六年级上册奥数题
六年级上册奥数题及答案解析_通用版
六年级奥数练试题及答案1.小明买了一辆二手山地车,支付了山地车原价的90%,没过几天,他的朋友看中了这辆山地车,并表示愿意支付高出原价25%的价格买下。
小明答应了,只经过简单一转手,这辆山地车就让小明赚了105元。
那么,小明这辆山地车的原价是________元。
【分析】把这辆山地车的原价看成单位1,那么小明赚的钱对应的分率为1+25%-90%=35%2.瓶中装有浓度为15%的酒精溶液1000克,现在又分别倒入100克和400克的两种酒精溶液A、B,瓶里的酒精溶液浓度变成了14%。
已知A种酒精溶液是B种酒精溶液浓度的2倍,那么,A种酒精溶液的浓度是%。
【分析】方法一:方程。
设B种酒精的浓度为x,则A种酒精的浓度为2x,于是可以得到:故A的浓度为。
方法二:比例。
1000×15%=150(克),混合后溶液中纯酒精为(1000+400+100)×14%=210(克),210-150=60(克),A和B共含酒精60克,已知A和B的重量比为1:4,浓度比为2:1,那么含酒精的量比1:2,那么A中含酒精60÷3=20(克),则A的浓度为20%. 3.A、B两杯食盐水各有40克,浓度比是3:2.在B中加入60克水,然后倒入A中____克.再在A、B中加入水,使它们均为100克,这时浓度比为7:3.【分析】比例思想。
两杯中的食盐水总量相同,浓度比为3:2,则含盐量也是3:2,向B杯中加水不会改变两杯中的含盐量。
倒入后A和B的含盐量改变,比例变为7:3,但是倒入前后两杯盐水的含盐的总和是不变的,3+2=5,7+3=10,统一份数。
3:2=6:4,这时总含盐量看成10份,原来A、B各含6份和4份,倒入后各含7份和3份,说明B 向A倒入了刚好1份的盐,从100克中倒出25克刚好含1份的盐。
4.经测算,地球上的资源可供100亿人生活100年,或可供80亿人生活300年.假设地球上新生资源的生长速度是一定的,那么为了使人类有不断发展的潜力,地球上最多能养活多少亿人?【分析】每亿人每年消耗资源量为1份。
小学六年级上册数学奥数题库
小学六年级上册数学奥数题库小学六年级上册数学奥数题库 11、哥哥今年18岁,弟弟今年12岁。
当两人的年龄和是40岁时,兄弟两人各多少岁?2、甲、乙、丙三人各有若干本故事书,甲拿出自己的一部分书给乙、丙,例乙、丙两人的书增加一倍,乙拿出一部分书给甲、丙,使甲、丙两人的书增加一倍,丙也拿出一部分书给甲、乙,使甲、乙两人的书也增加一倍,这时甲、乙、丙三人的书都是16本。
甲、乙、丙原来各有多少本故事书?3.一个水桶装满8公斤水。
如果把这个桶横向分成两个桶,两个桶分别可以装5kg和3kg。
至少需要倒多少次?4、甲、乙、丙三校在体育用品商店买了不同数目的足球,共48个。
第一次从甲校的足球中拿出与乙校个数相同的足球并入乙校;第二次再从乙校现有的足球中拿出与丙校个数相同的足球并入丙校;第三次又从丙校现有的'足球中拿出与这时甲校个数相同的足球并入甲校。
经过这样的变动后,三校足球的个数正好相等。
已知每个足球的售价是12元,问三校原来买的足球各值多少元?5、甲、乙两个油桶各装了15千克油,售货员卖了14千克。
后来,售货员从剩下较多油的甲桶倒一部分给乙桶,使乙桶的油增加一倍;然后又从乙桶倒一部分给甲桶,使甲桶的油也增加一倍;这时甲桶的油恰好是乙桶油的3倍。
问售货员从两个油桶里各卖了多少千克油?小学六年级上册数学奥数题库 21.求时针和分针在下一时刻形成的角度。
(1)9点整(2)2点整(3)5点30分(4)10点20分(5)7点36分2、从时针指向4点开始,再经过多少分钟,时针正好与分针重合?3、某人下午6点多外出时,看手表上两指针的夹角为1100,下午7点前回家时发现两指针夹角仍为1100,问:他外出多长时间?4、一点到两点之间,分针与时针在什么时候成直角?5、在3点至4点之间的什么时刻,钟表的时针和分针分别相互重合和相互垂直。
小学六年级上册数学奥数题库 31.小明和小英分别在高速公路上往返A和B。
假设他们从两个相对的地方开始。
六年级上册奥数题15道
六年级上奥数题1、张强用270元买了一件外衣、一顶帽子和一条裤子,外衣比裤子贵140元,买外衣和裤子比帽子多花210元,张强买的外衣、帽子和裤子各多少钱?2、有一类小于200的自然数,每个数的各位数字之和是奇数,而且都是两个两位数的乘积(例如:144=12×12).那么这一类自然数中,第三大的数是________.3、9个连续的自然数中最多有_________个质数4、找出1992所有的不同质因数,它们的和是_______5、一个分数,如果分母减2,约分后是,如果分母减9,约分后是 .那么,原来的分数是________.三、解答题:(1~7题每题5分,8,9,10题每题10分,共65分)1、张强用270元买了一件外衣、一顶帽子和一条裤子,外衣比裤子贵140元,买外衣和裤子比帽子多花210元,张强买的外衣、帽子和裤子各多少钱?2、同学们乘坐大、中型两种车去春游,大型车每辆可坐65人,中型车每辆可坐2 6人.现有学生和教师共338人,要使每人都有一个座位,并且车上没有空余座位,大型车和中型车各需几辆?3、两名工人共同编制一批围巾,原计划6小时完成.实际每人都比原计划每小时多加工2条,结果5小时就完成了任务.这批围巾共有多少条?4、把一个正方形的一边缩短20%,另一边增加2米,得到一个长方形,它与原来正方形的面积相等.那么,正方形的面积是多少平方米.5、分子、分母之和是23,分母增加19以后,得到一个新的分数,把这个分数化为最简分数是,原来分数是几分之几?6、汽车和自行车分别从A、B两地同时相向而行,汽车每小时行50千米,自行车每小时行10千米,两车相遇后,各自仍沿原方向行驶,当汽车到达B地后返回到两车相遇地时,自行车在前面10千米处正向A地行驶,求A,B两地的距离.7、若自然数p,2p+1,4p+1都是素数,那么8 +55=?8、有一只船发现漏水时,已经进了一些水,现在水匀速进入船内.若10个人淘水, 12个小时可以淘完;15个人淘水,6小时可以淘完,如果3小时淘完,需要多少人淘水?9、甲、乙、丙、丁四人体重各不相同,其中有两人的平均体重与另外两人的平均体重相等.甲与乙的平均体重比甲与丙的平均体重少8千克,乙与丁的平均体重比甲与丙的平均体重重,乙与丙的平均体重是49千克.求:(1)甲、乙、丙、丁四人的平均体重是多少?(2)乙的体重是多少?10、A、B、C、D、E五位同学各自从不同的途径打听到中南地区小学生五年级通讯赛获得第一名的那位同学的情况(具体列表如下):A打听到:姓李,是女同学,年龄13岁,广东人B打听到:姓张,是男同学,年龄11岁,湖南人C打听到:姓陈,是女同学,年龄13岁,广东人D打听到:姓黄,是男同学,年龄11岁,广西人E打听到:姓张,是男同学,年龄12岁,广东人实际上获得第一名的那位同学的姓氏、性别、年龄、籍贯这四项内容的真实情况在上表中已有.而五位同学所打听到的情况,每人都仅有一项是正确的.请你据此判断这位获第一名的同学.11.甲、乙两人共同加工一批零件,8小时司以完成任务.如果甲单独加工,便需要12小时完成.