(汇总)现代控制理论复习知识点.ppt

合集下载

现代控制理论复习知识点 ppt课件

现代控制理论复习知识点 ppt课件
转化
能控标准I型(I在右上角) :Tc1 =? 能控标准II型(I在左下角):Tc2 =M 能观标准I型(I在右上角) : To1-1 =N 能观标准II型(I在左下角): To2-1 =?
现代控制理论复习知识点
4、对偶 5、能控、能观性分解
能控性分解:不完全能控,A21=0,Rc=? 能观性分解:不完全能观,A12=0,Ro=? 能控能观性分解:
现代控制理论复习知识点
要求内容:
包括线性定常系统状态方程齐次解,矩阵指数函数和 状态转移矩阵的概念及其计算方法,线性定常系统状 态方程的非齐次解,离散系统状态方程解,连续时间 系统状态方程离散化
自由运动的解 受迫运动的解 解的基本特征 相关概念:
矩阵指数函数、状态转移矩阵、齐次状态方程(非其 次状态方程)的解、离散时间系统状态方程的解
A特征值互异: Λ= T-1AT; T为特征值对应的特征向量; A特征值有重根: J = T-1AT;T为特征值对于的特征向
量及广义特征向量构成;
现代控制理论复习知识点
2.状态空间表达式之间的变换(续)
系统并联实现
n
特征值互异:递函数分部分式:
i 1
s
ci i
A=Λ, B=(1 1 … 1)T; C=(c1, …, cn)
A=Λ, B=(c1, …, cn)T; C=(1 1 … 1).
特征值有重复: (参考书上内容)
3.状态方程与传递函数的关系
特殊形式的状态矩阵:能控标准I、能观标准II直接 写出传递函数
公式:W = C(SI-A)-1B + D
现代控制理论复习知识点
4、离散时间系统的状态空间表达式
X(k+1) = G X(k) + H u(k) Y(k) = C X(k) + D u(k) 微分方程->差分方程; 传递函数->脉冲传递函数; G, H,C,D 与连续线性系统确定的方法一致。

现代控制理论课件PPT

现代控制理论课件PPT
西华大学电气与电子信息学院
▪ 系统辨识(系统辨识,参数估计) 未知系统的建模,在仅知道y和u,根据输入输出关系建立 系统模型。 包括两部分:模型结构及模型参数的确立。 系统辨识:包括模型结构及参数的辨识; 参数估计:模型结构已定,估计其参数;以下三阶系统: a3 y(3) a2 y(2) a1 y' a0 y b0u
问题称为极点配置问题。
3)使一个MIMO系统实现一个输入只控制一个输出作为
性能指标,相应的综合问题称为解耦问题。
4)将系统的输出y(t)无静差地跟踪一个外部信号 u(t) 的能
力,作为性能指标,相应的综合问题称为跟踪问题。
西华大学电气与电子信息学院
3 控制系统仿真 系统
建立数 学模型
仿真 实验
结果分析
模型
计算机
建立仿真模型
MATLAB工程软件简介
在控制类学科中, MATLAB/Simulink是首选的计算机 工具。 MATLAB软件中有大量的MATLAB配套工具箱 功能强大的控制系统仿真环境SIMULINK,它用形象的图 形环境为控制系统的分析设计提供了很好的试验工具。
西华大学电气与电子信息学院
F135-PW-100
西华大学电气与电子信息学院
蒸气发电机的谐调控制系统模型
西华大学电气与电子信息学院
0.1.2 现代控制理论和经典控制理 论的区别
经典控制理论
单输入单输出(SISO) 黑箱问题,不完全描述 近似分析、设计,采用拼凑法 无法考虑系统的初始条件(传递函数的定义) 传递函数、微分方程 时域法、根轨迹法、频域法
现代控制理论
宋潇潇 西华大学电气与电子信息学院
现代控制理论
地位和重要性 所需基础知识 知识构架 笔记和课件 出勤和考试

