完整版初一上学期期末计算题汇总

合集下载

初一数学期末考试题附答案

初一数学期末考试题附答案

【点评】此题考查了平移中点的改变规律,横坐标右移加,左移
组的解集是解答此题的关键.
减;纵坐标上移加,下移减.左右移动转变点的横坐标,上下移动转
18.△DEF〔三角形〕是由△ABC 平移得到的,点 A〔﹣1,﹣4〕的
变点的纵坐标.
对应点为 D〔1,﹣1〕,则点 B〔1,1〕的对应点 E,点 C〔﹣1,4〕的
④假如 b⊥a,c⊥a,那么 b∥c,是真命题.
20.已知三条不同的直线 a,b,c 在同一平面内,以下四个命题:
本文格式为 Word 版,下载可任意编辑
初一数学期末考试题附答案
【分析】先由已知条件得出∠1+∠2=90°,再依据平角的定义得 出∠1+∠DCE+∠2=180°,则∠DCE=90°,由垂直的定义可知 CD 与 CE
相互垂直.
1. 的算术平方根是 2 .
【解答】解:∵∠1=53°,∠2=37°,
【考点】算术平方根.
行,同位角相等. 10.如图,用同样规格的黑、白两色正方形瓷砖铺设地面,请观看
图形回答下列问题:第 n 个图形中需用黑色瓷砖 4n+4 块.〔用含 n
的代数式表示〕 【考点】规律型:图形的改变类. 【分析】由题意可知:第 n 个图形的瓷砖的总数有〔n+2〕2 个,
白瓷砖的数量为 n2 个,用总数减去白瓷砖的数量即为黑瓷砖的数量. 【解答】解:∵第 1 个图形中需用黑色瓷砖 32﹣12=8 块, 第 2 个图形中需用黑色瓷砖 42﹣22=12 块, 第 3 个图形中需用黑色瓷砖 52﹣32=16 块, … ∴第 n 个图形中需用黑色瓷砖〔n+2〕2﹣n2=4n+4 块. 故答案为:4n+4. 【点评】此题考查图形的改变规律,找出图形之间的联系,得出

2023-2024年人教版七年级上册数学期末计算题综合专题训练(含解析)

2023-2024年人教版七年级上册数学期末计算题综合专题训练(含解析)

2023-2024年人教版七年级上册数学期末计算题综合专题训练参考答案:【点睛】本题考查了有理数的混合运算,掌握相关运算法则是解答本题的关键.7.(1)(2)【分析】本题考查了整式的加减混合运算,去括号.(1)先将括号去掉,再合并同类项即可;(2)先将括号去掉,再合并同类项即可.【详解】(1)解:.(2)解:.8.(1)(2)【分析】本题考查了整式的加减.(1)按照合并同类项法则进行计算即可;(2)先去括号,再合并同类项即可.熟练掌握去括号法则及合并同类项法则是解题的关键.注意:和是同类项,和是同类项.【详解】(1)34=-1=-42x y-233ab b --()()8745x y x y ---8745x y x y=--+42x y =-()()2222232a b ab a b -⎦⎡⎤-+--⎣()22222322a b ab a b =--+--22222322a b ab a b =---+-233ab b =--2234x y xy -24425x x --+2x y 22yx 23xy -2y x -222232x y xy yx y x-+-222223x y yx xy y x=+--2234x y xy =-(2)9.(1)(2)【分析】本题主要考查了整式加减运算;(1)根据合并同类项法则进行计算即可;(2)先去括号,然后再合并同类项即可;解题的关键是熟练掌握去括号法则和合并同类项法则,准确计算.【详解】(1)解:;(2)解:.10.【分析】本题考查了整式的化简求值,掌握混合运算的运算顺序,先化简,再代入求值是解答本题的关键.先去括号,再合并同类项,将整式化为最简,然后把的值代入,得到答案.【详解】解:根据题意得:,当时,原式22225325()()x x x --+-222410615x x x =-+-+222105641x x x =+--+24425x x =--+2624xy y -+242a +2242326xy y y xy +--++()()()2242362xy xy y y ++-+-=2624xy y =-+()()224123a a a +---224123a a a =+--+242a =+12-a ()()2224324a a a a a -+--323228628a a a a a =-+-+6a =2a =-()62=⨯-【分析】(1)合并同类项可得的最简结果;(2)若的值与y 的取值无关,则,即可得出答案.【详解】(1)解:;(2)解:,∵的值与y 的取值无关,∴,解得,∴x 的值为3.【点睛】本题考查整式的加减,熟练掌握运算法则是解答本题的关键.15.(1)(2)【分析】(1)把,代入,化简得:;再把代入,即可.(2) 把,代入,化简得,根据的值与无关,即可求出的值.【详解】(1)∵;∴把代入∴(2)∵,∴+A B +A B 30x -=22323133A B x xy y x xy +=++-+-2631x xy y =-+-226316(3)1A B x xy y x x y +=-+-=+--+A B 30x -==3x 94x --4m =-A B (3)A A B --44x mx ---5m =A B 2A B -(4)4m x ++2A B -x m 323A x x =++322B x mx =-+(3)2A A B A B--=-+332(23)22x x x mx =-+++-+44x mx =---5m =44x mx ---44454mx x x ---=---94x =--323A x x =++322B x mx =-+3322(23)22A B x x x mx -=++-+-(4)4m x =++。

七年级上计算专项(有理数混合运算、整式加减)

七年级上计算专项(有理数混合运算、整式加减)

