初二数学平行四边形试题
八年级初二数学数学平行四边形试题含答案
(3)连接AF、DF,当△ADF是等腰三角形时,求t的值.
8.已知四边形ABCD是正方形,将线段CD绕点C逆时针旋转 ( ),得到线段CE,联结BE、CE、DE. 过点B作BF⊥DE交线段DE的延长线于F.
(1)如图,当BE=CE时,求旋转角 的度数;
(1)求证:CG平分∠DCB;
(2)在正方形ABCO绕点C逆时针旋转的过程中,求线段HG、OH、BG之间的数量关系;
(3)连结BD、DA、AE、EB,在旋转的过程中,四边形AEBD是否能在点G满足一定的条件下成为矩形?若能,试求出直线DE的解析式;若不能,请说明理由.
5.已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交于BE的延长线于点F,且AF=DC,连接CF.
10.如图1,点 为正方形 的边 上一点, ,且 ,连接 ,过点 作 垂直于 的延长线于点 .
(1)求 的度数;
(2)如图2,连接 交 于 ,交 于 ,试证明: .
【参考答案】***试卷处理标记,请不要删除
一、解答题
1.(1)见解析;(2)
【分析】
(1)根据题意先证明四边形ABCD是平行四边形,再由AB=AD可得平行四边形ABCD是菱形;
(2)①当AE=3.5时,平行四边形CEDF是矩形.过A作AM⊥BC于M,求出BM=1.5,根据平行四边形的性质得到∠CDA=∠B=60°,DC=AB=3,BC=AD=5,求出DE=1.5=BM,证明△MBA≌△EDC(SAS),得到∠CED=∠AMB=90°,推出四边形CEDF是矩形;
②根据四边形CEDFCEDF是菱形,得到CD⊥EF,DG=CG=1212CD=1.5,求出∠DEG=30°,得到DE=2DG=3,即可求出AE=AD-DE=5-3=2.
初二数学平行四边形性质单元测试
初二数学上第四章平行四边形性质4.1平行四边形的性质练习一下图是两组对边分别平行的四边形:即:AB∥CD,AD∥BC,那么(1)各对边之间有什么样的数量关系?为什么?(2)各对角之间有什么样的数量关系?为什么?(3)如果连结AC、BD,交点为O,如图,那么AC、BD之间又有什么关系?练习二一、填空题1.若一凸多边形的内角和等于它的外角和,则它的边数是________.2.已知:平行四边形一边AB =12 cm,它的长是周长的61,则BC =______ cm,CD =______ cm.3.如图1,在ABCD 中,对角线AC 、BD 相交于点O ,图中全等三角形共有________对. 图14.如图1,如果该平行四边形的一条边长是8,一条对角线长为6,那么它的另一条对角线长m 的取值范围是________.5. ABCD 中,若∠A ∶∠B =1∶3,那么∠A =________,∠B =________,∠C =________,∠D =________.二、选择题1.平行四边形的两邻边分别为3、4,那么其对角线必( ) A.大于1 B.小于7 C.大于1且小于7 D.小于7或大于12.在ABCD 中,M 为CD 的中点,如DC =2AD ,则AM 、BM 夹角度数是( )A.90°B.95°C.85°D.100°3.如图2,四边形ABCD 是平行四边形,∠D =120°,∠CAD =32°.则∠ABC 、∠CAB 的度数分别为( )A.28°,120°B.120°,28° 图2C.32°,120°D.120°,32°三、求解与证明1.如图3,已知ABCD 的对角线交于O ,过O 作直线交AB 、CD 的反向延长线于E 、F ,求证:OE =OF .图3 图42.如图4,四边形ABCD 是平行四边形,BD ⊥AD ,求BC ,CD 及OB 的长.测验评价结果:_____________;对自己想说的一句话是:______________________.练习三班级:___________________________姓名:___________________________作业导航理解平行四边形的意义和性质,会利用平行四边形的性质进行推理和计算. 一、选择题1.在□ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可以是( ) A.1∶2∶3∶4 B.1∶2∶2∶1 C.1∶1∶2∶2 D.2∶1∶2∶12.平行四边行的两条对角线把它分成全等三角形的对数是( ) A.2 B.4 C.6 D.83.在□ABCD 中,∠A 、∠B 的度数之比为5∶4,则∠C 等于( ) A.60° B.80° C.100° D.120°4.□ABCD 的周长为36 cm ,AB =75BC ,则较长边的长为( ) A.15 cm B.7.5 cm C.21 cm D.10.5 cm5.如图,□ABCD 中,EF 过对角线的交点O ,AB =4,AD =3,OF =1.3,则四边形BCEF 的周长为( )A.8.3B.9.6C.12.6D.13.6 二、填空题6.已知□ABCD 中,∠B =70°,则∠A =______,∠C =______,∠D =______.7.在□ABCD 中,AB =3,BC =4,则□ABCD 的周长等于_______.8.平行四边形的周长等于56 cm ,两邻边长的比为3∶1,那么这个平行四边形较长的边长为_______.9.在□ABCD 中,∠A +∠C =270°,则∠B =______,∠C =______. 10.和直线l 距离为8 cm 的直线有______条. 三、解答题11.平行四边形的周长为36 cm ,一组邻边之差为4 cm ,求平行四边形各边的长.12.如图,在□ABCD 中,AB =AC ,若□ABCD 的周长为38 cm ,△ABC 的周长比□ABCD 的周长少10 cm ,求□ABCD 的一组邻边的长.13.如图,在□ABCD 中,对角线AC ,BD 相交于点O ,MN 是过O 点的直线,交BC 于M ,交AD 于N ,BM =2,AN =2.8,求BC 和AD 的长.14.如图,在□ABCD中,E、F分别是BC、AD上的点,且AE∥CF,AE与CF相等吗?说明理由.15.如图,在□ABCD中,O是对角线AC、BD的交点,BE⊥AC,DF⊥AC,垂足分别为E、F.那么OE与OF是否相等?为什么?参考答案1(1)两组对边分别相等.理由如下:连结BD,∵AB∥CD,AD∥BC∴∠1=∠2,∠3=∠4又∵BD=DB,∴△ABD≌△CDB,∴AD=BC,AB=CD(2)两组对角分别相等由(1)△ABD≌△CDB,∴∠A=∠C∵AB∥BC,∴∠A+∠ABC=180°,∠C+∠CDA=180°∴∠ABC=∠CDA(3)对角线互相平分由(1)AB=CD,∠3=∠4,∠AOB=∠COD∴△AOB≌△COD,∴AO=OC,OB=OD参考答案2一、1.4 2.24 CD =12 3.4 4.10<x <22 5.45° 135° 45° 135° 二、1.C 2.A 3.B三、1.证明:∵ABCD ,∴OA =OC ,DF ∥EB ∴∠E =∠F又∵∠EOA =∠FOC∴△OAE ≌△OCF ,∴OE =OF 2.解:∵ABCD ,∴BC =AD =12 CD =AB =13,OB =21BD ∵BD ⊥AD∴BD =22AD AB -=221213-=5 ∴OB =25 参考答案3一、1.D 2.B 3.C 4.D 5.B二、6.110° 110° 70° 7.14 8.21 cm 9.45° 135° 10.2三、11.11 cm,7 cm,11 cm,7 cm 12.9 cm,10 cm 13.BC =AD =4.8 14.AE =CF □AECF 15.OE =OF ,△BOE ≌△DOF4.2平行四边形的判别一、参考例题[例1]如图,在ABCD 的各边AB 、BC 、CD 、DA 上,分别取点K 、L 、M 、N ,使AK =CM 、BL =DN ,则四边形KLMN 为平行四边形吗?说明理由.分析:要说明四边形KLMN 为平行四边形,则可从:两组对边分别相等,或一组对边平行且相等中找条件.由已知是两组边相等,所以本题找两组对边分别相等这个条件,然后得证.解:四边形KLMN 是平行四边形. 理由是:∵四边形ABCD 是平行四边形.∴AD =BC ,AB =CD ,∠A =∠C ,∠B =∠D ∵AK =CM ,BL =DN , ∴BK =DM ,CL =AN∴△AKN ≌△CML ,△BKL ≌△DMN∴KN=ML,KL=MN∴四边形KLMN是平行四边形.[例2]已知如图:在ABCD中,延长AB到E,延长CD到F,使BE=DF,则线段AC与EF 是否互相平分?说明理由.分析:要说明线段AC与EF互相平分,可以把这两条线段作为一个四边形的对角线,然后说明这个四边形是平行四边形即可.解:线段AC与EF互相平分理由是:∵四边形ABCD是平行四边形.∴AB∥CD,即AE∥CF,AB=CD∵BE=DF,∴AE=CF∴四边形AECF是平行四边形,∴AC与EF互相平分.二、参考练习1.用任意2个全等的三角形能拼成平行四边形吗?自己画两个全等的三角形试一试,把你拼的图形画出来,说明理由.答案:用任意2个全等的三角形能拼成平行四边形.用“两组对边分别相等的四边形是平行四边形”或“两组对边分别平行的四边形是平行四边形”或“一组对边平行且相等的四边形是平行四边形”来说明理由.2.已知四边形ABCD中,AC与BD交于O点,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形.给出以下四种说法其中,正确的说法是①如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形②如果再加上条件“∠BAD=∠BCD”,那么四边形ABCD一定是平行四边形③如果再加上条件“OA=OC”那么四边形ABCD是平行四边形④如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.A.①和②B.①③和④C.②和③D.②③和④答案:C一、选择题1.A、B、C、D在同一平面内,从①AB∥CD;②AB=CD;③BC=AD;④BC∥AD这四个条件中任选两个,能使四边形ABCD是平行四边形的选法有()A.3种B.4种C.5种D.6种2.在四边形ABCD中,AC与BD相交于点O,如果只给出条件“AB∥CD”,那么还不能判定四边形ABCD为平行四边形,给出以下六个说法中,正确的说法有()(1)如果再加上条件“AD∥BC”,那么四边形ABCD一定是平行四边形;(2)如果再加上条件“AB=CD”,那么四边形ABCD一定是平行四边形;(3)如果再加上条件“∠DAB=∠DCB”那么四边形ABCD一定是平行四边形;(4)如果再加上“BC=AD”,那么四边形ABCD一定是平行四边形;(5)如果再加上条件“AO=CO”,那么四边形ABCD一定是平行四边形;(6)如果再加上条件“∠DBA=∠CAB”,那么四边形ABCD一定是平行四边形.A.3个B.4个C.5个D.6个图1 图23.如图1,AB∥CD∥EF,BC∥AD,AC为∠BAD的平分线,图中与∠AOE相等(不含∠AOE)的角有()A.2个B.3个C.4个D.5个二、如图2,BD是ABCD的对角线,AE⊥BD于E,CF⊥BD于F,求证:四边形AECF为平行四边形.三、如图3,田村有一口呈四边形的池塘,在它的四个角A、B、C、D处均种有一棵大核桃树.田村准备开挖池塘建养鱼池,想使池塘面积扩大一倍,又想保持核桃树不动,并要求扩建后的池塘成平行四边形的形状,请问田村能否实现这一设想?若能,请你设计并画出图形;若不能,请说明理由(画图要保留痕迹,不写画法).图3班级:___________________________姓名:___________________________作业导航理解并掌握平行四边形的判别方法,会利用平行四边形的判别方法进行简单的推理说明. 一、选择题1.能够判别一个四边形是平行四边形的条件是( ) A.一组对角相等B.两条对角线互相垂直且相等C.两组对边分别相等D.一组对边平行2.下列条件中不能确定四边形ABCD 是平行四边形的是( ) A.AB =CD ,AD ∥BC B.AB =CD ,AB ∥CD C.AB ∥CD ,AD ∥BC D.AB =CD ,AD =BC3.一个四边形的三个内角的度数依次如下选项,其中是平行四边形的是( ) A.88°,108°,88° B.88°,104°,108° C.88°,92°,92° D.88°,92°,88°4.四边形ABCD 中,AD ∥BC ,要判别四边形ABCD 是平行四边形,还需满足条件( ) A.∠A +∠C =180° B.∠B +∠D =180° C.∠A +∠B =180° D.∠A +∠D =180°5.以不在一条直线上的三点A 、B 、C 为顶点的平行四边形共有( ) A.1个 B.2个 C.3个 D.4个 二、填空题6.四边形ABCD 中,对角线AC 、BD 相交于点O ,要判别它是平行四边形,从四边形的角的关系看应满足______;从对角线看应满足_______.7.将两个全等的不等边三角形拼成平行四边形,可拼成的不同的平行四边形的个数为______. 8.四边形ABCD 中,AD =BC ,BD 为对角线,∠ADB =∠CBD ,则AB 与CD 的关系是_______. 9.□ABCD 中,对角线AC 、BD 相交于点O ,E 、F 分别是OB 、OD 的中点,四边形AECF 是_______. 10.如图,DE ∥BC ,AE =EC ,延长DE 到F ,使EF =DE ,连结AF 、FC 、CD ,则图中四边形ADCF 是______.三、解答题11.在□ABCD 中,点M 、N 在对角线AC 上,且AM =CN ,四边形BMDN 是平行四边形吗?为什么?12.如图,□ABCD 中,E 、F 分别在BA 、DC 的延长线上,且AE =21AB ,CF =21CD ,AF 和CE 的关系如何?说明理由.13.如图,D、E是△ABC的边AB和AC中点,延长DE到F,使EF=DE,连结CF.四边形BCFD 是平行四边形吗?为什么?14.如图,□ABCD的对角线AC、BD交于O,EF过点O交AD于E,交BC于F,G是OA的中点,H是OC的中点,四边形EGFH是平行四边形,说明理由.15.如图,平行四边形ABCD中,M、N分别为AD、BC的中点,连结AN、DN、BM、CM,且AN、BM交于点P,CM、DN交于点Q.四边形MGNP是平行四边形吗?为什么?参考答案1一、1.B 2.B 3.D二、证明:∵ABCD∴AB=CD,AB∥CD∴∠1=∠2AE⊥BD,CF⊥BD∴∠AEB=∠CFD=90°,AE∥CF∴△AEB≌△CFD,∴AE=CF∴AECF为平行四边形三、能参考答案2一、1.C 2.A 3.D 4.D 5.C二、6.∠A=∠C,∠B=∠D OA=OC,OB=OD 7.3 8.AB=CD且AB∥CD 9.平行四边形10.平行四边形三、11.是平行四边形,△ABM≌△CDN且△AMD≌△BN C.12.AE∥CF且AE=CF AFCE.13.是平行四边形,△AED≌△CEF.14.是平行四边形,△AOE≌△COF.15.是平行四边形,四边形AMCN、BMDN是平行四边形.4.3菱形练习一在人的心灵深处,都有一种根深蒂固的需要,这就是希望自己是个发现者、研究者和探究者,小华就是这样一位有思想的学生,在老师讲了平行四边形的性质和判定后,她想:一组邻边相等的平行四边形(菱形)又有什么特殊的性质呢?如何做一个菱形的折纸呢?(1)请你画一个菱形.(2)用你所学的知识,探求菱形除了具有平行四边形的性质外,还具有什么性质?(3)请你帮小华做一个菱形的折纸.练习二一、选择题1.下列命题中,真命题是( )A.对角线互相垂直且相等的四边形是菱形B.对角线互相垂直的平行四边形是菱形C.对角线互相平分且相等的四边形是菱形D.对角线相等的四边形是菱形2.菱形的周长为12 cm ,相邻两角之比为5∶1,那么菱形对边间的距离是( ) A.6 cm B.1.5 cm C.3 cm D.0.75 cm3.在菱形ABCD 中,AE ⊥BC 于点E ,AF ⊥CD 于点F ,且E 、F 分别为BC 、CD 的中点,(如图1)则∠EAF 等于( )A.75°B.60°C.45°D.30°图1 图24.已知菱形ABCD 中,AE ⊥BC 于E ,若S 菱形ABCD =24,且AE =6,则菱形的边长为( ) A.12 B.8 C.4 D.25.菱形的边长是2 cm ,一条对角线的长是23 cm,则另一条对角线的长是( ) A.4 cmB.3 cmC.2 cmD.23 cm二、判断正误:(对的打“√”错的打“1.两组邻边分别相等的四边形是菱形.…………………………………………………( )2.一角为60°的平行四边形是菱形.…………………………………………………( )3.对角线互相垂直的四边形是菱形.……………………………………………………( )4.