现在甲、乙两人共同生产了2 小时后,甲被调出做其他工作,由乙继续生产了420个零件才完成任务.问乙一共加工零件多少个?12.某工程先由甲单独做63天,再由乙单独做28天即可完成.如果由甲、乙两人合作,需48天完成.现在甲先单独做42天,然后再由乙来单独完成,那么还需做多少天? 题1、营业员把一张5元的人民币和一张5角的人民币换成了28张票面为1元和1角的人民币,求换来的这两种人民币各多少张?题2、有一元,二元,五元的人民币共50张,总面值为116元,已知一元的比二元的多2张,问三种面值的人民币各多少张?题3、有3元,5元和7元的电影票400张,一共价值1920元,其中7元和5元的张数相等,三种价格的电影票各多少张?题4、用大、小两种汽车运货,每辆大汽车装18箱,每辆小汽车装12箱,现在有1 8车货,价值3024元,若每箱便宜2元,则这批货价值2520元,问:大、小汽车各有多少辆?题5、一辆卡车运矿石,晴天每天可运20次,雨天每天可运12次,它一共运了11 2次,平均每天运14次,这几天中有几天是雨天?题6、运来一批西瓜,准备分两类卖,大的每千克0.4元,小的每千克0.3元,这样卖这批西瓜共值290元,如果每千克西瓜降价0.05元,这批西瓜只能卖250元,问:有多少千克大西瓜?题7、甲、乙二人投飞镖比赛,规定每中一次记10分,脱靶每次倒扣6分,两人各投10次,共得152分,其中甲比乙多得16分,问:两人各中多少次?题8、某次数学竞赛共有20条题目,每答对一题得5分,错了一题不仅不得分,而且还要倒扣2分,这次竞赛小明得了86分,问:他答对了几道题?9\一根绳,第一次用去二分之一,第二次用去剩下的二分之一,依次类推,5次后还剩这根绳子的几分之几?1.设有1元的x张,1角的(28-x)张x+0.1(28-x)=5.50.9x=2.7x=328-x=25答:有一元的3张,一角的25张.2.设1元的有x张,2元的(x-2)张,5元的(52-2x) x+2(x-2)+5(52-2x)=116x+2x-4+260-10x=1167x=140x=20x-2=1852-2x=12答:1元的有20张,2元18张,5元12张.3.设有7元和5元各x张,3元的(400-2x)张7x+5x+3(400-2x)=192012x+1200-6x=19206x=720x=120400-2x=160答:有3元的160张,7元、5元各120张.4.货物总数:(3024-2520)÷2=252(箱)设有大汽车x辆,小汽车(18-x)辆18x+12(18-x)=25218x+216-12x=2526x=36x=618-x=12答:有大汽车6辆,小汽车12辆.5.天数=112÷14=8天设有x天是雨天20(8-x)+12x=112160-20x+12x=1128x=48x=6答:有6天是雨天.6.西瓜数:(290-250)÷0.05=800千克设有大西瓜x千克0.4x+0.3(800-x)=2900.4x+240-0.3x=2900.1x=50x=500答:有大西瓜500千克.7.甲得分:(152+16)÷2=84分乙:152-84=68分设甲中x次10x-6(10-x)=8410x-60+6x=8416x=144x=9设乙中y次10y-6(10-y)=6816y=128y=8答:甲中9次,乙8次.8.设他答对x道题5x-2(20-x)=865x-40+2x=867x=126x=18答:他答对了18题.。
小学六年级数学上册奥数题100道及答案
小学六年级数学上册奥数题100道及答案1. 甲、乙两数的和是120,甲数是乙数的3 倍,求甲、乙两数各是多少?答案:乙数= 120÷(3 + 1) = 30,甲数= 3×30 = 902. 某工厂有三个车间,第一车间人数是第二、三车间人数和的1/2,第二车间人数是第一、三车间人数和的1/3,第三车间有105 人,求该厂总人数。
答案:第一车间人数占总人数的1/(1 + 2) = 1/3,第二车间人数占总人数的1/(1 + 3) = 1/4,所以第三车间人数占总人数的1 - 1/3 - 1/4 = 5/12,总人数= 105÷5/12 = 252 人3. 一筐苹果,连筐重56 千克,先卖出苹果的一半,再卖出剩下苹果的一半,这时连筐重17 千克,原来这筐苹果重多少千克?答案:一共卖出的苹果占总苹果的1/2 + 1/2×1/2 = 3/4,卖出的苹果重56 - 17 = 39 千克,原来苹果重39÷3/4 = 52 千克4. 修一条路,第一天修了全长的1/3,第二天修了余下的1/3,还剩180 米没修,这条路全长多少米?答案:第二天修了全长的(1 - 1/3)×1/3 = 2/9,剩下的占全长的1 - 1/3 - 2/9 = 4/9,全长= 180÷4/9 = 405 米5. 有一堆煤,第一天运走全部的1/4,第二天运走剩下的1/3,第三天运走50 吨,正好运完,这堆煤有多少吨?答案:第二天运走全部的(1 - 1/4)×1/3 = 1/4,所以第三天运走全部的1 - 1/4 - 1/4 = 1/2,这堆煤有50÷1/2 = 100 吨6. 三个连续奇数的和是15,它们的积是多少?答案:中间的奇数= 15÷3 = 5,这三个奇数是3、5、7,它们的积是3×5×7 = 1057. 一个数除以8 余5,除以7 也余5,这个数最小是多少?答案:这个数减去5 能同时被8 和7 整除,8 和7 的最小公倍数是56,所以这个数最小是56 + 5 = 618. 一个长方形的周长是48 厘米,长是宽的3 倍,求这个长方形的面积。
(完整版)六年级上册奥数题30道
1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵。
已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树。
两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?2. 有三块草地,面积分别是5,15,24亩。
草地上的草一样厚,而且长得一样快。
第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?3. 某工程,由甲、乙两队承包,2。
4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。
在保证一星期内完成的前提下,选择哪个队单独承包费用最少?4. 一个圆柱形容器内放有一个长方形铁块。
现打开水龙头往容器中灌水。
3分钟时水面恰好没过长方体的顶面。
再过18分钟水已灌满容器。
已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比。
5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售。
两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5。
经过2+1/3小时,A,B两池中注入的水之和恰好是一池。
这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校。
