2012湖南卷高考数学理试题

合集下载

2012高考理科数学概率统计_(答案详解)2

2012高考理科数学概率统计_(答案详解)2

高考试题汇编(理)---概率统计解答题1、(全国卷大纲版)乒乓球比赛规则规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换。

每次发球,胜方得1分,负方得0分。

设在甲、乙的比赛中,每次发球,发球方得1分的概率为0.6,各次发球的胜负结果相互独立。

甲、乙的一局比赛中,甲先发球。

(1)求开始第4次发球时,甲、乙的比分为1比2的概率;(2)ξ表示开始第4次发球时乙的得分,求ξ的期望。

2、(全国卷新课标版)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售.如果当天卖不完,剩下的玫瑰花做垃圾处理.(1) 若花店某天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:n∈)的函数解析式;枝,N(2)以(ⅰ)若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;(ⅱ)若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.3、(北京卷)近年来,某市为了促进生活垃圾的风分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应分垃圾箱,为调查居民生活垃圾分类投放情况,(1)试估计厨余垃圾投放正确的概率; (2)试估计生活垃圾投放错误额概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为c b a ,,其中0a >, 600a b c ++=。

当数据c b a ,,的方差2s 最大时,写出c b a ,,的值(结论不要求证明),并求此时2s 的值。

(注:])()()[(1222212x x x x x x ns n -++-+-=,其中x 为数据n x x x ,,,21 的平均数) 4、(福建卷)受轿车在保修期内维修费等因素的影响,企业产生每辆轿车的利润与该轿车首次出现故障的时间有关,某轿车制造厂生产甲、乙两种品牌轿车,保修期均为2年,现从该将频率视为概率,解答下列问题:(1)从该厂生产的甲品牌轿车中随机抽取一辆,求首次出现故障发生在保修期内的概率; (2)若该厂生产的轿车均能售出,记住生产一辆甲品牌轿车的利润为1X ,生产一辆乙牌轿车的利润为2X ,分别求1X ,2X 的分布列;(3)该厂预计今后这两种品牌轿车销量相当,由于资金限制,只能生产其中一种品牌轿车,若从经济效益的角度考虑,你认为应该产生哪种品牌的轿车?说明理由。

2012高考湖南理科数学试题及答案(高清版)-推荐下载

2012高考湖南理科数学试题及答案(高清版)-推荐下载

D.若该大学某女生身高为 170 cm,则可断定其体重必为 58.79 kg
5.已知双曲线
A. x2 y2 1 20 5
C. x2 y2 1 80 20
C:
x2 a2
π
6.函数 f(x)=sinx-cos(x+ )的值域为( )
6
A.[-2,2]
C.[-1,1]

y2 b2
1的焦距为 10,点
样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为 y 0.85x 85.71,则
下列结论中不正确的是( ) A.y 与 x 具有正的线性相关关系
为( )
B.回归直线过样本点的中心 (x, y)
C.若该大学某女生身高增加 1 cm,则其体重约增加 0.85 kg
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术通关,1系电过,力管根保线据护敷生高设产中技工资术艺料0不高试仅中卷可资配以料置解试技决卷术吊要是顶求指层,机配对组置电在不气进规设行范备继高进电中行保资空护料载高试与中卷带资问负料题荷试2下卷2,高总而中体且资配可料置保试时障卷,各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并22工且22作尽22下可22都能22可地护以缩1关正小于常故管工障路作高高;中中对资资于料料继试试电卷卷保破连护坏接进范管行围口整,处核或理对者高定对中值某资,些料审异试核常卷与高弯校中扁对资度图料固纸试定,卷盒编工位写况置复进.杂行保设自护备动层与处防装理腐置,跨高尤接中其地资要线料避弯试免曲卷错半调误径试高标方中高案资等,料,编试要5写、卷求重电保技要气护术设设装交备备置底4高调、动。中试电作管资高气,线料中课并敷3试资件且、设卷料中拒管技试试调绝路术验卷试动敷中方技作设包案术,技含以来术线及避槽系免、统不管启必架动要等方高多案中项;资方对料式整试,套卷为启突解动然决过停高程机中中。语高因文中此电资,气料电课试力件卷高中电中管气资壁设料薄备试、进卷接行保口调护不试装严工置等作调问并试题且技,进术合行,理过要利关求用运电管行力线高保敷中护设资装技料置术试做。卷到线技准缆术确敷指灵设导活原。。则对对:于于在调差分试动线过保盒程护处中装,高置当中高不资中同料资电试料压卷试回技卷路术调交问试叉题技时,术,作是应为指采调发用试电金人机属员一隔,变板需压进要器行在组隔事在开前发处掌生理握内;图部同纸故一资障线料时槽、,内设需,备要强制进电造行回厂外路家部须出电同具源时高高切中中断资资习料料题试试电卷卷源试切,验除线报从缆告而敷与采设相用完关高毕技中,术资要资料进料试行,卷检并主查且要和了保检解护测现装处场置理设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

2012年高考理科数学湖南卷(含答案解析)

2012年高考理科数学湖南卷(含答案解析)

绝密★启用前2012年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)本试题卷包括选择题、填空题和解答题三部分,共6页.时量120分钟.满分150分. 一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设集合21,0,1,{}{|}M N x x x =-=≤,则M N = ( ) A .{0} B .{0,1} C .{-1,1} D .{-1,0,1}2.命题“若π4α=,则tan 1α=”的逆否命题是( )A .若π4α≠,则tan 1α≠B .若π4α=,则tan 1α≠C .若tan 1α≠,则π4α≠D .若tan 1α≠,则π4α=3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能...是 ( )A B C D4.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一 组样本数据(,)i i x y (1,2,,)i n =,用最小二乘法建立的回归方程为0.8585.71y x =-,则下 列结论中不正确...的是( )A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心(,)x yC .若该大学某女生身高增加1 cm ,则其体重约增加0.85 kgD .若该大学某女生身高为170 cm ,则可断定其体重必为58.79 kg5.已知双曲线2222:1x y C a b-=的焦距为10,点(2,1)P 在C 的渐近线上,则C 的方程为( )A .221205x y -=B .221520x y -=C .2218020x y -= D .2212080x y -= 6.函数π()sin cos()6f x x x =-+的值域为 ( )A .[]2,2- B.[ C .[]1,1- D.[227.在ABC △中,2,3AB AC ==,AB BC =1,则BC =( )ABC.D8.已知两条直线1:l y m =和28:(0)21l y m m =>+,1l 与函数2|log |y x =的图象从左至右相交于点A B ,,2l 与函数2|log |y x =的图象从左至右相交于点C D ,.记线段AC 和BD 在x轴上的投影长度分别为a ,b .当m 变化时,ba的最小值为 ( )A. B. C. D.二、填空题:本大题共8小题,考生作答7小题,每小题5分,共35分.把答案填在答题卡...中对应题号后的横线上.(一)选做题(请考生在第9,10,11三题中任选两题作答,如果全做,则按前两题记分)9.在直角坐标系xOy 中,已知曲线11,:12,x t C y t =+⎧⎨=-⎩(t 为参数)与曲线2sin :3cos x a C y θ,θ,=⎧⎨=⎩(θ为参数,0a >)有一个公共点在x 轴上,则a = . 10.不等式|21|2|1|0x x +-->的解集为 .11.如图2,过点P 的直线与圆⊙O 相交于A ,B 两点.若1,2,PA AB ==3PO =,则圆O 的半径等于 .12.已知复数2i)(3z =+(i 为虚数单位),则|z |= .13.6的二项展开式中的常数项为 .(用数字作答) 14.如果执行如图3所示的程序框图,输入1,3x n =-=,则输出的数S = . 15.函数()sin()f x x ωϕ=+的导函数()y f x '=的部分图象如图4所示,其中,P 为图象与y 轴的交点,,A C 为图象与x 轴的两个交点,B 为图象的最低点. (1)若π6ϕ=,点P的坐标为,则ω= ;(2)若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在ABC △内的概率 为 .16.设2(,2)n N n n =∈*≥N ,将N 个数12,,,N x x x 依次放入编号为1,2,,N 的N 个位置,得到排列012N P x x x =.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前2N 和后2N个位置,得到排列113124N N P x x x x x x -=,将此操作称为C 变换.将1P 分成两段,每段2N个数,并对每段作C 变换,得到2P ;当22i n -≤≤时,将i P 分成2i 段,每段2i N个数,并对每段作C 变换,得到1i P +.例如,当8N =时,215372648P x x x x x x x x =,此时7x 位于2P 中的第4个位置.(1)当16N =时,7x 位于2P 中的第 个位置;(2)当2(8)n N n =≥时,173x 位于4P 中的第 个位置.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购 物的100位顾客的相关数据,如下表所示.--------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------姓名________________ 准考证号_____________已知这100位顾客中一次购物量超过8件的顾客占55%.(Ⅰ)确定,x y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望; (Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...2.5分钟的概率. (注:将频率视为概率)18.(本小题满分12分)如图5,在四棱锥P ABCD -中,PA ⊥平面ABCD ,4,3,5,AB BC AD ===90,DAB ABC E ∠=∠=是CD 的中点.(Ⅰ)证明:CD ⊥平面PAE ;(Ⅱ)若直线PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P ABCD -的体积.19.(本小题满分12分)已知数列{}n a 的各项均为正数,记()A n =12n a a a +++,()B n =231n a a a ++++,()C n =342n a a a ++++,=1,2,n .(Ⅰ)若121,5a a ==,且对任意n ∈N*,三个数(),(),()A n B n C n 组成等差数列,求数列{}n a 的通项公式;(Ⅱ)证明:数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n ∈N*,三个 数(),(),()A n B n C n 组成公比为q 的等比数列.20.(本小题满分13分)某企业接到生产3 000台某产品的A ,B ,C 三种部件的订单,每台产品需要这三种部件 的数量分别为2,2,1(单位:件).已知每个工人每天可生产A 部件6 件,或B 部件3 件,或C 部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B 部件的人数与生产A 部件的人数成正比,比例系数为k (k 为正整数).(Ⅰ)设生产A 部件的人数为x ,分别写出完成A ,B ,C 三种部件生产需要的时间;(Ⅱ)假设这三种部件的生产同时开工,试确定正整数k 的值,使完成订单任务的时间最 短,并给出时间最短时具体的人数分组方案.21.(本小题满分13分)在直角坐标系xOy 中,曲线1C 上的点均在222:(5)9C x y -+=外,且对1C 上任意一点,M M 到直线2x =-的距离等于该点与圆2C 上点的距离的最小值.(Ⅰ)求曲线1C 的方程;(Ⅱ)设000(,)(3)P x y y ≠±为圆2C 外一点,过P 作圆2C 的两条切线,分别与曲线1C 相交 于点,A B 和,C D .证明:当P 在直线4x =-上运动时,四点,,,A B C D 的纵坐标之积为 定值.22.(本小题满分13分)已知函数()e axf x x =-,其中0a ≠.(Ⅰ)若对一切x ∈R ,()1f x ≥恒成立,求a 的取值集合;(Ⅱ)在函数()f x 的图象上取定两点112212(,()),(,())()A x f x B x f x x x <,记直线AB 的斜率为k .问:是否存在012(,)x x x ∈,使0()f x k '>成立?若存在,求0x 的取值范围;若不存在,请说明理由.2012年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)一、选择题CBDPE图5A1.【答案】B 【解析】{0,1}N =,{1,0,1}M =-,{0,1}M N ∴=.【提示】先求出{0,1}N =,再利用交集定义得出MN .【考点】集合的基本运算(交集) 2.【答案】C【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,所以“若π4α=,则t a n 1α=”的逆否命题是“若tan 1,α≠则π4α≠”.【提示】根据命题“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,即可求它的逆否命题. 【考点】四种命题及其之间的关系 3.【答案】D【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A ,B ,C ,都可能是该几何体的俯视图,D 不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.【提示】根据已知的平面图形的正视图和侧视图,即可求出它的俯视图. 【考点】平面图形的直观图与三视图 4.【答案】D【解析】由回归方程为0.85571ˆ8.x y-=知y 随x 的增大而增大,所以y 与x 具有正的线性相关关系,由最小二乘法建立的回归方程的过程知ˆ()ybx a bx y bx a y bx =+=+-=-,所以回归直线过样本点的中心(,)x y ,利用回归方程可以预测估计总体,所以D 不正确.【提示】根据两变量之间的回归方程,即可判断两者之间的关系. 【考点】线性回归分析 5.【答案】A【解析】设双曲线22221x a C yb -=:的半焦距为c ,则210c =,5c =, 又C 的渐近线为by x a=±,点P (2,1)在C 的渐近线上,12ba∴=⨯,即2a b =,又222c a b =+,a ∴=b =C ∴的方程为221205x y -=.【提示】根据给出的双曲线的焦距及其渐近线上一点,即可求出双曲线的标准方程.【考点】双曲线的标准方程 6.【答案】B【解析】π1π()sin cos sin sin 626f x x x x x x x ⎛⎫⎛⎫=-+=+- ⎪ ⎪⎝⎭⎝⎭, πsin [1,1]6x ⎛⎫-∈- ⎪⎝⎭,()f x ∴值域为[.【提示】根据给出的三角函数表达式,结合两角差的正弦即可求出其值域. 【考点】两角差的正弦,三角函数的值域 7.【答案】A【解析】由图知,||||cos(π)2||(cos )1AB BC AB BC B BC B =-=⨯⨯-=,1cos 2B BC∴=-,又由余弦定理知222cos 2AB BC AC B AB BC +-=,解得BC =.【提示】根据给出的三角形两边及数量积,结合数量积运算及余弦定理即可求解另一边. 【考点】平面向量的数量积运算,余弦定理8.【答案】B【解析】在同一坐标系中作出y m =,8(0)21y m m =>+,2|log |y x =图象如图, 由2|log |x m =,得12m x -=,22mx =,由28|log |21x m =+,得82132m x -+=,82142m x +=,依照题意得82122mm a --+=-,82122m mb +=-,8218218218212222222m m mm mm m m b a++++--+-===-,8141114312122222m m m m +=++-≥-=++,minb a ⎛⎫∴= ⎪⎝⎭【提示】根据给出的三个函数表达式,画出函数图象,结合图象与不等式即可判断b a最小值.【考点】函数图象的应用,基本不等式 二、填空题 9.【答案】32【解析】曲线1112x t C y t=+⎧⎨=-⎩:,直角坐标方程为32y x =-,与x 轴交点为3,02⎛⎫ ⎪⎝⎭;曲线2sin 3cos x a C y θθ=⎧⎨=⎩:,直角坐标方程为22219x y a +=,其与x 轴交点为(,0)a -,(,0)a , 由0a >,曲线1C 与曲线2C有一个公共点在x 轴上,知32a =. 【提示】根据给出的两条直线的参数方程与极坐标方程,分别转化成直角坐标方程,根据题意设交点求解.【考点】参数方程与普通方程的转化,极坐标方程与普通方程的转化10.【答案】14x x ⎧⎫>⎨⎬⎩⎭【解析】令()|21|2|1|f x x x =+--,则由13,()21()41,(1)23,(1)x f x x x x ⎧-<-⎪⎪⎪=--≤≤⎨⎪>⎪⎪⎩,得()0f x >的解集为14x x ⎧⎫>⎨⎬⎩⎭.【提示】设函数表达式,求其等价的分段函数,再分段求其大于零时的解集即可. 【考点】绝对值不等式 11.【解析】设PO 交圆O 于C ,D ,如图,设圆的半径为r ,由割线定理知PA PB PC PD =, 即1(12)(3)(3)r r ⨯+=-+,r ∴=.【提示】根据给出的线段长,由切割线定理PA PB PC PD =,即可求出圆的半径. 【考点】切割线定理 12.【答案】10【解析】22(3i)96i i 86i z =+=++=+,||10z ==. 【提示】根据给出的复数表达式,进行四则运算,即可求出其模. 【考点】复数代数形式的四则运算 13.【答案】160-【解析】6⎛ ⎝的展开式项公式是6631662(1)rr r r r r rr T C C x ---+⎛==- ⎝, 由题意知30r -=,3r =,所以二项展开式中的常数项为333462(1)160T C =-=-. 【提示】根据给出的二项式,即可求出其展开式的常数项.【考点】二项式定理 14.【答案】4-【解析】输入1x =-,3n =,执行过程如下:2i =,6233S =-++=-;1i =,3(1)115S =--++=;0i =,5(1)014S =-++=-,所以输出的是4-.【提示】根据程序框图的逻辑关系,并根据程序框图即可求出S 的值. 【考点】循环结构的程序框图 15.【答案】3π4【解析】①()cos()y f x x ωωϕ'==+,当π6ϕ=,点P的坐标为⎛ ⎝⎭时,πcos 6ω= 3ω∴=;②由图知2ππ22T AC ωω===,1π22ABC S AC ω==△, 设A ,B 的横坐标分别为a ,b ,设曲线段弧ABC 与x 轴所围成的区域的面积为S , 则()()sin()sin()2bbaaS f x dx f x a b ωϕωϕ'===+-+=⎰,由几何概型知该点在△ABC 内的概率为π2π24ABC S P S ===△. 【提示】根据给出的函数导数的图象判断ω的大小,由定积分求面积,并结合概率求解即可.【考点】函数图象的应用,定积分的几何意义,几何概型 16.【答案】643211n -⨯+【解析】①当16N =时,0123456P x x x x x x x =…,可设为(1,2,3,4,5,6,…,113571524616P x x x x x x x x x =……,即为(1,3,5……,2159133711152616P x x x x x x x x x x x =…,即(1,5,9,13,3,7,11,15,2,6,,16)…,7x 位于2P 中的第6个位置;②方法同①,归纳推理知173x 位于4P 中的第43211n -⨯+个位置.【提示】根据题意归纳推理求解即可. 【考点】归纳推理 三、解答题17.【答案】(Ⅰ)由已知,得251055y ++=,35x y +=,所以15x =,20y =,该超市所有顾客一次购物的结算时间组成一个总体,所以收集的100位顾客一次购物的结算时间可视为总体的一个容量随机样本,将频率视为概率,得:153(1)10020P X ===, 303( 1.5)10010P X ===,251(2)1004P X ===,X 的数学期望为()1 1.52 2.53 1.920104510E X =⨯+⨯+⨯+⨯+⨯=;(Ⅱ)记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,(1,2)i X i =为该顾客前面第i位顾客的结算时间,则121212()(11)(1 1.5)( 1.51)P A P X X P X X P X X ===+==+==且且且,由于顾客的结算相互独立,且1X ,2X 的分布列都与X 的分布列相同,所以121212()(1)1)(1)( 1.5)( 1.5)(1)P A P X P X P X P X PX P X ==⨯=+=⨯=+=⨯=(333333920202010102080=⨯+⨯+⨯=. 故该顾客结算前的等候时间不超过2.5分钟的概率为980. 【提示】根据给出的数据求分布列与期望,判断事件之间互斥关系,从而求得对立事件的概率即可.【考点】用样本数字特征估计总体数字特征,对立事件的概率18.【答案】(Ⅰ)如图,连接AC ,由4AB =,3BC =,90ABC ∠=,得5AC =, 又5AD =,E 是CD 的中点,所以CD AE ⊥,PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以PA CD ⊥,而PA ,AE 是平面PAE 内的两条相交直线, 所以CD ⊥平面PAE ;(Ⅱ)过点B 作BG CD ∥,分别与AE ,AD 相交于F ,G 连结PF , 由(Ⅰ)CD ⊥平面PAE 知,BG ⊥平面PAE ,于是BPF ∠为直线PB 与平面PAE 所成的角,且BG AE ⊥,由PA ⊥平面ABCD 知,PBA ∠为直线PB 与平面ABCD 所成的角,4AB =,2AG =,BG AF ⊥由题意,知PBA BPF ∠=∠,因为sin PA PBA PB ∠=,sin BFBPF PB∠=,所以PA BF =,由90DAB ABC ∠=∠=, 知,AD BC ∥,又BG CD ∥,所以四边形BCDG 是平行四边形,故3GD BC ==,于是2AG =,在Rt BAG △中,4AB =,2AG =,BG AF ⊥,所以BG =,2AB BF BG ===于是PA BF ==, 又梯形ABCD 的面积为1(53)4162S =⨯+⨯=,所以四棱锥P ABCD -的体积为111633V S PA =⨯⨯=⨯=【解析二】如图,以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设PA h =,则相关的各点坐标为:(0,0,0)A ,(4,0,0)B ,(4,3,0)C ,(0,5,0)D ,(2,4,0)E ,(0,0,)P h ;(Ⅰ)易知(4,2,0)CD =-,(2,4,0)AE =,(0,0,)AP h =,8800CD AE =-++=,0CD AP =,所以CD AE ⊥,CD AP ⊥,而AP ,AE 是平面PAE 内的两条相交直线,所以CD ⊥平面PAE ;(Ⅱ)由题设和(Ⅰ)知,CD ,AP 分别是平面PAE ,平面ABCD 的法向量,而PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,所以cos ,cos ,CD PB PA PB <>=<>,即||||||||C D P BP A P BC D P B P A P B =,由(Ⅰ)知,(4,2,0)CD =-,(0,0,)AP h=-由(4,0,)PB h =-,故2216516h hh++,解得5h =,又梯形ABCD 的面积为1(53)4162S =⨯+⨯=,所以四棱锥P ABCD -的体积为1112851633V S PA =⨯⨯=⨯=【提示】根据定理判定线面垂直;找出四棱锥的高求其体积. 【考点】直线与平面垂直的判定,四棱锥的体积19.【答案】(Ⅰ)对任意n *∈N ,三个数()A n ,()B n ,()C n 是等差数列,所以()()()()B n A n C n B n -=-,即1122n n a a a a ++-=-,亦即21214n n a a a a +--=-=,故数列{}n a 是首项为1,公差为4的等差数列,于是1(1)443n a n n =+-⨯=-; (Ⅱ)①必要性:若数列{}n a 是公比为q 的等比数列,则对任意n *∈N ,有1n n a a q +=, 由0n a >知,()A n ,()B n ,()C n 均大于0,于是231121212()()()n n n na a a q a a a B n q A n a a a a a a +++++++===++++++…………, 342231231231()()()n n n n a a a q a a a C n q B n a a a a a a ++++++++++===++++++…………, 即()()()()B nC n q A n B n ==, 所以三个数()A n ,()B n ,()C n 组成公比为q 的等比数列;②充分性:若对于任意n *∈N ,三个数()A n ,()B n ,()C n 组成公比为q 的等比数列, 则()()B n qA n =,()()C n qB n =,于是()()[()()]C n B n q B n A n -=-, 得2211()n n a a q a a ++-=-,即2121n n a qa a a ++-=-, 由1n =有(1)(1)B qA =,即21a qa =,从而210n n a qa ++-=, 因为0n a >,所以2211n n a a q a a ++==, 故数列{}n a 是首项为1a ,公比为q 的等比数列.综上所述,数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n *∈N ,三个数()A n ,()B n ,()C n 组成公比为q 的等比数列.【提示】根据给出的三个关系式,根据三者之间的关系结合等差、等比性质求解即可. 【考点】等差数列的通项公式,等比数列的性质20.【答案】(Ⅰ)设完成A ,B ,C 三种部件的生产任务需要的时间(单位:天)分别为1()T x ,2()T x ,3()T x 由题设有1230001000()6T x x x ⨯==,22000()T x kx=,31500()200(1)T x k x =-+,其中x ,kx ,200(1)k x -+均为1到200之间的正整数;(Ⅱ)完成订单任务的时间为{}123()max (),(),()f x T x T x T x =,其定义域为2000,1x x x k *⎧⎫<<∈⎨⎬+⎩⎭N , 易知,1()T x ,2()T x 为减函数,3()T x 为增函数,注意到212()()T x T x k=,于是:①当2k =时,12()()T x T x =,此时{}1310001500()max (),()max ,2003f x T x T x x x ⎧⎫==⎨⎬-⎩⎭, 由函数1()T x ,3()T x 的单调性知,当100015002003x x=-时()f x 取得最小值,解得4009x =,由于40044459<<,而1250(44)(44)11f T ==,3300(45)(45)13f T ==,(44)(45)f f <, 故当44x =时完成订单任务的时间最短,且最短时间为250(44)11f =;②当2k >时,12()()T x T x >,由于k 为正整数,故3k ≥,此时375()50T x x=-,{}1()max (),()x T x T x ϕ=易知()T x 为增函数,则{}{}1311000375()max (),()max (),()()max ,50f x T x T x T x T x x x x ϕ⎧⎫=≥==⎨⎬-⎩⎭,由函数1()T x ,()T x 的单调性知,当100037550x x =-时()x ϕ取得最小值,解得40011x =,由于400363711<<而1250250(36)(36)911T ϕ==>,375250(37)(37)1311T ϕ==>,此时完成订单任务的最短时间大于25011;③当2k <时,12()()T x T x <,由于k 为正整数,故1k =,此时{}232000750()max (),()max ,100f x T x T x x x ⎧⎫==⎨⎬-⎩⎭,由函数2()T x ,3()T x 的单调性知, 当2000750100x x =-时()f x 取得最小值,解得80011x =, 类似①的讨论,此时完成订单任务的最短时间为2509,大于25011.综上所述,当2k =时完成订单任务的时间最短,此时生产A ,B ,C 三种部件的人数分别为44,88,68.【提示】根据题意建立模型,判断单调性求最值即可.【考点】分段函数模型,函数单调性的判断,利用函数单调性求最值21.【答案】(Ⅰ)解法一:设M 的坐标为(,)x y,由已知得|2|3x +,易知圆2C 上的点位于直线2x =-的右侧,于是20x +>,5x =+,化简得曲线1C 的方程为220y x =;解法二:由题设知,曲线1C 上任意一点M 到圆心2C (5,0)的距离等于它到直线5x =-的距离,因此,曲线1C 是以(5,0)为焦点,直线5x =-为准线的抛物线,故其方程为220y x =;(Ⅱ)当点P 在直线4x =-上运动时,P 的坐标为0(4,)y -,又03y ≠±,则过P 且与圆2C 相切得直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为0(4)y y k x -=+,即040kx y y k -++=,于是3=,整理得2200721890k y k y ++-=①,设过P 所作的两条切线PA ,PC 的斜率分别为1k ,2k ,则1y ,2y 是方程①的两个实根,故001218724y y k k +=-=-②,由10124020k x y y k y x -++=⎧⎨=⎩,得21012020(4)0k y y y k -++=③,设四点A ,B ,C ,D 的纵坐标分别为1y ,2y ,3y ,4y ,则1k ,2k 是方程③的两个实根,所以0112120(4)y k y y k +=④,同理可得0234220(4)y k y y k +=⑤,于是由②,④,⑤三式,得0102123412400(4)(4)y k y k y y y y k k ++= 2012012124004()16y k k y k k k k ⎡⎤+++⎣⎦=2201212400166400y y k k k k ⎡⎤-+⎣⎦==.所以,当P 在直线4x =-上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6400. 【提示】根据给出的圆的方程及两曲线之间的关系,联立方程由韦达定理即可求解. 【考点】曲线与方程,直线与曲线的位置关系 22.【答案】(Ⅰ){1}(Ⅱ)0x 的取值范围为212211e e ln,()ax ax x a a x x ⎡⎤-⎢⎥-⎣⎦【解析】(Ⅰ)若0a <,则对一切0x >,()f x e 1ax x =-<,这与题设矛盾,又0a ≠,故0a >,而()e 1ax f x a '=-,令()0f x '=,得11lnx aa =,当11ln x a a<时,()0f x '<,()f x 单调递减;当11ln x a a >时,()0f x '>,()f x 单调递增.故当11ln x a a=时,()f x 取最小值11111ln ln f a a a a a⎛⎫=- ⎪⎝⎭,于是对一切x ∈R ,()1f x ≥恒成立,当且仅当111ln 1a a a-≥,令()ln g t t t t =-,则()ln g t t '=-,当01t <<时,()0g t '>,()g t 单调递增;当1t >时,()0g t '<,()g t 单调递减.故当1t =时,()g t 取最大值(1)1g =,因此,当且仅当11a=即1a =时,a 的取值集合为{1}; (Ⅱ)由题意知,21212121()()e e 1ax ax f x f x k x x x x --==---,令2121e e ()()e ax ax axx f x k a x x ϕ-'=-=--,则121()12121e ()[e ()1]ax a x x x a x x x x ϕ-=-----,212()21221e ()[e ()1]ax a x x x a x x x x ϕ-=----, 令()e 1tF t t =--,则()e 1tF t '=-.当0t <时,()0F t '<,()F t 单调递减;当0t >时,()0F t '>,()F t 单调递增. 故当0t =,()(0)0F t F >=,即e 10t t -->, 从而21()21e()10a x x a x x ---->,12()12e()10a x x a x x ---->,又121e 0ax x x >-,221e 0ax x x >-, 所以1()0x ϕ<,2()0x ϕ>,因为函数()y x ϕ=在区间12[,]x x 上的图象是连续不断的一条曲线,所以存在012(,)x x x ∈使0()0x ϕ=,2()e 0axx a ϕ'=>,()x ϕ单调递增,故这样的c 是唯一的,且21211e e ln ()ax ax c a a x x -=-,故当且仅当212211e e ln ,()ax ax x x a a x x ⎡⎤-∈⎢⎥-⎣⎦时,0()f x k '>.综上所述,存在012(,)x x x ∈使0()f x k '>成立,且0x 的取值范围为212211e e ln ,()ax ax x a a x x ⎡⎤-⎢⎥-⎣⎦. 【提示】给出函数解析式,利用导数判断函数单调性求参数的取值范围;利用导数判断段单调性并求不等式.【考点】利用导数判断或求函数的单调区间,利用导数解决不等式问题。