菱形的对角线互相垂直平分.…………………………………………………………( ) 三、填空题1.如图3,菱形ABCD 中,AC 、BD 相交于O ,若OD =21AD ,则四个内角为________.图3 图42.若一条对角线平分平行四边形的一组对角,且一边长为a 时,如图4,其他三边长为________;周长为________.3.菱形ABCD 中,AC 、BD 相交于O 点,若∠OBC =21∠BAC ,则菱形的四个内角的度数为____________.4.若菱形的两条对角线的比为3∶4,且周长为20 cm,则它的一组对边的距离等于__________ cm,它的面积等于________ cm 2.5.菱形ABCD 中,如图5,∠BAD =120°,AB =10 cm,则AC =________ cm,BD =________ cm.图5 图6四、已知:△ABC 中,CD 平分∠ACB 交AB 于D ,DE ∥AC 交BC 于E ,DF ∥BC 交AC 于F .求证:四边形DECF 是菱形.五、已知ABCD 中,BE 平分∠ABC 交AD 于E ,若CE 平分∠DCB ,且AB =2,求:ABCD 的其余边长.图73.菱形班级:___________________________姓名:___________________________ 作业导航理解并掌握菱形的性质及判别方法,会利用菱形的性质和判别方法进行推理说明和有关计算.一、选择题1.菱形具有而一般平行四边形不具有的性质是()A.对角相等B.对边相等C.对角线互相垂直D.对角线相等2.能够判别一个四边形是菱形的条件是()A.对角线相等且互相平分B.对角线互相垂直且相等C.对角线互相平分D.一组对角相等且一条对角线平分这组对角3.菱形的周长为100 cm,一条对角线长为14 cm,它的面积是()A.168 cm2B.336 cm2C.672 cm2D.84 cm24.菱形的周长为16,两邻角度数的比为1∶2,此菱形的面积为()A.43B.83C.103D.1235.下列语句中,错误的是()A.菱形是轴对称图形,它有两条对称轴B.菱形的两组对边可以通过平移而相互得到C.菱形的两组对边可以通过旋转而相互得到D.菱形的相邻两边可以通过旋转而相互得到二、填空题6.菱形的周长是8 cm,则菱形的一边长是______.7.菱形的一个内角为120°,平分这个内角的对角线长为11厘米,菱形的周长为______.8.菱形的对角线的一半的长分别为8 cm和11 cm,则菱形的面积是_______.9.菱形的面积为24 cm2,一对角线长为6 cm,则另一对角线长为______,边长为______.10.菱形的面积为83平方厘米,两条对角线的比为1∶3,那么菱形的边长为_______.三、解答题11.如图,AD是△ABC的角平分线.DE∥AC交AB于E,DF∥AB交AC于F.四边形AEDF是菱形吗?说明你的理由.12.□ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F,四边形AFCE是否是菱形?为什么?13.菱形ABCD 的周长为20 cm ,两条对角线的比为3∶4,求菱形的面积.14.如图,菱形ABCD 的对角线AC 、BD 交于点O ,且AC =16 cm ,BD =12 cm ,求菱形ABCD 的高DH .参考答案1(1)一组邻边相等的平行四边形,如下图:ABCD 是菱形(2)如右图:ABCD 是一组邻边相等(AB =AD )的平行四边形 ∵ABCD 是平行四边形 ∴AB =CD ,AD =BC 又∵AB =AD∴AB =BC =CD =AD ,即菱形的四条边都相等 连结AC 、BD∵AB ∥CD ,AD ∥BC ∴∠1=∠2,∠3=∠4 又∵AD =CD ,∴∠1=∠4∴∠1=∠3=∠2=∠4,即AC 是∠DAB ,∠DCB 的平分线.同理可证BD 是∠ADC 和∠ABC 的平分线∴菱形的对角线平分每一组对角. ∵平行四边形ABCD 中AB ∥CD ∴∠CDA +∠DAB =180°又由前面证得∠1=∠2,∠CDB =∠ADB ∴∠4+∠ADB =21(∠DAB +∠CDA )=21×180°=90° ∴在△AOD 中∠AOD =180°-(∠4+∠ADB )=90°∴AC ⊥BD ,即菱形的对角线互相垂直在△AOD 和△AOB 中,AB =AD ,∠2=∠4,AO =AO ∴△AOD ≌△AOB ,∴OD =OB 同理可证OA =OC所以菱形的对角线垂直且平分 (3)略参考答案2一、1.B 2.B 3.B 4.C 5.C 二、1.× 2.× 3.× 4.√三、1.60°,120°,60°,120° 2.分别为a 4a 3.90° 4.524cm 24 cm 2 5.10 103四、证明:∵DE ∥AC ,DF ∥BC ∴四边形DECF 为平行四边形 ∠2=∠3 又∵∠1=∠2 ∴∠1=∠3 ∴DE =EC∴DECF 为菱形(有一组邻边相等的平行四边形是菱形) 五、解:过E 作EF ∥AB 交BC 于F∵ABCD ,∴AD ∥BC ∴ABFE 是平行四边形 ∴EF =AB ,∠1=∠3又∵∠2=∠1,∴∠2=∠3 ∴BF =FE ,同理:EF =FC ∴F 为BC 的中点.又BE 、CE 为∠ABC 、∠DCF 的平分线 AB ∥CD ,∴∠EBC +∠ECB =90° ∴∠BEC =90°,∴EF =21BC =AB ∴AB =CD =2,AD =BC =2AB =4参考答案3一、1.C 2.D 3.B 4.B 5.D二、6. 2 cm 7. 44厘米 8. 176 cm 2 9. 8 cm 5 cm 10. 4 cm 三、11.四边形AEDF 是菱形,AE =E D.12.□AFCE 是菱形,△AOE ≌△COF ,四边形AFCE 是平行四边形,EF ⊥AC 13.24 cm 2 14. 9.6 cm4.4矩形、正方形一、参考例题[例1]如图,E为正方形ABCD的BC边上的一点,CG平分∠DCF,连结AE,并在CG上取一点G,使EG=AE.求证:AE⊥EG.分析:由于CG是角平分线,CA是∠BCD的平分线,于是我们可以断定∠ACG=90°,因而只要证明∠AEG=∠ACG即可,从图中可以看出,只要证明∠1=∠G就可以得到所求证的结论.证明:连结AC,并延长AC到M,使CM=CG,连结EM.∵四边形ABCD是正方形∴AC平分∠BCD∴∠ECM=135°又∵CG平分∠DCF,∴∠GCF=45°∴∠ECG=135°,∴∠ECG=∠ECM.而EC=EC,CG=CM.∴△ECM≌△ECG.∴∠M=∠G,EM=EG而EA=EG,∴EA=EM,∴∠1=∠M∴∠1=∠G而∠2=∠3∴∠AEG=∠ACG又∵∠ACD=45°,∠DCG=45°∴∠ACG=90°,∴∠AEG=90°,即AE⊥EC.[例2]已知如下图,正方形ABCD中,E是CD边上的一点,F为BC延长线上一点,CE=CF.(1)求证:△BEC≌△DFC;(2)若∠BEC =60°,求∠EFD 的度数.分析:要证△BEC ≌△DFC ,则需找全等的条件,由正方形的性质可得出. 要求∠EFD 的度数,可由三角形中角的关系求得. 证明:(1)∵四边形ABCD 是正方形. ∴BC =DC ,∠BCD =90°在Rt △BCE 和Rt △DCF 中,BC =DC ,CE =CF ,∴Rt △BCE ≌Rt △DCF (2)∵CE =CF ,∴∠CEF =∠CFE ∴∠CFE =21(180°-90°)=45° ∵Rt △BCE ≌Rt △DCF ∴∠CFD =∠BEC =60°∴∠EFD =∠DFC -∠EFC =15° 二、参考练习1.如图,P 为正方形ABCD 内一点,P A =1,PB =2,PC =3,求∠APB 的度数.解:将△ABP 绕B 点顺时针旋转90°得△CBG ,则: △P AB ≌△GCB△PBG 是等腰直角三角形 得P A =CG =1∠APB =∠CGB ,PB =BG =2,∠PGB =45°. 在Rt △PBG 中, PG 2=PB 2+BG 2=8 在△PGC 中,PC 2=32=8+1=PG 2+GC 2. ∴∠PGC =90°∴∠CGB =∠PGC +∠PGB =135° ∴∠APB =135°2.已知四边形ABCD 是菱形,当满足条件_________时,它成为正方形(填上你认为正确的一个条件即可).答案:填写:∠A =90°或∠B =90°或∠C =90°或∠D =90°中的任一条件即可.练习一相框、信封、明信片、田字格,还有在中国流传了数百年的神奇玩具——华容道、七巧板,都有矩形和正方形的影子,同时正方形也是最完美的图形之一.(1)画一个矩形、正方形.(2)说说矩形和平行四边形在角和边的关系上有哪些异同?(3)说说正方形、菱形、矩形在边和角的关系上有哪些异同?菱形加个什么条件就可以得到正方形?矩形呢?练习二一、填空题1.矩形的面积公式是_________________.2.已知矩形ABCD中,S矩形ABCD=24 cm2,若BC=6 cm,则对角线AC的长是________ cm.13.已知矩形ABCD,若它的宽扩大2倍,则它的面积等于原面积的________;若宽不变长缩小4倍,那么新矩形的面积等于原矩形面积的________;若宽扩大2倍且长缩小41,那么新矩形的面积等于原矩形面积的________.4.已知:如图1,正方形ABCD 中,CM =CD ,MN ⊥AC ,连结CN ,则∠DCN =_____=____∠B ,∠MND =_______=_______∠B.图1 图25.已知矩形ABCD 中,如图2,对角线AC 、BD 相交于O ,AE ⊥BD 于E ,若∠DAE ∶∠BAE =3∶1,则∠EAC =________.6.在四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 上的点,且k HDAHGC DG FC BF EB AE ==== (k >0)阅读下面材料,然后回答下面问题:如图3,连结BD ,∵HD AHEB AE =,∴EH ∥BD ∵GCDG FC BF =,∴FG ∥BD ∴FG ∥EH(1)连结AC ,则EF 与GH 是否一定平行, 图3 答:________________________________________________________. (2)当k =________时,四边形EFGH 为平行四边形.(3)在(2)的情形下,对角线AC 与BD 只须满足________条件时,EFGH 为矩形. (4)在(2)的情形下,对角线AC 与BD 只须满足________条件时,EFGH 为菱形. 二、选择题1.已知E 是矩形ABCD 的边BC 的中点,那么S △AED =________S 矩形ABCD ( ) A.21 B.41 C.51 D.612.如图4矩形ABCD 中,若AB =4,BC =9,E 、F 分别为BC ,DA 上的31点,则S 四边形AECF 等于( ) A.12 B.24C.36 图4D.483.如图5,周长为68的矩形ABCD 被分成7个全等的矩形,则矩形ABCD 的面积为( ) A.98 B.196 C.280 D.284图54.正方形的面积是31,则其对角线长是________. 5.在四边形ABCD 中,给出下列论断:①AB ∥DC ;②AD =BC ;③∠A =∠C ,以其中两个作为题设,另外一个作为结论,用“如果…那么…”的形式,写出一个你认为正确的结论:___________________________________________________________________________ 三、如图6,△ABC 中,点O 是AC 边上一个动点,过点O 作直线MN ∥BC ,设MN 交∠BCA 的平分线于E ,交∠BCA 的外角平分线于点F .(1)求证:EO =FO(2)当点O 运动到何处时,四边形AECF 是矩形?并证明你的结论. 图6练习三班级:___________________________姓名:___________________________作业导航理解并掌握矩形、正方形的性质及判别方法,会利用其性质和判别方法进行简单的推理和计算. 一、选择题1.两条平行线被第三条直线所截,两组内错角的平分线相交所成的四边形是( ) A.一般平行四边形 B.菱形 C.矩形 D.正方形2.四边形ABCD 中,AC 、BD 相交于点O ,能判别这个四边形是正方形的条件是( ) A.OA =OB =OC =OD ,AC ⊥BD B.AB ∥CD ,AC =BD C.AD ∥BC ,∠A =∠CD.OA=OC,OB=OD,AB=BC3.在矩形ABCD的边AB上有一点E,且CE=DE,若AB=2AD,则∠ADE等于()A.45°B.30°C.60°D.75°4.矩形的一内角平分线把矩形的一条边分成3和5两部分,则该矩形的周长是()A.16B.22C.26D.22或265.在正方形ABCD中,AB=12 cm,对角线AC、BD相交于O,则△ABO的周长是()A.12+122B.12+62C.12+2D.24+62二、填空题6.延长等腰△ABC的腰BA到D,CA到E,分别使AD=AB,AE=AC,则四边形BCDE是________,其判别根据是_______.7.矩形的两条对角线的夹角是60°,一条对角线与矩形短边的和为15,那么矩形对角线的长为_______,短边长为_______.8.矩形ABCD的周长是56 cm,它的两条对角线相交于O,△AOB的周长比△BOC的周长少4 cm,则AB=_______,BC=_______.9.正方形的一条边长是3,那么它的对角线长是_______.10.在一正方形的四角各截去全等的等腰直角三角形而得到一个小正方形,若小正方形的边长为1,那么所截的三角形的直角边长是________.三、解答题11.在四边形ABCD中,∠B=∠D=90°,且AB=CD,四边形ABCD是矩形吗?为什么?12.如图,矩形ABCD的对角线AC、BD相交于点O,E、F、G、H分别是OA、OB、OC、OD 的中点,顺次连结E、F、G、H所得的四边形EFGH是矩形吗?说明理由.13.E为正方形ABCD内一点,且△EBC是等边三角形,求∠EAD的度数.14.如图,正方形ABCD,AB=a,M为AB的中点,ED=3AE,(1)求ME的长;(2)△EMC是直角三角形吗?为什么?15.以锐角△ABC的边AC、AB为边向外作正方形ACDE和正方形ABGF,连结BE、CF,(1)试探索BE和CF的关系?并说明理由.(2)你能找到哪两个图形可以通过旋转而相互得到,并指出旋转中心和旋转角.参考答案1(1)略(2)相同点:矩形和平行四边形对边平行且相等,对角相等 不同点:矩形四个角均为直角.(3)相同点:正方形、菱形、矩形均为特殊的平行四边形,它们都有平行四边形的一切性质. 不同点:矩形四个角为直角,菱形四条边相等,正方形具有菱形和矩形的所有特点;有一个角为直角的菱形是正方形,一组邻边相等的矩形是正方形.参考答案2一、1.长×宽 2.213 3.2倍 41 21 4.22.5 41 67.5° 435.45°6.(1)不一定 (2)1 (3)AC ⊥BD (4)AC =BD二、1.A 2.B 3.C 4.365.如果AB ∥DC ,∠A =∠C ,那么AD =BC 三、(1)证明:∵MN ∥BC ,∴∠BCE =∠CEO 又∵∠BCE =∠ECO ∴∠OEC =∠OCE∴OE =OC ,同理OC =OF ∴OE =OF(2)当O 为AC 中点时,AECF 为矩形 ∵EO =OF (已证),OA =OC ∴AECF 为平行四边形又∵CE 、CF 为△ABC 内外角的平分线 ∴∠EOF =90°,∴AECF 为矩形参考答案3一、1.C 2.A 3.A 4.D 5.A二、6.矩形 对角线互相平分且相等的四边形是矩形 7. 10 5 8. 12 cm 16 cm 9. 3210.22 三、11.是矩形,连接AO ,△ABC ≌△CD A. 12.是矩形,OE =OF =OG =OH . 13. 15° 14.(1)45a (2)△EMC 是直角三角形 理由略 15.(1)BE =CF ,BE ⊥CF(2)△ABE 和△AFC 可以通过旋转而相互得到,旋转中心是A ,旋转角为90°.4.5梯形一、参考例题如图,在梯形ABCD 中,AB ∥CD ,M 、N 分别为CD 和AB 的中点,且MN ⊥AB . 求证:四边形ABCD 是等腰梯形.分析:判定四边形ABCD 是一个等腰梯形,要在已知梯形的前提下证明它的两腰相等或同一底上的两个角相等.本例中已知ABCD 是梯形,只要证明第二步骤即可.证明:过点C 作CE ⊥AB 于E ,过D 点作DF ⊥AB 于F . ∵AB ∥DC ,MN ⊥AB∴四边形DFNM 和CENM 是矩形. ∴DM =FN ,CM =EN 且DF =CE 又DM =CM ,∴FN =EN而N 是AB 的中点,∴AF =BE 又∠DF A =∠CEB ,DF =CE ∴△DF A ≌△CEB ,∴AD =BC 即:四边形ABCD 是等腰梯形 二、参考练习1.