,于是cosx sin x sin x 2cos x 2sin xf (x) f (x)2 1 2 2 3x x x x x ,所以 4 2 16f ( ) , f ( ) ,1 2 2 32 2故2 f ( ) f ( ) 1 .1 22 2 2(2)由已知,得xf0 (x) sin x, 等式两边分别对x 求导,得 f 0 (x) xf0 (x) cos x ,即f0 ( x) xf1 (x) cos x sin(x ) ,类似可得2 2 f (x) xf (x) sin x sin( x ) ,1 233 f (x) xf (x) cos x sin( x ) ,2 32 4 f (x) xf (x) sin x sin( x 2 ) .3 4下面用数学归纳法证明等式nnf x xf x x 对所有的nn n1 ( ) ( ) sin( )2N*都成立.(i)当n=1 时,由上可知等式成立.(ii)假设当n=k 时等式成立, 即kkf 1 (x) xf (x) sin( x ) .k k2因为[kf ( x) xf (x )] kf (x) f (x) xf (x) (k 1) f (x) f ( x),k 1 k k 1 k k k k 1(k1)k k k[sin( x )] cos(x ) (x) sin[ x ] ,所以2 2 2 2 (k 1) f ( x) f (x)k k 1(k 1)sin[ x ] .2所以当n=k +1 时,等式也成立.综合(i),(ii) 可知等式nnf 1 ( x) xf (x) sin( x ) 对所有的nn n2 N都成立.*令x ,可得4nnf 1 ( ) f ( ) sin( ) ( nn n4 4 4 4 2N).所以*2nf f ( nn 1 n( ) ( )4 4 4 2N).*7。

2014年全国高中数学联赛江苏赛区复赛参考答案与评分细则(一试)[1]

2014年全国高中数学联赛江苏赛区复赛参考答案与评分细则(一试)[1]

2014年全国高中数学联赛江苏赛区复赛参考答案与评分细则(一试)[1]2014年全国高中数学联赛江苏赛区复赛参考答案与评分细则一试一、填空题(本题满分64分,每小题8分)1.在△ABC中,若c cos B=12,b sin C=5,则c=.答案:13.解:根据正弦定理,得c sin B=b sin C=5,所以c2=(c cos B)2+(c sin B)2=132,从而c=13.2.函数f(x)=x+1(x+1)3+1(x>0),则函数取得最小值时,所对应的x值是.答案:43-1.解:由f(x)=x+1(x+1)3+1=13(x+1)+13(x+1)+13(x+1)+1(x+1)3≥44(13)3,等号当且仅当13(x+1)=1(x+1)3,即x=43-1.(本题也可求导)3.对于任意的实数a∈(-2,4],都有x2-ax+9>0成立,则实数x的取值范围为.答案:R.解:当a∈(-2,4]时,△=a2-36<0,故x2-ax+9>0恒成立,从而x的取值范围是R.4.已知等比数列{a n}的公比为q,前n项和S n>0(n=1,2,3,…),则q的取值范围是.答案:(-1,0)∪(0,+∞).解:因为S n>0(n=1,2,3,…),所以a1>0.当q=1,S n=na1>0成立.当q≠1,S n=a1(1-q n)1-q>0(n=1,2,3,…)恒成立,所以q∈(-1,0)∪(0,1)∪(1,+∞).综上q的取值范围是(-1,0)∪(0,+∞).5.已知5件产品中有3件合格品,2件次品.每次任取一个检验,检验后不再放回,恰好经过3次检验找出2件次品的概率为.答案:3 10.解:恰好3次找出2件次品,有三种情况:(1)第1次,第3次找出次品;(2)第2次,第3次找出次品,(3)前三次均为正品.若第1次,第3次找出次品的25×34×13=110;若第2次,第3次找出次品的概率35×24×13=110.若前3次均找出的是正品的概率35×24×13=110,故恰好经过3次检验找出2件次品的概率为110+110+110=310.6.点A 是椭圆x 2a 2+y 2=1(a >1)的上顶点,B 、C 是该椭圆上的另外两点,且△ABC 是以点A为直角顶点的等腰直角三角形.若满足条件的△ABC 只有一解,则椭圆的离心率的范围为.答案:(0,63].解:设等腰直角三角形的一边所在直线方程为:y =kx +1(k >0),它与椭圆的另一个交点B 的横坐标为-2ka 21+a 2k 2,从而点C 的横坐标为2ka 2a 2+k 2.由AB =AC ,得(1+k 2)×4k 2a 4(1+a 2k 2)2=(1+1k 2)×4k 2a 4(a 2+k 2)2,化简得:k 3-a 2k 2+ka 2-1=0,由题意知,此方程的解只有k =1.而k 3-a 2k 2+ka 2-1=(k -1)[k 2-(a 2-1)k +1]=0,要使上述方程有惟一的正数解k =1,则(a 2-1)2-4≤0,即1<a ≤3(a =3时,方程的解惟一).所以其离心率的取值范围是(0,63].7.方程x +2y +3z =2014的非负整数解(x ,y ,z )的个数为.答案:339024.解:方程x +2y =k 的非负整数解(x ,y )个数为[k2]+1,所以,方程x +2y =2014-3z 的非负整数解的个数为671∑z =0{[2014-3z 2]+1}=671∑z =0(1007-2z )+671∑z =0[z2]+672 =672×1007-670×672+335×336=339024.8.计算:2014∑k =1[-3+8k +14]=.答案:40115.解:令t =-3+8k +14,则k =2t 2+3t +1.因此[-3+8k +14]=n 当且仅当2n 2+3n +1≤k <2(n +1)2+3(n +1)+1,n ∈N .由于2×302+3×30+1=1891,2×312+3×31+1=2016,所以 2014∑k =1[-3+8k +14]=30∑n =1n [2(n +1)2+3(n +1)+1-(2n 2+3n +1)]-30 =30∑n =1(4n 2+5n )-30=4(12+22+…+302)+5(1+2+…+30)-30=40115.二、解答题(本题满分16分)设数列{a n }的前n 项和为S n ,a 1≠0,2S n +1-3S n =2a 1,n ∈N *.(1)证明数列{a n }为等比数列;(2)若a 1,a p (p ≥3)两项均为正整数,且存在正整数m ,使a 1≥m p -1,a p ≤(m +1) p -求a n .解:(1)由题意2S 2-3S 1 =2a 1,得2a 2-3a 1=0.由a 1≠0,得 a 2a 1=32.………………………… 2分又 2S n +1-3S n =2a 1,2S n +2-3S n +1=2a 1,得 2a n +2-3a n +1=0,n ∈N *.由a 1≠0,得a n +1≠0,故a n +2a n +1=32.所以数列{a n }为等比数列.………………………… 6分(2)由(1)知a p =a 1×(32p -1.因为a 1,a p ∈N *,所以a 1=k ×2p -1,k ∈N *,从而a p = k ×3 p -1.………………………… 10分由a 1≥m p -1,a p ≤(m +1) p -1,得k ×2p -1≥m p -1,k ×3p -1≤(m +1) p -1,即m ≤2×p -1k ,m +1≥3×k ,作差得1≥p -1k ,即k ≤1,所以k =1.所以 a n =2p -1×(32)n -1.………………………… 16分已知动点A ,B 在椭圆x 28+y 24=1上,且线段AB 的垂直平分线始终过点P (-1,0).(1)求线段AB 中点M 的轨迹方程;(2)求线段AB 长度的最大值.解:(1)设点A ,B 的坐标为A (x 1,y 1),B (x 2,y 2),线段AB 的中点M 的坐标为(x 0,y 0).当AB 与x 轴垂直时,线段AB 的中点M 的坐标为(-2,0).