1.2-现代控制理论的主要内容PPT优秀课件

1.2-现代控制理论的主要内容PPT优秀课件
6
最优控制(1/1)
1.2.2 最优控制
最优控制理论是研究和解决从一切可能的控制方案中寻找最 优解的一门学科。 ➢ 具体地说就是研究被控系统在给定的约束条件和性能指 标下,寻求使性能指标达到最佳值的控制规律问题。 ➢ 例如要求航天器达到预定轨道的时间最短、所消耗的燃 料最少等。
该分支的基本内容和常用方法为 ➢ 变分法; ➢ 庞特里亚金的极大值原理; ➢ 贝尔曼的动态规划方法。
8
随机系统理论和最优估计(2/2)
最优估计讨论根据系统的输入输出信息估计出或构造出随机 动态系统中不能直接测量的系统内部状态变量的值。 ➢ 由于现代控制理论主要以状态空间模型为基础,构成反馈 闭环多采用状态变量,因此估计不可直接测量的状态变量 是实现闭环控制系统重要的一环。 ➢ 该问题的困难性在于系统本身受到多种内外随机因素扰 动,并且各种输入输出信号的测量值含有未知的、不可测 的误差。
系统辨识是重要的建模方法,因此亦是控制理论实现和应用 的基础。 ➢ 系统辨识是控制理论中发展最为迅速的领域,它的发展还 直接推动了自适应控制领域及其他控制领域的发展。
11
自适应控制(1/5)
1.2.5 自适应控制
自适应控制研究当被控系统的数学模型未知或者被控系统的 结构和参数随时间和环境的变化而变化时,通过实时在线修正 控制系统的结构或参数使其能主动适应变化的理论和方法。 ➢ 自适应控制系统通过不断地测量系统的输入、状态、输 出或性能参数,逐渐了解和掌握对象,然后根据所得的信息 按一定的设计方法,做出决策去更新控制器的结构和参数 以适应环境的变化,达到所要求的控制性能指标。 ➢ 该分支诞生于1950年代末,是控制理论中近60年发展最为 迅速、最为活跃的分支。
12
自适应控制(2/5)

现代控制理论(II)-讲稿课件ppt

现代控制理论(II)-讲稿课件ppt

03
通过具体例子说明最小值原理在最优控制问题中的应
用方法。
06 现代控制理论应用案例
倒立摆系统稳定控制
倒立摆系统模型建立
分析倒立摆系统的物理特性,建立数学模型,包括运动方程和状态 空间表达式。
控制器设计
基于现代控制理论,设计状态反馈控制器,使倒立摆系统实现稳定 控制。
系统仿真与实验
利用MATLAB/Simulink等工具进行系统仿真,验证控制器的有效性; 搭建实际实验平台,进行实时控制实验。
最优控制方法分类
根据性能指标的类型和求解方法, 最优控制可分为线性二次型最优控 制、最小时间控制、最小能量控制 等。
最优控制应用举例
介绍最优控制在航空航天、机器人、 经济管理等领域的应用实例。
05 最优控制理论与方法
最优控制问题描述
控制系统的性能指标
定义控制系统的性能评价标准,如时间最短、能量最小等。
随着网络技术的发展,分布式控制系统逐渐 成为现代控制理论的研究热点,如多智能体 系统、协同控制等。
下一步学习建议
01
02
03
04
深入学习现代控制理论相关知 识,掌握更多先进的控制方法
和技术。
关注现代控制理论在实际系统 中的应用,了解不同领域控制
系统的设计和实现方法。
加强实践环节,通过仿真或实 验验证所学理论知识的正确性
机器人运动学建模
分析机器人的运动学特性, 建立机器人运动学模型, 描述机器人末端执行器的 位置和姿态。
运动规划算法设计
基于现代控制理论,设计 运动规划算法,生成机器 人从起始点到目标点的平 滑运动轨迹。
控制器设计与实现
设计机器人运动控制器, 实现机器人对规划轨迹的 精确跟踪;在实际机器人 平台上进行实验验证。

现代控制理论(8-11讲:第3章知识点)