等腰梯形对角线的长为17,底边的长为10和20,则该梯形的面积是_________. 答案:1202.已知:梯形ABCD 中,AD ∥BC ,E 为CD 的中点,则S ABCD 是S △ABE 的2倍吗?为什么?解:S 梯形ABCD =2S △ABE .理由是: 延长AE 交BC 的延长线于F ∵AD ∥BC ,∴∠ADE =∠ECF 又∵E 是CD 的中点,∴DE =CE 又∠DEA =∠CEF∵△ADE ≌△FCE ,∴AE =EF S △ABE =21S △ABF 而S △ABF =S 梯形ABCD 所以:S △ABE =21S 梯形ABCD ,即S 梯形ABCD =2S △ABE . 一、参考例题如图,四边形ABCD 是等腰梯形,其中AD =BC ,若AD =5,CD =2,AB =8,求梯形ABCD 的面积.分析:梯形的面积公式: S =21(a +b )h . 本题的上底、下底是已知的,要求面积,关键是求高.如何求高呢?由于梯形是一个轴对称图形.因此我们可知两线段AE 、BF 相等,应用勾股定理,即可求出.解:过点D 、C 作DE ⊥AB 于E ,CF ⊥AB 于F ,根据等腰梯形的轴对称性知:AE =BF .AE =21(AB -EF )=21(AB -CD )=3 在Rt △ADE 中,DE 2=AD 2-AE 2=52-32=42 ∴DE =4 ∴S 梯形ABCD =21×(8+2)×4=20二、参考练习1.已知如图,梯形ABCD 中,AD ∥BC ,AB =CD ,∠B =60°,AD =10,BC =18,求梯形ABCD 的周长.解:过A 、D 点分别作AE ⊥BC 于E ,DF ⊥BC 于F ,根据梯形的轴对称性知:BE =CFBE =21(BC -AD )=4 ⎭⎬⎫︒=∠︒=∠∆90 60,Rt AEB B ABE 中在 ⇒∠BAE =30°BE =21AB ,即AB =2BE =8 ∴AB =CD =8L 梯形ABCD =10+8+18+8=442.已知直角梯形的一腰长10 cm ,这条腰与一个底所成的角是30°,求另一条腰的长. 解:如图所示,过D 点作DE ⊥BC 于E ,∠C =30°,DC =10 cm.∴DE =21DC =5, ∴AB =DE =5(cm)所以,此直角梯形的另一条腰长为5 cm.练习一一、小学我们已经学过梯形的初步知识,请思考: (1)梯形和平行四边形的最根本区别是什么?(2)你能利用辅助线从梯形中分割出平行四边形、三角形、矩形来吗?请试一试,并想一想有几种分割方法.二、某村在两条平行道路之间有一块梯形土地,如图,现打算种植两种蔬菜,为了灌溉和管理的方便,需要在两条道路之间垂直地开挖一条水渠,并把土地分成等面积的两块,问这条水渠应该怎样开挖?练习二一、填空题1.梯形的定义是:____________________________________________________________________________________________________________________________.2.等腰梯形的定义是:________________________________________________________________________________________________________________________.3.等腰梯形的性质是:_________________________________________________________________________________________________________.4.在梯形中,不是同一底上的两组角的比值分别为1∶3和3∶7,则四个角的度数为.5.如图1,梯形ABCD中,AD∥BC,AC为对角线,AE⊥BC于E,AB⊥AC,若∠ACB=30°,BE=2.则BC=___________. 图16.直角梯形的定义是:____________________________________________________________________________________________________________________________________________________________________________________.7.直角梯形一腰长16 cm,和一个底所成的角为30°,那么另一腰长________ cm.8.等腰梯形的两底差等于腰长,腰与下底边的夹角为________,与上底的夹角为________. 9.满足条件的梯形是等腰梯形. 10.等腰梯形有下列性质:①从角看:在同一底上的两个角________________________________________________; ②从边看:两腰_____________________________________________________________; ③从对角线看:两条对角线___________________________________________________; ④从图形的对称性看:是________对称图形.二、选择题1.如图2,梯形ABCD 中,AD ∥BC ,设AC ,BD 交于O 点,则图中共有对面积相等的三角形.( )A.2B.3C.4D.5图2 图32.如图3,在直角梯形ABCD 中,AB =4 cm,AD =4.5 cm,∠C =30°,则DC = cm ,BC = cm ( ) A.8,43B.8 cm,(4.5+43) cmC.4(3+1)+21,8D.8 cm,(43+4) cm3.等腰直角三角形各边中点连线围成的多边形是( ) A.平行四边形 B.等腰三角形 C.等腰直角三角形 D.等边三角形三、请你来完成1.用下面的方法来证明:在同一底上的两个角相等的梯形是等腰梯形.(1)如图4,分别延长梯形ABCD 的腰BA ,CD ,设它们相交于点E .通过证明△EAD 和△EBC 都是________三角形来证明.图4 图5(2)如图5,作梯形ABCD的高AE,DF,通过证明Rt△ABE≌Rt△DCF来证明定理.证明过程:(1)_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________(2)_______________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________________2.已知等腰梯形的锐角等于60°,它的两底分别为15 cm,49 cm,求它的腰长.在研究等腰梯形时,常常通过辅助线,使等腰梯形与等腰三角形联系起来.想一想,用怎样的辅助线可以在等腰梯形中划出等腰三角形.参考答案1一、(1)一组对边平行,另一组对边不平行(2)二、见题图,先分别取上、下底的中点M、N,连MN,再取MN中点O,过O作上下底的垂线段EF,E、F为垂足,则EF就是要开挖的水渠线(如下图)参考答案2一、1.略 2.略 3.略 4.45°,135°,54°,126° 5.86.有一个角是直角的梯形叫直角梯形7.88.60°120°9.同一底上两底角相等(或对角线相等)10.①相等②相等③相等④轴对称图形二、1.B 2.B 3.C三、1.(1)等腰(1)证明:延长BA、CD交于E∵∠B=∠C,∴BE=CE又∵AD∥BC∴∠EAD=∠B,∠EDA=∠C∴∠EAD=∠EDA,∴AE=DE∴△EAD和△EBC为等腰三角形(2)证明:作AE⊥BC于E,DF⊥BC于F.∵AD∥BC,∴AE=DF在Rt△ABE和Rt△DCF中,∠B=∠C,AE=DF,∴△ABE≌△DCF,∴AB=DC2.解:如图,作DE∥AB交BC于E∵AD∥BC∴ABED为平行四边形∴DE=AB,AD=BE,EC=BC-AD=49-15=34又∵DE=AB,∴DE=DC,又∵∠C=60°∴△DCE为等边三角形,∴DC=EC=34 cm想一想:4.6探索多边形的内角和与外角和参考练习1.过四边形一个顶点的对角线把四边形分成两个三角形;过五边形或六边形一个顶点的对角线分别把它们分成_________个或_________个三角形;过n边形一个顶点的对角线把n边形分成_________个三角形(用含n的代数式表示).答案:三四n-22.一个多边形的每个内角都等于140°,那么这个多边形是_________边形.答案:九3.如果一个多边形的边数增加1,那么这个多边形的内角和增加_________度.答案:1804.在四边形ABCD中,∠A、∠B、∠C、∠D的度数之比为2∶3∶4∶3,则∠D等于A.60°B.75°C.90°D.120°答案:C5.下列角中能成为一个多边形的内角和的是A.270°B.560°C.1800°D.1900°答案:C6.一个多边形共有27条对角线,则这个多边形的边数为A.8B.10C.9D.11答案:C一、参考例题[例1]如图,∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H=_________.解:∵∠1=∠A+∠B,∠2=∠C+∠D∠3=∠E+∠F,∠4=∠G+∠H又∵∠1+∠2+∠3+∠4=360°.。
八年级数学平行四边形30道经典题(含答案和解析)
八年级数学平行四边形30道经典题(含答案和解析)1.如图,平行四边形ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为().A.1B.2C.3D.4答案:B.解析:∵平行四边形ABCD,AE平分∠BAD交BC于点E.∴∠BAE=∠EAD,∠EAD=∠AEB.∴∠BAE=∠AEB.∴AB=BE=3.∴EC=2.所以答案为B.考点:三角形——全等三角形——角平分线的性质定理.四边形——平行四边形——平行四边形的性质.2.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AB的长为().A.13B.14C.15D.16答案:D解析:∵平行四边形ABCD,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F.∴四边形ABEF为平行四边形.∴∠FAB+∠ABE=180°,∠FAE=∠EAB,∠ABF=∠FBE. ∴∠BAE+∠ABF=90°,AE⊥BF.∴四边形ABEF为菱形.设AE,BF交点为点O,则点O平分线段AE,BF.在△ABO中,AO2+BO2=AB2,(12AE)2+(12BF)2=AB2.∵BF=12,AB=10.解得AE=16.所以答案为D.考点:三角形——直角三角形——勾股定理.四边形——平行四边形——平行四边形的性质.四边形——菱形——菱形的判定.3.如图,已知平行四边形纸片ABCD的周长为20,将纸片沿某条直线折叠,使点D与点B重合,折痕交AD于点E,交BC于点F,连接BE,则△ABE的周长为.答案:10.解析:依题可知,翻折轴对称BE=DE,△ABE的周长=AB+AE+BE=AB+AD=10.考点:四边形——平行四边形.几何变换——图形的对称——翻折变换(折叠问题).4.下列条件中,不能判断四边形是平行四边形的是().A. AB∥CD,AD∥BCB. AB=CD,AD∥BCC. AB∥CD,AB=CDD. ∠A=∠C,∠B=∠D答案:B.解析:如图:A选项,∵AB∥CD,AD∥BC .∴四边形ABCD是平行四边形,正确,故本选项错误.B选项,根据AB=CD和AD∥BC 可以是等腰梯形,错误,故本选项正确.C选项,∵AB∥CD,AB=CD.∴四边形ABCD是平行四边形,正确,故本选项错误.D选项,∵∠A=∠C,∠B=∠D.∴四边形ABCD是平行四边形,正确,故本选项错误.故选B.考点:四边形——平行四边形——平行四边形的判定.5.阅读下面材料:在数学课上,老师提出如下问题:尺规作图:过直线外一点作已知直线的平行线.已知:直线l及其外一点A.求作:l的平行线,使它经过点A.小云的作法如下:(1)在直线l上任取一点B,以点B为圆心,任意长为半径作弧,交直线l于点C.(2)分别以A,C为圆心,以BC,AB的长为半径作弧,两弧相交于点D.(3)作直线AD.所以直线AD即为所求.老师说:“小云的作法正确.”请回答:小云的作图依据是.答案:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线. 解析:两组对边分别相等的四边形是平行四边形;平行四边形对边平行;两点确定一条直线.考点:四边形——平行四边形——平行四边形的判定.尺规作图——过一点作已知直线的平行线.6.如图所示,平行四边形ABCD中,∠ABC=60°,点E,F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,CF=√3.(1)求证:四边形ABDE是平行四边形.(2)求AB的长.答案:(1)证明见解析.(2)AB=√3.解析:(1)∵四边形ABCD是平行四边形.∴AB∥DC,AB=CD.∵AE∥BD.∴四边形ABDE是平行四边形.(2)由(1)知,AB=DE=CD.即D为CE中点.∵EF⊥BC.∴∠EFC=90°.∵AB∥CD.∴∠DCF=∠ABC=60°.∴∠CEF=30°.∴CE=2CF=2√3.∴AB=CD=√3.考点:三角形——直角三角形——含30°角的直角三角形.四边形——平行四边形——平行四边形的性质——平行四边形的判定.7.如图,在矩形ABCD中,E是BC边的中点,沿直线AE翻折△ABE,使B点落在点F处,连结CF并延长交AD于G点.(1)依题意补全图形.(2)连接BF 交AE 于点O ,判断四边形AECG 的形状并证明.(3)若BC =10,AB =203,求CF 的长.答案:(1)画图见解析. (2)四边形AECG 是平行四边形,证明见解析.(3)CF =6.解析:(1)依题意补全图形,如图:(2)依翻折的性质可知,点O 是BF 中点.∵E 是BC 边的中点. ∴EO ∥CG. ∵AG ∥CE.∴四边形AECG 是平行四边形.(3)在Rt △ABE 中.∵BE =12BC =5,AB =203.∴AE =253.∵S △BAE =12AB×BE =12AE×BO.∴BO =4. ∴BF =2BO =8. ∵BF ⊥AE ,AE ∥CG. ∴∠BFC =90°. ∴CF =6.考点:三角形——直角三角形——勾股定理.四边形——平行四边形——平行四边形的判定.几何变换——图形的对称——作图:轴对称变换.8.如图,平行四边形ABCD的周长为40,△BOC的周长比△AOB的周长多10,则AB为().A.20B.15C.10D.5答案:D.解析:∵平行四边形的周长为40.∴AB+BC=20.又∵△BOC的周长比△AOB的周长多10.∴BC-AB=10.解得:AB=5,BC=15.故答案为:D.考点:四边形——平行四边形——平行四边形的性质.9.如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′和B C′与AD交于点E,若AB=3,BC=4,则DE的长为.答案:25.8解析:由折叠得,∠CBD=∠EBD.由AD∥BC得,∠CBD=∠EDB.∴∠EDB=∠EBD.∴DE=BE.设DE=BE=x,则AE=4-x.在Rt△ABE中.AE2+AB2=BE2.(4−x)2+32=x2..解得x=258∴DE的长为25.8考点:三角形——直角三角形——勾股定理.四边形——矩形——矩形的性质.几何变换——图形的对称——翻折变换(折叠问题).10.如图,矩形ABCD的对角线AC,BD交于点O,DE∥AC交BA的延长线于点E,点F在BC上,BF=BO,且AE=6,AD=8.(1)求BF的长.(2)求四边形OFCD的面积.答案:(1)BF=5..(2)S四边形OFCD=332解析:(1)∵四边形ABCD是矩形.∴∠BAD=90°.∴∠EAD=180°-∠BAD=90°.∵在Rt△EAD中,AE=6,AD=8.∴DE=√AE2+AD2=10.∵DE∥AC,AB∥CD.∴四边形ACDE 是平行四边形. ∴AC =DE =6.在Rt △ABC 中,∠ABC =90°. ∵OA =OC. ∴BO =12AC =5.∵BF =BO. ∴BF =5. (2)取BC 中点为O.∴BG =CG.∵四边形ABCD 是矩形.∴OB =OD ,∠BCD =90°,CD ⊥BC . ∴OG 是△BCD 的中位线. ∴OG ∥CD .由(1)知,四边形ACDE 是平行四边形,AE =6. ∴CD =AE =6. ∴OG =12CD =3.∵AD =8. ∴BC =AD =8.∴S △BCD =12BC×CD =24,S △BOF =12BF×OG =152. ∴S 四边形OFCD =S △BCD -S △BOF =332.