当AB 与x 轴不垂直时,因为点A ,B 在椭圆x 28+y 24=1上,所以x 128+y 124=1,x 228+y 224=1.从而(x 1-x 2)(x 1+x 2)8+(y 1-y 2)(y 1+y 2)4=0,即y 1-y 2x 1-x 2=-x 02y 0.因为线段AB 的垂直平分线始终过点P (-1,0),所以y 1-y 2x 1-x 2×y 0x 0+1=-1,从而x 0=-2.即线段AB 中点M 的轨迹方程为x =-2,-2<y <2.…………………… 8分(2)当AB 与x 轴垂直时,AB =22.当AB 与x 轴不垂直时,由(1)知,直线AB 的方程为y -y 0=1y 0(x +2).…………………… 12分由y -y 0=1y 0(x +2),x 28+y 24=1,得(y 02+2)x 2+4(y 02+2)x +2y 04+8=0.所以x 1+x 2=-4,x 1x 2=2y 04+8y 02+2.从而AB =(1+1y 02)×[16-4×2y 04+8y 02+2])=8(y 02+1)(2-y 02)y 02+2=22×-[(y 02+2)+4y 02+2]+5,其中-2<y 0<2,且y 0≠0,所以AB <22.所以线段AB 长度的最大值为22.…………………… 20分设a ,b ,c ,d 都是整数,p =a 2+b 2是素数.如果p |c 2+d 2,证明:c 2+d 2p 可以表示为两个整数的平方和.证明:因为p | c 2+d 2,所以c 2+d 2=pm ,其中m 为整数.于是m =c 2+d 2p =(c 2+d 2)(a 2+b 2)p 2=(c +d i)(c -d i)(a +b i)(a -b i)p 2,一方面,m =(c +d i)(c -d i)(a +b i)(a -b i)p 2=(ca -db )2+(da +cb )2p 2,(1)另一方面,m =(c +d i)(c -d i)(a +b i)(a +b i)p 2=(ca +db )2+(da -cb )2p 2,(2)…………………………………… 10分注意到(ca +db )(ca -db )=c 2a 2-d 2b 2=(pm -d 2)a 2-d 2b 2 =pma 2-d 2(a 2+b 2) =p (ma 2-d 2).因为p 是素数,所以ca +db 和ca -db 中至少有一个数能被p 整除.……………………………… 15分当ca -db 能被p 整除时,令ca -db =pt ,t 是整数,根据(1),因为m 是整数,所以da +cb 也被p 整除.令da +cb =ps ,s 是整数,则c 2+d 2p =m =t 2+s 2.当ca +db 能被p 整除时,同理可证:c 2+d 2p 也可以表示为两个整数的平方和.……………………………… 20分。

2014江苏数学试题及标准答案(word解析版)

2014江苏数学试题及标准答案(word解析版)

2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ圆柱的体积公式:V sh =圆柱,其中s 为圆柱的表面积,h 为高.圆柱的侧面积公式:=S cl 圆柱,其中c 是圆柱底面的周长,l 为母线长.一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上......... (1)【2014年江苏,1,5分】已知集合{2134}A =--,,,,{123}B =-,,,则A B =_______.【答案】{13}-,【解析】由题意得{1,3}A B =-.(2)【2014年江苏,2,5分】已知复数2(52i)z =+(i 为虚数单位),则z 的实部为_______. 【答案】21【解析】由题意22(52i)25252i (2i)2120i z =+=+⨯⨯+=+,其实部为21. (3)【2014年江苏,3,5分】右图是一个算法流程图,则输出的n 的值是_______. 【答案】5【解析】本题实质上就是求不等式220n >的最小整数解.220n >整数解为5n ≥,因此输出的5n =. (4)【2014年江苏,4,5分】从1236,,,这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是_______. 【答案】13【解析】从1,2,3,6这4个数中任取2个数共有246C =种取法,其中乘积为6的有1,6和2,3两种取法,因此所求概率为2163P ==.(5)【2014年江苏,5,5分】已知函数cos y x =与sin(2)(0)y x ϕϕ=+<π≤,它们的图象有一个横坐标为3π的交点,则ϕ的值是_______. 【答案】6π【解析】由题意cossin(2)33ππϕ=⨯+,即21sin()32πϕ+=,2(1)36k k ππϕπ+=+-⋅,()k Z ∈,因为0ϕπ≤<,所以6πϕ=.(6)【2014年江苏,6,5分】为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm ),所得数据均在区间[80130],上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株 树木的底部周长小于100 cm . 【答案】24【解析】由题意在抽测的60株树木中,底部周长小于100cm 的株数为(0.0150.025)106024+⨯⨯=.(7)【2014年江苏,7,5分】在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+,则6a 的值是________. 【答案】4【解析】设公比为q ,因为21a =,则由8642a a a =+得6422q q a =+,4220q q --=,解得22q =,所以4624a a q ==.(8)【2014年江苏,8,5分】设甲、乙两个圆柱的底面积分别为12S S ,,体积分别为12V V ,,若它们的侧面积相等,且1294S S =,则12VV 的值是_______. 【答案】32【解析】设甲、乙两个圆柱的底面和高分别为11r h 、,22r h 、,则112222r h r h ππ=,1221h r h r =,又21122294S r S r ππ==,所以1232r r =,则222111111212222222221232V r h r h r r r V r h r h r r r ππ==⋅=⋅==.(9)【2014年江苏,9,5分】在平面直角坐标系xOy 中,直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为________.【解析】圆22(2)(1)4x y -++=的圆心为(2,1)C -,半径为2r =,点C 到直线230x y +-=的距离为d ==,所求弦长为l =. (10)【2014年江苏,10,5分】已知函数2()1f x x mx =+-,若对任意[1]x m m ∈+,,都有()0f x <成立,则实数m 的取值范围是________.【答案】0⎛⎫ ⎪⎝⎭【解析】据题意222()10(1)(1)(1)10f m m m f m m m m ⎧=+-<⎪⎨+=+++-<⎪⎩,解得02m <<. (11)【2014年江苏,11,5分】在平面直角坐标系xOy 中,若曲线2b y ax x=+(a b ,为常数)过点(25)P -,,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b +的值是________. 【答案】3-【解析】曲线2b y ax x =+过点(2,5)P -,则452b a +=-①,又2'2b y ax x =-,所以7442b a -=-②,由①②解得11a b =-⎧⎨=-⎩,所以2a b +=-.(12)【2014年江苏,12,5分】如图,在平行四边形ABCD 中,已知,85AB AD ==,,32CP PD AP BP =⋅=,,则AB AD ⋅的值是________.