计算专项练习完成日期:1.计算:|﹣9|÷3+(﹣)×12﹣(﹣2)2.2.计算:|+×(﹣12)÷6﹣(﹣3)2|+|24+(﹣3)2|×(﹣5)3.若a,b互为相反数,c,d互为倒数,|m|=2,求+m2﹣3cd的值.4.计算:(1)(﹣2)3×(﹣1)4﹣|﹣12|÷[﹣];(2)(﹣24)×(﹣+)+(﹣2)3.5.计算﹣32+1÷4×﹣|﹣1|×(﹣0.5)2.完成日期:1.计算:(1)(﹣12)+(+30)﹣(+65)﹣(﹣47)(2)(﹣1)2×7+(﹣2)6+8.2.计算:(1)﹣22+[(﹣4)×(﹣)﹣|﹣3|](2)﹣32+16÷(﹣2)×﹣(﹣1)2015.3.4.计算:﹣14﹣[2﹣(﹣3)2]÷()3.完成日期:1.计算:+(﹣)÷(﹣)2.计算:(1)(﹣12)×(﹣)(2)﹣2.3. [(﹣1)3++12015×(﹣1)2016﹣23×(﹣)2]÷|﹣4÷2×(﹣)2| 4.计算:﹣23﹣(﹣1)2×+(﹣1)2005.5.计算:(1)(﹣)+(﹣)﹣(﹣2)(2)(﹣1)3×(﹣5)÷[(﹣3)2+2×(﹣5)].1.计算题(1)(﹣4)﹣(﹣1)+(﹣6)÷2(2)﹣3﹣[﹣2﹣(﹣8)×(﹣0.125)](3)﹣25(4).2.计算(1)(﹣2)2﹣(++)×12(2)﹣14﹣×[2﹣(﹣3)2]÷(﹣7)3.计算:(1)12﹣(﹣18)+(﹣7)﹣15(2)(﹣)×(﹣8)+(﹣6)÷(﹣)2.1.计算÷[32﹣(﹣2)2].29.计算:(1)﹣3﹣(﹣4)+2 (2)(﹣6)÷2×(﹣)(3)(﹣+﹣)×(﹣24)(4)﹣14﹣7÷[2﹣(﹣3)2]30.计算①(﹣6)×﹣8÷|﹣4+2|②(﹣2)4÷(﹣2)2+5×(﹣)﹣0.25.1.计算:(1)(2)2.计算:﹣14﹣×〔2﹣(﹣3)2〕×(﹣2)3 3.﹣10+8÷(﹣2 )2﹣(﹣4)×(﹣3)4..5.计算与化简:(1)计算:(2)25×.1.计算:(1)﹣(﹣)+(﹣0.75)(2)﹣2.5÷×(﹣)(3)﹣22﹣6÷(﹣2)×﹣|﹣9+5|.2.计算:.3.计算下列各式(1)﹣(﹣1)4+(1﹣)÷3×(2﹣23)(2)(﹣+)×(﹣12)4.计算:0.752﹣×+0.52.5.计算:(﹣1)3﹣×[2﹣(﹣3)2].1.计算:﹣14﹣(1﹣)÷3×|3﹣(﹣3)2|.2.25×﹣(﹣25)×+25×(﹣)3.计算下列各题.(1)99×(﹣7)(2)﹣24+(﹣2)2﹣(﹣1)11×(﹣)÷﹣|﹣2|(3)[(﹣+)×(﹣36)+2]÷(﹣14)4.计算(1)(﹣1)3×(﹣5)÷[(﹣3)2+2×(﹣5)](2)﹣14﹣(1﹣0.5)××[4﹣(﹣2)3].5.计算:(﹣4)2×(﹣2)÷[(﹣2)3﹣(﹣4)].1.计算:﹣12+3×(﹣2)3+(﹣6)÷(﹣)2.2.计算:[(﹣3)2﹣(﹣5)2]÷(﹣8)+(﹣3)×(﹣1)3.计算:(﹣1)2003+(﹣3)2×|﹣|﹣43+(﹣2)4.4.a与b互为相反数,c与d互为倒数,求的值.5.计算:(1)﹣3﹣[﹣2﹣(﹣8)×(﹣0.125)](2)﹣24÷(﹣2)2+5×(﹣)﹣0.25.1.先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.2.已知A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1:(1)求3A+6B;(2)若3A+6B的值与x无关,求y的值.3.已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A等于多少?(2)若|a+1|+(b﹣2)2=0,求A的值.4.先化简,再求值:﹣2x2﹣[3y2﹣2(x2﹣y2)+6],其中x=﹣1,y=﹣.5.先化简,再求值:(1)(5x+y)﹣(3x+4y),其中x=,y=;(2)(a﹣b)2+9(a﹣b)+15(a﹣b)2﹣(a﹣b),其中a﹣b=.1.有理数a、b在数轴上位置如图所示,试化简|1﹣3b|+2|2+b|﹣|3b﹣2|.2.去括号,合并同类项(1)﹣3(2s﹣5)+6s (2)3x﹣[5x﹣(x﹣4)];(3)6a2﹣4ab﹣4(2a2+ab)(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)3.化简并求值.4(x﹣1)﹣2(x2+1)﹣(4x2﹣2x),其中x=2.4.已知(﹣3a)3与(2m﹣5)a n互为相反数,求的值.5.先化简,再求值:﹣a2b+(3ab2﹣a2b)﹣2(2ab2﹣a2b),其中a=1,b=﹣2.6.先去括号,在合并同类项:3(2x2﹣y2)﹣2(3y2﹣2x2)1.先化简,再求值.x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.2.已知|x+1|+(y﹣2)2=0,求(2x2y﹣2xy2)﹣[(3x2y2+3x2y)+(3x2y2﹣3xy2)]的值.3.先化简,再求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)﹣xy],其中x=﹣,y=2.4.4x2y﹣[6xy﹣2(3xy﹣2)﹣x2y]+1,其中x=﹣,y=4.5.化简:(1)3a+(﹣8a+2)﹣(3﹣4a)(2)2(xy2+3y3﹣x2y)﹣(﹣2x2y+y3+xy2)﹣4y3(3)先化简,再求值,其中1.先化简,再求值:(2a2b+2ab2)﹣[2(a2b﹣1)+3ab2+2],其中a=2,b=﹣2.2.(1)计算:()﹣2+(3.14﹣π)0﹣|﹣5|(2)先化简,再求值:(2x+1)(2x﹣1)﹣5x(x﹣1)+(x﹣1)2,其中x=﹣.3.化简并求值.(1)2(2x﹣3y)﹣(3x+2y+1),其中x=2,y=﹣0.5(2)﹣(3a2﹣4ab)+[a2﹣2(2a+2ab)],其中a=﹣2.4.先化简,再求值:(x+y)2﹣2x(x+2y)+(x+3y)(x﹣3y),其中x=﹣1,y=2.5.当时,求代数式3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)]的值.1.先化简再求值:已知多项式A=3a2﹣6ab+b2,B=﹣2a2+3ab﹣5b2,当a=1,b=﹣1时,试求A+2B 的值.2.化简求值:5ab﹣2a2b+[3ab﹣2(4ab2﹣a2b)],其中a、b、c满足|a﹣1|+(b﹣2)2=0.3.9a2﹣[7a2+2a﹣(a2+3a)],其中a=﹣1.4.先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b),其中,.5.若单项式a3b n+1和2a2m﹣1b3是同类项,求3m+n的值.6.a是绝对值等于2的负数,b是最小的正整数,c的倒数的相反数是﹣2,求代数式4a2b3﹣[2abc+(5a2b3﹣7abc)﹣a2b3]的值.1.化简求值:3x2y﹣[2x2y﹣3(2xy﹣x2y)﹣xy],其中x=﹣1,y=﹣2.2.为鼓励人们节约用水,某地实行阶梯式计量水价(如下表所示).(1)若张红家5月份用水量为15吨,则该月需缴交水费元;(2)若张红家6月份缴交水费44元,则该月用水量为吨;(3)若张红家7月份用水量为a吨(a>30),请计算该月需缴交水费多少元?(用含a的代数式表示)3.合并同类项①3a﹣2b﹣5a+2b ②(2m+3n﹣5)﹣(2m﹣n﹣5)③2(x2y+3xy2)﹣3(2xy2﹣4x2y)4.已知A=2x2﹣3x,B=x2﹣x+1,求当x=﹣1时代数式A﹣3B的值.1.已知A=y2﹣ay﹣1,B=2y2+3ay﹣2y﹣1,且多项式2A﹣B的值与字母y的取值无关,求a的值.2.先化简,再求值:已知2(﹣3xy+x2)﹣[2x2﹣3(5xy﹣2x2)﹣xy],其中x,y满足|x+2|+(y﹣3)2=0.3.化简求值:已知:(x﹣3)2=0,求3x2y﹣[2xy2﹣2(xy﹣)+3xy]+5xy2的值.4.已知A=x2+ax,B=2bx2﹣4x﹣1,且多项式2A+B的值与字母x的取值无关,求a,b的值.5.化简(1)(8xy﹣x2+y2)﹣4(x2﹣y2+2xy﹣3)(2)5ab2﹣[a2b+2(a2b﹣3ab2)]6.已知:A﹣2B=7a2﹣7ab,且B=﹣4a2+6ab+7.(1)求A.(2)若|a+1|+(b﹣2)2=0,计算A的值.1.先化简再求值:(x+y)(x﹣y)﹣x(x﹣y)﹣xy,其中x=2016,y=﹣1.2.(1)已知(x+2)2+|y+1|=0,求x,y的值(2)化简:.3.化简:(1)2x2﹣3x+1﹣(5﹣3x+x2)(2).4.先化简,再求值.4xy﹣[(x2+5xy﹣y2)﹣2(x2+3xy﹣y2)],其中:x=﹣1,y=2.5.先化简再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=2.6.先化简再求值:3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)],其中.1.先化简,再求值:﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn],其中m=1,n=﹣2.2.求x﹣2(x﹣y2)+(﹣x+y2)的值,其中x=﹣2,y=.3.已知A=,B=a2+3a﹣1,且3A﹣B+C=0,求代数式C;当a=2时,求C的值.4.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|a﹣b|+|a+c|.5.若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的取值无关,求代数式a2﹣2b+4ab的值.1.先化简,再求值:,其中.2.化简:(1)3a2+5b﹣2a2﹣2a+3a﹣8b(2)(8x﹣7y)﹣2(4x﹣5y)(3)﹣(3a2﹣4ab)+[a2﹣2(2a2+2ab)].。