小明从家到学校全部步行需要多少时间?8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离。
六年级上册奥数题大全及答案
六年级上册奥数题大全及答案六年级上册奥数题大全及答案 11、李明的爸爸经营个水果店,按开始的定价,每买出1千克水果,可获利0.2元。
后来李明建议爸爸降价销售,结果降价后每天的销量增加了1倍,每天获利比原来增加了50%。
问:每千克水果降价多少元?答案:设以前卖出X千克降价a元。
那么0.2X×(1+0.5)=(0.2-a)×2x则0.1X=2aXa=0.05答:每千克水果降价0.05元2、有5个小朋友,每人都从装有许多黑白围棋子的布袋中任意摸出3枚棋子.请你证明,这5个人中至少有两个小朋友摸出的棋子的颜色的配组是一样的。
解析与答案:首先要确定3枚棋子的颜色可以有多少种不同的情况,可以有:3黑,2黑1白,1黑2白,3白共4种配组情况,看作4个抽屉。
把每人的3枚棋作为一组当作一个苹果,因此共有5个苹果。
把每人所拿3枚棋子按其颜色配组情况放入相应的抽屉。
由于有5个苹果,比抽屉个数多,所以根据抽屉原理,至少有两个苹果在同一个抽屉里,也就是他们所拿棋子的颜色配组是一样的。
六年级上册奥数题大全及答案 2猎狗发现在离它10米的前方有一只奔跑着的兔子,马上追上去,兔跑9步的路程狗只需跑5步,但狗跑2步的时间,兔却跑3步。
问狗追上兔时,共跑了多少米路程?答案与解析:60米对于追及问题,我们知道:10米=速度差×追及时间狗追上兔时,所跑路程应为:总路程=狗的速度×追及时间这就是要弄清狗的速度与兔的速度差之间的倍数关系。
另一方面,在分析速度时,一定是相同时间内狗与兔的速度之间的倍数,而不是相同的步数或相同的路程。
只要分析清楚这些,就可以解出本题了。
详解1:为了看相同时间的路程关系,也就是速度关系,我们进行如下处理:狗跑2步的时间兔跑3步,则狗跑6步的时间兔子跑了9步,也就是兔子跑了狗的5步,那么在这段时间内,狗追上了兔子,狗的一步或狗兔间的距离缩短了狗的1步,而狗跑了6步,所以狗的速度是速度差的6倍。
奥数题大全六年级上册
奥数题大全六年级上册题目列表:1. 数学里,哪一个数字是质数?2. 小明家中有 315 块巧克力,他想将它们分配给 21 个小孩,每个小孩能得到多少块巧克力?3. 请列出既是奇数又是质数的数字。
4. 一个数的因数只有 1 和它本身,这个数是什么?5. 有一排数:2,4,6,8,10……它们的公差是多少?6. 如果一个数除以 2 得到的商是 5,那么这个数是多少?7. 用 3 个 3 来表示数字 9。
8. 如何将 15 根火柴棒,摆成 5 个完全相同的三角形?9. 如果有一个缸只能装 1500 毫升的水,而你手里只有一个 3 升和一个5 升的桶,你如何才能只用这两个桶装满缸里的水?10. 有一个长方体,它的长和宽分别是 10 厘米和 8 厘米,高度是 6 厘米,它的表面积是多少?1. 数学里,哪一个数字是质数?质数是只能被 1 和本身整除的数。
根据这个定义,2 是最小的质数,因为 1 不能被称为质数,3 是下一个质数,然后是 5,7,11,13,17,19,23 等等。
2. 小明家中有 315 块巧克力,他想将它们分配给 21 个小孩,每个小孩能得到多少块巧克力?将 315 块巧克力分配给 21 个小孩,每个小孩得到的块数如下:315 ÷ 21 = 15所以每个小孩可以得到 15 块巧克力。
3. 请列出既是奇数又是质数的数字。
只有一个数字同时是奇数和质数,那就是 2。
4. 一个数的因数只有 1 和它本身,这个数是什么?这个数是质数,因为质数只有 1 和本身两个因数。
5. 有一排数:2,4,6,8,10……它们的公差是多少?这一排数之间的公差是 2,因为每个数都比前一个数大 2。
6. 如果一个数除以 2 得到的商是 5,那么这个数是多少?这个数是 10,因为 10 ÷ 2 = 5。
7. 用 3 个 3 来表示数字 9。
三个 3 可以表示数字 9,因为 3 + 3 + 3 = 9。
2024年六年级上册奥数题
2024年六年级上册奥数题一、分数乘法相关奥数题1. 题目计算:公式解析:先将每个分数进行拆分,公式,公式,公式,公式,公式。
原式=公式去括号后可以发现中间的分数都可以相互抵消,最后得到:公式。
2. 题目一个数乘以公式的积是21,这个数的公式是多少?解析:首先根据已知条件求出这个数,因为这个数乘以公式是21,所以这个数是公式。
那么这个数的公式就是公式。
二、圆的周长和面积相关奥数题1. 题目一个半圆的周长是15.42厘米,这个半圆的面积是多少平方厘米?(π取3.14)解析:半圆的周长是圆周长的一半加上直径。
设圆的半径为r,半圆的周长公式。
已知半圆周长为15.42厘米,所以公式,公式,解得公式厘米。
半圆的面积公式平方厘米。
2. 题目在一个边长为10厘米的正方形内画一个最大的圆,这个圆的面积占正方形面积的百分之几?解析:正方形内最大的圆的直径等于正方形的边长,所以圆的半径公式厘米。
圆的面积公式平方厘米。
正方形的面积公式平方厘米。
圆的面积占正方形面积的比例为:公式。
三、百分数相关奥数题1. 题目一件商品,先提价20%,再降价20%,现在的价格比原来的价格是升高了还是降低了?变化幅度是多少?解析:设这件商品原来的价格为1。
提价20%后价格为公式。
再降价20%后的价格为公式。
因为公式,所以价格降低了。
变化幅度为公式。
2. 题目某工厂有工人300人,其中男工人数占总人数的40%,后来又招进一批男工,这时男工人数占总人数的50%,新招进男工多少人?解析:原来男工人数为公式人,女工人数为公式人。
设新招进男工x人,则公式。
方程可化为公式,公式,公式,公式,解得公式人。
六年级上册奥数题及答案
六年级上册奥数题及答案【篇一:小学六年级奥数题及答案(全面)】t>1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为a人,则80分以下的人数是(a-2)/4,及格的就是a+22,不及格的就是a+(a-2)/4-(a+22)=(a-90)/4,而6*(a-90)/4=a+22,则a=314,80分以下的人数是(a-2)/4,也即是78,参赛的总人数314+78=3922.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(1+1/5)x这一步是什么意思,为什么这么做左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款答案取40%后,存款有4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1。
5倍再增加30颗巧克力,巧克力占75%,奶糖占25%,巧克力是奶糖的3倍增加了3-1.5=1.5倍,说明30颗占1.5倍奶糖=30/1.5=20颗巧克力=1.5*20=30颗奶糖=20-10=10颗5.小明和小亮各有一些玻璃球,小明说:“你有球的个数比我少1/4!”小亮说:“你要是能给我你的1/6,我就比你多2个了。
数学六年级上册奥数题大全