【答案】22【解析】由题意,14AP AD DP AD AB =+=+,3344BP BC CP BC CD AD AB =+=+=-, 所以13()()44AP BP AD AB AD AB ⋅=+⋅-2213216AD AD AB AB =-⋅-,即1322564216AD AB =-⋅-⨯,解得22AD AB ⋅=.(13)【2014年江苏,13,5分】已知()f x 是定义在R 上且周期为3的函数,当[03)x ∈,时,21()22f x x x =-+.若函数()y f x a =-在区间[34]-,上有10个零点(互不相同),则实数a 的取值范围是________. 【答案】()102,【解析】作出函数21()2,[0,3)2f x x x x =-+∈的图象,可见1(0)2f =,当1x =时,1()2f x =极大, 7(3)2f =,方程()0f x a -=在[3,4]x ∈-上有10个零点,即函数()y f x =和图象与直线 y a =在[3,4]-上有10个交点,由于函数()f x 的周期为3,因此直线y a =与函数 21()2,[0,3)2f x x x x =-+∈的应该是4个交点,则有1(0,)2a ∈. (14)【2014年江苏,14,5分】若ABC ∆的内角满足sin 2sin A B C =,则cos C 的最小值是_______.【解析】由已知sin 2sin A B C =及正弦定理可得2a c =,2222222cos 22a b a b c C ab ab +-+-==22328a b ab +-=,当且仅当2232a b =,即a b =所以cos C二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内........作答,解答时应写出必要的文字说明、证明过程或演算步骤.(15)【2014年江苏,15,14分】已知()2απ∈π,,sin α=. (1)求()sin 4απ+的值;(2)求()cos 26α5π-的值.解:(1)∵()sin 2ααπ∈π=,,,∴cos α==, ()s i n s i n c o s c o s (c o s )4440αααααπππ+=++. (2)∵2243sin 22sin cos cos 2cos sin 55αααααα==-=-=,, ∴()()314cos 2cos cos2sin sin 2666525ααα5π5π5π-=+=+⨯-=.(16)【2014年江苏,16,14分】如图,在三棱锥P ABC -中,D E F ,,分别为棱PC AC AB ,, 的中点.已知6PA AC PA ⊥=,,8BC =,5DF =.(1)求证:直线P A ∥平面DEF ; (2)平面BDE ⊥平面ABC . 解:(1)∵D E ,为PC AC ,中点∴DE ∥P A ∵PA ⊄平面DEF ,DE ⊂平面DEF ∴P A ∥平面DEF .(2)∵D E ,为PC AC ,中点,∴132DE PA ==∵E F ,为AC AB ,中点,∴142EF BC ==,∴222DE EF DF +=,∴90DEF ∠=°,∴DE ⊥EF ,∵//DE PA PA AC ⊥,,∴DE AC ⊥, ∵AC EF E =,∴DE ⊥平面ABC ,∵DE ⊂平面BDE ,∴平面BDE ⊥平面ABC .(17)【2014年江苏,17,14分】如图,在平面直角坐标系xOy 中,12F F ,分别是椭圆22221(0)y x a b a b +=>>的左、右焦点,顶点B 的坐标为(0)b ,,连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结1FC . (1)若点C 的坐标为()4133,,且2BF = (2)若1FC AB ⊥,求椭圆离心率e 的值.解:(1)∵()4133C ,,∴22161999a b+=,∵22222BF b c a =+=,∴222a ==,∴21b =,∴椭圆方程为2212x y +=. (2)设焦点12(0)(0)()F c F c C x y -,,,,,,∵A C ,关于x 轴对称,∴()A x y -,,∵2B F A ,,三点共线,∴b yb c x +=--,即0bx cy bc --=①∵1FC AB ⊥,∴1yb xc c⋅=-+-,即20xc by c -+=② ①②联立方程组,解得2222222ca x b c bc y b c ⎧=⎪-⎨⎪=-⎩ ∴()2222222a c bc C b c b c --, C 在椭圆上,∴()()222222222221a c bc b c b c a b--+=,化简得225c a =,∴c a =. (18)【2014年江苏,18,16分】如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m .经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),4tan 3BCO ∠=.(1)求新桥BC 的长;(2)当OM 多长时,圆形保护区的面积最大?. 解:解法一:(1)如图,以O 为坐标原点,OC 所在直线为x 轴,建立平面直角坐标系xOy .由条件知A (0, 60),C (170, 0),直线BC 的斜率43BC k tan BCO =∠=--.又因为AB ⊥BC ,所以直线AB 的斜率34AB k =.设点B 的坐标为(a ,b ),则k BC =041703b a -=--, k AB =60304b a -=-,解得a =80,b=120.所以BC150=.因此新桥BC 的长是150 m . (2)设保护区的边界圆M 的半径为r m,OM =d m,(0≤d ≤60).由条件知,直线BC 的方程为4(170)3y x =--,即436800x y +-=,由于圆M 与直线BC 相切,故点M (0,d )到直线BC 的距离是r ,即|3680|680355d dr --==. 因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以80(60)80r d r d -⎧⎨--⎩≥≥,即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥,解得1035d ≤≤.故当d =10时,68035dr -=最大,即圆面积最大. 所以当OM = 10 m 时,圆形保护区的面积最大.解法二:(1)如图,延长OA , CB 交于点F .因为tan ∠BCO =43.所以sin ∠FCO =45,cos ∠FCO =35.因为OA =60,OC =170,所以OF =OC tan ∠FCO =6803.CF =850cos 3OC FCO =∠,从而5003AF OF OA =-=.因为OA ⊥OC ,所以cos ∠AFB =sin ∠FCO =45,又因为AB ⊥BC ,所以BF =AF cos ∠AFB ==4003,从而BC =CF -BF =150.因此新桥BC 的长是150 m . (2)设保护区的边界圆M 与BC 的切点为D ,连接MD ,则MD ⊥BC ,且MD 是圆M 的半径,并设MD =r m ,OM =d m(0≤d ≤60).因为OA ⊥OC ,所以sin ∠CFO =cos ∠FCO ,故由(1)知,sin ∠CFO =368053MD MD r MF OF OM d ===--所以68035dr -=. 因为O 和A 到圆M 上任意一点的距离均不少于80 m ,所以80(60)80r d r d -⎧⎨--⎩≥≥,即68038056803(60)805dd d d -⎧-⎪⎪⎨-⎪--⎪⎩≥≥,解得1035d ≤≤,故当d =10时,68035dr -=最大,即圆面积最大.所以当OM = 10 m 时,圆形保护区的面积最大.