【必考题】初一数学上期末试题(带答案)

【必考题】初一数学上期末试题(带答案)

【必考题】初一数学上期末试题(带答案)一、选择题1.下列各式的值一定为正数的是()A.(a+2)2B.|a﹣1|C.a+1000D.a2+12.下列计算正确的是()A.2a+3b=5ab B.2a2+3a2=5a4C.2a2b+3a2b=5a2b D.2a2﹣3a2=﹣a3.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x)D.2×22x=16(27﹣x)4.一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做4天,然后两人合作x天完成这项工程,则可列的方程是()A.B.C.D.5.如图,点A、B、C在数轴上表示的数分别为a、b、c,且OA+OB=OC,则下列结论中:①abc<0;②a(b+c)>0;③a﹣c=b;④|||c|1||a ba b c++=.其中正确的个数有()A.1个B.2个C.3个D.4个6.如图,数轴上有A,B,C,D四个点,其中表示互为相反数的点是()A.点A和点C B.点B和点DC.点A和点D D.点B和点C7.如图,每个图案均由边长相等的黑、白两色正力形按规律拼接面成,照此规律,第n个图案中白色正方形比黑色正方形( )个.A.n B.(5n+3)C.(5n+2)D.(4n+3)8.4h=2小时24分.答:停电的时间为2小时24分.【点睛】本题考查了一元一次方程的应用,把蜡烛长度看成1,得到两支蜡烛剩余长度的等量关系是解题的关键.9.如图,表中给出的是某月的月历,任意选取“H ”型框中的7个数(如阴影部分所示).请你运用所学的数学知识来研究,则这7个数的和不可能是( )A .63B .70C .96D .10510.如图,把APB ∠放置在量角器上,P 与量角器的中心重合,读得射线PA 、PB 分别经过刻度117和153,把APB ∠绕点P 逆时针方向旋转到A PB ''∠,下列结论: ①APA BPB ''∠=∠;②若射线PA '经过刻度27,则B PA '∠与A PB '∠互补; ③若12APB APA ''∠=∠,则射线PA '经过刻度45. 其中正确的是( )A .①②B .①③C .②③D .①②③11.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b 12.下列说法:①若|a|=a ,则a=0;②若a ,b 互为相反数,且ab≠0,则b a=﹣1; ③若a 2=b 2,则a=b ;④若a <0,b <0,则|ab ﹣a|=ab ﹣a .其中正确的个数有( )A .1个B .2个C .3个D .4个13.已知整数1a 、2a 、3a 、4a 、…,满足下列条件;10a =、211a a =-+、322a a =-+、433a a =-+、…,依此类推,则2019a =___________.14.如图,两个正方形边长分别为a 、b ,且满足a+b =10,ab =12,图中阴影部分的面积为_____.15.如图所示,O 是直线AB 与CD 的交点,∠BOM :∠DOM =1:2,∠CON =90°,∠NOM =68°,则∠BOD =_____°.16.一个正方体的表面展开图如图所示,这个正方体的每一个面上都填有一个数字,且各相对面上所填的数字互为倒数,则()x yz 的值为___.17.6年前,甲的年龄是乙的3倍,现在甲的年龄是乙的2倍,甲现在_________岁,乙现在________岁.18.已知整式32(1)7(3)2m n x x m x ---++-是关于x 的二次二项式,则关于y 的方程(33)5n m y my -=--的解为_____.19.若a -2b =-3,则代数式1-a +2b 的值为______.20.正方体切去一块,可得到如图几何体,这个几何体有______条棱.三、解答题21.解方程:(1)()()235312--=+-x x x (2)216323+-=+x x 22.解方程(1)2(4)3(1)x x x --=-(2)1-314x -=32x + 23.窗户的形状如图所示(图中长度单位:cm ),其中上部是半圆形,下部是边长相同的四个小正方形. 已知下部小正方形的边长是acm.(1)计算窗户的面积(计算结果保留π).(2)计算窗户的外框的总长(计算结果保留π).(3)安装一种普通合金材料的窗户单价是175元/平方米,当a=50cm 时,请你帮助计算这个窗户安装这种材料的费用(π≈3.14,窗户面积精确到0.1).24.计算题:(1)8+(﹣3)2×(﹣2)﹣(﹣3)(2)﹣12﹣24×(123634-+-) 25.先化简,再求值:223(2)2(3)x xy y x y ----,其中1x =-,2y =.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】直接利用偶次方以及绝对值的性质分别分析得出答案.【详解】A .(a +2)2≥0,不合题意;B .|a ﹣1|≥0,不合题意;C .a +1000,无法确定符号,不合题意;D .a 2+1一定为正数,符合题意.故选:D .【点睛】此题主要考查了正数和负数,熟练掌握非负数的性质是解题关键.解析:C【解析】【分析】根据合并同类项法则逐一判断即可.【详解】A.2a与3b不是同类项,所以不能合并,故本选项不合题意;B.2a2+3a2=5a2,故本选项不合题意;C.2a2b+3a2b=5a2b,正确;D.2a2﹣3a2=﹣a2,故本选项不合题意.故选:C.【点睛】本题主要考查了合并同类项,合并同类项时,系数相加减,字母及其指数不变.3.D解析:D【解析】设分配x名工人生产螺栓,则(27-x)人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x),故选D.4.D解析:D【解析】【分析】由题意一项工程甲单独做要40天完成,乙单独做需要50天完成,可以得出甲每天做整个工程的,乙每天做整个工程的,根据文字表述得到题目中的相等关系是:甲完成的部分+两人共同完成的部分=1.【详解】设整个工程为1,根据关系式甲完成的部分+两人共同完成的部分=1列出方程式为:++ =1.故答案选:D.【点睛】本题考查了一元一次方程,解题的关键是根据实际问题抽象出一元一次方程.5.B解析:B【解析】【分析】根据图示,可得c<a<0,b>0,|a|+|b|=|c|,据此逐项判定即可.∵c<a<0,b>0,∴abc>0,∴选项①不符合题意.∵c<a<0,b>0,|a|+|b|=|c|,∴b+c<0,∴a(b+c)>0,∴选项②符合题意.∵c<a<0,b>0,|a|+|b|=|c|,∴-a+b=-c,∴a-c=b,∴选项③符合题意.∵a cba b c++=-1+1-1=-1,∴选项④不符合题意,∴正确的个数有2个:②、③.故选B.【点睛】此题主要考查了数轴的特征和应用,有理数的运算法则以及绝对值的含义和求法,要熟练掌握.6.C解析:C【解析】【分析】根据相反数的定义进行解答即可.【详解】解:由A表示-2,B表示-1,C表示0.75,D表示2.根据相反数和为0的特点,可确定点A和点D表示互为相反数的点.故答案为C.【点睛】本题考查了相反数的定义,掌握相反数和为0是解答本题的关键.7.D解析:D【解析】【分析】利用给出的三个图形寻找规律,发现白色正方形个数=总的正方形个数-黑色正方形个数,而黑色正方形个数第1个为1,第二个为2,由此寻找规律,总个数只要找到边与黑色正方形个数之间关系即可,依此类推,寻找规律.【详解】第1个图形黑、白两色正方形共3×3个,其中黑色1个,白色3×3-1个, 第2个图形黑、白两色正方形共3×5个,其中黑色2个,白色3×5-2个, 第3个图形黑、白两色正方形共3×7个,其中黑色3个,白色3×7-3个, 依此类推,第n 个图形黑、白两色正方形共3×(2n+1)个,其中黑色n 个,白色3×(2n+1)-n 个, 即:白色正方形5n+3个,黑色正方形n 个,故第n 个图案中白色正方形比黑色正方形多4n+3个故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于找到规律.8.无9.C解析:C【解析】【分析】设“H”型框中的正中间的数为x ,则其他6个数分别为x-8,x-6,x-1,x+1,x+6,x+8,表示出这7个数之和,然后分别列出方程解答即可.【详解】解:设“H”型框中的正中间的数为x ,则其他6个数分别为x-8,x-6,x-1,x+1,x+6,x+8,这7个数之和为:x-8+x-6+x-1+x+1+x+x+6+x+8=7x .由题意得A 、7x=63,解得:x=9,能求得这7个数;B 、7x=70,解得:x=10,能求得这7个数;C 、7x=96,解得:x=967,不能求得这7个数; D 、7x=105,解得:x=15,能求得这7个数.故选:C .【点睛】 此题考查一元一次方程的实际运用,掌握“H”型框中的7个数的数字的排列规律是解决问题的关键.10.D解析:D【解析】【分析】由APB ∠=A PB ''∠=36°,得APA BPB ''∠=∠,即可判断①,由B PA '∠=117°-27°-36°=54°,A PB '∠=153°-27°=126°,即可判断②,由12APB APA ''∠=∠,得=272APA A PB '''∠∠=︒,进而得45OPA ︒∠=′,即可判断③.【详解】∵射线PA 、PB 分别经过刻度117和153,APB ∠绕点P 逆时针方向旋转到A PB ''∠, ∴APB ∠=A PB ''∠=36°,∵+APA A PB APB ''''∠=∠∠,=+BPB APB APB ∠∠''∠,∴APA BPB ''∠=∠,故①正确;∵射线PA '经过刻度27,∴B PA '∠=117°-27°-36°=54°,A PB '∠=153°-27°=126°,∴B PA '∠+A PB '∠=54°+126°=180°,即:B PA '∠与A PB '∠互补,故②正确; ∵12APB APA ''∠=∠, ∴=272APA A PB '''∠∠=︒,∴=1171177245O AP P A A '∠︒-∠=︒-︒=︒′,∴射线PA '经过刻度45.故③正确.故选D .