现代控制理论(8-11讲:第3章知识点)

f () I - A n an1 n1 a1 a0
f (A) An an1An1 a1A a0I 0
f () I - A 2 5 7 0
用A代替λ ,则
f (A) A 5A 7I 0
1 2 2 t 0 0 1t 2! 1 1 1 .. .. 0 nt 1 0
1 2 2 1 k k P (I + At + A t + ... + A t + ...)P 2! k!
11
习题: 2.4 (2) (3) 2.5 (1):1, 2
12
(2)系统矩阵A具有n重特征值: 则
Φ(t ) e
At
i t e Q
te e
i t
i t
0
1 ( n 1) i t ... t e (n 1)! 1 ... ... Q .. tei t i t e
2
15
例2:设矩阵为:
0 0 A 0 1
1 0 0 0
0 1 0 0
0 0 1 0
试用Cayly-Hamilton定理,求A7-A3+2I。 解:
0 1 0 0 1 0 4 1 0 I A 0 0 1 1 0 0
At
e 0 (t )I 1 (t )A an1 (t )A
At
n1
证: A 即
n
an1A
n1
a1A a0I 0
An an1An1 a1A a0I
an1 (an1An1 a1A a0I) an2 A n1 ... a0 A

现代控制理论知识点复习

现代控制理论知识点复习

第一章 控制系统的状态空间表达式1. 状态空间表达式n 阶 Du Cx y Bu Ax x+=+=&1:⨯r u 1:⨯m y n n A ⨯: r n B ⨯: n m C ⨯:r m D ⨯:A 称为系统矩阵,描述系统内部状态之间的联系;B为输入(或控制)矩阵,表示输入对每个状态变量的作用情况;C 输出矩阵,表示输出与每个状态变量间的组成关系,D 直接传递矩阵,表示输入对输出的直接传递关系。

2. 状态空间描述的特点①考虑了“输入-状态-输出”这一过程,它揭示了问题的本质,即输入引起了状态的变化,而状态决定了输出。

②状态方程和输出方程都是运动方程。

③状态变量个数等于系统包含的独立贮能元件的个数,n 阶系统有n 个状态变量可以选择。

④状态变量的选择不唯一。

⑤从便于控制系统的构成来说,把状态变量选为可测量或可观察的量更为合适。

⑥建立状态空间描述的步骤:a 选择状态变量;b 列写微分方程并化为状态变量的一阶微分方程组;c 将一阶微分方程组化为向量矩阵形式,即为状态空间描述。

⑦状态空间分析法是时域内的一种矩阵运算方法,特别适合于用计算机计算。

3. 模拟结构图(积分器 加法器 比例器)已知状态空间描述,绘制模拟结构图的步骤:积分器的数目应等于状态变量数,将他们画在适当的位置,每个积分器的输出表示相应的某个状态变量,然后根据状态空间表达式画出相应的加法器和比例器,最后用箭头将这些元件连接起来。

4. 状态空间表达式的建立① 由系统框图建立状态空间表达式:a 将各个环节(放大、积分、惯性等)变成相应的模拟结构图;b 每个积分器的输出选作i x ,输入则为i x &;c 由模拟图写出状态方程和输出方程。

② 由系统的机理出发建立状态空间表达式:如电路系统。

通常选电容上的电压和电感上的电流作为状态变量。

利用KVL 和KCL 列微分方程,整理。

③由描述系统的输入输出动态方程式(微分方程)或传递函数,建立系统的状态空间表达式,即实现问题。

现代控制理论ppt课件

现代控制理论ppt课件

5.2 极点配置
设状态反馈系统希望的极点为 s1, s2, , sn
其特征多项式为
n
Δ*K (s) (s si ) sn an*1sn1 a1*s a0* i 1
选择 k使i 同次幂系数相同。有
K a0* a0 a1* a1 an*1 an1
而状态反馈矩阵 K KP k0 k1 kn1 9
βn-1sn1 βn-2sn2 β1s sn an-1sn1 a1s a0
β0
(s) (s)
引入状态反馈 u V Kx V KP1x V Kx

K KP 1 k0 k1 kn1
其中 k0 , k1, , kn1为待定常数
7
5.2 极点配置
0 1
0 0
5
5.2 极点配置
证明:充分性
线性定常系统
x Ax Bu
y
Cx
经过线性变换 x P1x ,可以使系统具有能控标准形。
0 1 0 0
x
0
0
1
0
0
x
u
0
0 0
1
a0 a1 an1
0 1
y β0 β1 βn1 x
6
5.2 极点配置
系统传递函数:g(s) C[sI A]1b C [sI A]1b
0 0 1 P 0 1 12
16
1 18 144
5.2 极点配置
0 0 1
k kP 4 66 140 1 12
1 18 144
14 186 1220
17
5.2 极点配置
方法二:
k k1 k2 k3
s k1 k2
k3
a*
(
s)