2012年湖南省高考数学试卷(理科)答案与解析

2012年湖南省高考数学试卷(理科)答案与解析

2012年湖南省高考数学试卷(理科)参考答案与试题解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2012•湖南)设集合M={﹣1,0,1},N={x|x2≤x},则M∩N=()A.{0} B.{0,1} C.{﹣1,1} D.{﹣1,0,1}考点:交集及其运算.专题:计算题.分析:求出集合N,然后直接求解M∩N即可.解答:解:因为N={x|x2≤x}={x|0≤x≤1},M={﹣1,0,1},所以M∩N={0,1}.故选B.点评:本题考查集合的基本运算,考查计算能力,送分题.2.(5分)(2012•湖南)命题“若α=,则tanα=1”的逆否命题是()A.若α≠,则tanα≠1 B.若α=,则tanα≠1C.若tanα≠1,则α≠D.若tanα≠1,则α=考点:四种命题间的逆否关系.专题:简易逻辑.分析:原命题为:若a,则b.逆否命题为:若非b,则非a.解答:解:命题:“若α=,则tanα=1”的逆否命题为:若tanα≠1,则α≠.故选C.点评:考查四种命题的相互转化,掌握四种命题的基本格式,本题是一个基础题.3.(5分)(2012•湖南)某几何体的正视图和侧视图均如图所示,则该几何体的俯视图不可能是()A.B.C.D.考点:简单空间图形的三视图.专题:作图题.分析:由图可知,此几何体为组合体,对照选项分别判断组合体的结构,能吻合的排除,不吻合的为正确选项解答:解:依题意,此几何体为组合体,若上下两个几何体均为圆柱,则俯视图为A 若上边的几何体为正四棱柱,下边几何体为圆柱,则俯视图为B;若俯视图为C,则正视图中应有虚线,故该几何体的俯视图不可能是C若上边的几何体为底面为等腰直角三角形的直三棱柱,下面的几何体为正四棱柱时,俯视图为D;故选C点评:本题主要考查了简单几何体的构成和简单几何体的三视图,由组合体的三视图,判断组合体的构成的方法,空间想象能力,属基础题4.(5分)(2012•湖南)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(x i,y i)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x﹣85.71,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg考点:回归分析的初步应用.专题:阅读型.分析:根据回归方程为=0.85x﹣85.71,0.85>0,可知A,B,C均正确,对于D回归方程只能进行预测,但不可断定.解答:解:对于A,0.85>0,所以y与x具有正的线性相关关系,故正确;对于B,回归直线过样本点的中心(,),故正确;对于C,∵回归方程为=0.85x﹣85.71,∴该大学某女生身高增加1cm,则其体重约增加0.85kg,故正确;对于D,x=170cm时,=0.85×170﹣85.71=58.79,但这是预测值,不可断定其体重为58.79kg,故不正确故选D.点评:本题考查线性回归方程,考查学生对线性回归方程的理解,属于中档题.5.(5分)(2012•湖南)已知双曲线C:的焦距为10,点P(2,1)在C的渐近线上,则C的方程为()A.B.C.D.考点:双曲线的标准方程.专题:计算题;圆锥曲线的定义、性质与方程.分析:利用双曲线C:的焦距为10,点P(2,1)在C的渐近线上,建立方程组,求出a,b的值,即可求得双曲线的方程.解答:解:∵双曲线C:的焦距为10,点P(2,1)在C的渐近线上,∴a2+b2=25,=1,∴b=,a=2∴双曲线的方程为.故选:A.点评:本题考查双曲线的标准方程,考查双曲线的几何性质,考查学生的计算能力,属于基础题.6.(5分)(2012•湖南)函数f(x)=sinx﹣cos(x+)的值域为()A.[﹣2,2]B.[﹣,]C.[﹣1,1]D.[﹣,]考点:三角函数中的恒等变换应用;正弦函数的定义域和值域.专题:三角函数的图像与性质.分析:通过两角和的余弦函数化简函数的表达式,利用两角差的正弦函数化为一个角的一个三角函数的形式,求出函数的值域.解答:解:函数f(x)=sinx﹣cos(x+)=sinx﹣+=﹣+=sin(x﹣)∈.故选B.点评:本题考查三角函数中的恒等变换应用,正弦函数的定义域和值域,考查计算能力.7.(5分)(2012•湖南)在△ABC中,AB=2,AC=3,•=1,则BC=()A.B.C.2D.考点:解三角形;向量在几何中的应用.专题:计算题;压轴题.分析:设∠B=θ,由•=1,利用平面向量的数量积运算法则列出关系式,表示出cosθ,再利用余弦定理表示出cosθ,两者相等列出关于BC的方程,求出方程的解即可得到BC的长.解答:解:根据题意画出相应的图形,如图所示:∵•=1,设∠B=θ,AB=2,∴2•BC•cos(π﹣θ)=1,即cosθ=﹣,又根据余弦定理得:cosθ==,∴﹣=,即BC2=3,则BC=.故选A点评:此题属于解三角形的题型,涉及的知识有:平面向量的数量积运算,余弦定理,以及诱导公式的运用,熟练掌握定理及法则是解本题的关键.8.(5分)(2012•湖南)已知两条直线l1:y=m和l2:y=(m>0),l1与函数y=|log2x|的图象从左至右相交于点A,B,l2与函数y=|log2x|的图象从左至右相交于点C,D.记线段AC和BD在X轴上的投影长度分别为a,b,当m变化时,的最小值为()A.16B.8C.8D.4考点:基本不等式在最值问题中的应用;对数函数图象与性质的综合应用;平行投影及平行投影作图法.专题:计算题;综合题;压轴题.分析:设A,B,C,D各点的横坐标分别为x A,x B,x C,x D,依题意可求得为x A,x B,x C,x D的值,a=|x A﹣x C|,b=|x B﹣x D|,利用基本不等式可求得当m变化时,的最小值.解答:解:设A,B,C,D各点的横坐标分别为x A,x B,x C,x D,则﹣log2x A=m,log2x B=m;﹣log2x C=,log2x D=;∴x A=2﹣m,x B=2m,x C=,x D=.∴a=|x A﹣x C|,b=|x B﹣x D|,∴==||=2m•=.又m>0,∴m+=(2m+1)+﹣≥2﹣=(当且仅当m=时取“=”)∴≥=8.故选B.点评:本题考查对数函数图象与性质的综合应用,理解平行投影的概念,得到=是关键,考查转化与数形结合的思想,考查分析与运算能力,属于难题.二、填空题(共8小题,考生作答7小题,每小题0分,满分35分,9,10,11三题任选两题作答;12~16必做题)9.(2012•湖南)在直角坐标系xoy 中,已知曲线C1:(t为参数)与曲线C2:(θ为参数,a>0 )有一个公共点在X轴上,则a等于.考点:椭圆的参数方程;直线的参数方程.专题:计算题.分析:化参数方程为普通方程,利用两曲线有一个公共点在x轴上,可得方程,即可求得结论.解答:解:曲线C1:(t为参数)化为普通方程:2x+y﹣3=0,令y=0,可得x=曲线C2:(θ为参数,a>0 )化为普通方程:∵两曲线有一个公共点在x轴上,∴∴a=故答案为:点评:本题考查参数方程化为普通方程,考查曲线的交点,属于基础题.10.(5分)(2012•湖南)不等式|2x+1|﹣2|x﹣1|>0的解集为{x|x>}.考点:绝对值不等式的解法.专题:计算题;压轴题.分析:由不等式|2x+1|﹣2|x﹣1|>0⇔不等式|2x+1|>2|x﹣1|⇔(2x+1)2>4(x﹣1)2即可求得答案.解答:解:∵|2x+1|﹣2|x﹣1|>0,∴|2x+1|>2|x﹣1|≥0,∴(2x+1)2>4(x﹣1)2,∴x>.∴不等式|2x+1|﹣2|x﹣1|>0的解集为{x|x>}.故答案为:{x|x>}.点评:本题考查绝对值不等式的解法,将不等式|2x+1|﹣2|x﹣1|>0转化为(2x+1)2>4(x ﹣1)2是关键,着重考查转化思想与运算能力,属于中档题.11.(5分)(2012•湖南)如图,过点P的直线与圆⊙O相交于A,B两点.若PA=1,AB=2,PO=3,则圆O的半径等于.考点:与圆有关的比例线段.专题:计算题.分析:设出圆的半径,根据切割线定理推出PA•PB=PC•PD,代入求出半径即可.解答:解:设圆的半径为r,且PO与圆交于C,D两点∵PAB、PCD是圆O的割线,∴PA•PB=PC•PD,∵PA=1,PB=PA+AB=3;PC=3﹣r,PD=3+r,∴1×3=(3﹣r)×(3+r),r2=6∴r=,故答案为:.点评:本题主要考查切割线定理等知识点,熟练地运用性质进行计算是解此题的关键.12.(5分)(2012•湖南)已知复数z=(3+i)2(i为虚数单位),则|z|=10.考点:复数求模;复数代数形式的乘除运算.专题:计算题.分析:利用复数的模的平方等于复数的模的乘积,直接计算即可.解答:解:复数z=(3+i)2(i为虚数单位),则|z|=|3+i||3+i|==10.故答案为:10.点评:本题考查复数模的求法,复数代数形式的乘除运算,考查计算能力.13.(5分)(2012•湖南)()6的二项展开式中的常数项为﹣160(用数字作答).考点:二项式定理.专题:计算题.分析:根据题意,利用二项展开式的通项公式求出展开式的通项,令x的指数为0,求出r,将r的值代入通项求出展开式的常数项.解答:解:()6展开式的通项为T r+1=C6r•(2)6﹣r•(﹣)r=(﹣1)r•C6r•26﹣r•x3﹣r,令3﹣r=0,可得r=3,其常数项为T4=(﹣1)r•C6r•26﹣r=﹣160;故答案为﹣160.点评:本题主要考查了二项展开式的通项的应用,解题的关键是熟练掌握二项式定理,正确写出其通项,属于基础试题.14.(5分)(2012•湖南)如果执行如图所示的程序框图,输入x=﹣1,n=3,则输出的数S=﹣4.考点:循环结构.专题:计算题.分析:列出循环过程中S与K的数值,不满足判断框的条件即可结束循环.解答:解:判断前x=﹣1,n=3,i=2,第1次判断后循环,S=﹣6+2+1=﹣3,i=1,第2次判断后S=5,i=0,第3次判断后S=﹣4,i=﹣1,第4次判断后﹣1≥0,不满足判断框的条件,结束循环,输出结果:﹣4.故答案为:﹣4.点评:本题考查循环框图的应用,注意判断框的条件的应用,考查计算能力.15.(5分)(2012•湖南)函数f(x)=sin(ωx+φ)的导函数y=f′(x)的部分图象如图所示,其中,P为图象与y轴的交点,A,C为图象与x轴的两个交点,B为图象的最低点.(1)若φ=,点P的坐标为(0,),则ω=3;(2)若在曲线段与x轴所围成的区域内随机取一点,则该点在△ABC内的概率为.考点:导数的运算;几何概型;由y=Asin(ωx+φ)的部分图象确定其解析式.专题:计算题;压轴题.分析:(1)先利用导数的运算性质,求函数f(x)的导函数f′(x),再将φ=,f′(0)=代入导函数解析式,即可解得ω的值;(2)先利用定积分的几何意义,求曲线段与x轴所围成的区域面积,再求三角形ABC的面积,最后利用几何概型概率计算公式求面积之比即可得所求概率.解答:解:(1)∵函数f(x)=sin (ωx+φ)的导函数y=f′(x)=ωcos(ωx+φ),其中φ=,过点P(0,),∴ωcos=∴ω=3.故答案为:3.(2)∵f′(x)=ωcos(ωx+φ),∴曲线段与x轴所围成的区域面积为[﹣f′(x)]dx=﹣f(x)=﹣sin﹣(﹣sin)=2,三角形ABC的面积为=,∴在曲线段与x轴所围成的区域内随机取一点,则该点在△ABC内的概率为P==.故答案为:.点评:本题主要考查了f(x)=Asin (ωx+φ)型函数的图象和性质,导数运算及导函数与原函数的关系,定积分的几何意义,几何概型概率的计算方法,属基础题.16.(5分)(2012•湖南)设N=2n(n∈N*,n≥2),将N个数x1,x2,…,x N依次放入编号为1,2,…,N的N个位置,得到排列P0=x1x2…x N.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前和后个位置,得到排列P1=x1x3…x N﹣1x2x4…x N,将此操作称为C变换,将P1分成两段,每段个数,并对每段作C变换,得到P2,当2≤i≤n ﹣2时,将P i分成2i段,每段个数,并对每段作C变换,得到P i+1,例如,当N=8时,P2=x1x5x3x7x2x6x4x8,此时x7位于P2中的第4个位置.(1)当N=16时,x7位于P2中的第6个位置;(2)当N=2n(n≥8)时,x173位于P4中的第3×2n﹣4+11个位置.考点:演绎推理的基本方法;进行简单的演绎推理.专题:压轴题.分析:(1)由题意,可按照C变换的定义把N=16时P2列举出,从中查出x7的位置即可;(2)根据C变换的定义及归纳(1)中的规律可得出P4中所有的数字分为16段,每段的数字序号组成以16为公差的等差数列,且一到十六段的首项的序号分别为1,3,5,7,9,11,13,15,2,4,6,8,10,12,14,16,再173=16×10+13,即可确定出x173位于P4中的位置.解答:解:(1)当N=16时,P0=x1x2…x16.由C变换的定义可得P1=x1x3…x15x2x4…x16,又将P1分成两段,每段个数,并对每段作C变换,得到P2,故P2=x1x5x9x13x3x7x11x15x2x6x10x14x4x8x12x16,由此知x7位于P2中的第6个位置;(2)考察C变换的定义及(1)计算可发现,第一次C变换后,所有的数分为两段,每段的序号组成公差为2的等差数列,且第一段序号以1为首项,第二段序号以2为首项;第二次C变换后,所有的数据分为四段,每段的数字序号组成以4公差的等差数列,且第一段的序号以1为首项,第二段序号以3为首项,第三段序号以2为首项,第四段序号以4为首项,依此类推可得出P4中所有的数字分为16段,每段的数字序号组成以16为公差的等差数列,且一到十六段的首项的序号分别为1,9,5,13,…,由于173=16×10+13,故x173位于以13为首项的那一段的第11个数,由于N=2n(n≥8)故每段的数字有2n﹣4个,以13为首项的是第四段,故x173位于第3×2n﹣4+11=3×2n﹣4+11个位置.故答案为3×2n﹣4+11点评:本题考查演绎推理及归纳推理,解题的关键是理解新定义,找出其规律,本题是探究型题,运算量大,极易出错,解题进要严谨认真,避免马虎出错三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(12分)(2012•湖南)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次性购物量1至4件 5 至8件9至12件13至16件17件及以上顾客数(人)x 30 25 y 10结算时间(分钟/人) 1 1.5 2 2.5 3已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)考点:离散型随机变量的期望与方差;相互独立事件的概率乘法公式;离散型随机变量及其分布列.专题:应用题.分析:(Ⅰ)由已知得25+y+10=55,x+30=45,故可确定,y的值,将频率视为概率,故可求相应的概率,由此可得X的分布列与数学期望;(Ⅱ)记A:一位顾客一次购物的结算时间不超过2.5分钟,X i(i=1,2)为该顾客前面第i位顾客的结算时间,则P(A)=P((X1=1且X2=1)+P((X1=1且X2=1.5)+P((X1=1.5且X2=1),由于各顾客的结算相互独立,且X i(i=1,2)的分布列都与X的分布列相同,故可得结论.