数学六年级上册奥数题大全一、拓展提优试题1.在一个两位数的中间加上小数点,得到一个小数,若这个小数与原来的两位数的和是86.9,则原来两位数是.2.从12点开始,经过分钟,时针与分针第一次成90°角;12点之后,时针与分针第二次成90°角的时刻是.3.某次数学竞赛,甲、乙、丙3人中只有一人获奖,甲说:“我获奖了.”乙说:“我没获奖.”丙说:“甲没有获奖.”他们的话中只有一句是真话,则获奖的是.4.把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯书数”如:27=3×3×3.3+3+3=2+7,即27是史密斯数,那么,在4,32,58,65,94中,史密斯数有个.5.22012的个位数字是.(其中,2n表示n个2相乘)6.如图1是一个正方体的展开图,图2的四个正方体中只有一个是和这个展开图对应的,这个正方体是.(填序号)7.某工程队修建一条铁路隧道,当完成任务的时,工程队采用新设备,使修建速度提高了20%,同时为了保养新设备,每天工作时间缩短为原来的,结果,前后共用185天完工,由以上条件可推知,如果不采用新设备,完工共需天.8.王老师在黑板上写了若干个从1开始的连续自然数:1,2,3,4,…,然后擦去三个数(其中有两个质数),如果剩下的数的平均数是19,那么王老师在黑板上共写了39个数,擦去的两个质数的和最大是.9.王涛将连续的自然数1,2,3,…逐个相加,一直加到某个自然数为止,由于计算时漏加了一个自然数而得到错误的结果2012.那么,他漏加的自然数是.10.对于一个多边形,定义一种“生长”操作:如图1,将其一边AB变成向外凸的折线ACDEB,其中C和E是AB的三等分点,C,D,E三点可构成等边三角形,那么,一个边长是9的等边三角形,经过两次“生长”操作(如图2),得到的图形的周长是;经过四次“生长”操作,得到的图形的周长是.11.一根绳子,第一次剪去全长的,第二次剪去余下部分的30%.若两次剪去的部分比余下的部分多0.4米,则这根绳子原来长米.12.已知三个分数的和是,并且它们的分母相同,分子的比是2:3:4.那么,这三个分数中最大的是.13.被11除余7,被7除余5,并且不大于200的所有自然数的和是.14.如图,圆P的直径OA是圆O的半径,OA⊥BC,OA=10,则阴影部分的面积是.(π取3)15.从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是.【参考答案】一、拓展提优试题1.解:根据题意可得:86.9÷(10+1)=7.9;7.9×10=79.答:原来两位数是79.故答案为:79.2.解:分针每分钟走的度数是:360÷60=6(度),时针每分钟走的度数是:6×5÷60=0.5(度),第一成直角用的时间是:90÷(6﹣0.5),=90÷5.5,=16(分钟),第二次成直角用的时间是:270÷(6﹣0.5),=270÷5.5,=49(分钟).这时的时刻是:12时+49分=12时49分.故答案为:16,12时49分.3.解:由分析可知:假设甲说的是真话,那乙说的也是真话,所以不成立;假设乙说的是真话,那甲说的也是真话,也不成立;所以只能是丙说的是真话,乙说的是假话,即:乙得奖了;故答案为:乙.4.解:4=2×2,2+2=4,所以4是史密斯数;32=2×2×2×2×2;2+2+2+2+2=10,而3+2=5;10≠5,32不是史密斯数;58=2×29,2+2+9=13=13;所以58是史密斯数;65=5×13;5+1+3=9;6+5=11;9≠11,65不是史密斯数;94=2×472+4+7=13=9+4;所以94是史密斯数.史密斯数有4,58,94一共是3个.故答案为:3.5.解:2012÷4=503;没有余数,说明22012的个位数字是6.故答案为:6.6.解:如图.图1是一个正方体的展开图,图2的四个正方体中只有一个是和这个展开图对应的,这个正方体是图2①;故答案为:①7.解:设计划用x天完成任务,那么原计划每天的工作效率是,提高后每天的工作效率是×(1+20%)=×=,前面完成工程的所用时间是天,提高工作效率后所用的实际是(185﹣)×天,所以,+(185﹣)××=1,+(185﹣)××﹣=1﹣,(185﹣)××=,(185﹣)×÷=÷,185﹣+=x+,x÷=185÷,x=180,答:工程队原计划180天完成任务.故答案为:180.8.解:由剩下的数的平均数是19,即得最大的数约为20×2=40个,又知分母是9,所以剩下的数的个数必含因数9,则推得剩余36个数.原写下了1到39这39个数;剩余36个数的和:19×36=716,39个数的总和:(1+39)×39÷2=780,擦去的三个数总和:780﹣716=64,根据题意,推得擦去的三个数中最小是1,那么两个质数和63=61+2能够成立,61>39不合题意;如果擦去的另一个数是最小的合数4,64﹣4=6060=29+31=23+37,成立;综上,擦去的两个质数的和最大是60.故答案为:39,60.9.解:设这个等差数列和共有n项,则末项也应为n,这个等差数列的和为:(1+n)n÷2=;经代入数值试算可知:当n=62时,数列和=1953,当n=63时,数列和=2016,可得:1953<2012<2016,所以这个数列共有63项,少加的数为:2016﹣2012=4.故答案为:4.10.解:边长是9的等边三角形的周长是9×3=27第一次“生长”,得到的图形的周长是:27×=36第二次“生长”,得到的图形的周长是:36×=48第三次“生长”,得到的图形的周长是:48×=64第四次“生长”,得到的图形的周长是:64×==85答:经过两次“生长”操作,得到的图形的周长是48,经过四次“生长”操作得到的图形的周长是85.故答案为:48,85.11.解:第二次剪求的占全长的:(1)×30%==,0.4÷[(1)]=0.4÷[]==0.4×15=6(米);答:这根绳子原来长6米.故答案为:6.12.解:==,答:这三个分数中最大的一个是.故答案为:.13.解:不大于200的所有自然数被11除余7的数是:18,29,40,62,73,84,95,106,117,128,139,150,161,172,183,194;不大于200的所有自然数被7除余5的是:12,19,26,33,40,47,54,61,68,75…;同时被11除余7,被7除余5的最小数是40,[11,7]=77,依次是117、194;满足条件不大于200的所有自然数的和是:40+117+194=351.故答案为:351.14.解:3×102÷2﹣3×(10÷2)2=3×100÷2﹣3×25=150﹣75=75答:阴影部分的面积是75.故答案为:75.15.解:根据分析,1~2016数中,有奇数1008个,偶数1008个,因为偶数和偶数之间不能互质,故:①n<1008时,有可能取的n个数都是偶数,就不能出现至少有两个数互质的情况;②n=1008时,若取的数都是偶数,也不能出现至少有两个数互质的情况;③n≥1009时,则取的n个数里至少有一个为奇数,取出的这个奇数和它相邻的偶数一定互质,综上,n最小是1009.故答案是:1009.。
六年级上册数学奥数题100道