考点:三角形——三角形基础——三角形中位线定理.直角三角形——勾股定理.四边形——平行四边形——平行四边形的性质——平行四边形的判定. 矩形——矩形的性质. 四边形基础——四边形面积.11. 如图,在菱形ABCD 中,∠B =60°,AB =1,延长AD 到点E ,使DE =AD ,延长CD 到点F ,使DF =CD ,连接AC 、CE 、EF 、AF .(1)求证:四边形ACEF是矩形.(2)求四边形ACEF的周长.答案:(1)证明见解析.(2)四边形ACEF的周长为:2+2√3.解析:(1)∵DE=AD,DF=CD.∴四边形ACEF是平行四边形.∵四边形ABCD为菱形.∴AD=CD.∴AE=CF.∴四边形ACEF是矩形.(2)∵△ACD是等边三角形.∴AC=1.∴EF=AC=1.过点D作DG⊥AF于点G,则AG=FG=AD×cos30°=√3.2∴AF=CE=2AG=√3.∴四边形ACEF的周长为:AC+CE+EF+AF=1+√3+1+√3=2+2√3.考点:三角形——等腰三角形——等边三角形的判定.锐角三角函数——解直角三角形.四边形——平行四边形——平行四边形的判定.矩形——矩形的判定.菱形——菱形的性质.四边形基础——四边形周长.12.如图,矩形ABCD的对角线AC,BD相交于点O,点E,F,M,N分别是OA,OB,OC,OD的中点,连接EF,FM,MN,NE.(1)依题意,补全图形. (2)求证:四边形EFMN 是矩形.(3)连接DM ,若DM ⊥AC 于点M ,ON =3,求矩形ABCD 的面积.答案:(1)答案见解析. (2)证明见解析.(3)36√3.解析:(1)(2)∵点 E ,F 分别为OA ,OB 的中点.∴EF ∥AB ,EF =12AB .同理,NM ∥DC ,NM =12DC .∵四边形ABCD 是矩形. ∴AB ∥DC ,AB =DC ,AC =BD. ∴EF ∥NM ,EF =NM.∴四边形EFMN 是平行四边形.∵点E ,F ,M ,N 分别OA ,OB ,OC ,OD 的中点. ∴OE =12OA ,OM =12OC . 在矩形ABCD 中.OA =OC =12AC ,OB =OD =12BD.∴EM =OE +OM =12AC . 同理可证FN =12BD . ∴EM =FN .∴四边形EFMN 是矩形.(3)∵DM ⊥AC 于点M.由(2)可知,OM =12OC. ∴OD =CD . 在矩形ABCD 中.OA =OC =12AC ,OB =OD =12BD ,AC =BD. ∴OA =OB =OC =OD. ∴△COD 是等边三角形. ∴∠ODC =60°. ∵NM ∥DC.∴∠FNM =∠ODC =60°. 在矩形EFMN 中,∠FMN =90°. ∴∠NFM =90°-∠FNM =30°. ∵ON =3.∴FN =2ON =6,FM =3√3,MN =3. ∵点F ,M 分别OB ,OC 的中点. ∴BC =2FM =6√3.∴矩形ABCD 的面积为BC×CD =36√3.考点:直线、射线、线段——直线、射线、线段的基本概念——线段中点、等分点.三角形——三角形基础——三角形中位线定理. 直角三角形——含30°角的直角三角形——勾股定理. 四边形——矩形——矩形的性质——矩形的判定.13. 如图,在平面直角坐标系xOy 中,若菱形ABCD 的顶点A ,B 的坐标分别为(-3,0) ,(2,0),点D 在y 轴正半轴上,则点C 的坐标是 .答案:(5,4).解析:由题意及菱形性质,得:AO=3,AD=AB=DC=5.根据勾股定理,得DO=√AD2−AO2=√52−32=4.∴点C的坐标是(5,4).考点:三角形——直角三角形——勾股定理的应用.四边形——菱形——菱形的性质.14.如图,在矩形ABCD中,边AB的长为3,点E,F分别在AD,BC上,连接BE,DF,EF,BD.若四边形BFDE是菱形,且EF=AE+FC,则边BC的长为().√3A. 2√3B.3√3C. 6√3D.92答案:B.解析:∵四边形ABCD是矩形.∴∠A=90°,AD=BC,AB=DC=3.∵四边形BEDF是菱形.∴EF⊥BD,∠EBO=∠DBF,ED=BE=BF.∴AD-DE=BC-BF,即AE=CF.∵EF=AE+FC,EO=FO.∴AE=EO=CF=FO.∴△ABE≌△OBE.∴AB=BO=3,∠ABE=∠EBO.∴∠ABE=∠EBD=∠DBC=30°.∴在Rt△BCD中,BD=2DC=6.∴BC=√BD2−DC2=3√3.考点:三角形——直角三角形——勾股定理.四边形——矩形——矩形的性质.菱形——菱形的性质.15.如图,在给定的一张平行四边形纸片上作一个菱形.小米的作法是:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM 是菱形.则小米的依据是.答案:一组对边平行且相等的四边形是平行四边形;对角线互相垂直的平行四边形是菱形.解析:根据平行四边形定义可知,一组对边平行且相等的四边形是平行四边形;根据菱形的定义可知对角线互相垂直的平行四边形是菱形,所以答案为一组对边平行且相等的四边形是平行四边形;对角线互相垂直的平行四边形是菱形.考点:四边形——平行四边形——平行四边形的判定.菱形——菱形的判定.16.在数学课上,老师提出如下问题:如图1:将锐角三角形纸片ABC(BC>AC)经过两次折叠,得到边AB,BC,CA上的点D,E,F.使得四边形DECF恰好为菱形.小明的折叠方法如下:如图2:(1)AC边向BC边折叠,使AC边落在BC边上,得到折痕交AB于D.(2)c点向AB边折叠,使C点与D点重合,得到折痕交BC边于E,交AC边于F.老师说:“小明的作法正确.”请回答:小明这样折叠得到菱形的依据是.答案:CD和EF是四边形DECF对角线,而CD和EF互相垂直且平分(答案不唯一).解析:如图,连接DF、DE.根据折叠的性质知,CD⊥EF,且OD=OC,OE=OF.则四边形DECF恰为菱形.考点:四边形——菱形——菱形的判定.几何变换——图形的对称——翻折变换(折叠问题).17.如图,在平行四边形ABCD中,点E,M分别在边AB,CD上,且AE=CM.点F,N分别在边BC,AD上,且DN=BF.(1)求证:△AEN≌△CMF.(2)连接EM,FN,若EM⊥FN,求证:四边形EFMN是菱形.答案:(1)证明见解析.(2)证明见解析.解析:(1)∵四边形ABCD是平行四边形.∴AD=BC,∠A=∠C.∵ND=BF.∴AD-ND=BC-BF.即AN=CF.在△AEN和△CMF中.{AN=CM ∠A=∠C AN=CF.∴△AEN ≌△CMF.(2)由(1)△AEN ≌△CMF.∴EN=FM.同理可证:△EBF ≌△MDB.∴EF=MN.∵EN=FM,EF=MN.∴四边形EFMN是平行四边形.∵EM⊥FN.∴四边形EFMN是菱形.考点:三角形——全等三角形——全等三角形的判定.四边形——平行四边形——平行四边形的性质.菱形——菱形的判定.18.如图,Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,分别过点A,C作AE∥DC和CE∥AB,两线交于点E.(1)求证:四边形AECD是菱形.(2)若∠B=60°,BC=2,求四边形AECD的面积.答案:(1)证明见解析.(2)S菱形AECD=2√3.解析:(1)∵AE∥DC,CE∥AB.∴四边形AECD是平行四边形.∵Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线.∴CD=AD.∴四边形AECD是菱形.(2)连结DE.∵∠ACB=90°,∠B=60°.∴∠BAC=30°.∴AB=4,AC=2√3.∵四边形AECD是菱形.∴EC=AD=DB.又∵CE∥DB.∴四边形ECBD是平行四边形. ∴ED=CB=2.∴S菱形AECD=AC×ED2=2√3×22=2√3.考点:四边形——平行四边形——平行四边形的性质——平行四边形的判定.菱形——菱形的性质——菱形的判定.四边形基础——四边形面积.19.如图,正方形ABCD的面积是2,E,F,P分别是AB,BC,AC上的动点,PE+PF的最小值等于.答案:√2.解析:∵线段AC是正方形ABCD的对角线.∴F对线段AC的对称点永远落在线段DC上.如图所示,做F对线段AC的对称点于F’,连接EF’,EF’的长就是PE+PF的值.根据两平行线的距离定义,从一条平行线上的任意一点到另外一条直线做垂线,垂线段的长度叫两条平行线之间的距离.∴PE+PF的最小值等于垂线段EH的长度.根据平行线间的距离处处相等,可知EH=AD.∵正方形ABCD的面积是2.∴AD=EH=√2.所以答案为√2.考点:几何变换——图形的对称——轴对称与几何最值.20.如图,正方形ABCD的边长为2,点E在AB边上,四边形EFGB也为正方形,设△AFC的面积为S,则().A. S=2B. S=2.4C. S=4D. S随BE长度的变化而变化答案:A.解析:法一:∵AC∥BF.∴S△AFC=S△ABC=2.法二:∵S△AFC=S正方形ABCD+S正方形EFGB+S△AEF-S△FGC-S△ADC.∴设正方形EFGB的边长为a.∴S△AFC=2×2+a2+12a(2−a)−12(2+a)a−12×2×2.=4+a2+a−12a2−a−12a2−2.=2.考点:三角形——三角形基础——三角形面积及等积变换.四边形——正方形.21.将正方形A的一个顶点与正方形的对角线交点重合,如图1位置,则阴影部分面积是正方形A面积的18,将正方形A与B按图2放置,则阴影部分面积是正方形B面积的.(几分之几)答案:12.解析:在图1中,∠GBF +∠DBF =∠CBD +∠DBF =90°.∴∠GBF =∠CBD ,∠BGF =∠CDB =45°,BD =BG. ∴ △FBG ≌△CBD.∴阴影部分的面积等于△DGB 的面积,且是小正方形的面积的14,是大正方形面积的18.设小正方形的边长为x ,大正方形的边长为y. 则有14X 2=18y 2. ∴y =√2x .同上,在图2中,阴影部分的面积是大正方形的面积的14,为14y 2=12x 2.∴阴影部分的面积是正方形B 面积的12.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.四边形——正方形——正方形的性质.22. 如图,正方形 的对角线交于O ,OE ⊥AB ,EF ⊥OB ,FG ⊥EB .若△BGF 的面积为1,则正方形ABCD 的面积为 .答案:32.解析:∵两条对角线将正方形分成四个全等的等腰直角三角形.且OE ⊥AB 于点E ,EF ⊥OB 于点F ,FG ⊥EB 于点G. ∴E 为AB 的中点,F 为BO 的中点,G 为EB 的中点. ∴AB =EB =EO =12AB ,EF =BF =FO ,GF =BG =EG =12EB .∴BGAB =14.∴S△BGFS△BAD =(BGAB)2=116.∴S△BAD=16.∴S正方形ABCD=2S△ABD=32.故答案为32.考点:三角形——相似三角形——相似三角形的性质.四边形——正方形——正方形的性质.23.在数学兴趣小组活动中,小明进行数学探究活动.将边长为2的正方形ABCD与边长为3的正方形AEFG按图1位置放置,AD与AE在同一条直线上,AB与AG在同一条直线上.(1)小明发现DG=BE且DG⊥BE,请你给出证明.(2)如图2,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时△ADG的面积.答案:(1)证明见解析.(2)1+12√14.解析:(1)如图1,延长EB交DG于点H.∵四边形ABCD与四边形AEFG是正方形.∴AD=AB,∠DAG=∠BAE=90°,AG=AE.∴△ABC≌△ABE(SAS).∴∠AGD=∠AEB,DG=BE.∵△ADG中,∠AGD+∠ADG=90°.∴∠AEB+∠ADG=90°.∴△DEH中,∠AEB+∠ADG+∠DHE=180°.∴∠DHE=90°.∴DG⊥BE.(2)如图2,过点A作AM⊥DG交DG于点M.∴∠AMD=∠AMG=90°.∵BD是正方形ABCD的对角线.∴∠MDA=45°.在Rt△AMD中.∵∠MDA=45°,AD=2.∴AM=DM=√2.在Rt△AMG中.∵AM2+GM2=AG2.∴GM=√7.∵DG=DM+GM=√2+√7.∴S△ADG=12×DG×AM=12×(√2+√7)×√2=1+12√14.考点:三角形——全等三角形——全等三角形的性质——全等三角形的判定.直角三角形——勾股定理.四边形——正方形——正方形的性质.24.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°.若AB=5,BC=8,则EF的长为.答案:32.解析:∵DE 为△ABC 的中位线.∴DE =12BC =4,点D 是线段AB 的中点. 又∵∠AFB =90°. ∴DF =12AB =52. ∴EF =DE −DF =32.所以答案为32.考点:三角形——三角形基础——三角形中位线定理.直角三角形——直角三角形斜边上的中线.25. 如图,在四边形ABCD 中,对角线AC ⊥BD ,点E 、F 、G 、H 分别为AB 、BC 、CD 、DA的中点.若AC =8,BD =6,则四边形EFGH 的面积为( ).A. 14B. 12C. 24D.48 答案:B解析:∵点E 、F 、G 、H 分别为AB 、BC 、CD 、DA 的中点.∴EF =HG =12AC =4,FG =EH =12BD =3,EF ∥HG ,FG ∥EH. ∴四边形EFGH 是平行四边形.∵AC⊥BD.∴EF⊥FG.∴四边形EFGH是矩形.∴四边形EFGH的面积为3×4=12.考点:三角形——三角形基础——三角形中位线定理.四边形——矩形——矩形的判定.四边形基础——四边形面积.26.如图,在Rt△ABC中,∠ACB=90°,D,E,F分别是AB、BC、CA的中点,若CD=6cm,则EF=cm .答案:6.解析:由题意,得:EFAB =12.在Rt△ABC中,D是AB的中点.∴CD=EF=12AB.又∵CD=6.∴EF=CD=6cm.考点:三角形——三角形基础——三角形中位线定理.直角三角形——直角三角形斜边上的中线.27.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点.那么CH的长是.答案:√5.解析:∵正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3.∴AB=BC=1,CE=EF=3,∠E=90°.延长AD交EF于M,连接AC、CF.则AM=BC+CE=1+3=4,FM=EF-AB=3-1=2.∵四边形ABCD和四边形GCEF是正方形.∴∠ACD=∠GCF=45°.∴∠ACF=90°.∵H为AF的中点.AF.∴CH=12在Rt△AMF中,由勾股定理得:AF=√AM2+FM2=√42+22=2√5.∴CH=√5.故答案为:√5.考点:三角形——直角三角形——直角三角形斜边上的中线——勾股定理.四边形——正方形——正方形的性质.28.用两个全等的直角三角形无缝隙不重叠地拼下列图形:①矩形;②菱形;③正方形;④等腰三角形;⑤等边三角形.一定能够拼成的图形是(填序号).答案:①④.解析:由于菱形和正方形中都有四边相等的特点,而直角三角形不一定有两边相等,故两个全等的直角三角形不一定能拼成菱形和正方形.由于等边三角形三个角均为60°,而直角三角形不一定含60°角,故个全等的直角三角形不一定能拼成等边三角形.两个全等的直角三角形一定能拼成矩形和等腰三角形,如图.考点:三角形——等腰三角形——等腰三角形的判定——等边三角形的判定.四边形——矩形——矩形的判定.菱形——菱形的判定——正方形——正方形的判定.29. 边长为a 的菱形是由边长为a 的正方形“形变”得到的,若这个菱形一组对边之间的距离为h ,则称ah 为这个菱形的“形变度”.(1)一个“形变度”为3的菱形与其“形变”前的正方形的面积之比为 . (2)如图,A 、B 、C 为菱形网格(每个小菱形的边长为1,“形变度”为98)中的格点,则△ABC 的面积为 .答案:(1)1:3.(2)12. 解析:(1)如图所示.∵“形变度”为3. ∴ah =3,即h =13a .∴一个“形变度”为3的菱形与其“形变”前的正方形的面积之比为aℎa 2=ℎa =13. (2)在正方形网格中,△ABC 的面积为:6×6−12×3×3-12×3×6−12×3×6=272.由(1)可得,在菱形网格中,△ABC的面积为89×272=12.考点:式——探究规律——定义新运算.三角形——三角形基础——三角形面积及等积变换.四边形——菱形——菱形的性质.30.有这样一个问题:如图,在四边形ABCD中,AB=AD,CB=CD,我们把这种两组邻边分别相等的四边形叫做筝形.请探究筝形的性质与判定方法.小南根据学习四边形的经验,对筝形的性质和判定方法进行了探究.下面是小南的探究过程:(1)由筝形的定义可知,筝形的边的性质是:筝形的两组邻边分别相等,关于筝形的角的性质,通过测量,折纸的方法,猜想:筝形有一组对角相等,请将下面证明此猜想的过程补充完整.已知:如图,在筝形ABCD中,AB=AD,CB=CD.求证:___________________________.证明:由以上证明可得,筝形的角的性质是:筝形有一组对角相等.(2)连接筝形的两条对角线,探究发现筝形的另一条性质:筝形的一条对角线平分另一条对角线.结合图形,写出筝形的其他性质(一条即可):.(3)筝形的定义是判定一个四边形为筝形的方法之一.试判断命题“一组对角相等,一条对角线平分另一条对角线的四边形是筝形”是否成立,如果成立,请给出证明:如果不成立,请举出一个反例,画出图形,并加以说明.答案:(1)求证:∠B=∠D.证明见解析.(2)筝形的两条对角线互相垂直.(3)不成立.解析:(1)求证:∠B =∠D .已知:如图,筝形ABCD 中,AB =AD ,CB =CD .求证:∠B =∠D . 证明:连接AC ,如图. 在△ABC 和△ADC 中.{AB =AD CB =CD AC =AC.∴△ABC ≌△ADC . ∴∠B =∠D .(2)筝形的其他性质.①筝形的两条对角线互相垂直. ②筝形的一条对角线平分一组对角. ③筝形是轴对称图形.(3)不成立.反例如图2所示.在平行四边形ABCD 中,AB≠AD ,对角线AC ,BD 相交于点O .由平行四边形性质可知此图形满足∠ABC =∠ADC ,AC 平分BD ,但该四边形不是筝形.考点:四边形——平行四边形.。