解答:解:(Ⅰ)由已知得25+y+10=55,x+30=45,所以x=15,y=20;将频率视为概率可得P(X=1)==0.15;P(X=1.5)==0.3;P(X=2)==0.25;P(X=2.5)==0.2;P(X=3)==0.1X的分布列X 1 1.5 2 2.5 3P 0.15 0.3 0.25 0.2 0.1X的数学期望为E(X)=1×0.15+1.5×0.3+2×0.25+2.5×0.2+3×0.1=1.9(Ⅱ)记A:一位顾客一次购物的结算时间不超过2.5分钟,X i(i=1,2)为该顾客前面第i位顾客的结算时间,则P(A)=P((X1=1且X2=1)+P((X1=1且X2=1.5)+P((X1=1.5且X2=1)由于各顾客的结算相互独立,且X i(i=1,2)的分布列都与X的分布列相同,所以P(A)=0.15×0.15+0.15×0.3+0.3×0.15=0.1125故该顾客结算前的等候时间不超过2.5分钟的概率为0.1125.点评:本题考查学生的阅读能力,考查概率的计算,考查离散型随机变量的期望,属于中档题.18.(12分)(2012•湖南)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中点.(Ⅰ)证明:CD⊥平面PAE;(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P﹣ABCD 的体积.考点:用空间向量求直线与平面的夹角;直线与平面垂直的判定;直线与平面所成的角.专题:计算题;证明题.分析:解法一:(Ⅰ)先根据条件得到CD⊥AE;再结合PA⊥平面ABCD即可得到结论的证明;(Ⅱ)先根据直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等得到PA=BF,进而得到四边形BCDG是平行四边形,在下底面内求出BF的长以及下底面的面积,最后代入体积计算公式即可.法二:(Ⅰ)先建立空间直角坐标系,求出各点的坐标,进而得到=0以及•=0.即可证明结论;(Ⅱ)先根据直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等得到PA 的长,再求出下底面面积,最后代入体积计算公式即可.解答:解法一:(Ⅰ)连接AC,由AB=4,BC=3,∠ABC=90°,得AC=5,又AD=5,E是CD得中点,所以CD⊥AE,PA⊥平面ABCD,CD⊂平面ABCD.所以PA⊥CD,而PA,AE是平面PAE内的两条相交直线,所以CD⊥平面PAE.(Ⅱ)过点B作BG∥CD,分别与AE,AD相交于点F,G,连接PF,由CD⊥平面PAE知,BG⊥平面PAE,于是∠BPF为直线PB与平面PAE所成的角,且BG⊥AE.由PA⊥平面ABCD知,∠PBA即为直线PB与平面ABCD所成的角.由题意∠PBA=∠BPF,因为sin∠PBA=,sin∠BPF=,所以PA=BF.由∠DAB=∠ABC=90°知,AD∥BC,又BG∥CD.所以四边形BCDG是平行四边形,故GD=BC=3,于是AG=2.在RT△BAG中,AB=4,AG=2,BG⊥AF,所以BG==2,BF===.于是PA=BF=.又梯形ABCD的面积为S=×(5+3)×4=16.所以四棱锥P﹣ABCD的体积为V=×S×PA=×16×=.解法二:以A为坐标原点,AB,AD,AP所在直线分别为X轴,Y轴,Z轴建立空间直角坐标系,设PA=h,则A(0,0,0),B(4,0,0),C(4,3,0),D(0,5,0),E(2,4,0),P(0,0,h).(Ⅰ)=(﹣4,2,0),=(2,4,0),=(0,0,h).因为=﹣8+8+0=0,•=0.所以CD⊥AE,CD⊥AP,而AP,AE是平面PAE内的两条相交直线,所以CD⊥平面PAE.(Ⅱ)由题设和第一问知,,分别是平面PAE,平面ABCD的法向量,而PB与平面PAE所成的角和PB与平面ABCD所成的角相等,所以:|cos<,>|=|cos<,>|,即||=||.由第一问知=(﹣4,2,0),=((0,0,﹣h),又=(4,0,﹣h).故||=||.解得h=.又梯形ABCD的面积为S=×(5+3)×4=16.所以四棱锥P﹣ABCD的体积为V=×S×PA=×16×=.点评:本题是中档题,利用空间直角坐标系通过向量的计算,考查直线与平面所成角的求法,直线与直线的垂直的证明方法,考查空间想象能力,计算能力,是常考题型.19.(12分)(2012•湖南)已知数列{a n}的各项均为正数,记A(n)=a1+a2+…+a n,B(n)=a2+a3+…+a n+1,C(n)=a3+a4+…+a n+2,n=1,2,….(1)若a1=1,a2=5,且对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,求数列{a n}的通项公式.(2)证明:数列{a n}是公比为q的等比数列的充分必要条件是:对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列.考点:等差数列的性质;充要条件;等比关系的确定.专题:计算题;证明题.分析:(1)由于对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,可得到B(n)﹣A(n)=C(n)﹣B(n),即a n+1﹣a1=a n+2﹣a2,整理即可得数列{a n}是首项为1,公差为4的等差数列,从而可得a n.(2)必要性:由数列{a n}是公比为q的等比数列,可证得即==q,即必要性成立;充分性:若对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列,可得a n+2﹣qa n+1=a2﹣qa1.由n=1时,B(1)=qA(1),即a2=qa1,从而a n+2﹣qa n+1=0,即充分性成立,于是结论得证.解答:解:(1)∵对任意n∈N*,三个数A(n),B(n),C(n)组成等差数列,∴B(n)﹣A(n)=C(n)﹣B(n),即a n+1﹣a1=a n+2﹣a2,亦即a n+2﹣a n+1=a2﹣a1=4.故数列{a n}是首项为1,公差为4的等差数列,于是a n=1+(n﹣1)×4=4n﹣3.(2)证明:(必要性):若数列{a n}是公比为q的等比数列,对任意n∈N*,有a n+1=a n q.由a n>0知,A(n),B(n),C(n)均大于0,于是===q,===q,即==q,∴三个数A(n),B(n),C(n)组成公比为q的等比数列;(充分性):若对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列,则B(n)=qA(n),C(n)=qB(n),于是C(n)﹣B(n)=q[B(n)﹣A(n)],即a n+2﹣a2=q(a n+1﹣a1),亦即a n+2﹣qa n+1=a2﹣qa1.由n=1时,B(1)=qA(1),即a2=qa1,从而a n+2﹣qa n+1=0.∵a n>0,∴==q.故数列{a n}是首项为a1,公比为q的等比数列.综上所述,数列{a n}是公比为q的等比数列的充分必要条件是:对任意n∈N*,三个数A(n),B(n),C(n)组成公比为q的等比数列.点评:本题考查等差数列的性质,考查充要条件的证明,考查等比关系的确定,突出化归思想,逻辑思维与综合运算能力的考查,属于难题.20.(13分)(2012•湖南)某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为K(K为正整数).(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;(2)假设这三种部件的生产同时开工,试确定正整数K的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.考点:函数模型的选择与应用.专题:综合题.分析:(1)设完成A,B,C三种部件生产需要的时间分别为T1(x),T2(x),T3(x),则可得,,;(2)完成订单任务的时间为f(x)=max{T1(x),T2(x),T3(x)},其定义域为,可得T1(x),T2(x)为减函数,T3(x)为增函数,T2(x)=T1(x),分类讨论:①当k=2时,T2(x)=T1(x),f(x)=max{T1(x),T3(x)}=max{},利用基本不等式求出完成订单任务的最短时间;②当k≥3时,T2(x)<T1(x),记,为增函数,φ(x)=max{T1(x),T(x)}f(x)=max{T1(x),T3(x)}≥max{T1(x),T(x)}=max{},利用基本不等式求出完成订单任务的最短时间;③当k<2时,k=1,f(x)=max{T2(x),T3(x)}=max{},利用基本不等式求出完成订单任务的最短时间,从而问题得解.解答:解:(1)设写出完成A,B,C三种部件生产需要的时间分别为T1(x),T2(x),T3(x)∴,,其中x,kx,200﹣(1+k)x均为1到200之间的正整数(2)完成订单任务的时间为f(x)=max{T1(x),T2(x),T3(x)},其定义域为∴T1(x),T2(x)为减函数,T3(x)为增函数,T2(x)=T1(x)①当k=2时,T2(x)=T1(x),f(x)=max{T1(x),T3(x)}=max{}∵T1(x),T3(x)为增函数,∴当时,f(x)取得最小值,此时x=∵,,,f(44)<f(45)∴x=44时,完成订单任务的时间最短,时间最短为②当k≥3时,T2(x)<T1(x),记,为增函数,φ(x)=max{T1(x),T(x)}f(x)=max{T1(x),T3(x)}≥max{T1(x),T(x)}=max{}∵T1(x)为减函数,T(x)为增函数,∴当时,φ(x)取得最小值,此时x=∵,,∴完成订单任务的时间大于③当k<2时,k=1,f(x)=max{T2(x),T3(x)}=max{}∵T2(x)为减函数,T3(x)为增函数,∴当时,φ(x)取得最小值,此时x=类似①的讨论,此时完成订单任务的时间为,大于综上所述,当k=2时,完成订单任务的时间最短,此时,生产A ,B ,C 三种部件的人数分别为44,88,68. 点评:本题考查函数模型的构建,考查函数的单调性,考查分类讨论的数学思想,解题的关键是确定分类标准,有难度. 21.(13分)(2012•湖南)在直角坐标系xoy 中,曲线C 1上的点均在C 2:(x ﹣5)2+y 2=9外,且对C 1上任意一点M ,M 到直线x=﹣2的距离等于该点与圆C 2上点的距离的最小值. (Ⅰ)求曲线C 1的方程 (Ⅱ)设P (x 0,y 0)(y 0≠±3)为圆C 2外一点,过P 作圆C 2的两条切线,分别于曲线C 1相交于点A ,B 和C ,D .证明:当P 在直线x=﹣4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值.考点:直线与圆锥曲线的综合问题;轨迹方程. 专题:综合题;压轴题. 分析:(Ⅰ)设M 的坐标为(x ,y ),根据对C 1上任意一点M ,M 到直线x=﹣2的距离等于该点与圆C 2上点的距离的最小值,可得|x+2|=且圆C 2上的点位于直线x=﹣2的右侧,从而可得曲线C 1的方程;(Ⅱ)当点P 在直线x=﹣4上运动时,P 的坐标为(﹣4,y 0),设切线方程为kx ﹣y+y 0+4k=0,利用直线与圆相切可得,从而可得过P 所作的两条切线PA ,PC 的斜率k 1,k 2是方程的两个实根,设四点A ,B ,C ,D 的纵坐标分别为y 1,y 2,y 3,y 4,从而可得;同理可得,由此可得当P 在直线x=﹣4上运动时,四点A ,B ,C ,D的纵坐标之积为定值为6400.解答:(Ⅰ)解:设M 的坐标为(x ,y ),由已知得|x+2|=且圆C 2上的点位于直线x=﹣2的右侧∴=x+5化简得曲线C 1的方程为y 2=20x(Ⅱ)证明:当点P 在直线x=﹣4上运动时,P 的坐标为(﹣4,y 0),∵y 0≠±3,∴过P 且与圆C 2相切的直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为y ﹣y 0=k (x+4),即kx ﹣y+y 0+4k=0, ∴,整理得①设过P 所作的两条切线PA ,PC 的斜率分别为k 1,k 2,则k 1,k 2是方程①的两个实根 ∴②由,消元可得③设四点A ,B ,C ,D 的纵坐标分别为y 1,y 2,y 3,y 4, ∴y 1,y 2是方程③的两个实根 ∴④同理可得⑤由①②④⑤可得==6400∴当P 在直线x=﹣4上运动时,四点A ,B ,C ,D 的纵坐标之积为定值为6400. 点评: 本题考查轨迹方程,考查直线与圆相切,考查韦达定理的运用,解题的关键是切线与抛物线联立,属于中档题. 22.(13分)(2012•湖南)已知函数f (x )=e ax ﹣x ,其中a ≠0. (1)若对一切x ∈R ,f (x )≥1恒成立,求a 的取值集合.(2)在函数f (x )的图象上取定两点A (x 1,f (x 1)),B (x 2,f (x 2)(x 1<x 2),记直线AB 的斜率为K ,问:是否存在x 0∈(x 1,x 2),使f ′(x 0)>k 成立?若存在,求x 0的取值范围;若不存在,请说明理由.考点: 导数在最大值、最小值问题中的应用;函数恒成立问题. 专题: 压轴题. 分析:(1)先确定a >0,再求导函数,确定函数的单调性,可得时,f (x )取最小值故对一切x ∈R ,f (x )≥1恒成立,则,构建新函数g (t )=t ﹣tlnt ,则g ′(t )=﹣lnt ,确定函数的单调性,求出函数的最大值,由此即可求得a 的取值集合;(2)由题意知,,构建新函数φ(x)=f′(x)﹣k=,则,,构建函数F(t)=e t﹣t﹣1,从而可证明φ(x1)<0,φ(x2)>0,由此即可得到存在x0∈(x1,x2),使f′(x0)>k成立.解答:解:(1)若a<0,则对一切x>0,函数f(x)=e ax﹣x<1,这与题设矛盾,∵a≠0,∴a>0∵f′(x)=ae ax﹣1,令f′(x)=0,可得令f′(x)<0,可得,函数单调减;令f′(x)>0,可得,函数单调增,∴时,f(x)取最小值∴对一切x∈R,f(x)≥1恒成立,则①令g(t)=t﹣tlnt,则g′(t)=﹣lnt当0<t<1时,g′(t)>0,g(t)单调递增;当t>1时,g′(t)<0,g(t)单调递减∴t=1时,g(t)取最大值g(1)=1∴当且仅当=1,即a=1时,①成立综上所述,a的取值集合为{1};(2)由题意知,令φ(x)=f′(x)﹣k=,则令F(t)=e t﹣t﹣1,则F′(t)=e t﹣1当t<0时,F′(t)<0,函数单调减;当t>0时,F′(t)>0,函数单调增;∴t≠0时,F(t)>F(0)=0,即e t﹣t﹣1>0∴,∵>0,∴φ(x1)<0,φ(x2)>0∴存在c∈(x1,x2),φ(c)=0∵φ(x)单调递增,故这样的c是唯一的,且当且仅当x∈(,x2)时,f′(x)>k综上所述,存在x0∈(x1,x2),使f′(x0)>k成立,且x0的取值范围为(,x2)点评:本题考查导数知识的运用,考查函数的单调性与极值,考查构建新函数确定函数值的符号,从而使问题得解.。