六年级上册数学奥数题100道1、有甲、乙两堆棋子,其中甲堆棋子多于乙堆;现在按如下方法移动棋子:第一次从甲堆中拿出和乙堆一样多的棋子放到乙堆;第二次从乙堆中拿出和甲堆剩下的同样多的棋子放到甲堆。
如此移动三次后,甲乙两堆的棋子数恰好相等都是32个。
甲、乙两堆原来各有几个棋子?2、一辆汽车共坐50人,其中部分人买A种票,每张0.80元,另一部分买B种票,每张0.30元,售票员统计买A种票比B种票多收18元,求买A种票和B种票各几个人买?3、三个植树队共植树1800棵,甲队植树的棵树是乙队的2倍,乙队植树的棵树比丙队少200棵,甲队植树多少棵,乙队植树多少棵,丙队植树多少棵?4、数学考试共有5题,全班52人参加,共做对181道题,已知每人至少做对一题,对一题的有7人,5题全对有6人,做对二题和三题的人数一样多,求做对4题有几人?5、某短跑队有9名运动员,其中3人起跑技术好,另外2人弯道技术好,还有2人冲刺技术好,现在要从中选4人组队参加4×100米接力赛,为使每人充分发挥特长,共有多少种组队方式?6、假期小亮练习跳绳,放假第一天可以跳20个,第二天多跳5个,以后每天都在前一天的基础上增加5个,请问他开学前一天跳绳的数量可以达到多少个?(1月13日放假,2月28日开学)7、从山下到山上的路程是720米,小华上山时平均速度为每分钟走60米,下山时平均每分钟走120米,则小华往返行程中的平均速度是每分钟走多少米8、A、B两地相距40千米。
甲、乙两人同时分别由两地出发,相向而行,8小时相遇。
如果两人同时由A向B,5小时后甲在乙前5千米。
甲、乙每小时各行多少千米?9、兄弟二人早晨五点各推一车菜同时从家里出发去集市,哥哥每分钟行100米,弟弟每分钟行60米。
哥哥到达集市后用5分钟卸好菜,立即返回,中途接到弟弟,这时是5时55分,集市离他们家有多少米?10、一列火车长400米,铁路沿线的电线杆间都相距50米,这列火车从车头到达第一根电线杆到车尾离开第41根电线杆共用了2分钟。
6年级上册奥数题
15 道六年级上册奥数题一、分数应用题1. 一桶油,第一次用去这桶油的1/4,第二次用去余下的2/3,还剩10 千克,这桶油原来有多少千克?解:把这桶油原来的重量看作单位“1”。
第一次用后剩下 1 - 1/4 = 3/4,第二次用去余下的2/3,即用去了3/4×2/3 = 1/2,此时还剩 1 - 1/4 - 1/2 = 1/4,对应10 千克,所以这桶油原来有10÷1/4 = 40 千克。
二、比例问题2. 甲、乙两数的比是3:4,乙、丙两数的比是5:6,求甲、丙两数的比。
解:甲:乙= 3:4 = 15:20,乙:丙= 5:6 = 20:24,所以甲:丙= 15:24 = 5:8。
三、工程问题3. 一项工程,甲单独做12 天完成,乙单独做18 天完成,现在甲、乙合作,中途甲休息了几天,结果共用了9 天完成,甲休息了几天?解:设甲休息了x 天。
乙工作了9 天,完成的工作量是1/18×9 = 1/2。
甲工作了(9 - x)天,完成的工作量是1/12×(9 - x)。
两人完成的工作量之和为单位“1”,可列方程1/12×(9 - x)+1/2 = 1,解得x = 3。
四、行程问题4. 甲、乙两车同时从A、B 两地相对开出,相遇时甲、乙两车所行路程的比是5:4,已知甲每小时行45 千米,乙行完全程要8 小时,A、B 两地相距多少千米?解:相遇时时间相同,路程比等于速度比,所以乙的速度是45×4/5 = 36 千米/小时。
两地距离为36×8 = 288 千米。
五、浓度问题5. 在浓度为10%的盐水中加入20 克盐,浓度变为12%,原来盐水有多少克?解:设原来盐水有x 克。
可列方程(x×10% + 20)÷(x + 20)= 12%,解得x = 800。
六、图形问题6. 一个圆形花坛的周长是25.12 米,在花坛周围修一条宽1 米的小路,求小路的面积。
小学六年级上册奥数题及答案
小学六年级上册奥数题及答案【篇一:六年级上册奥数题】b地要植1250棵。
已知甲、乙、丙每天分别能植树24,30,32棵,甲在a地植树,丙在b地植树,乙先在a地植树,然后转到b地植树。
两块地同时开始同时结束,乙应在开始后第几天从a地转到b 地?2. 有三块草地,面积分别是5,15,24亩。
草地上的草一样厚,而且长得一样快。
第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?3. 某工程,由甲、乙两队承包,2。
4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。
在保证一星期内完成的前提下,选择哪个队单独承包费用最少?4. 一个圆柱形容器内放有一个长方形铁块。
现打开水龙头往容器中灌水。
3分钟时水面恰好没过长方体的顶面。
再过18分钟水已灌满容器。
已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比。
5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售。
两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?6. 有甲、乙两根水管,分别同时给a,b两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5。
经过2+1/3小时,a,b两池中注入的水之和恰好是一池。
这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满a池时,乙管再经过多少小时注满b池?7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校。
小明从家到学校全部步行需要多少时间?8. 甲、乙两车都从a地出发经过b地驶往c地,a,b两地的距离等于b,c两地的距离。
小学六年级上册奥数练习题
小学六年级上册奥数练习题
奥数练习题一:
1.某家庭有10只动物,它们的腿数分别是:鸽子2条,兔子4条,
猫4条,羊4条,狗4条。
请问这个家庭有多少只脚?
解答:鸽子2只脚,兔子4只脚,猫4只脚,羊4只脚,狗4只脚。
因此,这个家庭总共有(2+4+4+4+4) = 18只脚。
奥数练习题二:
2.小明有一串彩色珠子,他想把它们穿在一根绳子上做成项链。
他
可以任意选择珠子的颜色,但要求相邻的珠子不能颜色相同。
如果他
有红、蓝、黄、绿四种颜色的珠子,请问他能组成多少种不同的项链?
解答:首先,小明可以先确定第一个珠子的颜色,有4种选择。
然后,对于第二个珠子,他不能选取和第一个珠子颜色相同的珠子,所
以只剩下3种选择。
以此类推,他在每个位置都有3种选择。
因此,
总共有4 * 3 * 3 * 3 * 3 = 324种不同的项链。
奥数练习题三:
3.有一套塔,由10个小球组成,从下往上依次递减,最上面一个小
球是最小的。
现在,小明要重新排列这些小球,科学地构建一个塔。
他的构建规则是:每次从某个位置上的两个小球中取下较大的一个,
并放在空闲的位置上。
请问,在经过一次构建后,第6个位置上的小
球是什么?