初二数学特殊的平行四边形试题答案及解析
初二数学特殊的平行四边形试题答案及解析1.如图,在菱形ABCD中,已知∠A=60°,AB=5,则△ABD的周长是()A.10B.12C.15D.20【答案】C【解析】∵四边形ABCD是菱形,∴AB=AD,又∵∠A=60°,∴△ABD是等边三角形,∴△ABD的周长=3AB=15.2.如图,菱形ABCD中,AC=8,BD=6,则菱形的周长是()A.20B.24C.28D.40【答案】A【解析】据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.3.已知一个菱形的周长是20cm,两条对角线的比是4:3,则这个菱形的面积是()A.12cm2B.24cm2C.48cm2D.96cm2【答案】B【解析】设菱形的对角线分别为8x和6x,已知菱形的周长为20cm,故菱形的边长为5cm,根据菱形的性质可知,菱形的对角线互相垂直平分,即可知(4x)2+(3x)2=25,解得x=1,故菱形的对角线分别为8cm和6cm,所以菱形的面积=×8×6=24cm2.4.矩形ABCD的对角线AC、BD相交于点O,∠AOD=120°,AC=8,则△ABO的周长为()A.16 B.12 C.24 D.20【答案】B【解析】根据矩形性质求出AO=BO=4,得出等边三角形AOB,求出AB,即可求出答案.5.如图,在矩形ABCD中,若AC=2AB,则∠AOB的大小是()A.30°B.45°C.60°D.90°【答案】C【解析】∵AC=2AB,∴∠BAC=60°,OA=OB,∴△OAB是正三角形,∴∠AOB的大小是60°.故选C.6.如图,长方形ABCD中,E点在BC上,且AE平分∠BAC.若BE=4,AC=15,则△AEC面积为()A.15 B.30 C.45 D.60【答案】B【解析】利用角平分线的性质定理可得AC边上的高.进而求得所求三角形的面积.7.如图,正方形ABCD中,对角线AC,BD相交于点O,则图中的等腰三角形有()A.4个B.6个C.8个D.10个【答案】C【解析】先根据正方形的四边相等即对角线相等且互相平分的性质,可得AB=BC=CD=AD,AO=OD=OC=OB,再根据等腰三角形的定义即可得出图中的等腰三角形的个数.8.如图,在正方形ABCD中,点E、F分别在CD、BC上,且BF=CE,连接BE、AF相交于点G,则下列结论不正确的是()A.BE=AF B.∠DAF=∠BEC C.∠AFB+∠BEC="90°" D.AG⊥BE【答案】C【解析】∵ABCD是正方形,∴∠ABF=∠C=90°,AB=BC.∵BF=CE,∴△ABF≌△BCE.∴AF=BE(第一个正确).∠BAF=∠CBE,∠BFA=∠BEC(第三个错误).∵∠BAF+∠DAF=90°,∠BAF+∠BFA=90°,∴∠DAF=∠BEC(第二个正确).∵∠BAF=∠CBE,∠BAF+∠AFB=90°.∴∠CBE+∠AFB=90°.∴AG⊥BE(第四个正确).所以不正确的是C,故选C.9.已知四边形ABCD的两条对角线AC与BD互相垂直,则下列结论正确的是()A.当AC=BD时,四边形ABCD是矩形B.当AB=AD,CB=CD时,四边形ABCD是菱形C.当AB=AD=BC时,四边形ABCD是菱形D.当AC=BD,AD=AB时,四边形ABCD是正方形【答案】C【解析】A、对角线AC与BD互相垂直,AC=BD时,无法得出四边形ABCD是矩形,故此选项错误;B、当AB=AD,CB=CD时,无法得到,四边形ABCD是菱形,故此选项错误;C、当两条对角线AC与BD互相垂直,AB=AD=BC时,∴BO=DO,AO=CO,∴四边形ABCD是平行四边形,∵两条对角线AC与BD互相垂直,∴平行四边形ABCD是菱形,故此选项正确;D、当AC=BD,AD=AB时,无法得到四边形ABCD是正方形,故此选项错误.10.用直尺和圆规作一个以线段AB为边的菱形,作图痕迹如图所示,能得到四边形ABCD是菱形的依据是()A.一组邻边相等的四边形是菱形B.四边相等的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.每条对角线平分一组对角的平行四边形是菱形【答案】B【解析】由作图痕迹可知,四边形ABCD的边AD=BC=CD=AB,根据四边相等的四边形是菱形可得四边形ABCD是菱形.11.如图,在△ABC中,点E、D、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.下列四个判断中,不正确的是()A.四边形AEDF是平行四边形B.如果∠BAC=90°,那么四边形AEDF是矩形C.如果AD平分∠BAC,那么四边形AEDF是矩形D.如果AD⊥BC且AB=AC,那么四边形AEDF是菱形【答案】C【解析】由DE∥CA,DF∥BA,根据两组对边分别平行的四边形是平行四边形可得四边形AEDF是平行四边形;又有∠BAC=90°,根据有一角是直角的平行四边形是矩形,可得四边形AEDF是矩形.故A、B正确;如果AD平分∠BAC,那么∠EAD=∠FAD,又有DF∥BA,可得∠EAD=∠ADF,∴∠FAD=∠ADF,∴AF=FD,那么根据邻边相等的平行四边形是菱形,可得四边形AEDF是菱形,而不一定是矩形.故C错误;如果AD⊥BC且AB=AC,那么AD平分∠BAC,同上可得四边形AEDF是菱形.故D正确.12.如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO=_______度.【答案】65【解析】因为AB=AD,∠BAD=80°,可求∠ABD=50°;又BE=BO,所以∠BEO=∠BOE,根据三角形内角和定理求解.13.如图,菱形ABCD的对角线的长分别为6和8,点P是对角线AC上的任意一点(点P不与点A,C重合),且PE∥BC交AB于点E,PF∥CD交AD于点F,则阴影部分的面积是______.【答案】12【解析】易知四边形AEPF是平行四边形,设AP与EF相交于O点,则S△POF=S△AOE.所以阴影部分的面积等于菱形面积的一半.14.如图,矩形ABCD的面积为5,它的两条对角线交于点O1,以AB,AO1为两邻边作平行四边形ABC1O1,平行四边形ABC1O1的对角线交于点O2,同样以AB,AO2为两邻边作平行四边形ABC2O2,…,依此类推,则平行四边形ABCnOn的面积为_______.【答案】【解析】后面的每一个平行四边形都与第一个矩形ABCD同底不同高,而第n个平行四边形的高是矩形ABCD的,所以平行四边形ABCn On的面积为.15.如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加一个条件是_______.【答案】AC=BD或AB⊥BC【解析】∵在四边形ABCD中,AB=BC=CD=DA,∴四边形ABCD是菱形,∴要使四边形ABCD是正方形,则还需增加一个条件是:AC=BD或AB⊥BC.16.如图,在Rt△ABC中,∠C=90°,DE垂直平分AC,DF⊥BC,当△ABC满足条件_______时,四边形DECF是正方形.(要求:①不再添加任何辅助线,②只需填一个符合要求的条件)【答案】AC=BC【解析】由已知可得四边形的四个角都为直角,根据有一组邻边相等的矩形是正方形,可知添加条件为AC=BC时,能说明CE=CF,即此四边形是正方形.17.如图,四边形ABCD是矩形,△PBC和△QCD都是等边三角形,且点P在矩形上方,点Q在矩形内.计算:∠PBA=∠PCQ=30°.【答案】解:∵四边形ABCD是矩形.∴∠ABC=∠BCD=90°.∵△PBC和△QCD是等边三角形.∴∠PBC=∠PCB=∠QCD=60°.∴∠PBA=∠ABC-∠PBC=30°,∠PCD=∠BCD-∠PCB=30°.∴∠PCQ=∠QCD-∠PCD=30°.∴∠PBA=∠PCQ=30°.【解析】因为矩形的内角是直角,等边三角形的内角是60∘,所以根据这两个特殊角可以计算角的度数.18.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,过点O作直线EF⊥BD,分别交AD、BC于点E和点F,求证:四边形BEDF是菱形.【答案】证明:∵四边形ABCD是菱形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,∠OED=∠OFB,∴△OED≌△OFB,∴DE=BF,又∵DE∥BF,∴四边形BEDF是平行四边形,∵EF⊥BD,∴四边形BEDF是菱形.【解析】若要证明四边形BEDF是菱形,只需要证明四边形BEDF是平行四边形即可,而DE∥BF,只需要证明DE=BF即可判定四边形BEDF是平行四边形,证明DE=BF可通过证明△OED≌△OFB.19.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1) 证明:∠BAC=∠DAC,∠AFD=∠CFE;(2) 若AB∥CD,试证明四边形ABCD是菱形;(3) 在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.【答案】解:(1) ∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC.∴∠BAC =∠DAC.∵ AB=AD,∠BAF =∠DAF,AF=AF.∴△ABF≌△ADF.∴∠AFB=∠AFD.又∵∠CFE =∠AFB,∴∠AFD=∠CFE.∴∠BAC=∠DAC,∠AFD=∠CFE.(2) ∵AB∥CD,∴∠BAC=∠ACD.又∵∠BAC=∠DAC,∴∠BAC=∠ACD.∴∠DAC=∠ACD.∴AD=CD,∵AB="AD" , CB=CD,∴AB=CB=CD=AD.∴四边形ABCD是菱形.(3)当BE⊥CD时,∠EFD=∠BCD.理由:∵四边形ABCD为菱形,∴BC=CD,∠BCF=∠DCF.又∵CF为公共边,∴△BCF≌△DCF.∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC =∠DEF=90°.∴∠EFD =∠BCD.【解析】(1)利用已知条件和公共边,证得△ABC≌△ADC,即可证明∠BAC=∠DAC;再证明△ABF≌△ADF,得到∠AFB=∠AFD,再利用对顶角相等,易知结论;(2)有平行线的性质和(1)中结论,易知∠DAC=∠ACD,所以AD=CD,进而证得AB=CB=CD=AD,即可证明结论;(3)当BE⊥CD时,有(2)可知BC="CD" ,∠BCF=∠DCF,利用△BCF≌△DCF证得∠CBF=∠CDF,再利用等角的余角相等即可证明结论∠EFD =∠BCD.20.已知矩形BEDG和矩形BNDQ中,BE=BN,DE=DN.(1)将两个矩形叠合成如图10,求证:四边形ABCD是菱形;(2)若菱形ABCD的周长为20,BE=3,求矩形BEDG的面积.【答案】解:(1)答:四边形ABCD是菱形.证明:作AR⊥BC于R,AS⊥CD于S,由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵矩形BEDG和矩形BNDQ中,BE=BN,DE=DN,∴两个矩形全等,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形;(2)解:∵菱形ABCD的周长为20,∴AD=AB=BC=CD=5,∵BE=3,∴AE=4,∴DE=5+4=9,∴矩形BEDG的面积为:3×9=27.【解析】(1)作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由BC=CD得平行四边形ABCD是菱形;(2)根据菱形的性质得出AD的长,进而得出AE的长,再利用矩形面积公式求出即可.。
初二数学平行四边形专题练习题(含答案)
图1 初二数学平行四边形专题练习1.如果边长分别为4cm 和5cm 的矩形与一个正方形的面积相等,那么这个正方形的边长为______cm .2.(08贵阳市)如图1,正方形ABCD 的边长为4cm ,则图中阴影部分的面积为 cm 2.3.若四边形ABCD 是平行四边形,请补充条件 (写一个即可),使四边形ABCD 是菱形.4.在平行四边形ABCD 中,已知对角线AC 和BD 相交于点O ,△ABO 的周长为17,AB =6,那么对角线AC +BD =⒎以正方形ABCD 的边BC 为边做等边△BCE ,则∠AED 的度数为 .5.已知菱形ABCD 的边长为6,∠A =60°,如果点P 是菱形内一点,且PB =PD =2那么AP 的长为 .6.在平面直角坐标系中,点A 、B 、C 的坐标分别是A(-2,5),B(-3,-1),C(1,-1),在第一象限内找一点D ,使四边形ABCD 是平行四边形,那么点D 的坐标是 .二、选择题(每题3分,共30分)7.如图2在平行四边形ABCD 中,∠B=110°,延长AD 至F ,延长CD 至E ,连结EF ,则∠E +∠F =( )A .110°B .30°C .50°D .70°图2 图3 图48.菱形具有而矩形不具有的性质是 ( )A .对角相等B .四边相等C .对角线互相平分D .四角相等9.如图3所示,平行四边形ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 的中点.若OE=3 cm ,则AB 的长为 ( )A .3 cmB .6 cmC .9 cmD .12 cm10.已知:如图4,在矩形ABCD 中,E 、F 、G 、H 分别为边AB 、BC 、CD 、DA 的中点.若AB =2,AD =4,则图中阴影部分的面积为 ( )A .8B .6C .4D .311.将两块能完全重合的两张等腰直角三角形纸片拼成下列图形:①平行四边形(不包括菱形、矩形、正方形)②矩形③正方形④等边三角形⑤等腰直角三角形( ) E A F D C B H GA.①③⑤B.②③⑤C.①②③D.①③④⑤12.如图5所示,是一块电脑主板的示意图,每一转角处都是直角,数据如图所示(单位:mm),则该主板的周长是( )A.88 mm B.96 mm C.80 mm D.84 mm图5 图613、(08甘肃省白银市)如图6所示,把矩形ABCD沿EF对折后使两部分重合,若150∠=,∠=()则AEFA.110° B.115°C.120° D.130°14、四边形ABCD,仅从下列条件中任取两个加以组合,使得ABCD是平行四边形,一共有多少种不同的组合?()AB∥CD BC∥AD AB=CD BC=ADA.2组B.3组C.4组D.6组15、下列说法错误的是()A.一组对边平行且一组对角相等的四边形是平行四边形.B.每组邻边都相等的四边形是菱形.C. 对角线互相垂直的平行四边形是正方形.D.四个角都相等的四边形是矩形.三、解答题16、如图7,四边形ABCD是菱形,对角线AC=8 cm ,BD=6 cm, DH⊥AB于H,求:DH的长。
八年级初二数学数学平行四边形试题含答案
15.如图,在平行四边形 ABCD 中,对角线 AC,BD 相交于点 O,AB=OB,点 E,F 分别是 OA,OD 的中点,连接 EF,EM⊥BC 于点 M,EM 交 BD 于点 N,若∠CEF=45°,FN=5, 则线段 BC 的长为_____.