2012年-2014高考数学真题分类汇编 集合

2012年-2014高考数学真题分类汇编 集合

集合与常用逻辑用语2012年1.(2012湖南卷文)设集合M={-1,0,1},N={x |x 2=x },则M∩N=( ) A.{-1,0,1} B.{0,1} C.{1} D.{0}2.(2012湖南卷理)命题“若α=4π,则tan α=1”的逆否命题是( ) A.若α≠4π,则tan α≠1 B. 若α=4π,则tan α≠1C. 若tan α≠1,则α≠4πD. 若tan α≠1,则α=4π3.(2012年天津卷文)设x ∈R ,则“x >12”是“2x 2+x -1>0”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件4.(2012年北京卷理)已知集合A={x ∈R|3x +2>0} B={x ∈R|(x +1)(x -3)>0} 则A∩B=( ) A .(-∞,-1) B.(-1,-23) C .(-23,3) D . (3,+∞) 5.(2012年福建卷理)下列命题中,真命题是( )A .0,00≤∈∃x eR x B .22,x R x x >∈∀ C .0=+b a 的充要条件是1-=baD .1,1>>b a 是1>ab 的充分条件6.(2012年广东卷理)设集合U {1,23,4,5,6}=,,M {1,2,4}=则M C U = ( ) A .U B .{1,3,5} C .{3,5,6} D .{2,4,6}(2012年上海卷文)2、若集合{}210A x x =->,{}1B x x =<,则A B ⋂=7.(2012年安徽文)(2)设集合A={3123|≤-≤-x x },集合B 为函数)1lg(-=x y 的定义域,则A ⋂B=( ) A.(1,2) B. [1,2] C. [ 1,2) D.(1,2 ] 8. (2012年安徽文)命题“存在实数x ,使x > 1”的否定是( )(A ) 对任意实数x , 都有x > 1 (B )不存在实数x ,使x ≤ 1 (C ) 对任意实数x , 都有x ≤ 1 (D )存在实数x ,使x ≤ 19.(2012年山东卷理)2 已知全集={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA )B 为( ) A {1,2,4} B {2,3,4} C {0,2,4} D {0,2,3,4} 10.(2012年山东卷文)(5)设命题p :函数sin 2y x =的最小正周期为2π;命题q :函数cos y x =的图象关于直线2x π=对称.则下列判断正确的是( )(A)p 为真 (B)q ⌝为假 (C)p q ∧为假 (D)p q ∨为真11.(2012年浙江卷理)1.设集合A ={x |1<x <4},B ={x |x 2-2x -3≤0},则A ∩(C R B )=( )A .(1,4)B .(3,4)C .(1,3)D .(1,2) 12.(2012年天津卷文)集合{}|25A x R x =∈-≤中最小整数位 .13.(2012年天津卷理)(11)已知集合={||+2|<3}A x R x ∈,集合={|()(2)<0}B x R x m x ∈--,且=(1,)A B n -,则=m ,=n .14.(2012年湖北卷理)2 命题“∃x 0∈C R Q , 30x ∈Q ”的否定是( )A .∃x 0∉C R Q ,0x ∈Q B. ∃x 0∈C R Q ,0x ∉Q C. ∀x 0∉C R Q , 0x ∈Q D.∀x 0∈C R Q ,0x ∉Q15.(2012年湖北文)已知集合A{x| 2x -3x +2=0,x ∈R } , B={x|0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( )A 1B 2C 3D 416.(2012年湖北文)4.命题“存在一个无理数,它的平方是有理数”的否定是( ) A.任意一个有理数,它的平方是有理数 B.任意一个无理数,它的平方不是有理数 C.存在一个有理数,它的平方是有理数 D.存在一个无理数,它的平方不是有理数17.(2012年江苏卷)已知集合{124}A =,,,{246}B =,,,则A B = . 18.(2012江西卷文)若全集U={x ∈R|x 2≤4} A={x ∈R||x+1|≤1}的补集CuA 为( ) A |x ∈R |0<x <2| B |x ∈R |0≤x <2| C |x ∈R |0<x≤2| D |x ∈R |0≤x≤2| 19.(2012年四川卷文)1、设集合{,}A a b =,{,,}B b c d =,则A B =( )A 、{}bB 、{,,}b c dC 、{,,}a c dD 、{,,,}a b c d 20.(2012年重庆卷文)1.命题“若p 则q ”的逆命题是( ) A. 若q 则p B. 若﹃p 则﹃q C. 若﹃q 则﹃p D. 若p 则﹃q 21.(2012年陕西卷理)1. 集合{|lg 0}M x x =>,2{|4}N x x =≤,则M N =( ) (A ) (1,2) (B ) [1,2) (C ) (1,2] (D ) [1,2]22.(2012年全国新课标文)1、已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅23.(2012年上海卷理)2.若集合}012|{>+=x x A ,}2|1||{<-=x x B ,则=B A 。

2012年湖南高考理科数学试卷及详细答案(精美word版)

2012年湖南高考理科数学试卷及详细答案(精美word版)