解答:在经过一次构建后,最小的小球一定会到达第6个位置。
因此,第6个位置上的小球是最小的那个。
【经典】小学六年级上册数学奥数题带答案word百度文库
【经典】小学六年级上册数学奥数题带答案word百度文库一、拓展提优试题1.有一个温泉游泳池,池底有泉水不断涌出,要想抽干满池的水,10台抽水机需工作8小时,9台抽水机需工作9小时,为了保证游泳池水位不变(池水既不减少,也不增多),则向外抽水的抽水机需台.2.某小学的六年级有学生152人,从中选男生人数的和5名女生去参加演出,该年级剩下的男、女生人数恰好相等,则该小学的六年级共有男生名.3.从1开始的n个连续的自然数,如果去掉其中的一个数后,余下的各个数的平均数是,那么去掉的数是.4.一列快车从甲地开往乙地需要5小时,一列慢车从乙地开往甲地所需时间比快车多,两车同时从甲乙两地相对开出2小时后,慢车停止前进,快车继续行驶40千米后恰与慢车相遇,则甲乙两地相距千米.5.若算式(□+121×3.125)÷121的值约等于3.38,则□中应填入的自然数是.6.如图,正方形ABCD和EFGH分别被互相垂直的直线分为两个小正方形和两个矩形,小正方形的面积的值已标在图中,分别为20和10,18和12,则正方形ABCD和EFGH中,面积较大的正方形是.7.若质数a,b满足5a+b=2027,则a+b=.8.如图,设定E、F分别是△ABC的边AB、AC上的点,线段CE,BF交于点D,若△CDF,△BCD,△BDE的面积分别为3,7,7,则四边形AEDF的面积是.9.若一个十位数是99的倍数,则a+b=.10.根据图中的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?11.如图,一个直径为1厘米的圆绕边长为2厘米的正方形滚动一周后回到原来的位置.在这个过程中,圆面覆盖过的区域(阴影部分)的面积是平方厘米.(π取3)12.一次智力测试由5道判断对错的题目组成,答对一道得20分,答错或不答得0分.小花在答题时每道题都是随意答“对”或“错”,那么她得60分或60分以上的概率是%.13.a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是.14.如图,将正方形纸片ABCD折叠,使点A、B重合于点O,则∠EFO=度.15.将浓度为40%的100克糖水倒入浓度为20%的a克糖水中,得到浓度为25%的糖水,则a=.【参考答案】一、拓展提优试题1.解:设1台抽水机1小时抽1份水,每小时新增水:9×9﹣10×8=1;答:向外抽水的抽水机需1台.2.解:设男生有x人,(1﹣)x=152﹣x﹣5,x+x=147﹣x+x,x=147,x=77,答:该小学的六年级共有男生77名.故应填:77.3.解:设去掉的数是x,那么去掉一个数后的和是:(1+n)n÷2﹣x=×(n﹣1);显然,n﹣1是7的倍数;n=8、15、22、29、36时,x均为负数,不符合题意.n=43时,和为946,42×=912,946﹣912=34.n=50时,和为1225,49×=1064,1225﹣1064=161>50,不符合题意.答:去掉的数是34.故答案为:34.4.解:慢车行完全程需要:5×(1+),=5×,=6(小时);全程为:40÷[1﹣(+)×2],=40÷[1﹣],=40÷,=40×,=150(千米);答:甲乙两地相距150千米.故答案为:150.5.解:令□=x,那么:(x+121×3.125)÷121,=(x+121×3.125)×,=x+121×3.125×,=x+3.125;x+3.125≈3.38,x≈0.255,0.255×121=30.855;x=30时,x=×30≈0.248;x=31时,x=×31≈0.255;当x=31时,运算的结果是3.38.故答案为:31.6.解:小正方形的面积之和为30时,两正方形的面积差最小,则大正方形的面积越大,即EFGH的面积较大;故答案为:EFGH.7.解:依题意可知:两数字和为奇数,那么一定有一个偶数.偶质数是2.当b=2时,5a+2=2027,a=405不符合题意.当a=2时,10+b=2027,b=2017符合题意,a+b=2+2017=2019.故答案为:2019.8.解:连接AD,因△CDF和△BCD的高相等,所以FD:DB=3:7,所△AFD和△ABD的面积比也是3:7,即可把△AFD的面积看作是3份,△ABD的面积看作是7份,S△BCD=7,S△BDE=7所以CD=DE,S△ACD=S△ADE,S△ACD+S△BDE=S△ABD,S△ACD+S△BDE=7份,S△AFD+S△CDF+S△BDE=7份,3份+3+7=7份,则1份=2.5,S四边形AEDF=10份﹣7=10×2.5﹣7=25﹣7=18答:四边形AEDF的面积是18.故答案为:18.9.解:根据99的整除特性可知:20+16++20+17=99..a+b=8.故答案为:8.10.解:依题意可知:玫瑰与康乃馨和百合的枝数化连比为:10:15:3;购买一份比例的价格为:3×20+15×6+15×10=300;正好是1倍关系.答:购买玫瑰10枝,康乃馨15枝,百合3枝.11.解:2×1×4+3×12=8+3=11(平方厘米)答:阴影部分的面积是11平方厘米.故答案为:11.12.解:有答对一题,两题,三题,四题,五题,全错六种情况,答对三题是60分,四题是80分,五题是100分,她得60分或60分以上的概率是:=50%.答:她得60分或60分以上的概率是50%.故答案为:50%.13.解:48÷3=16,16﹣1=15,16+1=17,所以,a,b,c的乘积最大是:15×16×17=4080.故答案为:4080.14.解:沿DE折叠,所以AD=OD,同理可得BC=OC,则:OD=DC=OC,△OCD是等边三角形,所以∠DCO=60°,∠OCB=90°﹣60°=30°;由于是对折,所以CF平分∠OCB,∠BCF=30°÷2=15°∠BFC=180°﹣90°﹣15°=75°所以∠EFO=180°﹣75°×2=30°.故答案为:30.15.解:依题意可知:根据浓度是十字交叉法可知:浓度差的比等于溶液质量比即1:3=100:a,所以a=300克故答案为:300。
奥数题目六年级上册
奥数题目六年级上册一、分数乘法相关。
1. 计算:(3)/(5)×(10)/(9)- 解析:分数乘法,分子相乘的积做分子,分母相乘的积做分母。
即(3×10)/(5×9)=(30)/(45),约分后得到(2)/(3)。
2. 一桶油重(4)/(5)千克,用去了(1)/(3),用去了多少千克?- 解析:求一个数的几分之几是多少,用乘法。
所以用去的重量为(4)/(5)×(1)/(3)=(4×1)/(5×3)=(4)/(15)千克。
3. 一个长方形的长是(5)/(6)米,宽是长的(2)/(5),这个长方形的宽是多少米?- 解析:已知宽是长的(2)/(5),长为(5)/(6)米,那么宽为(5)/(6)×(2)/(5)=(5×2)/(6×5)=(1)/(3)米。
二、分数除法相关。
4. 计算:(3)/(4)÷(6)/(7)- 解析:分数除法,除以一个分数等于乘以它的倒数。
所以(3)/(4)÷(6)/(7)=(3)/(4)×(7)/(6)=(3×7)/(4×6)=(21)/(24),约分后为(7)/(8)。
5. 一个数的(3)/(5)是18,这个数是多少?- 解析:已知一个数的几分之几是多少,求这个数用除法。
这个数为18÷(3)/(5)=18×(5)/(3)= 30。