现代控制理论ppt

现代控制理论ppt
x ( t ) f x ( t ) u( t ) y ( t ) g x ( t ) u( t )
1.1.2 控制系统的状态空间表达式
5.非线性时变系统:
x( t ) f x( t ), u( t ), t y( t ) g x( t ), u( t ), t
但因 uc1+uc2+uc3=0
显然他们是线性相关的,故只有两个变量是独立 的,因此,最小变量组的个数应是二。
一般的: 状态变量个数=系统含有独立储能元件的个数 =系统的阶数 对于n阶系统,有n个状态变量: x1(t), x2(t), … xn(t) ﹡状态变量具有非唯一性的:
1.1.1 状态、状态变量和状态空间
1 控制系统的状态空间模型
我们把这种输入/输出描述的数学模型称为系统 的外部描述,内部若干变量,在建模的中间过程, 被当作中间变量消掉了。 现代理论模型:由状态变量构成的一阶微分方 程组来描述,其中包含了系统全部的独立变量。 特别是在数字计算机上求解一阶微分方程组比 求解与之相应的高阶微分方程要容易得多,而且能 同时给出系统的全部独立变量的响应。此外,在求 解过程中,还可以方便地考虑初始条件产生的影响。 因而能同时确定系统内部的全部运动状态。
数学模型:描述系统动态行为的数学表达式, 称为控制系统的数学模型。 经典理论模型:用一个高阶微分方程或传递函 数描述。系统的动态特性仅仅由一个单输出对给定 输入的响应来表征。
实际上,系统内部还有若干其他变量,他们之 间(包含输出变量在内)是相互独立的。关于他们 对输入的响应是不易相互导出的,必须重新分别建 模求解。由此可见,单一的高阶微分方程,是不能 完全揭示系统内全部运动状态的。
1.1.1 状态、状态变量和状态空间

现代控制理论(1-8讲第1-2章知识点)精品PPT课件

现代控制理论(1-8讲第1-2章知识点)精品PPT课件

dia dt
Ke
I fD Coபைடு நூலகம்st
n f Const
nDJ , f
其中:Kf 为发电机增益常数;Ke 为电动机反电势常数。
(3).电动机力矩平衡方程:J
d
dt
f
Kmia
(Km
-电动机转矩常数)
以上三式可改写为:
d
dt
f J
Km J
ia
dia dt
Ke Ra
La
La
ia
Kf La
if
试写出其状态空间表达式。
解:选择相变量为系统的状态变量,有


•• •
x1 y x2 y x1 x3 y x2



x1 x2

x2 x3

x3
a0 a3
x1
a1 a3
x2
a2 a3
x3
1 a3
u

0
x 0
a0
a3
1 0 a1 a3
0
0
1 x 0 u
a2
1
a3 a3
a1 y a0 y
bnu (n)
b u (n1) n 1
b0u
(1)
分为两种情况讨论。
一、输入信号不含有导数项:
此时系统的运动方程为:

y(n)
a y(n1) n1
a1 y a0 y b u
故选
x1 y

x2 y
..
xn1
y(n2)
xn y(n1)
对左边各式求导一次,即有
18
24
2-3 化系统的频域描述为状态空间描述

现代控制理论理论.ppt

现代控制理论理论.ppt

(t) eAt
1
(sI

A)1

2et 2et
e2t 2e2t
et e2t
et

2e2t

1(t)

(t)

e At

2et 2et
e2t 2e2t
et e2t
et

2e2t

§2 状态转移矩阵的求解
(m
1
1)
!
t
m1

e At e1t
1t
.
.
(m
1
2)
!
t
m
1

...
.


..
.