2012年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合}1,0,1{-=M ,}{2x x x N ≤=,则=N MA .}0{B .}1,0{C .}1,1{-D .}1,0,1{- 2.命题“若4πα=,则1tan =α”的逆否命题是A .若4πα≠,则1tan ≠α B .若4πα=,则1tan ≠αC .若1tan ≠α,则4πα≠D .若1tan ≠α,则4πα=3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能...是A B C D4.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据),(i i y x ),,2,1(n i =,用最小二乘法建立的回归方程为71.8585.0ˆ-=x y ,则下列结论中不正确...的是A .y 与x 具有正的线性相关关系B .回归直线过样本点的中心),(y xC .若该大学某女生身高增加1cm ,则其体重约增加85.0kgD .若该大学某女生身高为170cm ,则可断定其体重比为79.58kg5.已知双曲线1:2222=-by a x C 的焦距为10 ,点)1,2(P 在C 的渐近线上,则C 的方程为A .152022=-y x B .120522=-y x C .1208022=-y x D .1802022=-y x6.函数)6cos(sin )(π+-=x x x f 的值域为A .]2,2[-B .]3,3[-C .]1,1[-D .]23,23[-7.在ABC ∆中,2=AB ,3=AC ,1=⋅BC AB ,则=BCA .3B .7C .22D .23 8.已知两条直线m y l =:1和)0(128:2>+=m m y l ,1l 与函数x y 2log =的图像从左至右相交于点B A ,,2l 与函数x y 2log =的图像从左至右相交于点DC ,.记线段AC 和BD 在x 轴上的投影长度分别为b a ,.当m 变化时,ba的最小值为 A .162 B .82 C .348 D .344二、填空题: 本大题共8小题,考生作答7小题,每小题5分 ,共35分,把答案填在答题卡...中对应题号后的横线上.(一)选做题(请考生在第9,10,11三题中任选两题作答,如果全做,则按前两题记分) 9. 在直角坐标系xOy 中,已知曲线⎩⎨⎧-=+=t y t x C 21,1:1(t 为参数)与曲线⎩⎨⎧==θθcos 3,sin :2y a x C (θ为参数,0>a )有一个公共点在x 轴上,则=a .10.不等式01212>--+x x 的解集为 .11.如图2,过点P 的直线与⊙O 相交于B A ,两点.若1=PA ,2=AB ,3=PO ,则⊙O 的半径等于 .(二)必做题(12~16题)12.已知复数2)3(i z +=(i 为虚数单位),则=z . 13.6)12(xx -的二项展开式中的常数项为 .(用数字作答)14.如果执行如图3所示的程序框图,输入3,1=-=n x ,则输出的数=S .15.函数)sin()(ϕω+=x x f 的导函数)(x f y '=的部分图象如图4所示,其中,P 为图象与y 轴的交点,C A ,为图象与x 轴的两个交点,B 为图象的最低点.(1)若6πϕ=,点P 的坐标为)233,0(,则=ω ; (2)若在曲线段ABC 与x 轴所围成的区域内随机取一点,则该点在ABC ∆内的概率为 . 16.设*2(,)nN n N n =∈≥2,将N 个数12,,,N x x x 依次放入编号为1,2,,N 的N 个位置,得到排列012N P x x x =.将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前2N 和后2N 个位置,得到排列113124N NP x x x x x x -=,将此操作称为C 变换.将1P 分成两段,每段2N个数,并对每段作C 变换,得到2P ;当22i n ≤≤-时,将i P 分成2i段,每段2i N 个数,并对每段作C 变换,得到1i P +.例如,当8N =时,215372648P x x x x x x x x =,此时7x 位于2P 中的第4个位置. (1)当16N =时,7x 位于2P 中的第 个位置; (2)当2()nN n =≥8时,173x 位于4P 中的第 个位置.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量 1至4件5至8件 9至12件 13至16件 17件及以上顾客数(人) x30 25 y10 结算时间(分钟/人)11.522.53已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定,x y 的值,并求顾客一次购物的结算时间X 的分布列与数学期望;(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过...2.5分钟的概率.(注:将频率视为概率)18.(本小题满分12分)如图5,在四棱锥P ABCD -中,PA ⊥平面A B C D ,4AB =,3BC =,5AD =,90DAB ABC ∠=∠=︒,E 是CD 的中点.(Ⅰ)证明:CD ⊥平面PAE ;(Ⅱ)若直线PB 与平面PAE 所成的角和PB 与平面ABCD 所成的角相等,求四棱锥P ABCD -的体积.19.(本小题满分12分)已知数列{}n a 的各项均为正数,记12()n A n a a a =+++,231()n B n a a a +=+++,342()n C n a a a +=+++,1,2,.n =(Ⅰ)若121,5a a ==,且对任意*n N ∈,三个数(),(),()A n B n C n 组成等差数列,求数列{}n a 的通项公式.(Ⅱ)证明:数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意*n N ∈,三个数(),(),()A n B n C n 组成公比为q 的等比数列.20.(本小题满分13分)某企业接到生产3000台某产品的A ,B ,C 三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A 部件6件,或B 部件3件,或C 部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B 部件的人数与生产A 部件的人数成正比,比例系数为k (k 为正整数).(Ⅰ)设生产A 部件的人数为x ,分别写出完成A ,B ,C 三种部件生产需要的时间;(Ⅱ)假设这三种部件的生产同时开工,试确定正整数k 的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.21.(本小题满分13分)在直角坐标系xOy 中,曲线1C 上的点均在圆222:(5)9C x y -+=外,且对1C 上任意一点M ,M 到直线2x =-的距离等于该点与圆2C 上点的距离的最小值. (Ⅰ)求曲线1C 的方程;(Ⅱ)设000(,)(3)P x y y ≠±为圆2C 外一点,过P 作圆2C 的两条切线,分别与曲线1C 相交于点,A B 和,C D .证明:当P 在直线4x =-上运动时,四点,A B ,,C D 的纵坐标之积为定值.22.(本小题满分13分)已知函数()axf x e x =-,其中0a ≠.(Ⅰ)若对一切x R ∈,()1f x ≥恒成立,求a 的取值集合.(Ⅱ)在函数()f x 的图像上取定两点112212(,()),(,())()A x f x B x f x x x <,记直线AB 的斜率为k .问:是否存在012(,)x x x ∈,使()f x k '>成立?若存在,求0x 的取值范围;若不存在,请说明理由.2012年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)答案一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】B 【解析】{}0,1N = M={-1,0,1} ∴M ∩N={0,1}.【点评】本题考查了集合的基本运算,较简单,易得分. 先求出{}0,1N =,再利用交集定义得出M ∩N. 2.【答案】C【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,所以 “若α=4π,则tan α=1”的逆否命题是 “若tan α≠1,则α≠4π”. 【点评】本题考查了“若p ,则q ”形式的命题的逆命题、否命题与逆否命题,考查分析问题的能力. 3.【答案】D【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.【点评】本题主要考查空间几何体的三视图,考查空间想象能力.是近年高考中的热点题型. 4.【答案】D【解析】【解析】由回归方程为y =0.85x-85.71知y 随x 的增大而增大,所以y 与x 具有正的线性相关关系,由最小二乘法建立的回归方程得过程知ˆ()y bx a bx y bx a y bx =+=+-=-,所以回归直线过样本点的中心(x ,y ),利用回归方程可以预测估计总体,所以D 不正确.【点评】本题组要考查两个变量间的相关性、最小二乘法及正相关、负相关的概念,并且是找不正确的答案,易错. 5.【答案】A【解析】设双曲线C :22x a -22y b=1的半焦距为c ,则210,5c c ==.又C 的渐近线为b y x a =±,点P (2,1)在C 的渐近线上,12ba∴=,即2a b =.又222c a b =+,25,5a b ∴==,∴C 的方程为220x -25y =1.【点评】本题考查双曲线的方程、双曲线的渐近线方程等基础知识,考查了数形结合的思想和基本运算能力,是近年来常考题型. 6.【答案】B【解析】f (x )=sinx-cos(x+6π)31sin cos sin 3sin()226x x x x π=-+=-,[]sin()1,16x π-∈-,()f x ∴值域为[-3,3].【点评】利用三角恒等变换把()f x 化成sin()A x ωϕ+的形式,利用[]sin()1,1x ωϕ+∈-,求得()f x 的值域.7.【答案】A【解析】由下图知AB BC = cos()2(cos )1AB BC B BC B π-=⨯⨯-=.1cos 2B BC∴=-.又由余弦定理知222cos 2AB BC AC B AB BC +-=⋅,解得3BC =.【点评】本题考查平面向量的数量积运算、余弦定理等知识.考查运算能力,考查数形结合思想、等价转化思想等数学思想方法.需要注意,AB BC 的夹角为B ∠的外角.8.【答案】B【解析】在同一坐标系中作出y=m ,y=821m +(m >0),2log y x =图像如下图,由2log x = m ,得122,2mmx x -==,2log x = 821m +,得821821342,2m m x x +-+==.依照题意得8218218218212222,22,22m m mmmm m m b a b a++--+--+-=-=-=-821821222m m mm +++==.8141114312122222m m m m +=++-≥-=++,min ()82b a ∴=.ABC【点评】在同一坐标系中作出y=m ,y=821m +(m >0),2log y x =图像,结合图像可解得.二 、填空题: 本大题共8小题,考生作答7小题,每小题5分 ,共35分,把答案填在答题卡中对应题号后的横线上.(一)选做题(请考生在第9、10、 11三题中任选两题作答,如果全做,则按前两题记分 ) 9. 【答案】32【解析】曲线1C :1,12x t y t=+⎧⎨=-⎩直角坐标方程为32y x =-,与x 轴交点为3(,0)2;曲线2C :sin ,3cos x a y θθ=⎧⎨=⎩直角坐标方程为22219x y a +=,其与x 轴交点为(,0),(,0)a a -, 由0a >,曲线1C 与曲线2C 有一个公共点在X 轴上,知32a =. 【点评】本题考查直线的参数方程、椭圆的参数方程,考查等价转化的思想方法等.曲线1C 与曲线2C 的参数方程分别等价转化为直角坐标方程,找出与x 轴交点,即可求得. 10.【答案】14x x ⎧⎫>⎨⎬⎩⎭【解析】令()2121f x x x =+--,则由()f x 13,()2141,(1)23,(1)x x x x ⎧-<-⎪⎪⎪=--≤≤⎨⎪>⎪⎪⎩得()f x 0>的解集为14x x ⎧⎫>⎨⎬⎩⎭.【点评】绝对值不等式解法的关键步骤是去绝对值,转化为代数不等式(组).11.【答案】6【解析】设PO 交圆O 于C ,D ,如图,设圆的半径为R ,由割线定理知,1(12)(3-)(3), 6.PA PB PC PD r r r ⋅=⋅⨯+=+∴=即x821y m =+2log y x=y m=1OA B CD【点评】本题考查切割线定理,考查数形结合思想,由切割线定理知PA PB PC PD ⋅=⋅,从而求得圆的半径.(二)必做题(12~16题) 12【答案】10【解析】2(3)z i =+=29686i i i ++=+,228610z =+=.【点评】本题考查复数的运算、复数的模.把复数化成标准的(,)a bi a b R +∈形式,利用22z a b =+求得.13.【答案】-160 【解析】( 2x -1x )6的展开式项公式是6631661C (2)()C 2(1)r r r r r r rr T x x x---+=-=-.由题意知30,3r r -==,所以二项展开式中的常数项为33346C 2(1)160T =-=-.【点评】本题主要考察二项式定理,写出二项展开式的通项公式是解决这类问题的常规办法. 14.【答案】4-【解析】输入1x =-,n =3,,执行过程如下:2:6233i S ==-++=-;1:3(1)115i S ==--++=;0:5(1)014i S ==-++=-,所以输出的是4-.【点评】本题考查算法流程图,要明白循环结构中的内容,一般解法是逐步执行,一步步将执行结果写出,特别是程序框图的执行次数不能出错.15.【答案】(1)3;(2)4π【解析】(1)()y f x '=cos()x ωωϕ=+,当6πϕ=,点P 的坐标为(0,332)时 33cos,362πωω=∴=; (2)由图知222T AC ππωω===,122ABCS AC πω=⋅=,设,A B 的横坐标分别为,a b . ABPOC D设曲线段ABC与x 轴所围成的区域的面积为S则()()sin()sin()2bb aaS f x dx f x a b ωϕωϕ'===+-+=⎰,由几何概型知该点在△ABC 内的概率为224ABCSP Sππ===. 【点评】本题考查三角函数的图像与性质、几何概型等,(1)利用点P 在图像上求ω, (2)几何概型,求出三角形面积及曲边形面积,代入公式即得.16.【答案】(1)6;(2)43211n -⨯+【解析】(1)当N=16时,012345616P x x x x x x x =,可设为(1,2,3,4,5,6,,16),113571524616P x x x x x x x x x =,即为(1,3,5,7,9,2,4,6,8,,16),2159133711152616P x x x x x x x x x x x =,即(1,5,9,13,3,7,11,15,2,6,,16), x 7位于P 2中的第6个位置,;(2)方法同(1),归纳推理知x 173位于P 4中的第43211n -⨯+个位置.【点评】本题考查在新环境下的创新意识,考查运算能力,考查创造性解决问题的能力. 需要在学习中培养自己动脑的习惯,才可顺利解决此类问题.三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)【解析】(1)由已知,得251055,35,y x y ++=+=所以15,20.x y ==该超市所有顾客一次购物的结算时间组成一个总体,所以收集的100位顾客一次购物的结算时间可视为总体的一个容量随机样本,将频率视为概率得153303251(1),( 1.5),(2),10020100101004p X p X p X ========= 201101( 2.5),(3).100510010p X p X ====== X 的分布为X11.522.53P32031014 15110X 的数学期望为33111()11.522.53 1.920104510E X =⨯+⨯+⨯+⨯+⨯=. (Ⅱ)记A 为事件“该顾客结算前的等候时间不超过2.5分钟”,(1,2)i X i =为该顾客前面第i 位顾客的结算时间,则121212()(11)(1 1.5)( 1.51)P A P X X P X X P X X ===+==+==且且且.由于顾客的结算相互独立,且12,X X 的分布列都与X 的分布列相同,所以121212()(1)1)(1)( 1.5)( 1.5)(1)P A P X P X P X P X P X P X ==⨯=+=⨯=+=⨯=( 333333920202010102080=⨯+⨯+⨯=. 故该顾客结算前的等候时间不超过2.5分钟的概率为980. 【点评】本题考查概率统计的基础知识,考查分布列及数学期望的计算,考查运算能力、分析问题能力.第一问中根据统计表和100位顾客中的一次购物量超过8件的顾客占55%知251010055%,35,y x y ++=⨯+=从而解得,x y ,计算每一个变量对应的概率,从而求得分布列和期望;第二问,通过设事件,判断事件之间互斥关系,从而求得该顾客结算前的等候时间不超过...2.5分钟的概率. 18.(本小题满分12分) 【解析】解法1(Ⅰ如图(1)),连接AC ,由AB=4,3BC =,90 5.ABC AC ∠==,得5,AD =又E是CD的中点,所以.CD AE ⊥,,PA ABCD CD ABCD ⊥⊂平面平面所以.PA CD ⊥而,PA AE 是平面PAE 内的两条相交直线,所以CD ⊥平面PAE. (Ⅱ)过点B作,,,,.BG CD AE AD F G PF //分别与相交于连接由(Ⅰ)CD ⊥平面PAE 知,BG⊥平面PAE.于是BPF ∠为直线PB与平面PAE 所成的角,且BG AE ⊥.由PA ABCD ⊥平面知,PBA ∠为直线PB 与平面ABCD 所成的角.4,2,,AB AG BG AF ==⊥由题意,知,PBA BPF ∠=∠因为sin ,sin ,PA BF PBA BPF PB PB∠=∠=所以.PA BF = 由90//,//,DAB ABC AD BC BG CD ∠=∠=知,又所以四边形BCDG 是平行四边形,故3.GD BC ==于是 2.AG =在Rt ΔBAG 中,4,2,,AB AG BG AF ==⊥所以222168525,.525AB BG AB AG BF BG =+====于是85.5PA BF ==1185128516.33515V S PA =⨯⨯=⨯⨯=解法2:如图(2),以A 为坐标原点,,,AB AD AP 所在直线分别为x y z 轴,轴,轴建立空间直角坐标系.设,PA h =则相关的各点坐标为:(4,0,0),(4,0,0),(4,3,0),(0,5,0),(2,4,0),(0,0,).A B C D E P h(Ⅰ)易知(4,2,0),(2,4,0),(0,0,).CD AE AP h =-==因为8800,0,CD AE CD AP ⋅=-++=⋅=所以,.CD AE CD AP ⊥⊥而,AP AE 是平面PAE 内的两条相交直线,所以.CD PAE ⊥平面(Ⅱ)由题设和(Ⅰ)知,,CD AP 分别是PAE 平面,ABCD 平面的法向量,而PB 与PAE 平面所成的角和PB 与ABCD 平面所成的角相等,所以cos ,cos ,.CD PB PA PB CD PB PA PB CD PBPA PB⋅⋅<>=<>=⋅⋅,即由(Ⅰ)知,(4,2,0),(0,0,),CD AP h =-=-由(4,0,),PB h =-故222160000.162516h h hh-++++=⋅+⋅+解得855h =.118512851633515V S PA =⨯⨯=⨯⨯=. 【点评】本题考查空间线面垂直关系的证明,考查空间角的应用,及几何体体积计算.第一问只要证明PA CD ⊥即可,第二问算出梯形的面积和棱锥的高,由13V S PA =⨯⨯算得体积,或者建立空间直角坐标系,求得高几体积. 19.(本小题满分12分) 【解析】解(1)对任意N n *∈,三个数(),(),()A n B n C n 是等差数列,所以 ()()()(),B n A n C n B n -=- 即112,n n a a a ++-=亦即2121 4.n n a a a a +--=-=故数列{}n a 是首项为1,公差为4的等差数列.于是1(1)44 3.n a n n =+-⨯=- (Ⅱ)(1)必要性:若数列{}n a 是公比为q的等比数列,则对任意N n *∈,有1.n nq a a -=由0n a >知,(),(),()A n B n C n 均大于0,于是12)2311212(......(),()......n n n nq a a a a a a B n q A n a a a a a a +++++++===++++++ 231)342231231(......(),()......n n n n q a a a a a a C n q B n a a a a a a ++++++++++===++++++即()()B n A n =()()C n B n =q ,所以三个数(),(),()A n B n C n 组成公比为q 的等比数列. (2)充分性:若对于任意N n *∈,三个数(),(),()A n B n C n 组成公比为q 的等比数列, 则()(),()B n q A n C n q B n==, 于是[]()()()(),C n B n q B n A n -=-得2211(),n n a a q a a ++-=-即 212.n n a qa a a ++-=-由1n =有(1)(1),B qA =即21a qa =,从而210n n a qa ++-=. 因为0n a >,所以2211n n a a q a a ++==,故数列{}n a 是首项为1a ,公比为q 的等比数列,综上所述,数列{}n a 是公比为q 的等比数列的充分必要条件是:对任意n ∈N ﹡,三个数(),(),()A n B n C n 组成公比为q 的等比数列.【点评】本题考查等差数列、等比数列的定义、性质及充要条件的证明.第一问由等差数列定义可得;第二问要从充分性、必要性两方面来证明,利用等比数列的定义及性质易得证.20.(本小题满分13分)[来#源:中教%&*网~] 【解析】 解:(Ⅰ)设完成A,B,C 三种部件的生产任务需要的时间(单位:天)分别为123(),(),(),T x T x T x 由题设有12323000100020001500(),(),(),6200(1)T x T x T x x x k x k x⨯====-+ 期中,,200(1)x kx k x -+均为1到200之间的正整数.(Ⅱ)完成订单任务的时间为{}123()max (),(),(),f x T x T x T x =其定义域为2000,.1x x x N k *⎧⎫<<∈⎨⎬+⎩⎭易知,12(),()T x T x 为减函数,3()T x 为增函数.注意到212()(),T x T x k=于是(1)当2k =时,12()(),T x T x = 此时 {}1310001500()max (),()max ,2003f x T x T x x x ⎧⎫==⎨⎬-⎩⎭, 由函数13(),()T x T x 的单调性知,当100015002003x x=-时()f x 取得最小值,解得 4009x =.由于 134002503004445,(44)(44),(45)(45),(44)(45)91113f T f T f f <<====<而.故当44x =时完成订单任务的时间最短,且最短时间为250(44)11f =.(2)当2k >时,12()(),T x T x > 由于k 为正整数,故3k ≥,此时{}1375(),()max (),()50T x x T x T x x ϕ==-易知()T x 为增函数,则{}13()max (),()f x T x T x = {}1max (),()T x T x ≥1000375()max ,50x x x ϕ⎧⎫==⎨⎬-⎩⎭.由函数1(),()T x T x 的单调性知,当100037550x x =-时()x ϕ取得最小值,解得40011x =.由于14002502503752503637,(36)(36),(37)(37),119111311T T ϕϕ<<==>==>而 此时完成订单任务的最短时间大于25011.(3)当2k <时,12()(),T x T x <由于k为正整数,故1k =,此时{}232000750()max (),()max ,.100f x T x T x x x ⎧⎫==⎨⎬-⎩⎭由函数23(),()T x T x 的单调性知,当2000750100x x =-时()f x 取得最小值,解得80011x =.类似(1)的讨论.此时 完成订单任务的最短时间为2509,大于25011.综上所述,当2k =时完成订单任务的时间最短,此时生产A,B,C三种部件的人数分别为44,88,68.【点评】本题为函数的应用题,考查分段函数、函数单调性、最值等,考查运算能力及用数学知识分析解决实际应用问题的能力.第一问建立函数模型;第二问利用单调性与最值来解决,体现分类讨论思想.21.(本小题满分13分)[www.z%zstep.co*~&m^] 【解析】(Ⅰ)解法1 :设M 的坐标为(,)x y ,由已知得222(5)3x x y +=-+-,易知圆2C 上的点位于直线2x =-的右侧.于是20x +>,所以22(5)5x y x -+=+.化简得曲线1C 的方程为220y x =.解法2 :由题设知,曲线1C 上任意一点M 到圆心2C (5,0)的距离等于它到直线5x =-的距离,因此,曲线1C 是以(5,0)为焦点,直线5x =-为准线的抛物线,故其方程为220y x =.(Ⅱ)当点P 在直线4x =-上运动时,P 的坐标为0(4,)y -,又03y ≠±,则过P 且与圆2C 相切得直线的斜率k 存在且不为0,每条切线都与抛物线有两个交点,切线方程为0(4),y y k x -=+0即kx-y+y +4k=0.于是0254 3.1k y kk ++=+整理得2200721890.k y k y ++-= ①设过P 所作的两条切线,PA PC 的斜率分别为12,k k ,则12,k k 是方程①的两个实根,故001218.724y yk k +=-=- ② 由101240,20,k x y y k y x -++=⎧⎨=⎩得21012020(4)0.k y y y k -++= ③ 设四点A,B,C,D 的纵坐标分别为1234,,,y y y y ,则是方程③的两个实根,所以0112120(4).y k y y k +⋅=④同理可得0234220(4).y k y y k +⋅=⑤于是由②,④,⑤三式得010*******400(4)(4)y k y k y y y y k k ++=2012012124004()16y k k y k k k k ⎡⎤+++⎣⎦=22001212400166400y y k k k k ⎡⎤-+⎣⎦=.所以,当P 在直线4x =-上运动时,四点A ,B ,C ,D 的纵坐标之积为定值6400.【点评】本题考查曲线与方程、直线与曲线的位置关系,考查运算能力,考查数形结合思想、函数与方程思想等数学思想方法.第一问用直接法或定义法求出曲线的方程;第二问设出切线方程,把直线与曲线方程联立,由一元二次方程根与系数的关系得到,,,A B C D 四点纵坐标之积为定值,体现“设而不求”思想. 22.(本小题满分13分)【解析】(Ⅰ)若0a <,则对一切0x >,()f x 1axe x =-<,这与题设矛盾,又0a ≠, 故0a >.而()1,axf x ae '=-令11()0,ln .f x x a a'==得 当11ln x a a <时,()0,()f x f x '<单调递减;当11ln x a a >时,()0,()f x f x '>单调递增,故当11ln x a a=时,()f x 取最小值11111(ln )ln .f a a a a a=- 于是对一切,()1x R f x ∈≥恒成立,当且仅当111ln 1a a a-≥. ① 令()ln ,g t t t t =-则()ln .g t t '=-当01t <<时,()0,()g t g t '>单调递增;当1t >时,()0,()g t g t '<单调递减. 故当1t =时,()g t 取最大值(1)1g =.因此,当且仅当11a=即1a =时,①式成立. 综上所述,a 的取值集合为{}1.(Ⅱ)由题意知,21212121()() 1.ax ax f x f x e e k x x x x --==---令2121()(),ax ax axe e xf x k ae x x ϕ-'=-=--则121()12121()()1,ax a x x e x e a x x x x ϕ-⎡⎤=----⎣⎦- 212()21221()()1.ax a x x e x e a x x x x ϕ-⎡⎤=---⎣⎦- 令()1t F t e t =--,则()1tF t e '=-.当0t <时,()0,()F t F t '<单调递减;当0t >时,()0,()F t F t '>单调递增. 故当0t =,()(0)0,F t F >=即10.te t --> 从而21()21()10a x x ea x x ---->,12()12()10,a x x ea x x ---->又1210,ax e x x >-2210,ax e x x >-所以1()0,x ϕ<2()0.x ϕ>因为函数()y x ϕ=在区间[]12,x x 上的图像是连续不断的一条曲线,所以存在),(21x x c ∈,使0)(=c ϕ,2()0,()axx a e x ϕϕ'=>单调递增,故这样的c 是唯一的,且21211ln ()ax ax e e c a a x x -=-.故当且仅当212211(ln ,)()ax ax e e x x a a x x -∈-时, 0()f x k '>.综上所述,存在012(,)x x x ∈使0()f x k '>成立.且0x 的取值范围为212211(ln ,)()ax ax e e x a a x x --. 【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想,转化与划归思想等数学思想方法.第一问利用导函数法求出()f x 取最小值11111(ln )ln .f a a a a a=-对一切x ∈R ,f(x) ≥1恒成立转化为min ()1f x ≥,从而得出a 的取值集合;第二问在假设存在的情况下进行推理,通过构造函数,研究这个函数的单调性及最值来进行分析判断.。