【点睛】本题主要考查角的和差倍分关系以及补角的定义,掌握角的和差倍分关系,列出方程,是解题的关键.11.A解析:A【解析】【分析】依据线段AB 长度为a ,可得AB=AC+CD+DB=a ,依据CD 长度为b ,可得AD+CB=a+b ,进而得出所有线段的长度和.【详解】∵线段AB 长度为a ,∴AB=AC+CD+DB=a ,又∵CD 长度为b ,∴AD+CB=a+b ,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b ,故选A .【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.12.B解析:B【解析】【分析】根据有理数的运算法则及绝对值的性质逐一判断可得.【详解】①若|a|=a ,则a=0或a 为正数,错误;②若a,b 互为相反数,且ab≠0,则b a=−1,正确; ③若a 2=b 2,则a=b 或a=−b ,错误;④若a<0,b<0,所以ab−a>0,则|ab−a|=ab−a ,正确;故选:B.【点睛】 此题考查相反数,绝对值,有理数的乘法,有理数的除法,解题关键在于掌握运算法则.二、填空题13.【解析】【分析】根据条件求出前几个数的值再分n 是奇数时结果等于-n 是偶数时结果等于-然后把n=2019代入进行计算即可得解【详解】a1=0a2=-|a1+1|=-|0+1|=-1a3=-|a2+2|解析:1009-【解析】【分析】根据条件求出前几个数的值,再分n 是奇数时,结果等于-12n -,n 是偶数时,结果等于-2n ,然后把n=2019代入进行计算即可得解. 【详解】a 1=0,a 2=-|a 1+1|=-|0+1|=-1,a 3=-|a 2+2|=-|-1+2|=-1,a 4=-|a 3+3|=-|-1+3|=-2,a 5=-|a 4+4|=-|-2+4|=-2,…,所以,n 是奇数时,a n =-12n -,n 是偶数时,a n =-2n , a 2019=-201912-=-1009. 故答案为:-1009.【点睛】本题是对数字变化规律的考查,根据所求出的数,观察出n 为奇数与偶数时的结果的变化规律是解题的关键.14.32【解析】【分析】阴影部分面积=两个正方形的面积之和-两个直角三角形面积求出即可【详解】∵a+b=10ab=12∴S阴影=a2+b2-a2-b(a+b)=(a2+b2-ab)=(a+b)2-3ab解析:32【解析】【分析】阴影部分面积=两个正方形的面积之和-两个直角三角形面积,求出即可.【详解】∵a+b=10,ab=12,∴S阴影=a2+b2-12a2-12b(a+b)=12(a2+b2-ab)=12[(a+b)2-3ab]=32,故答案为:32.【点睛】此题考查了整式混合运算的应用,弄清图形中的关系是解本题的关键.15.【解析】【分析】根据角的和差关系可得∠DOM=∠DON﹣∠NOM=22°再根据∠BOM:∠DOM=1:2可得∠BOM=∠DOM=11°据此即可得出∠BOD的度数【详解】∵∠CON=90°∴∠DON=解析:【解析】【分析】根据角的和差关系可得∠DOM=∠DON﹣∠NOM=22°,再根据∠BOM:∠DOM=1:2可得∠BOM=12∠DOM=11°,据此即可得出∠BOD的度数.【详解】∵∠CON=90°,∴∠DON=∠CON=90°,∴∠DOM=∠DON﹣∠NOM=90°﹣68°=22°,∵∠BOM:∠DOM=1:2,∴∠BOM=12∠DOM=11°,∴∠BOD=3∠BOM=33°.故答案为:33.【点睛】本题考查了余角的定义,角的和差的关系,掌握角的和差的关系是解题的关键.16.【解析】【分析】正方体的表面展开图相对的面之间一定相隔一个正方形根据这一特点确定出相对面再根据相对面上的两个数字互为倒数解答【详解】正方体的表面展开图相对的面之间一定相隔一个正方形x与是相对面y与28【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点确定出相对面,再根据相对面上的两个数字互为倒数解答.【详解】正方体的表面展开图,相对的面之间一定相隔一个正方形,“x”与“13”是相对面, “y”与“2”是相对面,“z”与“-1”是相对面, ∵各相对面上所填的数字互为倒数,∴()x yz =18-. 【点睛】此题考查正方体相对两个面上的文字,解题关键在于注意正方体的空间图形,从相对面入手,分析及解答问题.17.12【解析】【分析】设乙现在的年龄是x 岁则甲的现在的年龄是:2x 岁根据6年前甲的年龄是乙的3倍可列方程求解【详解】解:设乙现在的年龄是x 岁则甲的现在的年龄是:2x 岁依题意得:2x-6=3(x-6)解解析:12【解析】【分析】设乙现在的年龄是x 岁,则甲的现在的年龄是:2x 岁,根据6年前,甲的年龄是乙的3倍,可列方程求解.【详解】解:设乙现在的年龄是x 岁,则甲的现在的年龄是:2x 岁,依题意得:2x-6=3(x-6) 解得:x=12∴2x=24故:甲现在24岁,乙现在12岁.故答案为:24,12【点睛】本题考查了一元一次方程的应用,重点考查理解题意的能力,甲、乙年龄无论怎么变,年龄差是不变的.18.【解析】【分析】由题意根据多项式的定义求出m 和n 的值进而代入关于的方程并解出方程即可【详解】解:∵是关于的二次二项式∴解得将代入则有解得故答案为:【点睛】本题考查多项式的定义以及解一元一次方程熟练掌6【解析】【分析】由题意根据多项式的定义求出m 和n 的值,进而代入关于y 的方程并解出方程即可.【详解】解:∵32(1)7(3)2m n x x m x ---++-是关于x 的二次二项式, ∴10,30m n m --=+=解得3,4m n =-=-,将3,4m n =-=-代入(33)5n m y my -=--,则有(129)35y y -+=-, 解得56y =. 故答案为:56y =. 【点睛】本题考查多项式的定义以及解一元一次方程,熟练掌握多项式的定义以及解一元一次方程的解法是解题的关键.19.4【解析】【分析】因为a-2b=-3由1-a+2b 可得1-(a -2b )=1-(-3)=4即可得出【详解】解:∵a-2b=-3 ∴1-a+2b=1-(a-2b)=1-(-3)=4故答案为4【点睛】此题解析:4【解析】【分析】因为a -2b =-3,由1-a +2b 可得1-(a -2b )=1-(-3)=4即可得出.【详解】解:∵a-2b=-3,∴1-a+2b=1-(a-2b)=1-(-3)=4,故答案为4.【点睛】此题考查代数式的值,要先观察已知式子与所求式子之间的关系,加括号时注意符号 20.12【解析】【分析】通过观察图形即可得到答案【详解】如图把正方体截去一个角后得到的几何体有12条棱故答案为:12【点睛】此题主要考查了认识正方体关键是看正方体切的位置解析:12【解析】【分析】通过观察图形即可得到答案.【详解】如图,把正方体截去一个角后得到的几何体有12条棱.故答案为:12.【点睛】此题主要考查了认识正方体,关键是看正方体切的位置.三、解答题21.(1)1x =-;(2)34x =【解析】【分析】(1)先去括号,然后移项合并,系数化为1,即可得到答案;(2)先去分母,去括号,然后移项合并,系数化为1,即可得到答案;【详解】解:(1)()()235312--=+-x x x∴235312x x x -+=+-,∴1x =-;(2)216323+-=+x x ∴()()3211826x x +=+-,∴6318212x x +=+-,∴43x =, ∴34x =. 【点睛】 本题考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的步骤和方法.22.(1)52x =-;(2)15x =- 【解析】【分析】(1)先去括号,再移项、合并同类项,系数化为1即可得答案;(2)先去分母,再去括号、移项、合并同类项,系数化为1即可得答案;【详解】(1)2(4)3(1)x x x --=-去括号得:2833x x x -+=-移项合并得:25x =-系数化为1得:52x =-. (2)1-314x -=32x + 去分母得:()43123x x --=+(), 去括号得:43126x x -+=+,移项、合并同类项得:51x =-,系数化为1得:15x =-. 【点睛】本题考查解一元一次方程,解一元一次方程的一般步骤为:去分母、去括号、移项、合并同类项、系数化为1;熟练掌握解一元一次方程的解法及步骤是解题关键.23.(1)2214a +a 2π;(2)6a a π+;(3)245.【解析】【分析】(1)根据图示,窗户的面积等于4个小正方形的面积加上半径是a 的半圆的面积;(2)根据图示,窗户外框的总长就是用3条长度是2acm 的边的长度加上半径是acm 的半圆的长度;(3)根据窗户的总面积,代入求值即可.【详解】 解:(1)窗户的面积为:()()222214a a 422a a a cm ππ⎛⎫⨯+=+ ⎪⎝⎭(2)窗户的外框的总长为:()()132a 262a a a cm ππ⨯+⨯=+ (3)当a=50cm ,即:a=0.5m 时, 窗户的总面积为:()2220.540.5128m ππ⎛⎫⨯+=+ ⎪⎝⎭ 取π≈3.14,原式=1+0.3925≈1.4(m 2)安装窗户的费用为:1.4×175=245(元). 【点睛】本题考查的知识点是求组合图形的面积与周长,将已知图形分解为所熟悉的简单图形是解此题的关键.24.(1)﹣7;(2)5.【解析】【分析】(1)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值;(2)原式先计算乘方运算,再利用乘法分配律计算,最后算加减运算即可求出值.【详解】(1)原式=8+9×(﹣2)+3 =8﹣18+3=﹣10+3=﹣7;(2)原式=﹣1﹣24×(16-)﹣2423⨯-24×(34-) =﹣1+4﹣16+18=3﹣16+18=﹣13+18=5.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.25.【解析】【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【详解】 ()()223x xy 2y 2x 3y ----223x 3xy 6y 2x 6y =---+2x 3xy =-.当x 1=-,y 2=时, ()()22x 3xy 1312-=--⨯-⨯ 167=+=.【点睛】本题考查整式的加减-化简求值,熟练掌握运算法则是解题关键.。