(19)【2014年江苏,19,16分】已知函数()e e x x f x -=+其中e 是自然对数的底数. (1)证明:()f x 是R 上的偶函数;(2)若关于x 的不等式()e 1x mf x m -+-≤在(0)+∞,上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+成立.试比较1e a -与e 1a -的大小,并证明 你的结论.解:(1)x ∀∈R ,()e e ()x x f x f x --=+=,∴()f x 是R 上的偶函数.(2)由题意,(e e )e 1x x x m m --++-≤,即(e e 1)e 1x x x m --+--≤,∵(0)x ∈+∞,,∴e e 10x x -+->,即e 1e e 1x x xm ---+-≤对(0)x ∈+∞,恒成立.令e (1)x t t =>,则211t m t t --+≤对任意(1)t ∈+∞,恒成立. ∵2211111(1)(1)113111t t t t t t t t --=-=---+-+-+-++-≥,当且仅当2t =时等号成立,∴13m -≤. (3)'()e e x xf x -=-,当1x >时'()0f x >∴()f x 在(1)+∞,上单调增,令3()(3)h x a x x =-+,'()3(1)h x ax x =--,∵01a x >>,,∴'()0h x <,即()h x 在(1)x ∈+∞,上单调减,∵存在0[1)x ∈+∞,,使得3000()(3)f x a x x <-+,∴1(1)e 2ef a =+<,即()11e 2e a >+. ∵e-1e 111ln ln ln e (e 1)ln 1e a a a a a a ---=-=--+,设()(e 1)ln 1m a a a =--+,则e 1e 1'()1a m a a a---=-=,()11e 2e a >+.当()11e e 12ea +<<-时,'()0m a >,()m a 单调增;当e 1a >-时,'()0m a <,()m a 单调减,因此()m a 至多有两个零点,而(1)(e)0m m ==,∴当e a >时,()0m a <,e 11e a a --<; 当()11e e 2ea +<<时,()0m a <,e 11e a a -->;当e a =时,()0m a =,e 11e a a --=. (20)【2014年江苏,20,16分】设数列{}n a 的前n 项和为n S .若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”.(1)若数列{}n a 的前n 项和2()n n S n *=∈N ,证明:{}n a 是“H 数列”;(2)设{}n a 是等差数列,其首项11a =,公差0d <.若{}n a 是“H 数列”,求d 的值;(3)证明:对任意的等差数列{}n a ,总存在两个“H 数列”{}n b 和{}n c ,使得()n n n a b c n *=+∈N 成立. 解:(1)当2n ≥时,111222n n n n n n a S S ---=-=-=,当1n =时,112a S ==,∴1n =时,11S a =,当2n ≥时,1n n S a +=,∴{}n a 是“H 数列”.(2)1(1)(1)22n n n n n S na d n d --=+=+,对n *∀∈N ,m *∃∈N 使n m S a =,即(1)1(1)2n n n d m d -+=+-,取2n =得1(1)d m d +=-,12m d=+,∵0d <,∴2m <,又m *∈N ,∴1m =,∴1d =-.(3)设{}n a 的公差为d ,令111(1)(2)n b a n a n a =--=-,对n *∀∈N ,11n n b b a +-=-,1(1)()n c n a d =-+,对n *∀∈N ,11n n c c a d +-=+,则1(1)n n n b c a n d a +=+-=,且{}{}n n b c ,为等差数列. {}n b 的前n 项和11(1)()2n n n T na a -=+-,令1(2)n T m a =-,则(3)22n n m -=+. 当1n =时1m =;当2n =时1m =;当3n ≥时,由于n 与3n -奇偶性不同,即(3)n n -非负偶数,m *∈N .因此对n ∀,都可找到m *∈N ,使n m T b =成立,即{}n b 为“H 数列”.{}n c 的前n项和1(1)()2n n n R a d -=+,令1(1)()n m c m a d R =-+=,则(1)12n n m -=+ ∵对n *∀∈N ,(1)n n -是非负偶数,∴m *∈N ,即对n *∀∈N ,都可找到m *∈N ,使得n m R c =成立, 即{}n c 为“H 数列”,因此命题得证.数学Ⅱ..................的前两题评分.解答时应写出文字说明、证明过程或演算步骤. (21-A )【2014年江苏,21-A ,10分】(选修4-1:几何证明选讲)如图,AB 是圆O 的直径,C 、 D是圆O 上位于AB 异侧的两点.证明:∠OCB =∠D .解:因为B ,C 是圆O 上的两点,所以OB =OC .故∠OCB =∠B .又因为C , D 是圆O 上位于AB 异侧的两点,故∠B ,∠D 为同弧所对的两个圆周角,所以∠B =∠D .因此∠OCB =∠D .(21-B )【2014年江苏,21-B ,10分】(选修4-2:矩阵与变换)已知矩阵121x -⎡⎤=⎢⎥⎣⎦A ,1121⎡⎤=⎢⎥-⎣⎦B ,向量2y ⎡⎤=⎢⎥⎣⎦α, x y ,为实数,若A α=B α,求x y ,的值.解:222y xy -⎡⎤=⎢⎥+⎣⎦A α,24y y +⎡⎤=⎢⎥-⎣⎦B α,由A α=B α得22224y y xy y -=+⎧⎨+=-⎩,,解得142x y =-=,. (21-C )【2014年江苏,21-C ,10分】(选修4-4:坐标系与参数方程)在平面直角坐标系xOy 中,已知直线l的参数方程为12x y ⎧=-⎪⎨⎪=+⎩,(t 为参数),直线l 与抛物线24y x =交于A B ,两点,求线段AB 的长.解:直线l :3x y +=代入抛物线方程24y x =并整理得21090x x -+=,∴交点(12)A ,,(96)B -,,故||8AB = (21-D )【2014年江苏,21-D ,10分】(选修4-5:不等式选讲)已知0x >,0y >,证明:()()22119x y x y xy ++++≥. 解:因为x >0, y >0, 所以1+x +y 2≥0>,1+x 2+y ≥0,所以(1+x +y 2)( 1+x 2+y )≥=9xy . 【必做】第22、23题,每小题10分,计20分.请把答案写在答题卡的指定区域内............ (22)【2014年江苏,22,10分】盒中共有9个球,其中有4个红球,3个黄球和2个绿球,这些球除颜色外完全相同.(1)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(2)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为123x x x ,,,随机变量X 表示123x x x ,, 中的最大数,求X 的概率分布和数学期望()E X .解:(1)一次取2个球共有29C 36=种可能情况,2个球颜色相同共有222432C C C 10++=种可能情况,∴取出的2个球颜色相同的概率1053618P ==.(2)X 的所有可能取值为432,,,则4449C 1(4)C 126P X ===;3131453639C C C C 13(3)C 63P X +===; 11(2)1(3)(4)14P X P X P X ==-=-==.∴X 的概率分布列为:故X 的数学期望1113120()23414631269E X =⨯+⨯+⨯=.