2012年高考数学试题分类汇编第八部分不等式

2012年高考数学试题分类汇编第八部分不等式

第八部分 不等式(2012湖南卷文)7 . 设 a >b >1,0c < ,给出下列三个结论: ①c a >c b;② c a <cb ; ③ log ()log ()b a ac b c ->-, 其中所有的正确结论的序号是__.A .① B.① ② C.② ③ D.① ②③ 【答案】D【解析】由不等式及a >b >1知11a b <,又0c <,所以c a >cb,①正确;由指数函数的图像与性质知②正确;由a >b >1,0c <知11a c b c c ->->->,由对数函数的图像与性质知③正确.1. (2012年福建卷理下列不等式一定成立的是( )A .)0(lg )41lg(2>>+x x x B .),(2sin 1sin Z k k x xx ∈≠≥+π C .)(||212R x x x ∈≥+ D .)(1112R x x ∈>+ 2. (2012年福建卷理若直线x y 2=上存在点),(y x 满足约束条件⎪⎩⎪⎨⎧≥≤--≤-+m x y x y x 03203,则实数m 的最大值为( )A .21B .1C .23D .2(2012年广东卷理)5.已知变量,x y 满足约束条件211y x y x y ≤⎧⎪+≥⎨⎪-≤⎩,则3z x y =+的最大值为A .12B .11C .3D .-1(2012年安徽文)(8)若x ,y 满足约束条件 02323x x y x y ≥⎧⎪+≥⎨⎪+≤⎩,则y x z -=的最小值是(A ) -3 (B )0 (C ) 32(D )3 【解析】选A【解析】x y -的取值范围为_____[3,0]-约束条件对应ABC ∆边际及内的区域:3(0,3),(0,),(1,1)2A B C 则[3,0]t x y =-∈-(2012年山东卷文)(6)设变量,x y 满足约束条件22,24,41,x y x y x y +≥⎧⎪+≤⎨⎪-≥-⎩则目标函数3z x y =-的取值范围是(A)3[,6]2- (B)3[,1]2-- (C)[1,6]- (D)3[6,]2-(2012年广东卷理)9.不等式|2|||1x x +-≤的解集为___________. (2012年山东卷理)(13)若不等式的解集为,则实数k=__________。

2012年高考数学试题分类汇编第十二部分统计与统计案例

2012年高考数学试题分类汇编第十二部分统计与统计案例

第十二部分 统计与统计案例(2012年山东卷文)(4)在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据都加2后所得数据,则A ,B 两样本的下列数字特征对应相同的是(A)众数 (B)平均数 (C)中位数 (D)标准差(2012湖南卷文)5.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为 y =0.85x-85.71,则下列结论中不正确...的是 A.y 与x 具有正的线性相关关系 B.回归直线过样本点的中心(x ,y )C.若该大学某女生身高增加1cm ,则其体重约增加0.85kgD.若该大学某女生身高为170cm ,则可断定其体重必为58.79kg 【答案】D【解析】由回归方程为 y =0.85x-85.71知y 随x 的增大而增大,所以y 与x 具有正的线性相关关系,由最小二乘法建立的回归方程得过程知ˆ()ybx a bx y bx a y bx =+=+-=-,所以回归直线过样本点的中心(x ,y ),利用回归方程可以预测估计总体,所以D 不正确. (2012年山东卷理)(4)采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C.则抽到的人中,做问卷B 的人数为 (A )7 (B ) 9 (C ) 10 (D )15解析:采用系统抽样方法从960人中抽取32人,将整体分成32组,每组30人,即30=l ,第k 组的号码为930)1(+-k ,令750930)1(451≤+-≤k ,而z k ∈,解得2516≤≤k ,则满足2516≤≤k 的整数k 有10个,故答案应选C 。

湖南省2012年对口高考数学试卷2(新考纲)

湖南省2012年对口高考数学试卷2(新考纲)

2012年上期第一次模拟考试数学试题(2月8)一、选择题(本大题共10小题,每小题4分,共40分.在每小题的4个选项中,只有一项是符合题目要求的)1、不等式(0)2)(1>-+x x 的解集是( ) A {}21<<-x x B φ C R D {}2>x x 或{}1<x x2、下列函数中最小正周期为π2的是( )A x x x f cos sin )(=B )2tan()(π+=x x gC x x x f 22cossin)(-= D x x x cos sin )(+=φ3、已知函数)1(log )(+=x x f a 的定义域和值域都是[0,1],则a 的值是( )A 22 B 2 C 2 D 314、甲、乙、丙3位同学选修课程,从4门课程中,甲选修2门,乙、丙各选修3门,则不同的选修方案共有( )种。

A 36B 48C 96D 192 5、若二项式nxx )2(-的展开式的第五项为常数项,则n 的值是( )A 6B 10C 12D 15 6、在递增的等比数列{}n a 中,684=⋅a a ,593=+a a ,则=511a a ( )A 32- 或 23- B 32 或 23 C 23 D 23-7、双曲线的渐近线为x y 3±=,焦点是)0,4(±,则此双曲线方程是( )A112422=-yxB141222=-yxC118622=-yxD161822=-xy8015cos 415sin 2==,a 与b 的夹角为030,则=∙b a ( )A23 B 3 C 32 D219、已知是βα,平面,n m ,是直线,下列命题中不正确的是( ) A 若 m ∥α,n =⋂βα,则m ∥n B 若m ∥n ,m ⊥α,则n ⊥αC 若m ⊥α,m ⊥β,则β∥αD 若m ⊥α,β⊂m ,则α⊥β10、等边△ABC 的边长为1,沿BC 边上的高AD 折成直二面角,则A 到BC 的距离是( ) A414 B415 C23 D43二、填空题(每小题4分共20分)11、计算:=-+35.26lg 2cos ( 结果保留四位有效数字) 12、在数列{}n a 中,601-=a ,且41+=+n n a a ,则这个数列的前20项的和为13、数据6,7,8,9,10的方差)(X D =14、若平面向量b =(y x ,)与向量)2,1(-=a 53=,则=b 15、口袋里装有编号为1,2,3,4的球各一个,从中任取2个球,记X 表示取出的二个球中的最大号码,则=)(X E三、解答题:(每小题10分,共60分其中21、22为选做题) 16、设xxa x f 33)(+= ⑴ 当a 为何值时,)(x f 的图像关于原点对称⑵ 当3=a 时,解方程4)(=x f17、),2cos sin 32,(cos ),1,cos 2(k x x x b x a +==设b a x f ∙=)(,求)(x f 的最小正周期及在[]π,0上的单调区间。

2012年高考数学试题分类汇编选修系列

2012年高考数学试题分类汇编选修系列

(2012年湖北卷理)16.(选修4-4:坐标系与参数方程)在直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知射线4πθ=与曲线⎩⎨⎧-=+=2)1(1x t y t (t 为参数)相较于A ,B 来两点,则线段AB 的中点的直角坐标为_________。

C.(坐标系与参数方程选做题)直线2cos 1ρθ=与圆2cos ρθ=(2012年江西卷理)15.(1)(坐标系与参数方程选做题)曲线C 的直角坐标方程为x 2+y 2-2x=0,以原点为极点,x 轴的正半轴为极轴建立积坐标系,则曲线C 的极坐标方程为___________。

(2012年江西卷理)15.(2)(不等式选做题)在实数范围内,不等式|2x-1|+|2x+1|≤6的解集为___________。

(2012年广东卷文)14. (坐标系与参数方程选做题) 在平面直角坐标系xOy 中,曲线1C 和2C的参数方程分别为2:(x C y θθθ⎧=⎪⎨=⎪⎩是参数,02πθ≤≤)和21:(2x C t y t ⎧=-⎪⎪⎨⎪=-⎪⎩是参数),它们的交点坐标为_______.【解】它们的交点坐标为_______(2,1)(二)选做题(14 - 15题,考生只能从中选做一题)(2012年广东卷文)15.(几何证明选讲选做题)如图3所示,直线PB 与圆O 想切于点B ,D 是弦AC 上的点,PBA DBA ∠=∠,若,AD m AC n ==,则AB =_______。

【解】AB =(2012湖南卷文)10.在极坐标系中,曲线1C :sin )1ρθθ+=与曲线2C :a ρ=(0)a >的一个交点在极轴上,则a =_______.【答案】2【解析】曲线1C 1y +=,曲线2C 的普通方程是直角坐标方程 222x y a +=,因为曲线C 1:sin )1ρθθ+=与曲线C 2:a ρ=(0)a >的一个交点在极轴上,所以1C 与x 轴交点横坐标与a值相等,由0,2y x ==,知a=2. (2012湖南卷文)11.某制药企业为了对某种药用液体进行生物测定,需要优选培养温度,实验范围定为29℃~63℃.精确度要求±1℃.用分数法进行优选时,能保证找到最佳培养温度需要最少实验次数为_______.【答案】7【解析】用分数法计算知要最少实验次数为7.(2012年湖南卷理)9. 在直角坐标系xOy 中,已知曲线1C :1,12x t y t=+⎧⎨=-⎩ (t 为参数)与曲线2C :sin ,3cos x a y θθ=⎧⎨=⎩(θ为参数,0a >) 有一个公共点在X 轴上,则__a =. 【答案】32【解析】曲线1C :1,12x t y t=+⎧⎨=-⎩直角坐标方程为32y x =-,与x 轴交点为3(,0)2; 曲线2C :sin ,3cos x a y θθ=⎧⎨=⎩直角坐标方程为22219x y a +=,其与x 轴交点为(,0),(,0)a a -, 由0a >,曲线1C 与曲线2C 有一个公共点在X 轴上,知32a =. (2012年安徽卷理)(13)在极坐标系中,圆4sin ρθ=的圆心到直线()6R πθρ=∈的距离是_____【解析】距离是_____圆224sin (2)4x y ρθ=↔+-=的圆心(0,2)C直线:()06l R x πθρ=∈↔-=;点C 到直线l=(2012年天津卷理)(12)己知抛物线的参数方程为2=2,=2,x pt y pt ⎧⎨⎩(t 为参数),其中>0p ,焦点为F ,准线为l ,过抛物线上一点M 作的垂线,垂足为E ,若||=||EF MF ,点M 的横坐标是3,则=p .12.2【命题意图】本试题主要考查了参数方程及其参数的几何意义,抛物线的定义及其几何性质.【解析】∵2=2,=2,x pt y pt ⎧⎨⎩可得抛物线的标准方程为2=2y px (>0)p ,∴焦点(,0)2p F ,∵点M的横坐标是3,则(3,M ,所以点(,2p E -±,222=()+(022p p EF - 由抛物线得几何性质得=+32p MF ,∵=EF MF ,∴221+6=+3+94p p p p ,解得=2p . (2012年北京卷理)9.直线t t y t x (12⎩⎨⎧--=+=为参数)与曲线ααα(sin 3cos 3⎩⎨⎧==y x 为参数)的交点个数为______。

2012年高考数学试题分类汇编第一部分集合与常用逻辑用语

2012年高考数学试题分类汇编第一部分集合与常用逻辑用语

第一部分 集合与常用逻辑用语1.(2012湖南卷文)设集合M={-1,0,1},N={x |x 2=x },则M∩N=( ) A.{-1,0,1} B.{0,1} C.{1} D.{0} 【答案】B【解析】{}0,1N = M={-1,0,1} ∴M∩N={0,1} 2. (2012湖南卷文)命题“若α=4π,则tan α=1”的逆否命题是( )A.若α≠4π,则tan α≠1 B. 若α=4π,则tan α≠1C. 若tan α≠1,则α≠4πD. 若tan α≠1,则α=4π【答案】C【解析】因为“若p ,则q ”的逆否命题为“若p ⌝,则q ⌝”,所以 “若α=4π,则tan α=1”的逆否命题是 “若tan α≠1,则α≠4π”.3.(2012年天津卷文)设x ∈R ,则“x >12”是“2x 2+x -1>0”的( )A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件 【解析】不等式0122>-+x x 的解集为21>x 或1-<x ,所以“21>x ”是“0122>-+x x ”成立的充分不必要条件,选A.4. (2012年北京卷理)已知集合A={x ∈R|3x +2>0} B={x ∈R|(x +1)(x -3)>0} 则A∩B=( )A (-∞,-1)B (-1,-23) C (-23,3)D (3,+∞)【解析】32}023|{->⇒>+∈=x x R x A ,利用二次不等式可得1|{-<=x x B 或}3>x 画出数轴易得:}3|{>=x x B A .故选D . 5.(2012年福建卷理)下列命题中,真命题是( ) A .0,00≤∈∃x eR x B .22,x R x x >∈∀C .0=+b a 的充要条件是1-=ba D .1,1>>b a 是1>ab 的充分条件【答案】D6.(2012年广东卷理)设集合U {1,23,4,5,6}=,,M {1,2,4}=则M U =ð( ) A .U B .{1,3,5} C .{3,5,6} D .{2,4,6}【答案】C(2012年上海卷文)2、若集合{}210A x x =->,{}1B x x =<,则A B ⋂= (2012年安徽文)(2)设集合A={3123|≤-≤-x x },集合B 为函数)1lg(-=x y 的定义域,则A ⋂B=(A ) (1,2) (B )[1,2] (C ) [ 1,2) (D )(1,2 ] 【解析】选D{3213}[1,2]A x x =-≤-≤=-,(1,)(1,2]B A B =+∞⇒=(2012年安徽文)(4)命题“存在实数x ,使x > 1”的否定是(A ) 对任意实数x , 都有x > 1 (B )不存在实数x ,使x ≤ 1(C ) 对任意实数x , 都有x ≤ 1 (D )存在实数x ,使x ≤ 1 【解析】选C存在---任意,1x >---1x ≤(2012年山东卷理)2 已知全集 ={0,1,2,3,4},集合A={1,2,3,},B={2,4} ,则(CuA ) B 为A {1,2,4}B {2,3,4}C {0,2,4}D {0,2,3,4}解析:}4,2,0{)(},4,0{==B A C A C U U 。

2012年高考数学试题分类汇编第六部分解三角形

2012年高考数学试题分类汇编第六部分解三角形

第六部分 解三角形(2012湖南卷文)8 . 在△ABC 中,AC=7 ,BC=2,B =60°,则BC 边上的高等于A .32 B.332 C.362+ D.3394+【答案】B【解析】设AB c =,在△ABC 中,由余弦定理知2222cos AC AB BC AB BC B =+-⋅⋅,即27422cos60c c =+-⨯⨯⨯,2230,(-3)(1)c c c c --=+即=0.又0, 3.c c >∴=设BC 边上的高等于h ,由三角形面积公式11sin 22ABCSAB BC B BC h ==,知 1132sin 60222h ⨯⨯⨯=⨯⨯,解得332h =. 1. (2012年福建卷理已知ABC ∆的三边长成公比为2的等比数列,则其最大角的余弦值为_________。

(2012年天津卷文)在△ABC 中,∠ A=90°,AB=1,设点P ,Q 满足AP =AB λ,AQ =(1-λ)AC ,λ ∈R 。

若BQ•CP=-2,则λ=(A )13(B )23C )43(D )2【解析】 如图,设c AC b AB ==, , 则0,2,1=•==c b c b ,又c b AQ BA BQ )1(λ-+-=+=,b c AP CA CP λ+-=+=, 由2-=•CP BQ 得2)1(4)1()(])1([22-=--=--=+-•-+-λλλλλλb c b c c b ,即32,23==λλ,选B. 【答案】B(2012年天津卷文)(16)(本小题满分13分)在△ABC 中,内角A ,B ,C 所对的分别是a,b ,c 。

已知a=2.c=2,cosA=2-4. (I )求sinC 和b 的值; (II )求cos (2A+3д)的值。

(2012年天津卷理)(6)在△ABC 中,内角A ,B ,C 所对的边分别是,,a b c ,已知8=5b c ,=2C B ,则cosC=(A )725(B)725- (C)725± (D)24256.A【命题意图】本试题主要考查了正弦定理、三角函数中的二倍角公式. 考查学生分析、转化与计算等能力.【解析】∵8=5b c ,由正弦定理得8sin =5sin B C ,又∵=2C B ,∴8sin =5sin 2B B ,所以8sin =10sin cos B B B ,易知sin 0B ≠,∴4cos =5B ,2cos =cos 2=2cos 1C B B -=72517、在△ABC 中,若222sin sin sin A B C +<,则△ABC 的形状是( ) A 、钝角三角形 B 、直角三角形 C 、锐角三角形 D 、不能确定 (2012年北京卷理)11.在△ABC 中,若a =2,b+c=7,cosB=41-,则b=_______。

2012年高考数学试题分类汇编第四部分三角函数与简单的三角恒等变换

2012年高考数学试题分类汇编第四部分三角函数与简单的三角恒等变换

第四部分 三角函数与简单的三角恒等变换(2012年湖南卷理)6. 函数f (x )=sinx-cos(x+6π)的值域为A . [ -2 ,2] C.[-1,1 ] , 【答案】B【解析】f (x )=sinx-cos(x+6π)1sin sin )226x x x x π=-+=-,[]sin()1,16x π-∈- ,()f x ∴值域为(2012年天津卷文)将函数()sin f x x ω=(其中ω>0)的图像向右平移4π个单位长度,所得图像经过点)0,43(π,则ω的最小值是 (A )13(B )1 C )53(D )2【解析】函数向右平移4π得到函数)4sin()4(sin )4()(ωπωπωπ-=-=-=x x x f x g ,因为此时函数过点)0,43(π,所以0)443(sin =-ππω,即,2)443(πωπππωk ==-所以Z k k ∈=,2ω,所以ω的最小值为2,选D.【答案】D(2012重庆卷理)(5)设tan ,tan αβ是议程2320x x -+=的两个根,则tan()αβ+的值为(A )-3 (B )-1 (C )1 (D )3(2012年天津卷理)(2)设R ϕ∈,则“=0ϕ”是“()=cos(+)f x x ϕ()x R ∈为偶函数”的(A )充分而不必要条件 (B)必要而不充分条件(C)充分必要条件 (D)既不充分也不必要条件 2.A【命题意图】本试题主要考查了三角函数的奇偶性的判定以及充分条件与必要条件的判定. 【解析】∵=0ϕ⇒()=cos(+)f x x ϕ()x R ∈为偶函数,反之不成立,∴“=0ϕ”是“()=cos(+)f x x ϕ()x R ∈为偶函数”的充分而不必要条件.(2012年安徽文)(7)要得到函数)12cos(+=x y 的图象,只要将函数x y 2cos =的图象(A ) 向左平移1个单位(B ) 向右平移1个单位(C ) 向左平移12个单位 (D ) 向右平移12个单位【解析】选Ccos 2cos(21)y x y x =→=+左+1,平移12(2012年山东卷理)(7)若42ππθ⎡⎤∈⎢⎥⎣⎦,, sin 2θ,则sin θ=(A )35(B )45(C (D )34 解析:由42ππθ⎡⎤∈⎢⎥⎣⎦,可得],2[2ππθ∈,812sin 12cos 2-=--=θθ,4322cos 1sin =-=θθ,答案应选D 。