七年级上册数学计算题34道带答案

七年级上册数学计算题34道带答案

七年级上册数学计算题34道带答案1.为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费。

若墨用电户四月费的电费平均每度0.5元,问该用电户四月份应缴电费多少元?设总用电x度:[(x-140)*0.57+140*0.43]/x=0.50.57x-79.8+60.2=0.5x0.07x=19.6x=280再分步算:140*0.43=60.2(280-140)*0.57=79.879.8+60.2=1402.某大商场家电部送货人员与销售人员人数之比为1:8。

今年夏天由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货。

结果送货人员与销售人数之比为2:5。

求这个商场家电部原来各有多少名送货人员和销售人员?设送货人员有X人,则销售人员为8X人。

(X+22)/(8X-22)=2/55*(X+22)=2*(8X-22)5X+110=16X-4411X=154X=148X=8*14=112这个商场家电部原来有14名送货人员,112名销售人员3.现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?设:增加x%90%*(1+x%)=1解得:x=1/9所以,销售量要比按原价销售时增加11.11%4.甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少/设甲商品原单价为X元,那么乙为100-X(1-10%)X+(1+5%)(100-X)=100(1+2%)结果X=20元甲100-20=80 乙5.甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4。

求原来每个车间的人数。

设乙车间有X人,根据总人数相等,列出方程:X+4/5X-30=X-10+3/4(X-10)X=250所以甲车间人数为250*4/5-30=170.6.甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?(列方程)设A,B两地路程为Xx-(x/4)=x-72x=288答:A,B两地路程为2887.甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度。