(23)【2014年江苏,23,10分】已知函数0sin ()(0)x f x x x=>,设()n f x 为1()n f x -的导数,n *∈N .(1)求()()122222f f πππ+的值;(2)证明:对任意的n *∈N ,等式()()1444n n nf f -πππ+=成立.解:(1)由已知,得102sin cos sin ()()x x x f x f x x x x '⎛⎫'===- ⎪⎝⎭, 于是21223cos sin sin 2cos 2sin ()()x x x x xf x f x x x x x x ''⎛⎫⎛⎫'==-=--+⎪ ⎪⎝⎭⎝⎭,所以12234216(),()22f f πππππ=-=-+, 故122()()1222f f πππ+=-.(2)由已知,得0()sin ,xf x x =等式两边分别对x 求导,得00()()cos f x xf x x '+=,即01()()cos sin()2f x xf x x x π+==+,类似可得122()()sin sin()f x xf x x x π+=-=+, 2333()()cos sin()2f x xf x x x π+=-=+,344()()sin sin(2)f x xf x x x π+==+.下面用数学归纳法证明等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立. (i )当n =1时,由上可知等式成立.(ii )假设当n =k 时等式成立, 即1()()sin()2k k k kf x xf x x π-+=+.因为111[()()]()()()(1)()(),k k k k k k k kf x xf x kf x f x xf x k f x f x --+'''+=++=++(1)[sin()]cos()()sin[]2222k k k k x x x x ππππ+''+=+⋅+=+,所以1(1)()()k k k f x f x +++(1)sin[]2k x π+=+. 所以当n=k +1时,等式也成立.综合(i),(ii)可知等式1()()sin()2n n n nf x xf x x π-+=+对所有的n ∈*N 都成立. 令4x π=,可得1()()sin()44442n n n nf f πππππ-+=+(n ∈*N ).所以1()()444n n nf f πππ-+n ∈*N ).。

2014年高考理科数学江苏卷(含答案解析)

2014年高考理科数学江苏卷(含答案解析)

绝密★启用前2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:圆柱的侧面积公式:=S cl 侧面积,其中c 是圆柱底面的周长,l 为母线长 圆柱的体积公式:V Sh =圆柱,其中S 是圆柱的底面积,h 为高一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应.....位置..上.. 1.已知集合={2,1,3,4}A --,={1,2,3}B -,则AB = .2.已知复数2(52i)z =+(i 为虚数单位),则z 的实部为 .3.右图是一个算法流程图,则输出的n 的值是 .4.从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是 .5.已知函数cos y x =与sin(2)(0π)y x ϕϕ=+≤<,它们的图象有一个横坐标为π3的交点,则ϕ的值是 .6.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm ),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株树木的底部周长小于100cm . 7.在各项均为正数的等比数列{}n a 中,若21a =,8642a a a =+,则6a 的值是 .8.设甲、乙两个圆柱的底面积分别为1S ,2S ,体积分别为1V ,2V .若它们的侧面积相等,且1294S S =,则12VV 的值是 . 9.在平面直角坐标系xOy 中,直线230x y +-=被圆22(2)(1)4x y -++=截得的弦长为 .10.已知函数2()1f x x mx =+-,若对于任意[,1]x m m ∈+,都有()0f x <成立,则实数m 的取值范围是 .11.在平面直角坐标系xOy 中,若曲线2by ax x=+(a ,b 为常数)过点(2,5)P -,且该曲线在点P 处的切线与直线7230x y ++=平行,则a b +的值是 .12.如图,在平行四边形ABCD 中,已知8AB =,5AD =,3CP PD =,2AP BP =,则AB AD 的值是 .13.已知()f x 是定义在R 上且周期为3的函数,当[0,3)x ∈时,21()22f x x x =-+.若函数()y f x a =-在区间[3,4]-上有10个零点(互不相同),则实数a 的取值范围是 .14.若ABC △的内角满足sin 2sin A B C =,则cos C 的最小值是 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)已知π(,π)2α∈,sin α=(Ⅰ)求πsin()4α+的值; (Ⅱ)求5πcos(2)6α-的值.16.(本小题满分14分)如图,在三棱锥P ABC -中,D ,E ,F 分别为棱PC ,AC ,AB 的中点.已知PA AC ⊥,6PA =,8BC =,5DF =.求证:(Ⅰ)直线PA ∥平面DEF ; (Ⅱ)平面BDE ⊥平面ABC .17.(本小题满分14分)如图,在平面直角坐标系xOy 中,1F ,2F 分别是椭圆22221(0)x y a b a b+=>>的左、右焦点,顶点B 的坐标为(0,)b ,连接2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连接1F C .(Ⅰ)若点C 的坐标为41(,)33,且2BF =求椭圆的方程;(Ⅱ)若1F C AB ⊥,求椭圆离心率e 的值.姓名________________ 准考证号_____________--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------18.(本小题满分16分)如图,为保护河上古桥OA ,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆,且古桥两端O 和A 到该圆上任意一点的距离均不少于80m .经测量,点A 位于点O 正北方向60m 处,点C 位于点O 正东方向170m 处(OC 为河岸),4tan 3BCO ∠=.(Ⅰ)求新桥BC 的长;(Ⅱ)当OM 多长时,圆形保护区的面积最大?19.(本小题满分16分)已知函数()e e x xf x -=+,其中e 是自然对数的底数.(Ⅰ)证明:()f x 是R 上的偶函数; (Ⅱ)若关于x 的不等式()e1xmf x m -+-≤在(0,)+∞上恒成立,求实数m 的取值范围;(Ⅲ)已知正数a 满足:存在0[1,)x ∈+∞,使得3000()(3)f x a x x -+<成立.试比较1e a -与e 1a -的大小,并证明你的结论.20.(本小题满分16分)设数列{}n a 的前n 项和为n S .若对任意的正整数n ,总存在正整数m ,使得n m S a =,则称{}n a 是“H 数列”.(Ⅰ)若数列{}n a 的前n 项和*2()n n S n =∈N ,证明:{}n a 是“H 数列”;(Ⅱ)设{}n a 是等差数列,其首项11a =,公差0d <.若{}n a 是“H 数列”,求d 的值;(Ⅲ)证明:对任意的等差数列{}n a ,总存在两个“H 数列”{}n b 和{}n c ,使得+n n na b c =*()n ∈N 成立.数学Ⅱ(附加题)21.【选做题】在A ,B ,C ,D 四小题中只能选做两题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.A .