.
t

0
1

(2-23)
§2 状态转移矩阵的求解
若矩阵A为一约当矩阵,即
A1


A

J


A2


Aj

其中 A1, A2 , , Aj 为约当块
(t) eAt
(2-9)
t0 0
(t t0 ) e A(tt0 )
(2-10)
§1 自由运动
齐次方程的解,可表示为
x(t) (t)x(0)

x(t) (t t0)x(t0)
(2-11) (2-12)
上式表明齐次状态方程的解,在初始状态确定情况下,由状态
转移矩阵唯一确定,即状态转移矩阵 (t)包含了系统自由运动的全
§2 状态转移矩阵的求解
例2-5
考虑如下矩阵

现代控制理论ppt

现代控制理论ppt

求解方法
通过利用拉格朗日乘子法或Riccati方程,求 解线性二次调节器问题,得到最优控制输入

动态规划与最优控制策略
动态规划的基本思想
将一个多阶段决策问题转化为一系列单 阶段问题,通过求解单阶段问题得到多 阶段的最优解。
பைடு நூலகம்
VS
最优控制策略的确定
根据动态规划的递推关系,逐步求解每个 阶段的优化问题,最终得到最优控制策略 。
总结词
稳定性分析是研究非线性系统的重要方法,主要关注系统在受到扰动后能否恢 复到原始状态或稳定状态。
详细描述
稳定性分析通过分析系统的动态行为,判断系统是否具有抵抗外部干扰的能力。 对于非线性系统,稳定性分析需要考虑系统的初始状态、输入信号以及系统的 非线性特性等因素。
非线性系统的控制设计方法
总结词
要点二
详细描述
线性系统是指在输入和输出之间满足线性关系的系统,即 系统的输出量可以用输入量的线性组合来表示。线性系统 的性质包括叠加性、均匀性和时不变性等。叠加性是指多 个输入信号的响应等于各自输入信号响应的总和;均匀性 是指系统对不同频率信号的响应是一样的;时不变性是指 系统对时间的变化不敏感,即系统在不同时刻的响应是一 样的。
量随时间的变化规律,输出方程描述了输出量与状态变量之间的关系。
线性系统的稳定性分析
• 总结词:稳定性是控制系统的重要性能指标之一,线性系统的稳定性分 析是现代控制理论的重要研究内容。
• 详细描述:稳定性是控制系统的重要性能指标之一,如果一个系统受到 扰动后能够自我恢复到原来的状态,那么这个系统就是稳定的。线性系 统的稳定性分析是现代控制理论的重要研究内容,常用的方法有劳斯赫尔维茨稳定判据和奈奎斯特稳定判据等。劳斯-赫尔维茨稳定判据是 一种基于系统极点的判据,通过判断系统的极点是否都在复平面的左半 部分来判断系统的稳定性;奈奎斯特稳定判据是一种基于频率域的判据, 通过判断系统的频率响应是否在复平面的右半部分来判断系统的稳定性。

现代控制理论课件

现代控制理论课件

图中,I为(n n )单位矩阵,s是拉普拉斯算子,z为单位延时算子。
9
❖ 讨论: 1、状态变量的独立性。
2、由于状态变量的选取不是唯一的,因此状态方程、输出方程、 动态方程也都不是唯一的。但是,用独立变量所描述的系统的维数应该是 唯一的,与状态变量的选取方法无关。
3、动态方程对于系统的描述是充分的和完整的,即系统中的任 何一个变量均可用状态方程和输出方程来描述。 例1-1 试确定图8-5中(a)、(b)所示电路的独立状态变量。图中u、i分别是是输入
y2
up
yq
被控过程
5
典型控制系统由被控对象、传感器、执行器和控制器组成。
被控过程具有若干输入端和输出端。
数学描述方法: 输入-输出描述(外部描述):高阶微分方程、传递函数矩阵。
种完整的描述。
状态空间描述(内部描述):基于系统内部结构,是对系统的一
6
1.2 状态空间描述常用的基本概念
1) 输入:外部对系统的作用(激励); 控制:人为施加的激励;
3) 状态空间:以状态向量的各个分量作为坐标轴所组成的n维空间称为状态空间。 4) 状态轨线:系统在某个时刻的状态,在状态空间可以看作是一个点。随着时间的
推移,系统状态不断变化,并在状态空间中描述出一条轨迹,这种轨迹称为状态 轨线或状态轨迹。
5) 状态方程:描述系统状态变量与输入变量之间关系的一阶向量微分或差分方程称
b2
p
bnp
c11 c12 c1n
C
c21
c22
c2n
cq1 cq2
cqn
d11 d12 L
D
d21
d22
L
d2
p
M
dqp