完整版初一100道数学计算题及答案

完整版初一100道数学计算题及答案

完整版初一100道数学计算题及答案第1题:计算2.5+3.8的和。

答案:6.3。

第2题:计算6.3-2.9的差。

答案:3.4。

第3题:计算4.2x0.5的积。

答案:2.1。

第4题:计算9.3÷3的商。

答案:3.1。

第5题:计算2/5+1/4的和。

答案:0.65。

第6题:计算3/4-1/3的差。

答案:0.083。

第7题:计算5/8x3/5的积。

答案:0.375。

第8题:计算1/2÷1/4的商。

答案:2。

第9题:计算12÷4+6x2的值。

答案:30。

第10题:计算8-2x3÷6的值。

答案:7。

第11题:计算9+ (7-2)x4的值。

答案:33。

第12题:计算(5+4)x3-4的值。

答案:23。

第13题:计算3/8÷1/3的值。

答案:0.875。

第14题:计算2 3/4-1 2/3的值。

答案:1 1/12。

第15题:计算2 1/2x3 1/4的值。

答案:7 7/8。

第16题:计算0.75x12x4的值。

答案:9。

第17题:计算2.7+4.8的和。

答案:7.5。

第18题:计算8.3-6.2的差。

答案:2.1。

第19题:计算5x1.2的积。

答案:6。

第20题:计算9.6÷4的商。

答案:2.4。

第21题:计算1/4+2/5的和。

答案:0.65。

第22题:计算3/5-1/3的差。

答案:0.133。

第23题:计算4/7x5/6的积。

答案:0.476。

第24题:计算3/4÷1/3的商。

答案:2.25。

第25题:计算36÷6+8x2的值。

答案:52。

第26题:计算17-5x2+12÷3的值。

答案:10。

第27题:计算(5+6)x3-6的值。

答案:33。

第28题:计算3/4÷1/2的值。

答案:1.5。

第29题:计算3 1/2-2 2/5的值。

答案:1 3/10。

第30题:计算4 1/2x2 1/4的值。

答案:10 1/8。

初一上册计算题精选集

初一上册计算题精选集

初一上册计算题精选集初一的学习是为整个初中阶段打下坚实基础的重要时期,而数学中的计算题更是锻炼思维和提升能力的关键。

下面为大家精选了一些初一上册常见的计算题,通过练习和掌握这些题目,相信能帮助同学们更好地理解和运用所学知识。

一、有理数的运算1、计算:(-5) + 3这道题考查有理数的加法。

异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值。

在这道题中,|-5|>|3|,所以结果为负,用 5 3 = 2,最终答案为-2 。

2、计算:(-8) (-5)这是有理数的减法运算,减去一个数等于加上这个数的相反数。

所以原式可转化为-8 + 5 =-3 。

3、计算:(-2)×(-3)有理数乘法,同号得正,异号得负。

所以这道题的结果为 6 。

4、计算:(-12)÷(-3)两数相除,同号得正,异号得负。

所以答案为 4 。

二、整式的运算1、化简:3x + 2x同类项合并,系数相加,字母和指数不变。

所以结果为 5x 。

2、化简:(2x²+ 3x 5) (x² 2x + 1)去括号,然后合并同类项。

原式= 2x²+ 3x 5 x²+ 2x 1 = x²+5x 6 。

3、计算:2x(3x 1)使用乘法分配律,原式= 2x×3x 2x×1 = 6x² 2x 。

三、一元一次方程1、解方程:2x + 3 = 7首先,将 3 移到等号右边得到 2x = 7 3 ,即 2x = 4 ,然后两边同时除以 2 ,解得 x = 2 。

2、解方程:3(x 1) = 2x + 1先去括号得到 3x 3 = 2x + 1 ,然后将 2x 移到左边,-3 移到右边,得到 3x 2x = 1 + 3 ,解得 x = 4 。

四、综合计算题1、计算:(-2)³ ×(-4) 6 ÷(-3)先计算指数运算,(-2)³=-8 ,然后计算乘法-8×(-4) = 32 ,再计算减法 32 6 = 26 ,最后除以-3 ,得到-26/3 。

深圳市初一上学期期末考试数学试卷含答案

深圳市初一上学期期末考试数学试卷含答案

深圳市初一上学期期末考试数学试卷含答案深圳市初一第一学期期末考试题数学(本试卷满分100分,在90分钟内完成)一. 填空题 : (第1-----11题每空1分,第12—15题每空2分,共25分 )1 .在正方体、长方体、球、圆柱、圆锥、三棱柱这些几何体中,不属于柱体的有,属于四棱柱的有 .2. 用一个平面去截长方体、五棱柱、圆柱和圆锥,不能截出三角形的是 . 3.深圳市某天早晨的温度是12° C, 中午上升了9° C, 夜间下降了6° C, 则这天夜间的温度是 .4. +8与互为相反数,请赋予它实际意义:5 .用科学记数法表示:5678000000 = .6. 甲、乙争论“ 和哪个大(是有理数)”.甲: “ 一定比大” .乙: “ 不一定” .又说: “ 你漏掉了两种可能. ”请问:乙说的是什么意思? 答: ; .7 . 的平方的3倍与-5的差,用代数式表示为 ,当时,代数式的值为 .8. 如图,是按照某种规律排列的多边形:第20个图形是边形,第41个图形的颜色是色.9 .如图:∠AOB=∠COD=90°,∠AOD=130°, 则∠BOC的度数是 .10. 数轴的A点表示-3,让A点沿着数轴移动2个单位到B点,B点表示的数是 ;线段BA上的点表示的数是 .11. 北环中学初一年级共10个班,每班有43名学生,现从每个班中任意抽一名学生共10名学生参加福田区教育局组织的冬令营.若你是该校初一某班的学生,你被抽到的可能性是 .12 .如图,A点表示数 ,B点表示数 ,在中正数是 .13 .A、B、C是直线上的三点,BC= AB,若BC=6,则AC的长等于 .14 .一商店把彩电按标价的九折出售,仍可获利20% ,若该彩电的进价是2400元,则该彩电的标价为元.15 .某市为了鼓励居民节约用水,对自来水用户按如下标准收费,若每月每户用水不超过15吨,按每吨1元收费,若超过15吨,则超过部分每吨按2元收费.如果小明家12月份交纳的水费29元,则小明家这个月实际用水吨.二.选择题( 每题2分,共20分,将答案直接填在下表中 )1. 下面的算式: ①.-1-1=0; ② ;③ (-1) 2004 =2004 ; ④ -4 2 =-16;⑤⑥ ,其中正确的算式的个数是A . 1个 B. 2 个 C. 3个 D. 4个2 .下面说法:正确的是:①如果地面向上15米记作15米,那么地面向下6米记作-6米;②一个有理数不是正数就是负数;③正数与负数是互为相反数;④任何一个有理数的绝对值都不可能小于零.A . ①,② B. ②,③ C. ③,④ D. ④,①3. 下列图形中,是正方体的展开图是:① ② ③ ④A .① ② B.③ ④ C.③ D.④4. 在8:30这一时刻,时钟上的时针和分针之间的夹角为A . 85° B. 75° C. 70° D. 60°5 .与是同类项,那么等于A . -2 B. -1 C. 0 D. 16 .下列说法正确的是:A . 经过一点可以作两条直线; B. 棱柱侧面的形状可能是一个三角形;C. 长方体的截面形状一定是长方形;D. 棱柱的每条棱长都相等.7 . 下列算式正确的是:A . . B. . C. . D.8 . 下列事件中是必然事件的有①明天中午的气温一定是全天最高的温度;②小明买电影票,一定会买到座位号是双号的票;③现有10张卡片,上面分别写有1,2,3,……,10,把它们装人一个口袋中,从中抽出6张.这6张中,一定有写着偶数的卡片.④元旦节这一天刚好是1月1日.A . ①, ② B. ①, ③ C. ①, ④ D. ③, ④9 .天安门广场的面积约为44万平方米,请你估计一下,它的百万分之一大约相当于A . 教室地面的面积. B. 黑板面的面积.C. 课桌面的面积.D. 铅笔盒盒面的面积10 .下列说法,正确的是① . 用长为10米的铁丝沿墙围成一个长方形(墙的一面为长方形的长,不用铁丝),长方形的长比宽多1米,设长方形的长为X米,则可列方程为2(X+X-1)=10 .② . 小明存人银行人民币2000元,定期一年,到期后扣除20%的利息税后得到本息和为2120元,若该种储蓄的年利率为X,则可列方程2000(1+X)80%=2120.③ . X表示一个两位数,把数字3写到X的左边组成一个三位数,这个三位数可以表示为300+X.④ . 甲、乙两同学从学校到少年宫去,甲每小时走4千米 ,乙每小时走6千米,甲先出发半小时,结果还比乙晚到半小时,若设学校与少年宫的距离为s千米,则可列方程A . ①, ② B. ①, ③ C. ②, ④ D. ③, ④三.计算题(要求写出详细的计算过程,不准用计算器。

人教版初一数学上册计算题(400道题)

人教版初一数学上册计算题(400道题)