(本小题满分10分)选修4—1:几何证明选讲如图,AB 是圆O 的直径,C ,D 是圆O 上位于AB 异侧的两点.证明:OCB D ∠=∠.B .(本小题满分10分)选修4—2:矩阵与变换已知矩阵121x -⎡⎤=⎢⎥⎣⎦A ,1121⎡⎤=⎢⎥-⎣⎦B ,向量2y ⎡⎤=⎢⎥⎣⎦α,x ,y 为实数,若=A αB α,求x y +的值.C .(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系xOy 中,已知直线l的参数方程为1,2,2x y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数),直线l与抛物线24y x =相交于A ,B 两点,求线段AB 的长.D .(本小题满分10分)选修4—5:不等式选讲已知0x >,0y >,证明:22(1)(1)9x y x y xy ++++≥.【必做题】第22,23题,每小题10分,共20分.解答时应写出必要的文字说明、证明过程或演算步骤.22.(本小题满分10分)盒中共有9个球,其中有4个红球、3个黄球和2个绿球,这些球除颜色外完全相同. (Ⅰ)从盒中一次随机取出2个球,求取出的2个球颜色相同的概率P ;(Ⅱ)从盒中一次随机取出4个球,其中红球、黄球、绿球的个数分别记为1x ,2x ,3x ,随机变量X 表示1x ,2x ,3x 中的最大数,求X 的概率分布和数学期望()E X .23.(本小题满分10分)已知函数0sin ()(0)xf x x x =>,设()n f x 为1()n f x -的导数,*n ∈N . (Ⅰ)求12πππ2()()222f f +的值;(Ⅱ)证明:对任意的*n ∈N ,等式1πππ()()444n n nf f -+.2014年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ答案解析一、填空题 1.【答案】{1,3}-【解析】根据集合的交集运算,两个集合的交集就是所有既属于集合A 又属于集合B 的元素组成的集合,从所给的两个集合的元素可知,公共的元素为1-和3,所以答案为{1,3}-【提示】根据集合的基本运算即可得到结论 【考点】交集及其运算 2.【答案】21【解析】222(52i)5252i (2i)2120i z =-=-⨯⨯+=-,实部为21,虚部为20- 【提示】根据复数的有关概念,即可得到结论 【考点】复数的基本概念,复数代数形式的乘除运算 3.【答案】5【解析】根据流程图的判断依据,本题220n >是否成立,若不成立,则n 从1开始每次判断完后循环时,n 赋值为1n +;若成立,则输出n 的值.本题经过4次循环,得到5n =,5223220n ==>成立,则输出的n 的值为5【提示】算法的功能是求满足220n >的最小的正整数n 的值,代入正整数n 验证可得答案 【考点】程序框图4.【答案】13【解析】将随机选取2个数的所有情况“不重不漏”的列举出来:(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),共6种情况,满足题目乘积为6的要求的是(1,6)和(2,3),则概率为13【提示】首先列举并求出“从1,2,3,6这4个数中一次随机抽取2个数”的基本事件的个数再从中找到满足“所取2个数的乘积为6”的事件的个数,利用概率公式计算即可【考点】古典概型及其概率计算公式5.【答案】π6【解析】根据题目中两个函数的图象有一个横坐标为π3的交点,所以将π3分别代入两个函数,得到π1πcos sin(2)323φ==+,通过正弦值为12,解出2ππ2π,()36k k φ+=+∈Z 或25ππ2π,()36k k φ+=+∈Z ,化简解得π2π,()2k k φ=-+∈Z 或π2π,()6k k φ=+∈Z ,结合题目中[0,π]φ∈的条件,确定出π6φ=6.【答案】24【解析】从图中读出底部周长在[80,90]的频率为0.015100.15⨯=,底部周长在[90,100]的频率为0.025100.25⨯=,样本容量为60株,(0.150.25)6024+⨯=株是满足题意的. 【提示】根据频率=小矩形的面积=小矩形的高⨯组距底部求出周长小于100cm 的频率,再根据频数=样本容量⨯频率求出底部周长小于100cm 的频数 【考点】频率分布直方图 7.【答案】4【解析】根据等比数列的定义,682a a q =,462a a q =,242a a q =所以由8622a a a =+得6422222a q a q a q =+,消去22a q ,得到关于2q 的一元二次方程222()20q q --=,解得22q =,4262124a a q ==⨯=【提示】利用等比数列的通项公式即可得出 【考点】等差数列与等比数列 8.【答案】32【解析】由题意,2211122222π9π4S r r S r r ===,所以1232r r =,圆柱的侧面积2πS r h =侧,1122122πr 2πS h S r h ===侧侧,则122123h r h r ==,111222923432V S h V S h ==⨯= 【提示】设出两个圆柱的底面半径与高,通过侧面积相等,推出高的比,然后求解体积的比【考点】棱柱、棱锥、棱台的体积,旋转体(圆柱、圆锥、圆台) 9.【解析】根据直线和圆的位置关系,直线与圆相交,求弦长,构建“黄金三角形”勾股定文,圆心为(2,1)-,2r =,圆心到直线的距离d =,弦长==【提示】求出已知圆的圆心为(2,1)C -,半径2r =利用点到直线的距离公式,算出点C 到直线l 的距离d ,由垂径定理加以计算,可得直线230x y +-=被圆截得的弦长 【考点】直线与圆的位置关系 10.【答案】2⎛⎫ ⎪ ⎪⎝⎭【解析】二次函数开口向上,在区间[,1]m m +上始终满足()0f x <,只需()0(1)0f m f m <⎧⎨+<⎩即可,22210(1)(1)10m m m m m ⎧+-<⎪⎨+++-<⎪⎩,解得22302m m ⎧<<⎪⎪⎨⎪-<<⎪⎩,则m ⎛⎫∈ ⎪ ⎪⎝⎭ 【提示】由条件利用二次函数的性质可得22()210(1)(1)(1)10f m m f m m m m ⎧=-<⎪⎨+=+++-<⎪⎩,由此求得m 的范围【考点】二次函数的性质 11.【答案】12【解析】根据P 点在曲线上,曲线在点P 处的导函数值等于切线斜率,'22by ax x=-,72k =-,将(2,5)P -带入得5427442b a b a ⎧-=+⎪⎪⎨⎪-=-⎪⎩,解得322a b ⎧=-⎪⎨⎪=⎩,则12a b += 【提示】由曲线2by ax x=+(a ,b 为常数)过点P 2,5-(),且该曲线在点P 处的切线与直线7230x y ++=平行,可得2|5x y ==-,且27|2x y ='=-,解方程可得答案【考点】导数研究曲线上某点切线方程 12.【答案】22【解析】以AB ,AD 为基底,因为3CP PD =,2AP BP =,14AP AD DP AD AB =+=+,34BP BC CP AD AB =+=-则13244AP BP AD AB AD AB ⎛⎫⎛⎫==+- ⎪ ⎪⎝⎭⎝⎭2213216AD AD AB AB =--因为8AB =,5AD =则3122564162AB AD =--,故22AB AD = 【提示】由3CP PD =,可得14AP AD AB =+,34BP AD AB =-,进而由8AB =,5AD =,3CP PD =,2AP BP =,构造方程,进而可得答案【考点】向量在几何中的应用,平面向量数量积的运算13.【答案】10,2⎛⎫⎪⎝⎭【解析】根据题目条件,零点问题即转化为数形结合,通过找()y f x =与y a =的图象交点去推出零点,先画出(0,3)上2122y x x =-+的图象,再将x 轴下方的图象对称到上方,利用周期为3,将图象平移至(3,4)-,发现若()f x 图象要与y a =有10个不同的交点,则10,2a ⎛⎫∈⎪⎝⎭【提示】在同一坐标系中画出函数的图象与直线y a =的图象,利用数形结合判断a 的范围即可【考点】根的存在性及根的个数判断14.