《现代控制理论》PPT课件

《现代控制理论》PPT课件

精选ppt
8
4、控制理论发展趋势
❖ 企业:资源共享、因特网、信息集成、 信息技术+控制技术 (集成控制技术)
❖ 网络控制技术
❖ 计算机集成制造CIMS:(工厂自动化)
பைடு நூலகம்
精选ppt
9
三、现代控制理论与古典控制理论的对比
❖ 共同 对象-系统 主要内容 分析:研究系统的原理和性能 设计:改变系统的可能性(综合性能)
❖ 现代控制理论 哈工大 机械专业硕研
精选ppt
12
精选ppt
7
3.智能控制理论 (60年代末至今)
❖ 1970——1980 大系统理论 控制管理综合 ❖ 1980——1990 智能控制理论 智能自动化 ❖ 1990——21c 集成控制理论 网络控制自动化
(1) 专家系统;(2)模糊控制,人工智能 (3) 神经网络,人脑模型;(4)遗传算法 控制理论与计算机技术相结合→计算机控制技术
现代控制理论
Modern Control Theory
精选ppt
1
绪论
❖ 学习现代控制理论的意义: 1.是所学专业的理论基础 2.是研究生阶段提高理论水平的重要环节。 3. 是许多专业考博士的必考课。
精选ppt
2
一、控制的基本问题
❖ 控制问题:对于受控系统(广义系统)S,
寻求控制规律μ(t),使得闭环系统满足给
现代控制理论发展的主要标志 (1)卡尔曼:状态空间法; (2)卡尔曼:能控性与能观性; (3)庞特里雅金:极大值原理;
精选ppt
6
现代控制理论的主要特点
❖ 研究对象: 线性系统、非线性系统、时变系统、多 变量系统、连续与离散系统
❖ 数学上:状态空间法

《现代控制理论》复习提纲2017

《现代控制理论》复习提纲2017

现代控制理论复习提纲第一章:绪论(1)现代控制理论的基本内容包括:系统辨识、线性系统理论、最优控制、自适应控制、最优滤波(2)现代控制理论与经典控制理论的区别笫二章:控制系统的状态空间描述1•状态空间的基本概念;系统、系统变量的组成、外部描述和内部描述、状态变量、状态向量、状态空间、状态方程、状态空间表达式、输出方程2.状态变量图概念、绘制步骤;3 •山系统微分方程建立状态空间表达式的建立;1.2.1第三章:线性控制系统的动态分析1.状态转移矩阵的性质及其计算方法(1)状态转移矩阵的基本定义;(2)儿个特殊的矩阵指数;(3)状态转移矩阵的基本性质(以课本上的5个为主);(4)状态转移矩阵的计算方法掌握:2. 2.2方法一:定义法方法二:拉普拉斯变换法例题2-2笫四章:线性系统的能控性和能观测性(1)状态能控性的概念状态能控、系统能控、系统不完全能控、状态能达(2)线性定常连续系统的状态能控性判别包括;格拉姆矩阵判据、秩判据、约当标准型判据、PBH判据掌握秩判据、PBH判据的计算(3)状态能观测性的概念状态能观测、系统能观测、系统不能观测(4)线性定常连续系统的状态能观测性判别包括;格拉姆矩阵判据、秩判据、约当标准型判据、PBH判据掌握秩判据、PBH判据的计算(5)能控标准型和能观测标准型只有状态完全能控的系统才能变换成能控标准型,掌握能控标准I型和II型的只有状态完全能观测的系统才能变换成能控标准型,掌握能观测标准I型和II型的计算方法笫五章:控制系统的稳定性分析(1)平衡状态(2)李雅普诺夫稳定性定义:李雅普诺夫意义下的稳定概念、渐进稳定概念、大范II稳定概念、不稳定性概念(3)线性定常连续系统的稳定性分析例4- 6第六章线性系统的综合(1)状态反馈与输出反馈(2)反馈控制对能控性与观测性的影响复习题1.和统称为系统变量。