6. 修一条路,已经修了(2)/(3),还剩10千米没修,这条路全长多少千米?- 解析:把这条路的全长看作单位“1”,没修的占全长的1 - (2)/(3)=(1)/(3),已知没修的长度是10千米,所以全长为10÷(1)/(3)=10×3 = 30千米。
三、比的相关。
7. 化简比:12:18- 解析:化简比就是把比的前项和后项同时除以它们的最大公因数。
12和18的最大公因数是6,所以12:18=(12÷6):(18÷6)=2:3。
小学六年级上册数学奥数题及答案
小学六年级上册数学奥数题及答案1.小学六年级上册数学奥数题及答案1、甲乙两校共有22人参加竞赛,甲校参加人数的5分之1比乙校参加人数的4分之1少1人,甲乙两校各多少人参赛?解:设甲校有x人参加,则乙校有(22-x)人参加。
0.2x=(22-x)×0.25-10.2x=5.5-0.25x-10.45x=4.5x=1022-10=12(人)答:甲校有10人参加,乙校有12人参加。
2、甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款。
答案:取40%后,存款有9600×(1-40%)=5760(元)这时,甲有:(5760+120×2)÷2=3000(元)甲原来有:3000÷(1-40%)=5000(元),乙存款:9600-5000=4600(元)2.小学六年级上册数学奥数题及答案1、某种商品打九折出售,说明现在售价比原来降低了(D)。
A、90%B、9%C、1/9D、10%2、今年油菜产量比去年增产1/5,就是(C)。
A、今年油菜产量是去年的102%B、去年油菜产量比今年少20%C、今年油菜产量是去年的120%D、今年油菜产量是去年的100.2%3、男工人数的'25%等于女工人数的30%,那么男工人数和男工人数相比(A)A、男工人数多B、女工人数多C、一样多D、无法比较4、一种录音机,每台售价从220元降低到120元,降低了百分之几?正确的列式是(D)。
A、120÷220B、(220-120)÷120C、220÷120D、(220-120)÷2205、王力宏4月5日在银行存了活期储蓄2000元,月利率是0.12%,到6月5日,他可以得到税后利息是多少元?(税后利息为5%)正确的列式是(B)。
A、2000×0.12%×(1-5%)B、2000×0.12%×2C、2000×0.12%×2×(1-5%)D、2000+2000×0.12%×2×(1-5%)3.小学六年级上册数学奥数题及答案1、一份稿件,第一天打了全篇稿的7分之1第二天打了5分之2第二天比第一天多打了9页,这篇稿件有多少页?9除以(5分之2-7分之1)=9除以35分之9=35(页)答:这见稿件有35页.2、一块地,长和宽的比是8:5,长比宽多24米.这块地有多少平方米?设长是8份,则宽是5份,多了:3份,即是24米那么一份是:24/3=8米即长是:8*8=64米,宽是:8*5=40米面积是:64*40=2560平方米3、如果男同学的人数比女同学多25%那么女同学的人数比男同学少多少?女同学为单位1男同学为1+25%=125%女同学的人数比男同学少(125%-1)÷125%=20%4、饲养厂今年养猪1987头,比去年养猪头数的3倍少245头,今年比去年多养猪多少头?去年养猪:(1987+245)/3=744今年比去年多养猪:1987-744=12435、小伟和小英给希望工程捐款钱数的比是2:5.小英捐了35元,小伟捐了多少钱?设小伟捐了X元所以2:5=X:35得:X=14元小伟捐了14元4.小学六年级上册数学奥数题及答案1、某工厂生产一批玩具,完成任务的五分之三后,又增加了280件,这样还需要做的玩具比原来的多10%。
六年级上册奥数及答案
六年级上册奥数及答案【篇一:小学六年级奥数题及答案】t>工程问题1.甲乙两个水管单独开,注满一池水,分别需要20小时,16小时.丙水管单独开,排一池水要10小时,若水池没水,同时打开甲乙两水管,5小时后,再打开排水管丙,问水池注满还是要多少小时?解:1/20+1/16=9/80表示甲乙的工作效率1-45/80=35/80表示还要的进水量答:5小时后还要35小时就能将水池注满。
2.修一条水渠,单独修,甲队需要20天完成,乙队需要30天完成。
如果两队合作,由于彼此施工有影响,他们的工作效率就要降低,甲队的工作效率是原来的五分之四,乙队工作效率只有原来的十分之九。
现在计划16天修完这条水渠,且要求两队合作的天数尽可能少,那么两队要合作几天?解:由题意得,甲的工效为1/20,乙的工效为1/30,甲乙的合作工效为1/20*4/5+1/30*9/10=7/100,可知甲乙合作工效甲的工效乙的工效。
又因为,要求“两队合作的天数尽可能少”,所以应该让做的快的甲多做,16天内实在来不及的才应该让甲乙合作完成。
只有这样才能“两队合作的天数尽可能少”。
设合作时间为x天,则甲独做时间为(16-x)天1/20*(16-x)+7/100*x=1x=10答:甲乙最短合作10天3.一件工作,甲、乙合做需4小时完成,乙、丙合做需5小时完成。
现在先请甲、丙合做2小时后,余下的乙还需做6小时完成。
乙单独做完这件工作要多少小时?解:由题意知,1/4表示甲乙合作1小时的工作量,1/5表示乙丙合作1小时的工作量根据“甲、丙合做2小时后,余下的乙还需做6小时完成”可知甲做2小时、乙做6小时、丙做2小时一共的工作量为1。
所以1-9/10=1/10表示乙做6-4=2小时的工作量。
答:乙单独完成需要20小时。
4.一项工程,第一天甲做,第二天乙做,第三天甲做,第四天乙做,这样交替轮流做,那么恰好用整数天完工;如果第一天乙做,第二天甲做,第三天乙做,第四天甲做,这样交替轮流做,那么完工时间要比前一种多半天。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵。
已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树。
两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?
2. 有三块草地,面积分别是5,15,24亩。
草地上的草一样厚,而且长得一样快。
第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
3. 某工程,由甲、乙两队承包,2。
4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元。
在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
4. 一个圆柱形容器内放有一个长方形铁块。
现打开水龙头往容器中灌水。
3
分钟时水面恰好没过长方体的顶面。
再过18分钟水已灌满容器。
已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比。
5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售。
两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?
6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5。
经过2+1/3小时,A,B两池中注入的水之和恰好是一池。
这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?