初一数学上册计算题(400道题)(1)()22--= (2)3112⎛⎫⎪⎝⎭-=(3)()91- = (4)()42-- =(5)()20031-= (6)()2332-+-=(7)()33131-⨯--= (8)()2233-÷- =(9))2()3(32-⨯-= (10)22)21(3-÷-=(11)()()3322222+-+-- (12)235(4)0.25(5)(4)8⎛⎫-⨯--⨯-⨯- ⎪⎝⎭(13)()34255414-÷-⎪⎭⎫ ⎝⎛-÷ (14)()⎪⎭⎫ ⎝⎛-÷----721322246(15)()()()33220132-⨯+-÷--- (16) []24)3(2611--⨯--(17)])3(2[)]215.01(1[2--⨯⨯-- (18)(19)()()()33220132-⨯+-÷--- (20)22)2(3---;(21)]2)33()4[()10(222⨯+--+-; (22)])2(2[31)5.01()1(24--⨯⨯---;332222()(3)(3)33÷--+-(23)94)211(42415.0322⨯-----+-; (24)20022003)2()2(-+-;(25))2()3(]2)4[(3)2(223-÷--+-⨯--; (26)200420094)25.0(⨯-.(27)()0252423132.⨯--÷-⎛⎝ ⎫⎭⎪+⎡⎣⎢⎢⎤⎦⎥⎥ (28)()()----⨯-221410222(29)()()()-⨯÷-+-⎛⎝ ⎫⎭⎪⨯-÷-3120313312232325.. (30)()()()-⎛⎝ ⎫⎭⎪⨯-⨯-⨯-212052832.(31) (32)(56)(79)---(33)(3)(9)(8)(5)-⨯---⨯- (34)3515()26÷-+(35)5231591736342--+- (36)()()22431)4(2-+-⨯---(37)411)8()54()4()125.0(25⨯-⨯-⨯-⨯-⨯33182(4)8-÷--(38)如果0)2(12=-++b a ,求20112010()-3ab a b a a ++-()的值(39)已知|1|a +与|4|b -互为相反数,求b a 的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一上学期期末计算题汇总【题目】1 、化简:2a 2﹣3ab+4b2﹣6ab﹣2b22 、解方程:3(x+1 )﹣2 (x﹣1 )=13 、解方程:4 、已知2x ﹣6= ﹣2,求代数式(x﹣2 )3+4 (x ﹣2)2﹣3x+5的值.5 、计算(1 )(2 )6 、已知3(a+1 )2+2|b+3|=0,化简并求 3 (3a+2b )﹣ 2 (3a+2b )﹣的值.7 、已知A=,B=a 2+3a ﹣1 ,且3A ﹣B+C=0 ,求代数式C;当a=2 时,求 C 的值.8 、等式y=ax 3 +bx+c中,当x=0 时,y=3 ;当x= ﹣ 1 时,y=5 ;求当x=1 时,y 的值.9、计算题:①12 ﹣(﹣18 )+ (﹣7 )﹣15②﹣22÷(﹣)2×| ﹣5| ×(0﹣.1 ) 3③﹣10 十8 ÷(﹣2 )2﹣(﹣4)×(﹣3)④10 、已知(2a ﹣1)2+|b+1|=0 ,求()2 十()200211 、已知a 2+a+1=0 ,求a2007+a 2006 +a 2005 的值.12 、已知x2+x+3=0,求x5+3x4+2x3+2x2﹣10x的值13、计算:(1 );(2 )+ (﹣1)2114 、解方程:15 、先化简,再求值:2 (3x 2+y )﹣(2x 2﹣y),其中,y=﹣116、计算:(1 );(2 )﹣ 2 2 +[18 ﹣(﹣3)×2]÷4 .17、解方程:( 1 )4x ﹣1=x+2 ;(2 )18 、先化简,再求值:2x 2 +[x 2﹣(3x 2 +2x ﹣1 )],其中19 、计算:(﹣1 )10×3+8 ÷(﹣4 ).20 、化简:2x+5+3x﹣721、解方程:( 1 )2x ﹣9=5x+3(2 )22 、先化简,再求值:x2﹣(5x 2﹣4y )+3 (x2﹣y),其中x= ﹣1 ,y=2 .23 、计算:﹣17+ (﹣6 )+23 ﹣(﹣20 )24 、计算:25 、计算:()×24 .26 、计算:﹣3 2+ (﹣1 )2010÷(﹣)2﹣3×(0.5﹣)27 、先化简,再求值:3 (2a 2 b ﹣ab 2)﹣(5a 2b ﹣4ab 2),其中a=2 ,b= ﹣1 .28 、解方程:4x+3 (2x ﹣5)=7 ﹣x.29、解方程:30、计算:( 1 )﹣24+3 ﹣16 ﹣ 5 ;( 2 )﹣ 2 3÷×(﹣)2;(3 );(4 );(5 )﹣ 1 4﹣(1﹣0.5 )××[2 ﹣(﹣3)2 ].31、化简:( 1 )5m ﹣7n ﹣8p+5n ﹣9m ﹣p ;( 2 )(5x 2 y﹣7xy 2)﹣(xy 2﹣3x 2 y);( 3 )3 (﹣3a 2﹣2a )﹣[a2﹣2 (5a ﹣4a 2+1 )﹣3a] .32 、先化简再求值:3x 3﹣[5x 2 +3x 3+2 (﹣2x 2 +x )] ,其中x= ﹣ 3 .33 、从一个多项式中减去2ab ﹣3bc+4,由于误认为加上这个式子,得到2bc ﹣2ab ﹣1 ,试求正确答案.34、解方程:( 1 )3 (x﹣1)﹣2(2x+1 )=12 ;(2 )35、36 、若a、b 满足,则求代数式3a 2 b ﹣[2ab 2﹣2(ab ﹣ a 2b )+ab]+3ab 2的值.37 、(4 分)38 、解关于x 的方程:2m ﹣(m ﹣n )x= (m+n )x.39 、|x ﹣1|+|x ﹣3|=3【答案】1 、解:2a 2﹣3ab+4b 2﹣6ab ﹣2b 2=2a 2﹣3ab ﹣6ab+4b 2﹣2b 2=2a 2﹣9ab+2b2.2 、解:去括号,得3x+3 ﹣2x+2=1 ,移项,得3x ﹣2x=1 ﹣2 ﹣3 ,合并同类项,得x= ﹣4 .3 、解:去分母得:3(3x ﹣ 1 )﹣12=2 (5x ﹣7),去括号得:9x ﹣3 ﹣12=10x ﹣14 移项得:9x ﹣10x= ﹣14+15 ,合并得:﹣x=1 ,系数化为 1 得:x= ﹣ 14 、解:∵2x6=﹣﹣2 ,∴x=2 ,∴(x﹣2)3+4 (x ﹣2)2﹣3x+5= (2 ﹣2)3+4 (2 ﹣2 )2﹣3 ×2+5= ﹣6+5= ﹣1 .5 、解:(1 )原式= =0=3 ;(2 )原式= ==45 ﹣18+38=656 、解:由题意得:A+ (2x 2 +5x ﹣3 )=x 2 +3x ﹣7移项得:A=x 2 +3x ﹣7 ﹣(2x 2+5x ﹣3)=x 2+3x ﹣7﹣2x 2﹣5x+3=﹣x2﹣2x﹣4.7 、解:原式= (3﹣2﹣)(3a+2b)﹣(3a+2b)2=(3a+2b)﹣(3a+2b) 2= [(3a+2b )﹣(3a+2b )2 ],∵3 (a+1 )2+2|b+3|=0,∴a+1=0 ,b+3=0 ,∴a= ﹣1,b= ﹣3 ,∴3a+2b= ﹣3﹣6= ﹣9 ,∴原式= (﹣9﹣81 )= ﹣30 .8 、解:当x=0 时,y=3 ,即c=3 。