16.如图,在平行四边形 ABCD 中,AB=6,BC=4,∠A=120°,E 是 AB 的中点,点 F 在 平行四边形 ABCD 的边上,若△AEF 为等腰三角形,则 EF 的长为_____.
ABCD
AB·AC
;③OA=
OB;④OE= 1 BC.其中成立的个数是( ) 4
A.1
B.2
C.3
D.4
10.如图,在正方形 ABCD 中,E 是 BC 边上的一点,BE=4,EC=8,将正方形边 AB 延 AE 折
叠刀 AF,延长 EF 交 DC 于 G,连接 AG,现在有如下结论:①∠EAG=45°;②GC=CF;
19.在锐角三角形 ABC 中,AH 是边 BC 的高,分别以 AB,AC 为边向外作正方形 ABDE 和 正方形 ACFG,连接 CE,BG 和 EG,EG 与 HA 的延长线交于点 M,下列结论:①BG=CE; ②BG⊥CE;③AM 是△AEG 的中线;④∠EAM=∠ABC.其中正确的是_________.
A.
B.
C.
D.
5.正方形 ABCD,CEFG 按如图放置,点 B,C,E 在同一条直线上,点 P 在 BC 边上,
PA PF ,且 APF 90 ,连接 AF 交 CD 于点 M,有下列结论: ①EC BP ;
② BAP GFP ; ③AB2
CE2
1 2
AF2
;
④S正方形ABCD
S正方形CEFG
初二数学特殊的平行四边形试题答案及解析
初二数学特殊的平行四边形试题答案及解析1.如图,在菱形ABCD中,AC、BD是对角线,若∠BAC=50°,则∠ABC等于()A.40° B.50° C.80° D.100°【答案】C【解析】首先根据菱形的菱形的每一条对角线平分一组对角可得∠BAD的度数,再根据菱形的性质可得AD∥BC,根据平行线的性质可得∠ABC+∠BAD=180°,再代入所求的∠BAD的度数即可算出答案.2.如图,菱形ABCD中,AC=8,BD=6,则菱形的周长是()A.20B.24C.28D.40【答案】A【解析】据菱形对角线互相垂直平分的性质,可以求得BO=OD,AO=OC,在Rt△AOD中,根据勾股定理可以求得AB的长,即可求菱形ABCD的周长.3.如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.2cm D.1cm【答案】C【解析】由折叠可知,∠BAE=∠B1AE,∴∠BAE=∠B1AE=45°,又∵∠B=45°,∴∠AEB=45°,∴BE=AB=4,∴CE=BC-BE=8-6=2.故选C.4.如图,在矩形ABCD中,若AC=2AB,则∠AOB的大小是()A.30°B.45°C.60°D.90°【答案】C【解析】∵AC=2AB,∴∠BAC=60°,OA=OB,∴△OAB是正三角形,∴∠AOB的大小是60°.故选C.5.如图,长方形ABCD中,E点在BC上,且AE平分∠BAC.若BE=4,AC=15,则△AEC面积为()A.15 B.30 C.45 D.60【答案】B【解析】利用角平分线的性质定理可得AC边上的高.进而求得所求三角形的面积.6.如图,矩形ABCD的周长为20cm,两条对角线相交于O点,过点O作AC的垂线EF,分别交AD,BC于E,F点,连接CE,则△CDE的周长为()A.5cm B.8cm C.9cm D.10cm【答案】D【解析】∵ABCD为矩形,∴AO=OC.∵EF⊥AC,∴AE=EC.∴△CDE的周长=CD+DE+EC=CD+DE+AE=CD+AD=10(cm).7.如图,矩形ABCD的对角线AC、BD相交于点O,CE∥BD,DE∥AC,若AC=5,则四边形CODE的周长是()A.5 B.7 C.9 D.10【答案】D【解析】根据矩形性质求出OC=OD,根据菱形判定得出四边形DECO是菱形,求出OD=OC=EC=DE=,即可求出答案.8.如图,将△ABC沿BC方向平移得到△DCE,连接AD,下列条件能够判定四边形ACED为菱形的是()A.AB=BC B.AC=BC C.∠B=60°D.∠ACB=60°【答案】B【解析】∵将△ABC沿BC方向平移得到△DCE,∴AB∥CD,且AB=CD,∴四边形ABCD为平行四边形,当AC=BC时,平行四边形ACED是菱形.9.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF【答案】D【解析】根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,有BE=EC,BF=FC进而得出四边形BECF是菱形;由菱形的性质知,以及菱形与正方形的关系,进而分别分析得出即可.10.如图,P是菱形ABCD对角线BD上一点,PE⊥AB于点E,PE=4cm,则点P到BC的距离是______cm.【答案】4【解析】根据菱形的性质,BD是∠ABC的平分线,再根据角平分线的性质即可得到点P到BC的距离.11.如图,菱形ABCD的对角线的长分别为6和8,点P是对角线AC上的任意一点(点P不与点A,C重合),且PE∥BC交AB于点E,PF∥CD交AD于点F,则阴影部分的面积是______.【答案】12【解析】易知四边形AEPF是平行四边形,设AP与EF相交于O点,则S△POF=S△AOE.所以阴影部分的面积等于菱形面积的一半.12.如图,在△ABC中,∠ACB=90°.D是AC的中点,DE⊥AC,AE∥BD,若BC=4,AE=5,则四边形ACBE的周长是______.【答案】18【解析】求出∠CDB=∠DAE,∠C=∠ADE=90°,AD=DC,证△ADE≌△DCB,推出DE=BC,得出平行四边形DEBC,推出BE=DC,根据勾股定理求出DC,即可得出答案.13.如图,矩形ABCD的两条线段交于点O,过点O作AC的垂线EF,分别交AD、BC于点E、F,连接CE,已知△CDE的周长为24cm,则矩形ABCD的周长是_______cm.【答案】48【解析】∵OA=OC,EF⊥AC,∴AE=CE,∵矩形ABCD的周长=2(AE+DE+CD),∵DE+CD+CE=24,∴矩形ABCD的周长=2(AE+DE+CD)=48cm.14.如图,在四边形ABCD中,AB=BC=CD=DA,对角线AC与BD相交于点O,若不增加任何字母与辅助线,要使四边形ABCD是正方形,则还需增加一个条件是_______.【答案】AC=BD或AB⊥BC【解析】∵在四边形ABCD中,AB=BC=CD=DA,∴四边形ABCD是菱形,∴要使四边形ABCD是正方形,则还需增加一个条件是:AC=BD或AB⊥BC.15.如图,在平行四边形ABCD中,对角线AC、BD相交于点O,过点O作直线EF⊥BD,分别交AD、BC于点E和点F,求证:四边形BEDF是菱形.【答案】证明:∵四边形ABCD是菱形,∴AD∥BC,OB=OD,∴∠EDO=∠FBO,∠OED=∠OFB,∴△OED≌△OFB,∴DE=BF,又∵DE∥BF,∴四边形BEDF是平行四边形,∵EF⊥BD,∴四边形BEDF是菱形.【解析】若要证明四边形BEDF是菱形,只需要证明四边形BEDF是平行四边形即可,而DE∥BF,只需要证明DE=BF即可判定四边形BEDF是平行四边形,证明DE=BF可通过证明△OED≌△OFB.16.如图△ABC中,点O是AC上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠GCA的平分线于点F.(1)说明 EO=FO.(2)当点O运动到何处,四边形AECF是矩形?说明你的结论.(3)当点O运动到何处,AC与BC具有怎样的关系时,四边形AECF是正方形?为什么?【答案】解:(1)∵MN∥BC,∴∠ECB=∠CEO,∠GCF=∠CFO,∵CE,CF分别为∠BOC,∥GOC的角平分线,∴∠ECB=∠ECO,∠GCF=∠OCF,∴∠CEO=∠ECO,∠CFO=∠OCF,∴OC=OE,OC=OF,∴OE=OF,(2)当O点运动到AC的中点时,四边形AECF为矩形,理由:∵O点为AC的中点,∴OA=OC,∵OE=OF,OC=OE=OF,∴OA=OC=OE=OF,∴AC=EF,∴四边形AECF是矩形,(3)当O点运动到AC的中点时,AC⊥BC时,四边形AECF是正方形,理由:∵O点为AC的中点时,四边形AECF是矩形,∴AC=EF,∵AC⊥BC,MN∥BC,∴AC⊥EF,∴四边形AECF是正方形.【解析】(1)由平行线的性质和角平分线的性质,推出∠ECB=∠CEO,∠GCF=∠CFO,∠ECB=∠ECO,∠GCF=∠OCF,通过等量代换即可推出∠CEO=∠ECO,∠CFO=∠OCF,便可确定OC=OE,OC=OF,可得OE=OF;(2)当O点运动到AC的中点时,四边形AECF为矩形,根据矩形的判定定理(对角线相等且互相平分的四边形为矩形),结合(1)所推出的结论,即可推出OA=OC=OE=OF,求出AC=EF后,即可确定四边形AECF为矩形;(3)当O点运动到AC的中点时,AC⊥BC时,四边形AECF是正方形,根据(2)所推出的结论,由AC⊥BC,MN∥BC,确定AC⊥EF,即可推出结论.17.已知矩形BEDG和矩形BNDQ中,BE=BN,DE=DN.(1)将两个矩形叠合成如图10,求证:四边形ABCD是菱形;(2)若菱形ABCD的周长为20,BE=3,求矩形BEDG的面积.【答案】解:(1)答:四边形ABCD是菱形.证明:作AR⊥BC于R,AS⊥CD于S,由题意知:AD∥BC,AB∥CD,∴四边形ABCD是平行四边形,∵矩形BEDG和矩形BNDQ中,BE=BN,DE=DN,∴两个矩形全等,∴AR=AS,∵AR•BC=AS•CD,∴BC=CD,∴平行四边形ABCD是菱形;(2)解:∵菱形ABCD的周长为20,∴AD=AB=BC=CD=5,∵BE=3,∴AE=4,∴DE=5+4=9,∴矩形BEDG的面积为:3×9=27.【解析】(1)作AR⊥BC于R,AS⊥CD于S,根据题意先证出四边形ABCD是平行四边形,再由BC=CD得平行四边形ABCD是菱形;(2)根据菱形的性质得出AD的长,进而得出AE的长,再利用矩形面积公式求出即可.18.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.(1)求证:四边形AMDN是平行四边形.(2)当AM的值为何值时,四边形AMDN是矩形?请说明理由.【答案】(1)证明:∵四边形ABCD为菱形,∴ND∥AM.∴∠NDE=∠MAE,∠DNE=∠AME.又∵点E是AD边的中点,∴DE=AE.∴ΔNDE≌ΔMAE,∴ND=MA,∴四边形AMND是平行四边形(一组对边平行且相等的四边形是平行四边形).(2)当AM的值为1时,四边形AMDN是矩形.理由如下:∵AM=1=AD,∴∠ADM=30°∵∠DAM=60°,∴∠AMD=90°,∴平行四边形AMDN是矩形.【解析】(1)由四边形ABCD为菱形,可以说明ΔNDE≌ΔMAE,得到ND=MA和ND∥AM,推出四边形AMND是平行四边形.(2)若四边形AMDN为矩形,则∠AMD为直角,此时AM=1.19.如图,在平行四边形ABCD中,∠DAB=60°,AB=2AD,点 E、F分别是AB、CD的中点,过点A作AG∥BD,交CB的延长线于点G.(1)求证:四边形DEBF是菱形;(2)请判断四边形AGBD是什么特殊四边形?并加以证明.【答案】(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD且AB=CD,AD∥BC且AD=BC.E,F分别为AB,CD的中点,∴BE=AB,DF=CD,∴BE=BF,∴四边形DEBF是平行四边形在△ABD中,E是AB的中点,∴AE=BE=AB=AD,而∠DAB=60°,∴△AED是等边三角形,即DE=AE=AD,故DE=BE.∴平行四边形DEBF是菱形.(2)解:四边形AGBD是矩形,理由如下:∵AD∥BC且AG∥DB,∴四边形AGBD是平行四边形.由(1)的证明知AD=DE=AE=BE,∴∠ADE=∠DEA=60°,∠EDB=∠DBE=30°.故∠ADB=90°.∴平行四边形AGBD是矩形.【解析】(1)利用平行四边形的性质证得△AED是等边三角形,从而证得DE=BE,问题得证;(2)利用平行四边形的性质证得∠ADB=90°,利用有一个角是直角的平行四边形是矩形判定矩形.20.已知:如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作BE的平行线与线段ED的延长线交于点F,连接AE,CF.(1)求证:AF=CE;(2)若AC=EF,试判断四边形AFCE是什么样的四边形,并证明你的结论.【答案】(1)证明:在△ADF和△CDE中,∵AF∥BE,∴∠FAD=∠ECD.又∵D是AC的中点,∴AD=CD.∵∠ADF=∠CDE,∴△ADF≌△CDE.∴AF=CE.(2)解:若AC=EF,则四边形AFCE是矩形.证明:由(1)知:AF=CE,AF∥CE,∴四边形AFCE是平行四边形.又∵AC=EF,∴平行四边形AFCE是矩形.【解析】(1)可通过全等三角形来证明简单的线段相等.△ADF和△CDE中,已知了AD=CD,∠ADF=∠CDE,AF∥BE,因此不难得出两三角形全等,进而可得出AF=CE.(2)需先证明四边形AFCE是平行四边形,那么对角线相等的平行四边形是矩形.。
人教版初二数学8年级下册 第18章(平行四边形)含辅助线证明 专项训练(含答案)