2012年高考试题及答案

2012年高考试题及答案

2012年高考试题及答案
全国卷大纲版(广西、贵州、甘肃、青海、西藏)(标红链接生效)
2012年全国高考试题难度调

新课标版(黑龙江、吉林、河北、河南、内蒙古、山西、云南、宁夏、新疆)
2012年全国高考试题难度调

北京地区高考试卷及答案
2012年全国高考试题难度调

广东地区高考试卷及答案
2012年全国高考试题难度调

上海地区高考试卷及答案
2012年全国高考试题难度调

湖北地区高考试卷及答案
2012年全国高考试题难度调

陕西地区高考试卷及答案
2012年全国高考试题难度调

湖南地区高考试卷及答案
2012年全国高考试题难度调

福建地区高考试卷及答案
2012年全国高考试题难度调

江西地区高考试卷及答案
2012年全国高考试题难度调

重庆地区高考试卷及答案
2012年全国高考试题难度调

安徽地区高考试卷及答案
2012年全国高考试题难度调

山东地区高考试卷及答案
2012年全国高考试题难度调

江苏地区高考试卷及答案
2012年全国高考试题难度调

四川地区高考试卷及答案
2012年全国高考试题难度调

天津地区高考试卷及答案
2012年全国高考试题难度调

辽宁地区高考试卷及答案
2012年全国高考试题难度调

浙江地区高考试卷及答案
2012年全国高考试题难度调

海南地区高考试卷及答案
2012年全国高考试题难度调查。

湖南省__高考数学真题(理科数学)(附答案)_历年历届试题

湖南省__高考数学真题(理科数学)(附答案)_历年历届试题

2006年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)1. 函数2log 2-=x y 的定义域是A .),3(+∞B .),3[+∞C .),4(+∞D .),4[+∞ 2. 若数列}{n a 满足: 311=a , 且对任意正整数n m ,都有n m n m a a a ⋅=+, 则 =++++∞→)(lim 21n n a a aA .21 B .32 C .23D .2 3. 过平行六面体1111D C B A ABCD -任意两条棱的中点作直线, 其中与平面11D DBB 平行的直线共有A .4条B .6条C .8条D .12条 4. “1=a ”是“函数||)(a x x f -=在区间),1[+∞上为增函数”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5. 已知,0||2||≠=b a 且关于x 的方程0||2=⋅++b a x a x 有实根, 则a 与b 的夹角的取值范围是 A .]6,0[πB .],3[ππC .]32,3[ππD .],6[ππ6. 某外商计划在4个候选城市投资3个不同的项目, 且在同一个城市投资的项目不超过2个, 则该外商不同的投资方案有A . 16种B .36种C .42种D .60种7. 过双曲线1:222=-by x M 的左顶点A 作斜率为1的直线l , 若l 与双曲线M 的两条渐近线分别相交于点C B ,, 且||||BC AB =, 则双曲线M 的离心率是A . 10B .5C .310D .25 8. 设函数1)(--=x ax x f , 集合}0)(|{},0)(|{>'=<=x f x P x f x M , 若P M ⊂, 则实数a 的取值范围是A .)1,(--∞B .)1,0(C .),1(+∞D .),1[+∞9. 棱长为2的正四面体的四个顶点都在同一个球面上, 若过该球球心的一个截 面如图1,则图中三角形(正四面体的截面)的面积是A .22B .23C .2D .310. 若圆0104422=---+y x y x 上至少有三个不同的点到直线0:=+by ax l 的距离为22,则直线l 的倾斜角的取值范围是 A . ]412[ππ, B .]12512[ππ, C .]36[ππ, D .]20[π, 11. 若5)1-ax (的展开式中3x 的系数是80-, 则实数a 的值是__________. 12. 已知⎪⎩⎪⎨⎧≤--≤+-≥022011y x y x x 则22y x +的最小值是_____________.13. 曲线xy 1=和2x y =在它们的交点处的两条切线与x 轴所围成的三角形的面积是 ___________. 14. 若)0)(4sin()4sin()(≠-++=ab x b x a x f ππ是偶函数, 则有序实数对),(b a 可以 是__________.(注: 写出你认为正确的一组数字即可)15. 如图2, AB OM //, 点P 在由射线OM , 线段OB 及AB 的延长线围成的阴影区域内(不含边界)运动, 且OB y OA x OP +=,则x 的取值范围是__________; 当21-=x 时, y 的取值范围是__________. 16.如图3, D 是直角ABC ∆斜边BC 上一点, βα=∠=∠=ABC CAD AD AB ,,记.(Ⅰ)证明: 02cos sin =+βα; (Ⅱ)若DC AC 3=,求β的值.图2OABPM图3CDBA17.某安全生产监督部门对5家小型煤矿进行安全检查(简称安检), 若安检不合格, 则必须整改. 若整改后经复查仍不合格, 则强制关闭. 设每家煤矿安检是否合格是相互独立的, 且每家煤矿整改前合格的概率是5.0, 整改后安检合格的概率是8.0,计算(结果精确到01.0);(Ⅰ) 恰好有两家煤矿必须整改的概率; (Ⅱ) 平均有多少家煤矿必须整改; (Ⅲ) 至少关闭一家煤矿的概率 . 18.如图4, 已知两个正四棱锥ABCD Q ABCD P --与的高分别为1和2, 4=AB (Ⅰ) 证明: ABCD PQ 平面⊥ ;(Ⅱ) 求异面直线PQ AQ 与所成的角;(Ⅲ) 求点P 到平面QAD 的距离. 19.已知函数x x x f sin )(-=, 数列}{n a 满足: 101<<a , a n+1=f (a n ), ,3,2,1=n 证明: (Ⅰ) 101<<<+n n a a ; (Ⅱ) 3161n n a a <+ .D图4CBAQ P20.对1个单位质量的含污物体进行清洗, 清洗前其清洁度(含污物体的清洁度定义为:)物体质量(含污物)污物质量-1为8.0, 要求清洗完后的清洁度为99.0. 有两种方案可供选择, 方案甲: 一次清洗; 方案乙: 分两次清洗. 该物体初次清洗后受残留水等因素影响, 其质量变为)31(≤≤a a . 设用x 单位质量的水初次清洗后的清洁度是18.0++x x )1(->a x , 用y 单位质量的水第二次清洗后的清洁度是ay acy ++, 其中c )99.08.0(<<c 是该物体初次清洗后的清洁度.(Ⅰ)分别求出方案甲以及95.0=c 时方案乙的用水量, 并比较哪一种方案用水量较少; (Ⅱ)若采用方案乙, 当a 为某定值时, 如何安排初次与第二次清洗的用水量, 使总用水量最小? 并讨论a 取不同数值时对最少总用水量多少的影响. 21.已知椭圆134:221=+y x C , 抛物线)0(2)(:22>=-p px m y C , 且21,C C 的公共弦 AB 过椭圆1C 的右焦点 .(Ⅰ) 当轴时x AB ⊥, 求p m ,的值, 并判断抛物线2C 的焦点是否在直线AB 上; (Ⅱ) 是否存在p m ,的值, 使抛物线2C 的焦点恰在直线AB 上? 若存在, 求出符合条件的p m ,的值; 若不存在, 请说明理由 .2006年普通高等学校招生全国统一考试(湖南卷)数学(理工农医类)参考答案1.D ;2.A ;3.D ;4.A ;5.B ;6.D ;7.A ;8.C ;9.C ; 10.B ; 11.2-; 12.5; 13.34; 14.(1,1-) ; 15.(,0-∞) ,13(,)22; 16、解 (I)如图, 因为(2)2222BAD πππαπββ=-∠=--=-,所以 sin sin(2)cos 22παββ=-=-,即 sin cos 20αβ+=。

高考数学(理)真题专题汇编:推理与证明

高考数学(理)真题专题汇编:推理与证明

高考数学(理)真题专题汇编:推理与证明一、选择题1.【来源】2017年高考真题——理科数学(全国Ⅱ卷)甲、乙、丙、丁四位同学一起去问老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )A .乙可以知道四人的成绩B .丁可以知道四人的成绩C .乙、丁可以知道对方的成绩D .乙、丁可以知道自己的成绩 2.【来源】2014年高考真题理科数学(山东卷)用反证法证明命题:“已知,a b 为实数,则方程20x ax b ++=至少有一个实根”时,要做的假设是(A )方程20x ax b ++=没有实根(B )方程20x ax b ++=至多有一个实根 (C )方程20x ax b ++=至多有两个实根(D )方程20x ax b ++=恰好有两个实根3.【来源】2013年普通高等学校招生全国统一考试(广东卷)数学(理科) 设整数4n ≥,集合{}1,2,3,,X n =.令集合(){},,|,,,,,S x y z x y z X x y z y z x z x y =∈<<<<<<且三条件恰有一个成立若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是( )A . (),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S ∉,(),,x y w S ∈4.【来源】辽宁省大连24中2012届高三模拟考试理科数学 有一段演绎推理是这样的:“直线平行于平面,则平行于平面内所有直线:已知直线bα平面,直线a α⊂平面,直线b ∥平面α,则b ∥a ”的结论显然是错误的,这是因为 A .大前提错误 B .小前提错误C .推理形式错误D .非以上错误5.【来源】2012年高考真题——理科数学(江西卷)观察下列各式:221,3,a b a b +=+=3344554,7,11,a b a b a b +=+=+=则1010a b+=A.28 B.76 C.123 D.1996.【来源】2012年高考真题——理科数学(湖北卷)我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径. “开立圆术”相当于给出了已知球的体积V,求其直径d的一个近似公式316 9d V≈.人们还用过一些类似的近似公式. 根据π =3.14159判断,下列近似公式中最精确的一个是A.316 9d V≈ B.32d V≈ C.3300 157d V≈ D.321 11d V≈7.【来源】2012年高考真题——理科数学(全国卷)正方形ABCD的边长为1,点E在边AB上,点F在边BC上,AE=BF=73.动点P从E出发沿直线喜爱那个F运动,每当碰到正方形的方向的边时反弹,反弹时反射等于入射角,当点P第一次碰到E时,P与正方形的边碰撞的次数为(A)16(B)14(C)12(D)108.【来源】2011年高考数学理(江西)如右图,一个直径为1的小圆沿着直径为2的大圆内壁的逆时针方向滚动,M和N是小圆的一条固定直径的两个端点。

2012年高考真题理科数学解析分类汇编7(立体几何)

2012年高考真题理科数学解析分类汇编7(立体几何)

立体几何一、选择题的边长为1,1.【2012高考新课标理7】如图,网格纸上小正方形粗线画出的是某几何体的三视图,则此几何体的体积为( )()A 6 ()B 9 ()C 12 ()D 18【答案】B【解析】由三视图可知,该几何体是三棱锥,底面是俯视图,高为3,所以几何体的体积为93362131=⨯⨯⨯⨯=V ,选B.BC=2。

将2.【2012高考浙江理10】已知矩形ABCD ,AB=1,△沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中。

A.存在某个位置,使得直线AC 与直线BD 垂直.B.存在某个位置,使得直线AB 与直线CD 垂直.C.存在某个位置,使得直线AD 与直线BC 垂直.D.对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直 【答案】C【解析】最简单的方法是取一长方形动手按照其要求进行翻着,观察在翻着过程,即可知选项C 是正确的.3.【2012高考新课标理11】已知三棱锥S ABC -的所有顶点都在球O 的求面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2SC =;则此棱锥的体积为( )()A 26 ()B 36()C 23 ()D 22 【答案】A【解析】ABC ∆的外接圆的半径33r =,点O 到面ABC 的距离2263d R r =-=,SC 为球O 的直径⇒点S 到面ABC 的距离为2623d =此棱锥的体积为113262233436ABC V S d ∆=⨯=⨯⨯= 另:13236ABC V S R ∆<⨯=排除,,B C D ,选A.4.【2012高考四川理6】下列命题正确的是( )A 、若两条直线和同一个平面所成的角相等,则这两条直线平行B 、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C 、若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D 、若两个平面都垂直于第三个平面,则这两个平面平行 [答案]C[解析]若两条直线和同一平面所成角相等,这两条直线可能平行,也可能为异面直线,也可能相交,所以A 错;一个平面不在同一条直线的三点到另一个平面的距离相等,则这两个平面平行,故B 错;若两个平面垂直同一个平面两平面可以平行,也可以垂直;故D 错;故选项C 正确.[点评]本题旨在考查立体几何的线、面位置关系及线面的判定和性质,需要熟练掌握课本基础知识的定义、定理及公式. 5.【2012高考四川理10】如图,半径为R 的半球O 的底面圆O 在平面α内,过点O 作平面α的垂线交半球面于点A ,过圆O 的直径CD 作平面α成45角的平面与半球面相交,所得交线上到平面α的距离最大的点为B ,该交线上的一点P 满足60BOP ∠=,则A 、P 两点间的球面距离为( )A、arccos4R B 、4R π C、arccos 3R D 、3Rπ [答案]A[解析] 以O 为原点,分别以OB 、OC 、OA 所在直线为x 、y 、z 轴,则A )0,23,21(),22,0,22(R R P R R42arccos=∠∴AOP42arccos ⋅=∴R P A[点评]本题综合性较强,考查知识点较为全面,题设很自然的把向量、立体几何、三角函数等基础知识结合到了一起.是一道知识点考查较为全面的好题.要做好本题需要有扎实的数学基本功.6.【2012高考陕西理5】如图,在空间直角坐标系中有直三棱柱111ABC A B C -,12CA CC CB ==,则直线1BC 与直线1AB 夹角的余弦值为( )A.5B.3C. 5D. 35422=•=∠∴R PO AO AOP COS【答案】A.【解析】法1:设a CB =||,则a CC CA 2||||1==,),2,0(),0,2,0(),,0,0(),0,0,2(11a a B a C a B a A ,),2,0(),,2,2(11a a BC a a a AB -=-=∴,55||||,cos 111111=⋅>=<∴BC AB BC AB BC AB ,故选A. 法2:过点1B 作11//B D C B 交Oz 轴于点D ,连结AD ,设122CA CC CB a ===,则113,5,22AB a B D a AD a ===,在1AB D ∆中,由余弦定理知直线1AB 与直线1BC 夹角的余弦值为2222221111958525235AB B D AD a a a AB B D a a+-+-==⋅⋅⋅. 7.【2012高考湖南理3】某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是【答案】D【解析】本题是组合体的三视图问题,由几何体的正视图和侧视图均如图1所示知,原图下面图为圆柱或直四棱柱,上面是圆柱或直四棱柱或下底是直角的三棱柱,A,B,C都可能是该几何体的俯视图,D不可能是该几何体的俯视图,因为它的正视图上面应为如图的矩形.【点评】本题主要考查空间几何体的三视图,考查空间想象能力.是近年高考中的热点题型.8.【2012高考湖北理4】已知某几何体的三视图如右图所示,则该几何体的体积为侧视图2 正视图42 42A .8π3B .3πC .10π3D .6π【答案】B考点分析:本题考察空间几何体的三视图.【解析】显然有三视图我们易知原几何体为 一个圆柱体的一部分,并且有正视图知是一个1/2的圆柱体,底面圆的半径为1,圆柱体的高为6,则知所求几何体体积为原体积的一半为3π.选B. 9.【2012高考广东理6】某几何体的三视图如图所示,它的体积为A .12π B.45π C.57π D.81π 【答案】C【解析】该几何体的上部是一个圆锥,下部是一个圆柱,根据三视图中的数量关系,可得πππ57533-53312222=⨯⨯+⨯⨯⨯=+=圆柱圆锥V V V .故选C .10.【2012高考福建理4】一个几何体的三视图形状都相同、大小均相等,那么这个几何体不可以是 A.球 B.三棱柱 C.正方形 D.圆柱 【答案】D.【命题立意】本题考查了空间几何体的形状和三视图的概念,以及考生的空间想象能力,难度一般.【解析】法1:球的三视图全是圆;如图正方体截出的三棱锥三视图全是等腰直角三角形;正方体三视图都是正方形.可以排除ABC ,故选D.法2:球的正视图(主视图)、侧视图(左视图)和俯视图均为圆;三棱锥的正视图(主视图)、侧视图(左视图)和俯视图可以为全等的三角形; 正方体的正视图(主视图)、侧视图(左视图)和俯视图均为正方形;圆柱的正视图(主视图)、侧视图(左视图)为矩形,俯视图为圆。