当x= ﹣1 时,y=5 ,即﹣a﹣b+c=5 ,得a+b= ﹣2;当x=1 时,y=a+b+c= ﹣2+3=1 .答:当x=1时,y 的值是1 .9 、解:①12 ﹣(﹣18 )+ (﹣7 )﹣15=12+18+[ (﹣7 )+ (﹣15 )]=30+ (﹣22 )=8 ;②﹣22÷(﹣)2×|﹣5|×(0﹣.1)3=﹣4÷×5×(﹣0.001)= ﹣4 ×25 ×5 ×(0﹣.0001 )=0.5 ;③﹣10+8 ÷(﹣2)2﹣(﹣ 4 )×(﹣3 )= ﹣10+8 ÷4 ﹣12= ﹣10+2 ﹣12 = ﹣22+2=﹣20;④=120 ×(﹣+﹣)=120 ×(﹣)+120 ×+120 ×(﹣)= ﹣700+765+ (﹣176 )= ﹣876+765= ﹣111 .10 、解:∵(2a ﹣1)2 +|b+1|=0 ;∴2a ﹣1=0 ,b+1=0 ,解得a= ,y= ﹣1;故()2十()2002 =4+1=5 11 、解:a 2007 +a 2006 +a 2005 的=a 2005(a2 +a+1 ),把 a 2+a+1=0 代入上式得:=a 2005×0=0 .12 、解:∵x2 +x+3=0,∴x2+x=﹣3,x5 +3x 4+2x 3+2x 2﹣10x=x 3(x2 +x )+2x 4 +2x 3 +2x 2﹣10x= ﹣3x 3 +2x 4 +2x 3 +2x 2﹣10x=2x 4﹣x3+2x 2﹣10x =2x 2(x2 +x )﹣3x 3+2x 2﹣10x= ﹣3x 3﹣4x 2﹣10x= ﹣3x (x2 +x )﹣x 2﹣10x= ﹣10 (x2 +x )=30 .13 、解:(1 )原式= ,= ﹣12 ﹣16+20= ﹣8 .(2 )原式==2 ﹣1=1 .14 、解:方程两边同时乘以 6 ,得:3(1 ﹣x)=2 (4x ﹣1 )﹣ 6 ,去括号得:3 ﹣3x=8x ﹣2 ﹣6,移项得:8x+3x=3+2+6 ,合并同类项得:11x=11 ,系数化为1 ,得:x=1 .15 、解:原式=6x 2+2y ﹣2x 2 +y=4x 2 +3y .当,y= ﹣ 1 时,原式===1+ (﹣3 )= ﹣2 .16 、解:(1 )原式=48 ×=0 ;(2 )原式= ﹣4+24 ÷4= ﹣4+6=217 、解:(1 )移项得,4x ﹣x=2+1 ,合并同类项得,3x=3 ,系数化1 得,x=1 ;(2 )去分母得: 3 (y+2 )﹣2 (2y ﹣3 )=12 ,去括号得:3y+6 ﹣4y+6=12 ,合并同类项得:﹣y=0 ,即y=0 .18 、解:原式=2x 2+x 2﹣3x 2 +2x+1= ﹣2x+1 ,当时,原式= ﹣2 ×(﹣)+1=219 、解:原式=1 ×3 ﹣8 ÷4=32=1﹣.20 、解:原式= (2x+3x )+ (5 ﹣7)=5x ﹣221 、解:(1 )移项得:2x ﹣5x=3+9 .合并得:﹣3x=12 .系数化为1 得:x= ﹣4 .(2 )解:两边同时乘以12 ,得2 (5x ﹣7 )+12=3 (3x ﹣1 ).去括号得:10x ﹣14+12=9x ﹣3 .移项得:10x ﹣9x= ﹣3+14 ﹣12 ,合并得:x= ﹣1 .22 、解:x 2﹣(5x 2﹣4y )+3 (x2﹣y)=x 2﹣5x2+4y+3x 2﹣3y= ﹣x2+y ;∴当x= ﹣1 ,y=2 时,原式= ﹣(﹣1 )2+2=1 23 、解:﹣17+ (﹣6)+23 ﹣(﹣20 )= ﹣17+ (﹣6 )+23+ (+20 )= ﹣17 ﹣6+23+20= ﹣23+23+20=20 .24 、解:= ﹣×(﹣)×(﹣)= ﹣1 .25 、解:原式=×24+×24﹣×24=3+16﹣18=19﹣18=126 、原式= 9+1 ÷3 ×()= 9+1×4 3×()= 9+4+= 427 、解:3 (2a 2 b ab 2)(5a 2 b 4ab 2)=6a 2 b 3ab 25a 2b+4ab 2?(2 分)=6a 2 b 5a 2 b 3ab 2 +4ab 2?(3 分)=a 2 b+ab 2?(5 分)当a=2 ,b= 1 ,原式=2 2×(1 )+2 ×(1 )2= 2 .28 、解:去括号得:4x+6x 15= x,移,得:4x+6x+x=7+15,合并同,得:11x=22,系数化成 1 得:x=229 、解:去分母得,6(3x+4 )12=7 2x ,去括号得,18x+2412=7 2x ,移得,18x+2x=7 24+12 ,合并同得,20x= 5 ,系数化 1 得,x= .30 、解:(1 )24+3 16 5= 21 16 5= 42(2 ) 2 3÷×()2= 8 ××= 8(3 )= ×8=6 1=(4 )==1 ( 1 )=0 (5 ) 1 4(10.5 )××[2(3)2]=1= 1 ()=31 、解:(1 )原式= (5 9)m+ (7+5 )n (8+1 )p=4m 2n 9p ;( 2 )原式=5x 2y 7xy 2xy 2+3x 2 y= (5+3 )x2 + (7 1 ))xy 2 =8x 2 y 8xy 2;( 3 )原式=3 (3a 22a )[a 210a+8a 2 2 3a]= 9a 26a 9a 2 +13a+2= 18a 2 +7a+232 、解:原式=3x 3(5x 2+3x 3 4x 2+2x )=3x 3 x2 3x 32x=x2 2x .当x=3 ,原式= (3)2 2 ×( 3 )=9+6=3 .33 、解:由题意得:这个多项式=2bc ﹣2ab ﹣1 ﹣(2ab ﹣3bc+4 ),∴正确答案可表示为:2bc ﹣2ab ﹣1﹣(2ab ﹣3bc+4 )﹣(2ab ﹣3bc+4 ),=2bc ﹣2ab ﹣1 ﹣2(2ab ﹣3bc+4 )=2bc ﹣2ab ﹣1 ﹣4ab+6bc﹣8=8bc﹣6ab﹣9.34 、解:(1 )3 (x﹣1 )﹣2 (2x+1 )=12 ;去括号,得3x ﹣3 ﹣4x ﹣2=12 ,移项,合并同类项,得﹣x=17 系数化为 1 ,得x= ﹣17 ;(2 ).去分母,得 3 (3 ﹣x)=3x+4 去括号,得9 ﹣3x=3x+4 ,移项,合并同类项,得﹣6x= ﹣5 系数化为1,得x= .35 、解:,= ﹣9 ﹣9+125 ×﹣0.9 ÷0.9= 18+100﹣﹣1=81 .36 、解:∵(a ﹣3 )2+|b+ |=0 ,∴ a ﹣3=0 ,b+ =0 ,∴a=3 ,b= ﹣,又∵原式=3a 2b ﹣2ab 2 +2ab ﹣3a 2b ﹣ab+3ab 2 =ab 2 +ab ,∴当a=3 ,b= ﹣时,原式=ab 2 +ab=3 ×(﹣)2+3 ×(﹣)= ﹣1= ﹣37 、答:去括号得:x﹣﹣6= x+1 ,移项得:x﹣x=1+6+ ,合并同类项得:﹣x=,系数化为 1 得:38 、解:∵2m﹣(m ﹣n )x= (m+n )x,移项得:﹣(m ﹣n )x﹣(m+n )x= ﹣2m ,合并同类项得:﹣(m ﹣n+m+n)x=﹣2m,合并同类项得:﹣2mx= ﹣2m ,∴当m≠0时,x=1 ;当m=0 ,x 的解是任意实数.39 、解:当x<1 时,原方程就可化简为:1﹣x+3 ﹣x=3 ,解得:x=0.5 ;第二种:当1 <x<3 时,原方程就可化简为:x﹣1﹣x+3=3 ,不成立;第三种:当x> 3 时,原方程就可化简为:x﹣1+x ﹣3=3 ,解得:x=3.5 ;故x 的解为0.5 或3.5 .。

相关文档
最新文档