【解析】根据题目条件,由正弦定文将题目中正弦换为边,得2a c =,再由余弦定理,用a ,b 去表示c,并结合基本不等式去解决,化简22a b +为ab ,消去ab就得出答案. Ⅲ2222222222313142242cos 22224a b a b a b a b c C ab abab ab +-+-++-⎝⎭====-≥=【提示】根据正弦定理和余弦定理,利用基本不等式即可得到结论【考点】余弦定理,正弦定理 15.【答案】(Ⅰ)(Ⅱ) 【解析】(Ⅰ)∵π,π2α⎛⎫∈ ⎪⎝⎭,sin α=cos α ∴πππsin sin cos cos sin 444αααα⎛⎫+=+= ⎪⎝⎭(Ⅱ)∵π,π2α⎛⎫∈ ⎪⎝⎭,sin 5α=.∴23cos212sin5αα=-=,4sin22sin cos 5ααα==- ∴5π5π5π314cos 2cos cos 2sin sin 2666525ααα⎛⎫⎛⎫-=+=+⨯-=⎪ ⎪⎝⎭⎝⎭. 5πcos 26α⎛⎫- ⎪⎝⎭的值为:. 【提示】(Ⅰ)通过已知条件求出cos α,然后利用两角和的正弦函数求πsin 4αα⎛⎫+ ⎪⎝⎭的值;(Ⅱ)求出cos2α,然后利用两角差的余弦函数求5πcos 26α⎛⎫- ⎪⎝⎭的值 【考点】两角和与差的正弦函数,两角和与差的余弦函数 16.【答案】(Ⅰ)∵D ,E ,分别为PC ,AC ,的中点, ∴DE PA ∥又∵DE PAC ⊂平面,PA PAC ⊄平面, ∴PA DEF 直线∥平面(Ⅱ)∵E ,F 分别为棱AC ,AB 的中点,且8BC =,由中位线知4EF = ∵D ,E ,分别为PC ,AC ,的中点,且6PA =,由中位线知3DE =,又∵5DF =∴²²²25DF EF DE =+=, ∴DE EF ⊥,又∵DE PA ∥, ∴PA EF ⊥, 又∵PA AC ⊥,又∵ AC EF E =,AC ABC ⊂平面,EF ABC ⊂平面, ∴PA ABC ⊥平面, ∴DE ABC ⊥平面, ∵DE BDED ⊂平面, ∴BDE ABC ⊥平面平面【提示】(Ⅰ)由D 、E 为PC 、AC 的中点,得出DE PA ∥,从而得出PA DEF ⊥平面;(Ⅱ)要证平面BDE ABC ⊥平面,只需证DE ABC ⊥平面,即证DE EF ⊥,且DE A C ⊥即可【考点】平面与平面垂直的判定,直线与平面垂直的判定17.【答案】(Ⅰ)2212x y +=【解析】(Ⅰ)∵2BF 41,33C ⎛⎫ ⎪⎝⎭代入椭圆22221(0)x y a b a b +=>>,∴221611(0)99a b a b+=>>,且²²²c b a += ∴a 1b =,∴椭圆方程为2212x y +=(Ⅱ)直线BA 方程为b y x b a =-+,与椭圆22221(0)x y a b a b+=>>联立得2222220a c a x x c c+-= ∴点2322222,a c b A a c a c ⎛⎫- ⎪++⎝⎭, ∴点2322222,a c b C a c a c ⎛⎫ ⎪++⎝⎭1(,0)F c - 直线CF 1斜率3333bk a c c=+,又∵1FC AB ⊥, ∴32313b bc a c c -=+∴222222()1(3)ac c a c -=+, ∴e = 【提示】(Ⅰ)根据椭圆的定义,建立方程关系即可求出a ,b 的值(Ⅱ)求出C 的坐标,利用1FC AB ⊥建立斜率之间的关系,解方程即可求出e 的值 【考点】椭圆的简单性质,椭圆的标准方程 18.【答案】(Ⅰ)150m (Ⅱ)10【解析】(Ⅰ)过点B 作BE OC ⊥于点E ,过点A 作AD BE ⊥于点F . ∵4tan 3BCO ∠=,设5BC x =,3CE x =,4BE x =, ∴4OE AF x ==,60EF AO ==,3BF x = 又∵AB BC ⊥,且90BAF ABF ∠+∠=︒,90CBE BOC ∠+∠=︒,∴ 90ABF CBE ∠+∠=︒,∴ 90CBE BAF ∠+∠=︒, ∴3460tan 41703BF x BAF AF x-∠===-, ∴30x =,5150m BC x == ∴新桥BC 的长为150m .以OC 方向为x 轴,OA 为y 轴建立直角坐标系.设点(0,)M m ,点(0,60)A ,(80,120)B ,(170,0)C 直线BC 方程为4(170)3y x =--,即436800x y +-=,∴半径68035mR -=,又因为古桥两端O 和A 到该圆上任意一点的距离均不少于80m ,∴80R AM -≥且80R OM -≥, ∴6803(60)805mm ---≥, ∴1035m ≤≤,∴68031305mR -=≤此时圆面积最大. ∴当10OM =时圆形保护区面积最大.【提示】(Ⅰ)在四边形AOCB 中,过B 作BE OC ⊥于E ,过A 作AF BE ⊥于F ,设出AF ,然后通过解直角三角形列式求解BE ,进一步得到CE ,然后由勾股定理得答案; (Ⅱ)设BC 与⊙M 切于Q ,延长QM 、CO 交于P ,设OM xm =,把PC 、PQ 用含有x 的代数式表示,再结合古桥两端O 和A 到该圆上任意一点的距离均不少于80m 列式求得x 的范围,得到x 取最小值时圆的半径最大,即圆形保护区的面积最大. 【考点】圆的切线方程,直线与圆的位置关系 19.【答案】(Ⅰ)见解析(Ⅱ)13m ≤-(Ⅲ)①11(1)2a e e e e ⎡⎤⎛⎫∈+⊆ ⎪⎢⎥⎝⎭⎣⎦,,时,()0h a <,即1(1)ln a e a -<-,从而11a e e a --<,②当a e =时,11e a a e --=,③当(,)(1,)a e e ∈+∞⊆-+∞时,当1a e >-时,()()0h a h e >=,即(1)(1)ln a e a ->-,从而1 1.a e e a -->【解析】(Ⅰ)∵x ∈R ,且()()()x x f x e ef x ---=+=- ∴()f x 是R 上的偶函数 (Ⅱ)若关于x 的不等式()1xmf x em -≤+-在(0,)+∞上恒成立,即(1)1x x xm e e e ---≤-+,∵0x >,∴10x x e e --+>,即11xx xe m e e ---≤+-在(0,)+∞上恒成立,设x t e =,(1)t >,则211tm t t -=-+在(1,)+∞上恒成立,∵221111111(1)(1)1113t t t t t t t t ---=-=-≥--+-+-+-++,当且仅当2t =时等号成立,∴13m ≤-.(Ⅲ)令3()(3)xxg xe e a x x -=+-+-,则2()3(1)x x g xe e a x -+--'=,当1x >,()0g x '>,即函数()g x 在[1,)+∞上单调递增,故此时()g x 的最小值1(1)2g e a e=+-,由于存在01)[x ∈+∞,,使得3000(()3)f x a x x -+<成立,故120e a e+-<,即112a e e ⎛⎫>+ ⎪⎝⎭,令()(1)l h x x e x =---,则1()1e h x x -'=-,由1()10e h x x-'=-=,解得1x e =-,当01x e <<-时,()0h x '<,此时函数单调递减,当1x e >-时,()0h x '>,此时函数单调递增,∴()h x 在(0,)+∞上的最小值为(1)h e -,注意到(1)()0h h e ==,∴当(1,1)(0,1)x e e ∈-⊆-时,(1)()(1)0h e h x h -≤<=,当(1,)(1,)x e e e ∈-⊆-+∞时,()()0h x h e <=,∴()0h x <,对任意的(1,)x e ∈成立.