2.系统的状态空间描述由态方程。

和组成,又称为系统的动3.状态变量图是由和构成的图形。

现代控制理论课件

现代控制理论课件

y2
up
yq
被控过程
12
典型控制系统由被控对象、传感器、执行器和控制器组成。
被控过程具有若干输入端和输出端。
数学描述方法: 输入-输出描述(外部描述):高阶微分方程、传递函数矩阵。
种完整的描述。
状态空间描述(内部描述):基于系统内部结构,是对系统的一
13
1.2 状态空间描述常用的基本概念
1) 输入:外部对系统的作用(激励); 控制:人为施加的激励;
8
❖ 经典控制理论:
引论
数学模型:线性定常高阶微分方程和传递函数;
分析方法: 时域法(低阶1~3阶)
根轨迹法 频域法
近似分析
适应领域:单输入-单输出(SISO)线性定常系统
缺 点:只能反映输入-输出间的外部特性,难以揭示系统内部的结构和运行状态。
❖ 现代控制理论:
数学模型:以一阶微分方程组成差分方程组表示的动态方程
6
❖ 现代控制理论的基本内容 ❖ 科学在发展,控制论也在不断发展。所以“现代”两个字加在“控制理
论”前面,其含义会给人误解的。实际上,我们讲的现代控制理论指的 是五六十年代所产生的一些控制理论,主要包括: ❖ 用状态空间法对多输入多输出复杂系统建模,并进一步通过状态方程求 解分析,研究系统的可控性、可观性及其稳定性,分析系统的实现问题; ❖ 用变分法、最大(最小)值原理、动态规划原理等求解系统的最优控制 问题;其中常见的最优控制包括时间最短、能耗最少等等,以及它们的 组合优化问题;相应的有状态调节器、输出调节器、跟踪器等综合设计 问题; ❖ 最优控制往往要求系统的状态反馈控制,但在许多情况下系统的状态是 很难求得的,往往需要一些专门的处理方法,如卡尔曼滤波技术来求得。 这些都是现代控制理论的范畴。 ❖ 六十年代以来,现代控制理论各方面有了很大的发展,而且形成几个重 要的分支课程,如线性系统理论,最优控制理论,自适应控制理论,系 统辩识理论,等等。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
演示课件
第二章 系统解的表达式
要求内容: 包括线性定常系统状态方程齐次解,矩阵指数函数和
状态转移矩阵的概念及其计算方法,线性定常系统状 态方程的非齐次解,离散系统状态方程解,连续时间 系统状态方程离散化 自由运动的解 受迫运动的解 解的基本特征 相关概念: 矩阵指数函数、状态转移矩阵、齐次状态方程(非其 次状态方程)的解、离散时间系统状态方程的解
演示课件
第一章复习要点
2.状态空间表达式之间的变换(续)
系统并联实现
n特征值互异:递函数分Fra bibliotek分式: i 1
ci
s i
A=Λ, B=(1 1 … 1)T; C=(c1, …, cn)
A=Λ, B=(c1, …, cn)T; C=(1 1 … 1).
特征值有重复: (参考书上内容)
3.状态方程与传递函数的关系
特殊形式的状态矩阵:能控标准I、能观标准II直接 写出传递函数
公式:W = C(SI-A)-1B + D
演示课件
第一章复习要点
4、离散时间系统的状态空间表达式
X(k+1) = G X(k) + H u(k) Y(k) = C X(k) + D u(k) 微分方程->差分方程; 传递函数->脉冲传递函数; G, H,C,D 与连续线性系统确定的方法一致。
现代控制理论 考试时间:待定 答疑时间:待定 答疑地点:待定
演示课件
第一章 状态空间表达式
要求内容:
动力系统的状态,状态变量,状态空间表达式的基本概念; 状态空间表达式的模拟结构图;状态空间表达式的建立及其 线性变换(对角标准形和约当标准形);由状态空间表达式 传递函数阵
完整理解建立状态空间表达式的基本方法 同一系统在线性等价变换下的不同表达 与传递函数的关系 相关概念:
线性离散时间系统能控性和能观测性定义,判据;能控性和能 观测性的对偶关系,能控标准形,线性系统的传递函数(阵) 中零极点对消与状态能控性,能观测性的关系 对偶原理 标准型和结构分解 与极/零相消的关系 相关概念: 能控性、能观性、能控性(能观性)判据、对偶原理、能控 标准型、能观标准型、结构分解、最小实现、零极点对消