人教版数学八年级下册第十八章平行四边形含辅助线证明训练一1.如图,□ABCD中,AC⊥AB,点E在线段AC上,AE=AB,BE的延长线交边AD于点F,AG⊥BC,且AG=AF,AG交BF于点O.(1)若AD=13,AC=12,求BE的长;(2)若点O恰好是线段AG的中点,连接GE,求证:AF=GE.2.已知正方形ABCD如图所示,连接其对角线AC,∠DAC的平分线AE交CD于点E,过点D作DM⊥AE于F,交AC于点M,共过点A作AN⊥AE交CB延长线于点N.(1)若AD=3,求△CAN的面积;(2)求证:AN=DM+2EF.3.如图1,已知正方形ABCD中,点E在BC上,连接AE,过点B作BF⊥AE于点G,交CD于点F.图1 图2(1)如图1,连接AF,若AB=4,BE=1,求AF的长;(2)如图2,连接BD,交AE于点N,连接AC,分别交BD、BF于点O、M,连接GO,求证:AG-BG=2GO4.如图,平行四边形ABCD中,BF⊥DC交DC于点F,且BF=AB,E点是BC边上一点,连接AE交BF于G;(1)若AE平分∠DAB,∠C=60∘,BE=3,求BG的长;(2)若AD=BG+FC,求证:AE平分∠DAB.5.如图,在□ABCD中,AD上有一点E,连接BE,AH⊥BC于H,AH、BE交于点G,连接CG并延长交AB于F,且GC=CD,∠GCD=90∘.(1) 若GC=6,∠BAG=30∘,求四边形AGCD的面积;(2) 求证:DE=2BG.6.如图,▱ABCD中,点E为BC边上一点,过点E作EF⊥AB于F,已知∠D=2∠AEF.(1)若∠BAE=70°,求∠BEA的度数;(2)连接AC,过点E作EG⊥AC于G,延长EG交AD于点H,若∠ACB=45°,求AC.证:AH=AF+227.如图,▱ABCD中,DF平分∠ADC交AC于点H,G为DH的中点.(1)如图①,若M为AD的中点,AB⊥AC,AC=9,CF=8,CG=25,求GM;(2)如图②,M为线段AB上一点,连接MF,满足∠MCD=∠BCG,∠MFB=∠BAC.求证:MC=2CG.8.如图,在▱ABCD中,连结BD,点E在BD上,且DE=DC,连结CE并延长它与AD交于点F,过点C作CG⊥BD垂足为G,交AD于点H.(1)若DG=3,CG=23,求△CDE的面积;(2)若∠DFC=45°,求证:EF+2FH=CF.9.如图所示,在正方形ABCD的边CB的延长线上取点F,连结AF,在AF上取点G,使得AG=AD,连结DG,过点A作AE⊥AF,交DG于点E.(1)若正方形ABCD的边长为4,且AB=2FB,求FG的长;(2)求证:AE+BF=AF.10.如图,▱ABCD中,E为平行四边形内部一点,连接AE,BE,CE.(1)如图1,AE⊥BC交BC于点F,已知∠EBC=45°,∠BAF=∠ECF,AB=5,EF=1,求AD的长;(2)如图2,AE⊥CD交CD于点F,AE=CF且∠BEC=90°,G为AB上一点,作GP⊥BE 且GP=CE,并以BG为斜边作等腰Rt△BGH,连接EP、EH.求证:EP=2EH.11.如图1,在等腰△ABO中,AB=AO,分别延长AO、BO至点C、点D,使得CO=AO、BO=BO,连接AD、BC.(1)如图1,求证:AD=BC;(2)如图2,分别取边AD、CO、BO的中点E、F、H,猜想△EFH的形状,并说明理由.12.已知,如图,▱ABCD的对角线AC、BD相交于点O,(1)如图1,若AC=AD过点A作AE⊥BC于点E,若AE=3,BC=5,求AB边的长;(2)如图2,过点A作BD的垂线,垂足为F,且AF=BF,过点B作BC的垂线,两条垂线相交于点G,若∠BAG=∠BFC,连接DG.求证:GF=4FO13.已知,在平行四边形ABCD中,AB⊥BD,E为射线BC上一点,连接AE交BD于点F,AB=BD.(1)如图1,若点E与点C重合,且AF=25,求AD的长;(2)如图2,若点E在BC边上时,过点D作DG⊥AE于G,延长DG交BC于H,连接FH.求证:AF=DH+FH;(3)如图3,当点E在射线BC上运动时,过点D作DG⊥AE于G,M为AG的中点,点N在BC边上且BN=1,已知AB=42,请直接写出MN的最小值。
初二数学平行四边形的判定试题
初二数学平行四边形的判定试题1.四边形ABCD中,对角线AC、BD相交于点O,下列条件不能判定这个四边形是平行四边形的是()A.AB∥DC,AD∥BCB.AB=DC,AD=BCC.AO=CO,BO=DOD.AB∥DC,AD=BC【答案】D【解析】A、由“AB∥DC,AD∥BC”可知,四边形ABCD的两组对边互相平行,则该四边形是平行四边形.故本选项不符合题意;B、由“AB=DC,AD=BC”可知,四边形ABCD的两组对边相等,则该四边形是平行四边形.故本选项不符合题意;C、由“AO=CO,BO=DO”可知,四边形ABCD的两条对角线互相平分,则该四边形是平行四边形.故本选项不符合题意;D、由“AB∥DC,AD=BC”可知,四边形ABCD的一组对边平行,另一组对边相等,据此不能判定该四边形是平行四边形.故本选项符合题意.2.下列条件中,能确定一个四边形是平行四边形的是()A.一组对边相等B.一组对角相等C.两条对角线相等D.两条对角线互相平分【答案】D【解析】平行四边形的五种判定方法分别是:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边;(5)对角线互相平分的四边形是平行四边形.根据判定方法知D正确.3.如图所示,在四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形还需要条件()A.AB=DC B.∠1=∠2C.AB=AD D.∠D=∠B【答案】D【解析】A、符合条件AD∥BC,AB=DC,不符合平行四边形的判定方法,故本选项错误;B、根据∠1=∠2,推出AD∥BC,不能推出平行四边形,故本选项错误;C、根据AB=AD和AD∥BC不能推出平行四边形,故本选项错误;D、∵D∥BC,∴∠1=∠2,∵∠B=∠D,∴∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD是平行四边形,故本选项正确.4.如图,在四边形ABCD中,已知AB=CD,再添加一个条件 _______(写出一个即可),则四边形ABCD是平行四边形.(图形中不再添加辅助线)【答案】AD=BC(答案不唯一)【解析】可再添加一个条件AD=BC,根据两组对边分别相等的四边形是平行四边形,四边形ABCD是平行四边形.5.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点.若再增加一个条件________(答案不惟一),就可推得BE=DF.【答案】AE=CF或∠AEB=∠CFD或∠ABE=∠CDF【解析】∵平行四边形ABCD中两组对边平行且相等,∴要使BE=DF.则当AE=CF、∠AEB=∠CFD或∠ABE=∠CDF时,满足BE=DF.6.如图,四边形ABCD中,对角线BD⊥AD,BD⊥BC,AD=11-x,BC=x-5,则当x=_______时,四边形ABCD是平行四边形.【答案】8【解析】∵BD⊥AD,BD⊥BC,∴AD∥BC,只要AD=BC,四边形ABCD是平行四边形.因为AD=BC,所以11-x=x-5,x=8.7.如图,在△ABC中,D是BC边的中点,F、E分别是AD及其延长线上的点,CF∥BE.(1)求证:△BDE≌△CDF;(2)请连接BF,CE,试判断四边形BECF是何种特殊四边形,并说明理由.【答案】(1)证明:∵CF∥BE,∴∠FCD=∠EBD.∵D是BC的中点,∴CD=BD.∵∠FDC=∠EDB,∴△CDF≌△BDE(ASA).(2)解:四边形BECF是平行四边形.理由:∵△CDF≌△BDE,∴DF=DE,DC=DB.∴四边形BECF是平行四边形.【解析】(1)利用CF∥BE和D是BC边的中点可以得到全等条件证明△BDE≌△CDF;(2)根据(1)的结论和平行四边形的判定容易证明四边形BECF是平行四边形.8.如图,在△ABC中,D是BC上的点,O是AD的中点,过A作BC的平行线交BO的延长线于点E,则四边形ABDE是什么四边形?并说明理由.【答案】四边形ABCD是平行四边形,理由是:∵AE∥BC,∴∠EAO=∠ODB,∠AEO=∠DBO,∵O是AD的中点,∴AO=OD,∵在△AOE和△DOB中∵∠EAO=∠BDO,∠AEO=∠DBO, AO=OD,∴△AOE≌△DOB,∴OB=OE,∵AO=OD,∴四边形ABDE是平行四边形.【解析】根据平行线性质求出∠EAO=∠ODB,∠AEO=∠DBO,证△AOE≌△DOB,推出OB=OE,根据平行四边形的判定求出即可.9.已知:如图,在▱ABCD中,点E在AD上,连接BE,DF∥BE交BC于点F,AF与BE交于点M,CE与DF交于点N.求证:四边形MFNE是平行四边形.【答案】证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,又∵DF∥BE,∴四边形BEDF是平行四边形,∴DE=BF,ME∥NF,∴AD-DE=BC-BF,即AE=CF,又∵AE∥CF,∴四边形AFCE是平行四边形,∴MF∥NE,∴四边形MFNE是平行四边形.【解析】利用平行四边形的判定定理及定义:两组对边分别平行的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对边分别相等的四边形是平行四边形;两条对角线互相平分的四边形是平行四边形;两组对角分别相等的四边形是平行四边形.10.在△ABC中,AB=AC,点P为△ABC所在平面内一点.(1)当点P在BC边上,过点P分别作PD∥AC交AB于点D,PE∥AB交AC于点E,如图1.证明:AB=PD+PE;(2)当点P在△ABC外部时,过点P分别作PD∥AC交AB于点D,PE∥AB交AC于点E,交BC于点F,请你在图2中画出相应的图形,并直接写出PD,PE,PF与AB满足的数量关系.(不必说明理由)【答案】(1)证明:PD∥AC,PE∥AB,∴四边形ADPE是平行四边形,∴PD=AE,AD=PE,∵AB=AC,∴∠B=∠C,又∵∠DPB=∠C,∴∠B=∠DPB,∴DP=DB,∴PD+PE=BD+AD=AB;(2)已知如图: PE+PD-PF="AB"【解析】(1)证平行四边形ADPE,推出PD=AE,PE=AD,根据等腰三角形性质推出∠B=∠C=∠DPB,推出DP=DB即可;(2)PD,PE,PF与AB满足的数量关系是PE+PD-PF=AB,如图2中,PD=AE可证,EF=PE-PF=CE,即PE+PD-PF=AC=AB.。
初二数学平行四边形典型题
初二数学平行四边形典型题一、平行四边形的性质相关典型题1. 题目- 已知平行四边形ABCD中,∠A = 50°,求其余三个内角的度数。
- 解析:- 在平行四边形ABCD中,平行四边形的对角相等,邻角互补。
- 因为∠A = 50°,所以∠C = ∠A = 50°。
- 又因为∠A与∠B互补,所以∠B = 180° - ∠A = 180° - 50° = 130°,同理∠D = ∠B = 130°。
2. 题目- 平行四边形ABCD的周长为36cm,AB = 8cm,求其余三边的长度。
- 解析:- 平行四边形的对边相等,所以AB = CD,AD = BC。
- 已知平行四边形ABCD的周长为36cm,即AB + BC+CD + AD = 36cm。
- 因为AB = CD = 8cm,设AD = BC = x cm,则2(8 + x)=36。
- 先化简方程得16 + 2x = 36,移项得2x = 36 - 16 = 20,解得x = 10。
- 所以BC = AD = 10cm,CD = 8cm。
二、平行四边形的判定相关典型题1. 题目- 在四边形ABCD中,AB = CD,AD = BC,求证:四边形ABCD是平行四边形。
- 解析:- 连接AC。
- 在△ABC和△CDA中,因为AB = CD,AD = BC,AC = CA(公共边)。
- 根据SSS(边边边)全等判定定理,可得△ABC≌△CDA。
- 所以∠BAC = ∠DCA,∠BCA = ∠DAC。
- 根据内错角相等,两直线平行,可得AB∥CD,AD∥BC。
- 所以四边形ABCD是平行四边形(两组对边分别平行的四边形是平行四边形)。
2. 题目- 已知四边形ABCD中,对角线AC、BD相交于点O,且OA = OC,OB = OD,求证:四边形ABCD是平行四边形。
- 解析:- 在△AOD和△COB中,因为OA = OC,∠AOD = ∠COB(对顶角相等),OB = OD。
人教版初二数学8年级下册 第18章(平行四边形)最值问题专项训练(含答案)
人教版数学八年级下期第十八章平行四边形最值问题训练一、选择题1.如图,在菱形ABCD中,∠ABC=60∘,E为BC边的中点,M为对角线BD上的一BM最小值的是()个动点.则下列线段的长等于AM+12A. ADB. AEC. BDD. BES矩形2.如图,在矩形ABCD中,AB=4,AD=3,矩形内部有一动点P,满足S△PAB=13,则点P到A、B两点的距离之和PA+PB的最小值( )ABCDA. 4B. 42C. 22D. 23.如图,菱形ABCD的两条对角线长分别为AC=6,BD=8,点P是BC边上的一动点,则AP的最小值为( )A. 4B. 4.8C. 5D. 5.54.如图,正方形ABCD的边长为4,E点是BC上一点,F是AB上一点,P是AC上一动点,且BE=1,AF=2,则PE+PF的最小值是( )A. 4B. 15C. 5D. 175.如图,矩形ABCD中,AB=8,BC=6,点E,F,G,H分别在矩形ABCD各边上,且AE=CG,BF=DH,则四边形EFGH周长的最小值为( )A. 10B. 43C. 20D. 876.如图,矩形ABCD中,∠BOC=120°,BD=12,点P是AD边上一动点,则OP的最小值为()A. 3B. 4C. 5D. 6二、填空题7.如图:菱形ABCD中,AB=2,∠B=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是____.8.如图,在边长为6的菱形ABCD中, ∠ DAB=120°,E,F分别为边CD、CB上的动点,且CE+CF= 6,则线段EF长的最小值是 .9.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为______.10.填空如图,在菱形ABCD中,∠B=45°,BC=23,E,F分别是边CD,BC上的动点,连接AE,EF,G,H分别为AE,EF的中点,连接GH,则GH的最小值为____.11.如图,在边长为4的菱形ABCD中,∠A=60°,M是AD边的中点,点N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′B,则线段A′B 长度的最小值是_____________.12.如图,将边长为4的正方形ABCD纸片沿EF折叠,点C落在AB边上的点G处,点D与点H重合,CG与EF交于点P,取GH的中点Q,连接PQ,则▵GPQ的周长最小值是_________.三、解答题13.如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF,连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.