7. 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校。
小明从家到学校全部步行需要多少时间?
8. 甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离。
乙车的速度是甲车速度的80%。
已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地。
最后乙车比甲车迟4分钟到C地。
那么乙车出发后几分钟时,甲车就超过乙车。
9. 甲、乙两辆清洁车执行东、西城间的公路清扫任务。
甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?
10. 今有重量为3吨的集装箱4个,重量为2。
5吨的集装箱5个,重量为1。
5吨的集装箱14个,重量为1吨的集装箱7个。
那么最少需要用多少辆载重量为4。
5吨的汽车可以一次全部运走集装箱?
11. 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?
12. 一辆大轿车与一辆小轿车都从甲地驶往乙地。
大轿车的速度是小轿车速度的80%。
已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地。
又知大轿车是上午10时从甲地出发的。
那么小轿车是在上午什么时候追上大轿车的。
13. 一部书稿,甲单独打字要14小时完成,,乙单独打字要20小时完成。
如果甲先打1小时,然后由乙接替甲打1小时,再由甲接替乙打1小时。
两人如此交替工作。
那么打完这部书稿时,甲乙两人共用多少小时?
14. 黄气球2元3个,花气球3元2个,学校共买了32个气球,其中花气球比黄气球少4个,学校买哪种气球用的钱多?
15. 一只帆船的速度是60米/分,船在水流速度为20米/分的河中,从上游的一个港口到下游的某一地,再返回到原地,共用3小时30分,这条船从上游港口到下游某地共走了多少米?
16. 甲粮仓装43吨面粉,乙粮仓装37吨面粉,如果把乙粮仓的面粉装入甲粮仓,那么甲粮仓装满后,乙粮仓里剩下的面粉占乙粮仓容量的1/2;如果把甲粮仓的面粉装入乙粮仓,那么乙粮仓装满后,甲粮仓里剩下的面粉占甲粮仓容量的1/3,每个粮仓各可以装面粉多少吨?
17. 甲数除以乙数,乙数除以丙数,商相等,余数都是2,甲、乙两数之和是478。
那么甲、乙丙三数之和是几?
18. 一辆车从甲地开往乙地。
如果把车速减少10%,那么要比原定时间迟1
小时到达,如果以原速行驶180千米,再把车速提高20%,那么可比原定时间早1小时到达。
甲、乙两地之间的距离是多少千米?
19. 某校参加军训队列表演比赛,组织一个方阵队伍。
如果每班60人,这个方阵至少要有4个班的同学参加,如果每班70人,这个方阵至少要有3个班的同学参加。
那么组成这个方阵的人数应为几人?
20. 甲、乙、丙三台车床加工方形和圆形的两种零件,已知甲车床每加工3个零件中有2个是圆形的;乙车床每加工4个零件中有3个是圆形的;丙车床每
加工5个零件中有4个是圆形的。
这天三台车床共加工了58个圆形零件,而加工的方形零件个数的比为4:3:3,那么这天三台车床共加工零件几个?
21. 圈金属线长30米,截取长度为A的金属线3根,长度为B的金属线5根,剩下的金属线如果再截取2根长度为B的金属线还差0。
4米,如果再截取2根长度为A的金属线则还差2米,长度为A的等于几米?
22. 某公司要往工地运送甲、乙两种建筑材料。
甲种建筑材料每件重700千克,共有120件,乙种建筑材料每件重900千克,共有80件,已知一辆汽车每次最多能运载4吨,那么5辆相同的汽车同时运送,至少要几次?
23. 从王力家到学校的路程比到体育馆的路程长1/4,一天王力在体育馆看完球赛后用17分钟的时间走到家,稍稍休息后,他又用了25分钟走到学校,其速度比从体育馆回来时每分钟慢15米,王力家到学校的距离是多少米?
24. 师徒两人合作完成一项工程,由于配合得好,师傅的工作效率比单独做时要提高1/10,徒弟的工作效率比单独做时提高1/5。
两人合作6天,完成全部工程的2/5,接着徒弟又单独做6天,这时这项工程还有13/30未完成,如果这项工程由师傅一人做,几天完成?
25. 六年级五个班的同学共植树100棵。
已知每个班植树的棵数都不相同,且按数量从多到少的排名恰好是一、二、三、四、五班。
又知一班植的棵数是二、三班植的棵数之和,二班植的棵数是四、五班植的棵数之和,那么三班最多植树多少棵?
26. 甲每小时跑13千米,乙每小时跑11千米,乙比甲多跑了20分钟,结果乙比甲多跑了2千米。
乙总共跑了多少千米?
27. 有高度相等的A,B两个圆柱形容器,内口半径分别为6厘米和8厘米。
容器A中装满水,容器B是空的,把容器A中的水全部倒入容器B中,测得容器B中的水深比容器高的7/8还低2厘米。
容器的高度是多少厘米?
28. 有104吨的货物,用载重为9吨的汽车运送。
已知汽车每次往返需要1
小时,实际上汽车每次多装了1吨,那么可提前几小时完成。
29. 师、徒二人第一天共加工零件225个,第二天采用了新工艺,师傅加工的零件比第一天增加了24%,徒弟增加了45%,两人共加工零件300个,第二天师傅加工了多少个零件?徒弟加工了几个零件?
30. 奋斗小学组织六年级同学到百花山进行野营拉练,行程每天增加2千米。
去时用了4天,回来时用了3天,问学校距离百花山多少千米?
31.一项工程甲单独做10天可以完成,乙单独做每天只能完成1/15。
甲先做两天后,乙也加入做这项工程。
问完成这项工程共需几天?
32.王师傅组装一台电脑,工效比原来提高了2%,那么时间比原来减少百分之几?
33.师徒三人合做一个工程,8天完成。
已知师傅独做所需的天数与两个徒弟合做所需的天数相等,师傅与乙徒弟合做所需的天数的4倍与甲徒弟独完成所需的天数相等,那么甲乙徒弟独做各需多少天?
34.打印一份稿件,若由甲单独打印,要2/3小时完成。
若由乙单独打印,要45分钟完成。
两人合打,多少小时可以打印完?
35.一项工程,甲、乙两队合做4天完成这项工程的2/3,甲独做8天完成,如果乙独做,需要多少天完成?
36.一项工程,甲、乙合做10小时可以完成,如果甲做5小时,乙做7小时,可以完成这项工程的,问乙独做多少小时可以完成?
37.一池水,甲,乙两管同时开,5小时灌满,乙,丙两管同时开,4小时灌满.现在先开乙管6小时,还需甲,丙两管同时开2小时才能灌满.乙单独开几小时可以灌满?
38.一份资料,甲录入4小时完成一半,乙录入2小时完成。
两人合作完成任务要多少小时?
39.一条水渠,甲独做40天完成,乙独做60天完成,甲、乙合作,因为中途甲休息了几天,所以30天才完成。
问甲休息了几天?
40.一件工作,甲乙合作6天完成;乙丙合作10天完成;甲丙合作3天,乙再做12天也可以完成,乙单独做几天可以完成?。