演示课件
第二章复习要点
1.线性定常齐次状态方程的解 (自由运动)
X’=AX x(t)=Φ(t-t0) x(t0) =eA(t-t0)x(t0), tt0 Φ(t) =eAt:状态转移矩阵
2、状态转移矩阵
性质; 计算:
特殊的状态转移矩阵: A=Λ ? A=J ? 利用特殊的状态转移矩阵: eAt=Te ΛtT-1 ; eAt=Te Jt T-1 拉式变换:eAt = L-1 [(SI-A)-1] 凯莱哈密顿定理: e演A示t 课=件α0I +α1A+… +αnAn-1
第二章复习要点
2、状态转移矩阵(续)
-α系数的求法:特征值互异;特征值有重复
3、线性定常非齐次方程的解 (自由运动+受迫运动)
x’=Ax+Bu x(t)=?
4、离散时间系统状态方程的解
x(k+1) = G x(k) + H u(k) x(k)=? Gk难求,转化为: Gk=T Λk T-1 Z变换法:x(k)= Z-1[ (ZI-G)-1 ( Zx(0) + Hu(z) ) ]
演示课件
第三章复习要点
1、能控、能观性的定义 2、能控、能观性的判别
能控
特殊情况判别:对角线,特征值互异;约当阵,特征值 有重复
M满秩,M=?注意矩阵维数
能观
特殊情况判别:对角线,特征值互异;约当阵,特征值 有重复
N满秩,N=?注意矩阵维数
离散时间系统的能控能观性判别M, N->G, H。
演示课件
第二章复习要点
5、连续时间系统空间表达式的离散化
x’=Ax+Bu, y=Cx+Du; x(k+1) = Gx(k) + Hu(k); y(k)=Cx(k)+Du(k) G=? H=?
演示课件
第三章 能控性和能观性
要求内容: 线性连续定常系统能控性定义,判据,能观测性定义,判据;
状态,状态空间表达式、状态方程、输出方程、模拟结构图、 实现问题、友矩阵、线性变换(坐标变换)、特征值、(独 立)特征向量、约当矩阵、传递函数阵等
演示课件
第一章复习要点
1. 建立连续时间系统的状态空间表达式
系统结构图建立
转化为有积分号的模拟图,取状态变量,根据变量 关系写出一阶微分方程组,状态空间表达式
系统机理(电气系统、动力学系统)
取状态变量,建立微分方程,整理,写出状态空间 表达式
传递函数
能控标准I型(直接写出),能观标准II型(B计算系 数)
微分方程
左端最高次项,左右两端积分,取变量,整理 转化为传递函数,写演示出课件状态空间表达式。
第一章复习要点
2.状态空间表达式之间的变换
演示课件
第三章复习要点
3、标准型及转化 (单输入单输出,系统能控)
标准型:
能控标准I型 A (I在右上角),B=(0, … 0, 1)T,C 能控标准II型 A (I在左下角), B=(1, 0, … 0)T ,C 能观标准I型 A (I在右上角) ,B,C=(1, 0, …, 0) 能观标准II型 A(I在左下角),B,C= (0, …, 0 1) 直接写出传递函数: 能控I,能观II
既不完全能控,也不完全能观; A=?,B=?, C=(C1, 0, C2, 0) 两阶段法:先能控分解,后能观分解,此方法不一定保
转化
能控标准I型(I在右上角) :Tc1 =? 能控标准II型(I在左下角):Tc2 =M 能观标准I型(I在右上角) : To1-1 =N 能观标准II型(I在左下演示角课件): To2-1 =?
第三章复习要点
4、对偶 5、能控、能观性分解
能控性分解:不完全能控,A21=0,Rc=? 能观性分解:不完全能观,A12=0,Ro=? 能控能观性分解:
特殊的两种矩阵:对角阵、约当阵 矩阵变换:设x=Tz,
A’ = T-1AT;B’ = T-1B;C’=CT; D不变。
特征值不变化 将任意矩阵转化为特殊矩阵
A特征值互异: Λ= T-1AT; T为特征值对应的特征向量; A特征值有重根: J = T-1AT;T为特征值对于的特征向
量及广义特征向量构成;
相关文档
最新文档