高考数学之三角函数和解三角形

高考数学之三角函数和解三角形

高考数学之三角函数和解三角形【知识网络构建】【重点知识整合】一、三角恒等变换与三角函数1.三角函数中常用的转化思想及方法技巧:(1)方程思想:sin cos αα+, sin cos αα-,sin cos αα三者中,知一可求二; (2)“1”的替换: 22sincos 1αα+=;(3)切弦互化:弦的齐次式可化为切; (4)角的替换:2()()ααβαβ=++-, ()22αβαβααββ+-=+-=+;(5)公式变形:21cos 2cos 2αα+=21cos 2sin2αα-=tan tan tan()(1tan tan )αβαβαβ+=+-;(6)构造辅助角(以特殊角为主):22sin cos sin()(tan )ba b a b aαααϕϕ+=++=.二、解三角形1.正弦定理已知在△ABC 中,a ,b ,c 分别为内角A 、B 、C 的对边,则a sin A =b sin B =csin C =2R (R 为三角形外接圆的半径).2.余弦定理已知在△ABC 中,a ,b ,c 分别为内角A 、B 、C 的对边,则a 2=b 2+c 2-2bc cos A ,cos A =b 2+c 2-a 22bc,另外两个同样.3.面积公式已知在△ABC 中,a ,b ,c 分别为内角A 、B 、C 的对边,则 (1)三角形的面积等于底乘以高的12;(2)S =12ab sin C =12bc sin A =12ac sin B =abc 4R (其中R 为该三角形外接圆的半径);(3)若三角形内切圆的半径是r ,则三角形的面积S =12(a +b +c )r ;(4)若p =a +b +c2,则三角形的面积S =p p -a p -b p -c .【高频考点突破】【变式探究】已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos2θ=( )A .-45B .-35 C.35D.45【方法技巧】1.用三角函数定义求三角函数值有时反而更简单;2.同角三角函数间的关系、诱导公式在三角函数式的化简中起着举足轻重的作用,应注意正确选择公式、注意公式的应用条件. 考点二 三角函数的性质 三角函数的单调区间:y =sin x 的递增区间是[2k π-π2,2k π+π2](k ∈Z),递减区间是[2k π+π2,2k π+3π2](k ∈Z); y =cos x 的递增区间是[2k π-π,2k π](k ∈Z),递减区间是[2k π,2k π+π](k ∈Z);y =tan x 的递增区间是(k π-π2,k π+π2)(k ∈Z).例2、已知a =(sin x ,-cos x ),b =(cos x ,3cos x ),函数f (x )=a ·b +32. (1)求f (x )的最小正周期,并求其图像对称中心的坐标; (2)当0≤x ≤π2时,求函数f (x )的值域.【变式探究】已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤|f (π6)|对x ∈R 恒成立,且f (π2)>f (π),则f (x )的单调递增区间是( )A .[k π-π3,k π+π6](k ∈Z) B.[k π,k π+π2](k ∈Z)C .[k π+π6,k π+2π3](k ∈Z) D.[k π-π2,k π](k ∈Z)考点三 函数y =A sin(ωx +φ)的图像及变换 函数y =A sin(ωx +φ)的图像: (1)“五点法”作图:设z =ωx +φ,令z =0,π2,π,3π2,2π,求出x 的值与相应的y 的值,描点、连线可得.(2)图像变换:y =sin x ―――――――――→向左φ>0或向右φ<0平移|φ|个单位y =sin(x +φ)y =sin(ωx +φ)――――――――――→纵坐标变为原来的AA >0倍横坐标不变y =A sin(ωx +φ).例3、已知函数f 1(x )=A sin(ωx +φ)(A >0,ω>0,|φ|<π2)的一段图像经过点(0,1),如图所示.(1)求f 1(x )的表达式;(2)将函数f 1(x )的图像向右平移π4个单位长度得到函数f 2(x )的图像,求y =f 1(x )+f 2(x )的最大值,并求出此时自变量x 的集合.【变式探究】已知函数f (x )=A tan(ωx +φ)(ω>0,|φ|<π2),y =f (x )的部分图像如图,则f (π24)= ( )A .2+ 3 B. 3 C.33D .2- 3考点四 三角变换及求值 三角函数求值有以下类型:(1)“给角求值”,即在不查表的前提下,通过三角恒等变 换求三角函数式的值;(2)“给值求值”,即给出一些三角函数值,求与之有关的 其他三角函数式的值;(3)“给值求角”,即给出三角函数值,求符合条件的角. 例1、已知函数f (x )=2sin(13x -π6),x ∈R.(1)求f (0)的值;(2)设α,β∈[0,π2],f (3α+π2)=1013,f (3β+2π)=65.求sin(α+β)的值.【变式探究】已知:cos(2α-β)=-1114,sin(α-2β)=437,0<β<π4<α<π2,则α+β的值为________. 考点五 正、余弦定理的应用【变式探究】△ABC 中,B =120°,AC =7,AB =5, 则△ABC 的面积为________. 考点 六 解三角形与实际应用问题在实际生活中,测量底部不可到达的建筑物的高度、不可到达的两点的距离及航行中的方位角等问题,都可通过解三角形解决. 例6、如图,A ,B 是海面上位于东西方向相距5(3+3)海里的两个观测点.现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/小时,该救援船到达D 点需要多长时间?【难点探究】难点一 简单的三角恒等变换例1 、(1)若0<α<π2,-π2<β<0,cos (π4+α)=13,cos (π4-β2)=33,则cos (α+β2)=( )A.33 B .-33 C.539 D .-69(2)已知sin α=12+cos α,且α∈⎝⎛⎭⎫0,π2,则cos2αsin ⎝⎛⎭⎫α-π4的值为________. 【点评】 在进行三角恒等变换时,一个重要的技巧是进行角的变换,把求解的角用已知角表示出来,把求解的角的三角函数使用已知的三角函数表示出来,常见的角的变换有,把π2+2α变换成2⎝⎛⎭⎫π4+α,α=(α+β)-β=(α-β)+β,2α=(α+β)+(α-β),2α=(β+α)-(β-α),α+β=2·α+β2,α+β2=⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β等;在进行三角函数化简或者求值时,如果求解目标较为复杂,则首先要变换这个求解目标,使之简化,以便看出如何使用已知条件.难点二 三角函数的图象例2 (1)已知函数f (x )=A tan(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2,y =f (x )的部分图象如图所示,则f ⎝⎛⎭⎫π24=________.(2)要得到函数y =cos (2x +π3)的图象,只需将函数y =12sin2x +32cos2x 的图象( )A .向左平移π8个单位 B .向右平移π2个单位 C .向右平移π3个单位 D .向左平移π4个单位难点三 三角函数的性质例3已知函数f (x )=sin(2x +φ),其中φ为实数,若f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立,且f ⎝⎛⎭⎫π2>f (π),则f (x )的单调递增区间是( )A.⎣⎡⎦⎤k π-π3,k π+π6(k ∈Z)B.⎣⎡⎦⎤k π,k π+π2(k ∈Z)C.⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z)D.⎣⎡⎦⎤k π-π2,k π(k ∈Z)【规律方法】1.根据三角函数的图象求解函数的解析式时,要注意从图象提供的信息确定三角函数的性质,如最小正周期、最值,首先确定函数解析式中的部分系数,再根据函数图象上的特殊点的坐标适合函数的解析式确定解析式中剩余的字母的值,同时要注意解析式中各个字母的范围.2.进行三角函数的图象变换时,要注意无论进行的什么样的变换都是变换的变量本身,特别在平移变换中,如果这个变量的系数不是1,在进行变换时变量的系数也参与其中,如把函数y =sin ⎝⎛⎭⎫2x +π4的图象向左平移π12个单位时,得到的是函数y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π12+π4=sin2x +5π12的图象. 3.解答三角函数的图象与性质类的试题,变换是其中的核心,把三角函数的解析式通过变换,化为正弦型、余弦型、正切型函数,然后再根据正弦函数、余弦函数和正切函数的性质进行研究.难点四 正余弦定理的应用例4 、(1)在△A BC 中,若b =5,∠B =π4,sin A =13,则a =________.(2)在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B sin C ,则A 的取值范围是( )A ⎝⎛⎦⎤0,π6 B.⎣⎡⎭⎫π6,π C.⎝⎛⎦⎤0,π3 D.⎣⎡⎭⎫π3,π 难点五 函数的图象的分析判断例5 、在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B =2c -ab.(1)求sin C sin A 的值;(2)若cos B =14,b =2,求△ABC 的面积S .【点评】 本题的难点是变换cos A -2cos C cos B =2c -a b 时,变换方向的选取,即是把角的函数转化为边的关系,还是把边转化为角的三角函数,从已知式的结构上看,把其中三个内角的余弦转化为边的关系是较为复杂的,而根据正弦定理把其中边的关系转化为角的正弦,则是较为简单的,在含有三角形内角的三角函数和边的混合关系式中要注意变换方向的选择.正弦定理、余弦定理、三角形面积公式本身就是一个方程,在解三角形的试题中方程思想是主要的数学思想方法,要注意从方程的角度出发分析问题.探究点六 解三角形的实际应用例6、如图6-1,渔政船甲、乙同时收到同一片海域上一艘渔船丙的求救信号,此时渔船丙在渔政船甲的南偏东40°方向距渔政船甲70 km 的C 处,渔政船乙在渔政船甲的南偏西20°方向的B 处,两艘渔政船协调后立即让渔政船甲向渔船丙所在的位置C 处沿直线AC 航行前去救援,渔政船乙仍留在B 处执行任务,渔政船甲航行30 km 到达D 处时,收到新的指令另有重要任务必须执行,于是立即通知在B 处执行任务的渔政船乙前去救援渔船丙(渔政船乙沿直线BC 航行前去救援渔船丙),此时B 、D 两处相距42 km ,问渔政船乙要航行多少千米才能到达渔船丙所在的位置C 处实施营救?45°距A 处8海里处有一走私船,正沿南偏东75°的方向以12海里/小时的速度向我岸行驶,巡逻艇立即以123海里/小时的速度沿直线追击,问巡逻艇最少需要多长时间才能追到走私船?并指出巡逻艇航行方向.图6-2【规律技巧】1.使用正弦定理能够解的三角形有两类,一类是已知两边及其中一边的对角,一类已知一边和两个内角(实际就是已知三个内角),其中第一个类型也可以根据余弦定理列出方程求出第三边,再求内角.在使用正弦定理求三角形内角时,要注意解的可能情况,判断解的情况的基本依据是三角形中大边对大角.2.当已知三角形的两边和其中一个边的对角求解第三边时,可以使用正弦定理、也可以使用余弦定理,使用余弦定理就是根据余弦定理本身是一个方程,这个方程联系着三角形的三个边和其中的一个内角.3.正弦定理揭示了三角形三边和其对角正弦的比例关系,余弦定理揭示了三角形的三边和其中一个内角的余弦之间的关系. 【历届高考真题】 【2012年高考试题】 一、选择题1.【2012高考真题重庆理5】设tan ,tan αβ是方程2320xx -+=的两个根,则tan()αβ+的值为(A )-3 (B )-1 (C )1 (D )33.【2012高考真题新课标理9】已知0ω>,函数()sin()4f x x πω=+在(,)2ππ上单调递减.则ω的取值范围是( )()A 15[,]24 ()B 13[,]24()C 1(0,]2 ()D (0,2]4.【2012高考真题四川理4】如图,正方形ABCD 的边长为1,延长BA 至E ,使1AE =,连接EC 、ED 则sin CED ∠=( )A 、31010B 、1010C 、510D 、5157.【2012高考真题辽宁理7】已知sin cos 2αα-=,α∈(0,π),则tan α=(A) -1 (B) 22-(C)22(D) 18.【2012高考真题江西理4】若tan θ+1tan θ=4,则sin2θ=A .15 B. 14 C. 13 D. 129.【2012高考真题湖南理6】函数f (x )=sinx-c os(x+6π)的值域为 A .3332,32]10.【2012高考真题上海理16】在ABC ∆中,若C B A 222sin sin sin<+,则ABC ∆的形状是( )A .锐角三角形B .直角三角形C .钝角三角形D .不能确定13.【2012高考真题全国卷理7】已知α为第二象限角,33cos sin =+αα,则cos2α=(A) 5-3 (B )5-9 (C)59(D)53二、填空题14.【2012高考真题湖南理15】函数f (x )=sin (x ωϕ+)的导函数()y f x '=的部分图像如图4所示,其中,P 为图像与y轴的交点,A,C 为图像与x 轴的两个交点,B 为图像的最低点.(1)若6πϕ=,点P 的坐标为(0,332),则ω= ; (2)若在曲线段¼ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为 .17.【2012高考真题安徽理15】设ABC ∆的内角,,A B C 所对的边为,,a b c ;则下列命题正确的是_____①若2ab c >;则3C π<②若2a b c +>;则3C π<③若333ab c +=;则2C π<④若()2a b c ab +<;则2C π>⑤若22222()2ab c a b +<;则3C π>18.【2012高考真题福建理13】已知△ABC 得三边长成公比为2的等比数列,则其最大角的余弦值为_________.19.【2012高考真题重庆理13】设ABC ∆的内角,,A B C 的对边分别为,,a b c ,且53cos =A ,135cos =B ,3=b 则c = 20.【2012高考真题上海理4】若)1,2(-=n 是直线l 的一个法向量,则l 的倾斜角的大小为 (结果用反三角函数值表示)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2012年普通高等学校招生全国统一考试
数学(理工农医类)
一、选择题:本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.设集合M={-1,0,1},N={x|x 2≤x},则M ∩N= A.{0} B.{0,1} C.{-1,1} D.{-1,0,0}
2.命题“若α=4
π
,则tan α=1”的逆否命题是
A.若α≠
4
π
,则tan α≠1 B. 若α=
4
π
,则tan α≠1
C. 若tan α≠1,则α≠4
π
D. 若tan α≠1,则α=4
π
3.某几何体的正视图和侧视图均如图1所示,则该几何体的俯视图不可能是
4.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为 y =0.85x-8
5.71,则下列结论中不正确的是
A.y 与x 具有正的线性相关关系
B.回归直线过样本点的中心(x ,y )
C.若该大学某女生身高增加1cm ,则其体重约增加0.85kg
D.若该大学某女生身高为170cm ,则可断定其体重比为58.79kg 5. 已知双曲线C :
22
x a
-
22
y b
=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C 的方程为
A
2
20
x
-
2
5
y
=1 B
2
5
x
-
2
20
y
=1 C
2
80x
-
2
20
y
=1 D
2
20x
-
2
80
y
=1
6. 函数f (x )=sinx-cos(x+
6
π
)的值域为
A [ -2 ,2]
B
C [-1,1 ]
D [-2
, 2
]
7. 在△ABC 中,AB=2 AC=3 AB ²BC =
A
B
C D
来源:]
8 ,已知两条直线l1 :y=m 和 l2 : y=821m +(m >0),l1与函数y=|log2x|的图像从左至
右相交于点A ,B ,l2 与函数y= y=|log2x|的图像从左至右相交于C,D 记线段AC 和BD 在X 轴上的投影长度分别为a ,b ,当m 变化时,
b a
的最小值为
A B C D
二 ,填空题: 本大题共8小题,考生作答7小题,每小题5分 ,共35分,把答案填在答题卡中对应题号后的横线上
(一)选做题(请考生在第9.10 11三题中人选两题作答案,如果全做,则按前两题记分 ) 9. 在直角坐标系xOy 中,已知曲线C1:x=t+1 (t 为参数)与曲线C2 :x=asin θ
Y= 1-2t y=3cos θ
(θ为参数,a >0 ) 有一个公共点在X 轴上,则a 等于 ———— 10.不等式|2x+1|-2|x-1|>0的解集为_______.
11.如图2,过点P 的直线与圆O 相交于A ,B 两点.若PA=1,AB=2,PO=3,则圆O 的半径等于_______
(二)必做题(12~16题)
12.已知复数z=(3+i )2
(i 为虚数单位),则|z|=_____.
13.(
)6
的二项展开式中的常数项为 。

(用数字作答)
14.如果执行如图3所示的程序框图,输入x=-1,n=3,则输入的数S= [来源:学+科+网
Z+X+X+K]
15.函数f (x )=sin (
)的导函数y=f(x)的比分图像如图4所示,其中,P 为图像与轴的
交点,A,C 为图像与图像与x 轴的两个交点,B 为图像的最低点。

(1)若
,点P 的坐标为(02
,则 ABC 内的概率为
(2)若在曲线段 ABC 与x 轴所围成的区域内随机取一点,则该点在△ABC 内的概率为4。

16.设N=2n (n ∈N *
,n ≥2),将N 个数x 1,x 2,…,x N 依次放入编号为1,2,…,N 的N 个位置,
得到排列P 0=x 1x 2…x N 。

将该排列中分别位于奇数与偶数位置的数取出,并按原顺序依次放入对应的前
2
N 个数和后
2
N 个位置,得到排列P 1=x 1x 3…x N-1x 2x 4…x N ,
将此操作称为C 变换,将P 1分成两段,每段2
N 个数,并对每段作C 变换,得到P 2当2≤i
≤n-2时,将P i 分成2i
段,每段
个数,并对每段C 变换,得到P i+1,例如,当N=8时,
P 2=x 1x 5x 3x 7x 2x 6x 4x 8,此时x 7位于P 2中的第4个位置。

(1)当N=16时,x 7位于P 2中的第___个位置;
(2)当N=2n (n ≥8)时,x 173位于P 4中的第___个位置。

三、解答题:本大题共6小题,共75分。

解答应写出文字说明、证明过程或演算步骤。

17.(本小题满分12分)[来源:学.科.网Z.X.X.K]
某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示。

[来源:]
已知这100位顾客中的一次购物量超过8件的顾客占55%。

[来源:学§科§网Z§X§X§K] (Ⅰ)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;
(Ⅱ)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过
...2.5分钟的概率。

(注:将频率视为概率)[来源:学科网]
18.(本小题满分12分)
如图5,在四棱锥P-ABCD中,PA⊥平面ABCD,AB=4,BC=3,A D=5,∠DAB=∠ABC=90°,E是CD的中点。

[来源:学科网]
(Ⅰ)证明:CD⊥平面PAE;
(Ⅱ)若直线PB与平面PAE所成的角和PB与平面ABCD所成的角相等,求四棱锥P-ABCD 的体积。

19.(本小题满分12分)
已知数列{an的各项均为正数,记A(n)=a1+a2+……+a n,B(n)=a2+a3+……+a n+1,C(n)=a3+a4+……+a n+2,n=1,2,……。

[来源:Z|xx|]
(1)若a1=1,a2=5,且对任意n∈N﹡,三个数A(n),B(n),C(n)组成等差数列,求数列{a n}的通项公式。

(2)证明:数列{a n}是公比为q的等比数列的充分必要条件是:对任意n∈N﹡,三个数A(n),B(n),C(n)组成公比为q的等比数列。

20.(本小题满分13分)
某企业接到生产3000台某产品的A,B,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件)。

已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件。

该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为K(K为正整数)。

(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间;(2)假设这三种部件的生产同时开工,试确定正整数K的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案。

21.(本小题满分13分)[来源:学科网]
在直角坐标系xOy中,曲线C1的点均在C2:(x-5)2+y2=9外,且对C1上任意一点M,M 到直线x=﹣2的距离等于该点与圆C2上点的距离的最小值。

(Ⅰ)求曲线C1的方程
(Ⅱ)设P(x0,y0)(y0≠±3)为圆C2外一点,过P作圆C2的两条切线,分别于曲线C1相交
于点A,B和C,D。

证明:当P在直线x=﹣4上运动时,四点A,B,C,D的纵坐标之积为定值。

22.(本小题满分13分)
已知函数f(x)=e ax-x,其中a≠0。

(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合。

(2)在函数f(x)的图像上取定两点A(x1,f(x1)),B(x2,f(x2)(x1<x2),记直线AB的斜率为K,问:是否存在x0∈(x1,x2),使f′(x0)>k成立?若存在,求x0的取值范围;若不存在,请说明理由。

相关文档
最新文档