①11(1,)2a e e e e ⎡⎤⎛⎫∈+⊆ ⎪⎢⎥⎝⎭⎣⎦,时,()0h a <,即1(1)ln a e a -<-,从而11a e e a --<,②当a e =时,11e a a e --=,③当(,)(1,)a e e ∈+∞⊆-+∞时,当1a e >-时,()()0h a h e >=,即(1)(1)ln a e a ->-,从而1 1.a e e a -->【提示】(Ⅰ)根据函数奇偶性的定义即可证明()f x 是R 上的偶函数; (Ⅱ)利用参数分离法,将不等式()1xmf x e m -≤+-在(0,)+∞上恒成立,进行转化求最值问题即可求实数m 的取值范围(Ⅲ)利用a 的取值范围进行分类讨论,即可得到答案; 【考点】导数的综合应用 20.【答案】(Ⅰ)见解析(Ⅱ)1- (Ⅲ)见解析【解析】解:(Ⅰ)当2n ≥时,111222n n n n n n a S S -----===,当1n =时,112a S ==.当1n =时,11S a =. 当2n ≥时,1n n S a += ∴数列{}n a 是“H ”数列.(Ⅱ)1(1)(1)22n n n n n S na d n d --=+=+,对*n ∀∈N ,*m ∃∈N 使n m S a =,即(1)1(1)2n n n d m d -+=+-,取2n =时,得1(1)d m d +=-,解得12m d=+,∵0d <,∴2m <,又*m ∈N ,∴1m =,∴1d =-(Ⅲ)设{}n a 的公差为d ,令1111))((2n b a n a n a =-=--,对*n ∀∈N ,11n n b b a +-=-,1(1)()n c n a d =-+对*n ∀∈N ,11n n c c a d +-=+,则1(1)n n n b c a n d a +=+-=,且数列{}n b 和{}n c 是等差数列. 数列{}n b 的前n 项和11(1)()2n n n T na a -=+-,令1(2)n T m a =-,则1(1)()2n n m a d -=+. 当1n =时,1m =;当2n =时,1m =当3n ≥时,由于n 与3n -的奇偶性不同,即(3)n n -为非负偶数,*m ∈N .因此对*n ∀∈N ,都可找到*m ∈N ,使n m T b =成立,即{}n b 为H 数列.数列{}n c 的前n 项和(1)12n n n R -=+,令1(1)()m n c m a d R =-+=,则(1)12n n m -=+. ∵对*n ∀∈N ,(3)n n -为非负偶数,∴*m ∈N .因此对*n ∀∈N ,都可找到*m ∈N ,使n m R c =成立,即{}n c 为H 数列. 因此命题得证.数学Ⅱ21.【答案】A 证明:∵OC OB =, ∴OCB B ∠=∠, ∵B D ∠=∠, ∴OCB D ∠=∠ B.72∵矩阵121A x -⎡⎤=⎢⎥⎣⎦,1121B ⎡⎤=⎢⎥-⎣⎦,向量2y α⎡⎤=⎢⎥⎣⎦,A B αα=,∴22224y y xy y -=+⎧⎨+=-⎩,∴12x =-,4y =,∴72x y +=C.直线l的参数方程为122x y ⎧=⎪⎪⎨⎪=+⎪⎩,化为普通方程为3x y +=,与抛物线24y x =联立,可得21090x x +=-,∴交点(1,2)A ,(9,6)B -,∴||ABD.证明:由均值不等式可得21x y ++≥21x y ++≥分别当且仅当21x y ==,21x y ==时等号成立, ∴两式相乘可得22(11)9x y x y xy ++++≥)(22.【答案】(Ⅰ)518(Ⅱ)()E X =20【解析】解(Ⅰ)一次取2个球共有2936C =种可能,2个球颜色相同共有2936C =种可能情况∴取出的2个球颜色相同的概率1053618P ==. (Ⅱ)X 的所有可能值为4,3,2,则44491(4)126C P X C ===,3131453649(3)C C C C P X C +==于是11(2)1(3)(4)P X P X P X ==-=-==,X 的概率分布列为 故X 数学期望()23414631269E X =⨯+⨯+⨯= 【提示】(Ⅰ)先求出取2个球的所有可能,再求出颜色相同的所有可能,最后利用概率公式计算即可;(Ⅱ)先判断X 的所有可能值,在分别求出所有可能值的概率,列出分布列,根据数学期望公式计算即可.【考点】散型随机变量的期望与方差,古典概型及其概率计算公式 23.【答案】(Ⅰ)∵0i (s n )xf x x=, ∴0)n (si xf x x =,则两边求导,0[(])(sin )xf x x '=', ∵)(n f x 为1()n f x -的导数,*n ∈N ,∴01(())cos f x xf x x +=,两边再同时求导得,12((2))sin f x xf x x +=-,将π2x =代入上式得,12πππ12222f f ⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭(Ⅱ)由(Ⅰ)得,01π))cos sin (2(f x xf x x x ⎛⎫+==+ ⎪⎝⎭,恒成立两边再同时求导得,122))sin si ((n(π)f x xf x x x +=-=+,再对上式两边同时求导得,23((3π3))cos sin 2f x xf x x x x ⎛⎫+=-=++ ⎪⎝⎭,同理可得,两边再同时求导得,344))sin sin(2)(π(f x xf x x x +==+,猜想得,1((π))sin 2n n n nf x xf x x -⎛⎫+=+ ⎪⎝⎭对任意*n ∈N 恒成立,下面用数学归纳法进行证明等式成立:①当1n =时,01π()()cos sin 2f x xf x x x ⎛⎫+==+ ⎪⎝⎭成立,则上式成立;②假设01π()()cos sin 2f x xf x x x ⎛⎫+==+ ⎪⎝⎭*(1)n k k k =>∈N 且时等式成立,即1π()()sin 2k k k kf x xf x x -⎛⎫+=+ ⎪⎝⎭,111[((]())((())()(1)))k k k k k k k kf x xf x kf x f x xf x k f x xf x --+''+'=++=++πsin =cos 222k k k x x x ππ'⎡⎤⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ππππcos sin 2222k k k x x x ⎛⎫⎛⎫⎛⎫+=+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭, ∴那么*1(1)n k k k =+>∈N 且*1(1)n k k k =+>∈N 且时.等式()11π(1)()()sin 2k k k k f x xf x x +⎡+⎤++=+⎢⎥⎣⎦也成立,由①②得,1((π))sin 2n n n nf x xf x x -⎛⎫+=+ ⎪⎝⎭对任意*n ∈N 恒成立,令π4x =代入上式得,1ππππππcos 444424n n n nf f sin ⎛⎫⎛⎫⎛⎫+=+=±= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭﹣, 所以,对任意*n ∈N ,等式1πππ444n n nf f -⎛⎫⎪⎝⎭⎛⎫+= ⎪⎝⎭都成立.【提示】(Ⅰ)由于求两个函数的相除的导数比较麻烦,根据条件和结论先将原函数化为:0)n (si xf x x =,然后两边求导后根据条件两边再求导得:12((2))sin f x xf x x +=-,把π2x =代入式子求值;(Ⅱ)由(Ⅰ)得,01(())cos f x xf x x +=和12((2))sin f x xf x x +=-,利用相同的方法再对所得的式子两边再求导,并利用诱导公式对所得式子进行化简、归纳,再进行猜想得到等式,用数学归纳法进行证明等式成立,主要利用假设的条件、诱导公式、求导公式以及题意进行证明,最后再把π4x =代入所给的式子求解验证 【考点】三角函数中的恒等变换应用,导数的运算。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档