(1)求证:四边形EDFG是正方形;(2)四边形EDFG面积的最小值为________.14.如图,点O为▱ABCD的对角线AC,BD的交点,∠BCO=90°,∠BOC=60°,BD=8,点E是OD上的一动点,点F是OB上的一动点(E,F不与端点重合),且DE=OF,连接AE,CF.(1)求线段EF的长;(2)若△OAE的面积为S1,△OCF的面积为S2,S1+S2的值是否发生变化?若不变,求出这个不变的值;若变化,请说明随着DE的增大,S1+S2的值是如何发生变化的?(3)求AE+CF的最小值.15.如图,在△ABC中,AC=9,AB=12,BC=15,P为BC边上一动点,PG⊥AC于点G,PH⊥AB于点H.(1)求证:四边形AGPH是矩形;(2)是否存在点P,使得GH最短?若存在,请求出最小值,若不存在,请说明理由.16.如图,在正方形ABCD中,E是边AB上的一动点(不与点A、B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.(3)若正方形ABCD的边长为4,取DH的中点M,请直接写出线段BM长的最小值.17.已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上的动点(不含B、D).(1)证明无论动点P在何处,四边形PMCN的面积总是固定值,这个固定值是多少?(2)试探究动点P在何处时,四边形PMCN的周长最小,最小值是多少?18.如图,正方形ABCD中,以B为顶点的交AD于E,交CD于F,延长DC使得CG=AE.(1)证明:△ABE≌△CBG;(2)若EF=5,AE=2,求AB的长度.(3)在(2)条件下,若P为线段BF上一动点,求PG+PC最小值.参考答案1.B2.B3.B4.D5.C6.A7.38.339.310.6211.23−212.2+2513.解:(1)连接DC,∵O是EF的中点,GO=OD,∴四边形EDFG是平行四边形,∵△ABC为等腰直角三角形,∠ACB=90°,D是AB的中点,∴∠A=∠DCF=45°,AD=CD,在△ADE和△CDF中,AE=CF,∠A=∠DCFAD=CD∴△ADE≌△CDF,∴DE=DF,∠ADE=∠CDF,∴四边形EDFG是菱形,∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴四边形EDFG是正方形;(2)4.14.解:(1)∵四边形ABCD是平行四边形,∴OD=OB,∵DE=OF,BD=4;∴EF=OD=12(2)S1+S2的值不变,理由如下:如图所示,连结AF,∵四边形ABCD是平行四边形,∴AO=OC,∴S△AOF=S△COF,∵DE=OF,∴S △ADE =S △COF ,∴S 1+S 2=S △AEF =S △AOD ,∵∠BCO =90°,∠BOC =60°,∴∠DAC =90°,∠AOD =60°,∴AO =12OD =2,在Rt △AOD 中,AD =3AO =23,∴S 1+S 2=S △AOD =12AD •OA =12×23×2=23;(3)当DE =OE 时,AE +CF 的值最小,此时E 为OD 的中点,∵∠OAD =90°,∴AE =12OD =2,同理CF =2,∴AE +CF 的最小值=4.15.(1)证明∵AC =9 AB =12 BC =15,∴AC 2=81,AB 2=144,BC 2=225,∴AC 2+AB 2=BC 2,∴∠A =90°.∵PG ⊥AC ,PH ⊥AB ,∴∠AGP =∠AHP =90°,∴四边形AGPH 是矩形;(2)存在.理由如下:连结AP .∵四边形AGPH 是矩形,∴GH =AP .∵当AP ⊥BC 时AP 最短.根据三角形面积有12×9×12=12×15•AP .∴AP =365,.∴GH=36516.证明:(1)如图1,连接DF,∵四边形ABCD是正方形,∴DA=DC,∠A=∠C=90°,∵点A关于直线DE的对称点为F,∴△ADE≌△FDE,∴DA=DF=DC,∠DFE=∠A=90°,∴∠DFG=90°,在Rt△DFG和Rt△DCG中,∵DF=DCDG=DG,∴Rt△DFG≌Rt△DCG(HL),∴GF=GC;(2)BH=2AE,理由是:证法一:如图2,在线段AD上截取AM,使AM=AE,∵AD=AB,∴DM=BE,由(1)知:∠1=∠2,∠3=∠4,∵∠ADC=90°,∴∠1+∠2+∠3+∠4=90°,∴2∠2+2∠3=90°,∴∠2+∠3=45°,即∠EDG=45°,∵EH⊥DE,∴∠DEH=90°,△DEH是等腰直角三角形,∴∠AED+∠BEH=∠AED+∠1=90°,DE=EH,∴∠1=∠BEH,在△DME和△EBH中,∵DM=BE∠1=∠BEH DE=EH,∴△DME≌△EBH,∴EM=BH,Rt△AEM中,∠A=90°,AM=AE,∴EM=2AE,∴BH=2AE;证法二:如图3,过点H作HN⊥AB于N,∴∠ENH=90°,由方法一可知:DE=EH,∠1=∠NEH,在△DAE和△ENH中,∵∠A=∠ENH ∠1=∠NEH DE=EH,∴△DAE≌△ENH,∴AE=HN,AD=EN,∵AD=AB,∴AB=EN=AE+BE=BE+BN,∴AE=BN=HN,∴△BNH是等腰直角三角形,∴BH=2HN=2AE.(3)22.17.解:(1)如图所示:∵M、N分别是边BC、CD的中点,∴MN∥BD.∴△PMN的面积=△BMN的面积=△CMN的面积,∴四边形PMCN的面积=1菱形ABCD的面积=6;4(2)如图所示:作M关于BD的对称点Q,连接NQ交BD于P,连接MP,此时MP+NP的值最小,∵四边形ABCD是菱形,∴AC⊥BD,∠QBP=∠MBP,即Q在AB上,∵MQ⊥BD,∴AC∥MQ,∵M为BC中点,∴Q为AB中点,∵N为CD中点,四边形ABCD是菱形,∴BQ∥CD,BQ=CN,∴四边形BQNC是平行四边形,∴NQ=BC,∵四边形ABCD是菱形,∴CP=AP=3,BP=PD=4,在Rt△BPC中,由勾股定理得:BC=5,即NQ=5,∴MP+NP=QP+NP=QN=5,∴四边形PMCN周长最小值是10.18.证明:(1)∵四边形ABCD是正方形,∴AB=BC,∠A=∠BCD=90°,∴∠A=∠BCG=90°,∵AE=CG,∴△ABE≌△CBG;(2)设AB=x,∵四边形ABCD是正方形,∴AB=AD=CD=x,∵AE=2,AE=CG,∴DE=x-2,CG=2,由(1)知△ABE≌△CBG,∴BE=BG,∠ABE=∠CBG,∵∠EBF=45°,∴∠ABE+∠CBF=45°,∴∠ABE+∠CBG=45°,即∠GBF=45°,∴∠EBF=∠GBF,∵BF=BF,∴△EBF≌△GBF,∴EF=GF=5,∴FC=GF-CG=5-2=3,∴DF=x-3,在RT△DEF中,由勾股定理得,DE2+DF2=EF2,∴(x-2)2+(x-3)2=52,解得x=6或-1(舍去),即AB的长度是6;(3)连接EG,EC,如图,由(2)知△EBF≌△GBF,∴点E与点G关于BF对称,连接EC,则EC与BF的交点即为点P,此时PG+PC最小,且最小值是PG+PC=PE+PC=EC,在Rt△CDE中,由勾股定理得:CD2+DE2=EC2,由(2)知CD=AB=6,DE=6-2=4,∴EC2=62+42=52,∴EC=213,即PG+PC的最小值是213.。
人教版初二数学8年级下册 第18章(平行四边形)动点问题专项训练(含答案)
人教版数学八年级下期第十八章平行四边形动点问题训练1.如图,P为正方形ABCD的边BC上一动点(P与B、C不重合),点Q在CD边上,且BP=CQ,连接AP、BQ交于点E,将△BQC沿BQ所在的直线对着得到△BQN,延长QN交BA的延长线于点M.(1)求证:AP⊥BQ;(2)当P在BC何处时,点N是MQ的中点.(3)若AB=3,P是BC的三等分点,求QM的长;2.如图,四边形ABCD是正方形,点E是边BC的动点,连接AE,以AE为边在AE的右上侧作Rt△AEF,使得∠AEF=90°,AE=EF,再过点F作FG⊥BC,交BC的延长于点G.(1)求证:∠BAE=∠GEF;(2)求证:CG=FG;(3)填空:若正方形ABCD的边长是2,当点E从点B运动到点C的过程中,点F也随之运动,则点F运动的痕迹的长是______.3.如图,点P是正方形ABCD(在小学,同学们学习过:正方形四边相等,四个角都是直角)对角线AC上一动点,点E在射线BC上,且PB=PE,连结PD,O为AC 中点.(1)如图①,当点P在线段AO上时,猜想PE与PD的关系,并说明理由;(2)如图②,当点P在线段OC上时,(1)中的猜想还成立吗?请说明理由.4.如图,已知菱形ABCD中,∠BAD=60°,点E、F分别是AB、AD上两个动点,若AE=DF,连接BF与DE相交于点G,连接CG,(1)求∠BGE的大小;(2)求证:GC平分∠BGD.5.如图,在平行四边形ABCD中,AB=10,AD=16,∠A=60°,P是射线AD上一点,连接PB,沿PB将△APB折叠,得△A'PB.(1)如图1所示,当∠DPA'=10°时,∠A'PB=______度;(2)如图2所示,当PA'⊥BC时,求线段PA的长度;(3)当点P为AD中点时,点F是边AB上不与点A,B重合的一个动点,将△APF 沿PF折叠,得到△A'PF,连接BA',求△BA'F周长的最小值.6.如图,边长为8的正方形ABCD的対角线AC,BD交于点O,M是AB边上一动点,ME⊥AO,MF⊥BO.(1)求证:四边形OEMF为矩形;(2)连接EF,求EF的最小值.7.如图,在正方形ABCD中,点E是AD边上的一个动点,连接BE,以BE为斜边在正方形ABCD内部构造等腰直角三角形BEF,连接CF.(1)求证:∠DEF+∠CBF=90°;,求△BEF的面积;(2)若AB=3,△BCF的面积为32(3)求证:DE=2CF.8.如图,在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边的中点,点M是AB边上的一个动点(不与点A重合),延长ME交CD的延长线于点N,连接MD,AN.(1)求证:△NDE≌△MAE;(2)求证:四边形AMDN是平行四边形;(3)当AM的值为何值时,四边形AMDN是矩形?请说明理由.9.如图,已知四边形ABCD为正方形,AB=42,点E为对角线AC上一动点,连接DE、过点E作EF⊥DE.交BC点F,以DE、EF为邻边作矩形DEFC,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:CE+CG的值是否为定值?若是,请求出这个定值;若不是,请说明理由.10.如图,已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≅△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.11.如图,已知矩形ABCD中,AB=5,AD=2+13.菱形EFGH的顶点H在边AD上,且AH=2,顶点G、E分别是边DC、AB上的动点,连结CF.(1)当四边形EFGH为正方形时,直接写出DG的长;(2)若△FCG的面积等于3,求DG的长;(3)试探究点G运动至什么位置时,△FCG的面积取得最小值.12.如图,P为正方形ABCD的边AD上的一个动点,AE⊥BP,CF⊥BP,垂足分别为点E,F,已知AD=4,试说明AE2+CF2的值是一个常数.13.如图,在△ABC中,CA=CB,∠ACB=90°,AB=5,点D是边AB上的一个动点,连接CD,过C点在上方作CE⊥CD,且CE=CD,点P是DE的中点.(1)如图①,连接AP,判断线段AP与线段DE的数量关系并说明理由;(2)如图②,连接CP并延长交AB边所在直线于点Q,若AQ=2,求BD的长.14.如图,D、E分别是△ABC的边AB、AC的中点,O是△ABC内一动点,F、G分别是OB、OC的中点.判断四边形DEGF的形状,并说明理由.15.在正方形ABCD中,如图1,点E是AB边上的一个动点(点E与点A、B不重合),连接CE,过点B作BF⊥CE于点G,交AD于点F.(1)求证:△ABF≌△BCE.(2)如图2,当点E运动到AB中点时,连接DG,若AB=2,求DG的长.16.如图,在矩形ABCD中,BC=4,AB=10,E为CD边上的一点,DE=7,动点P从点A出发,以每秒1个单位的速度沿着边AB向终点B运动,连接PE.设每秒运动的时间为t秒.(1)求BE的长;(2)当t为多少秒时,△BPE是直角三角形.参考答案1.(1)证明:∵四边形ABCD是正方形,∴∠ABC=∠C=90°,AB=BC,在△ABP和△BCQ中,AB=BC∠ABC=∠CBP=CQ,∴△ABP≌△BCQ(SAS),∴∠BAP=∠CBQ,∵∠BAP+∠APB=90°,∴∠CBQ+∠APB=90°,∴∠BEP=90°,∴AP⊥BQ;(2)解:由折叠的性质得:NQ=CQ,∠BNQ=∠C=90°,∠NBQ=∠CBQ,∴∠BNM=90°,∵点N是MQ的中点,∴NQ=MN,由(1)得:MQ=MB,∴MN=12MB,∴∠MBN=30°,∴∠CBN=60°,∴∠NBQ=∠CBQ=30°,∴CQ=33BC,∴BP=CQ=33BC,即BP=33BC时,点N是MQ的中点.(3)解:∵四边形ABCD是正方形,AB=3,P是BC的三等分点,∴BP=2CP,或CP=2BP,①当BP=2CP时,BP=2,由折叠的性质得:NQ=CQ=BP=2,BN=BC=3,∵∠NQB=∠CQB=∠ABQ,∴MQ=MB,设MQ=MB=x,则MN=x-2,在Rt△MBN中,MB2=BN2+MN2,即x 2=32+(x -2)2,解得:x =134,即MQ =134;②当CP =2BP 时,BP =1,由折叠的性质得:NQ =CQ =BP =1,BN =BC =3,∵∠NQB =∠CQB =∠ABQ ,∴MQ =MB ,设MQ =MB =x ,则MN =x -1,在Rt △MBN 中,MB 2=BN 2+MN 2,即x 2=32+(x -1)2,解得:x =5,即MQ =5;综上所述,若AB =3,P 是BC 的三等分点,QM 的长为134或5.2.解:(1)∵∠AEF =90°,∴∠AEB +∠FEG =90°,∵四边形ABCD 是正方形,∴∠B =90°,∴∠AEB +∠BAE =90°,∴∠BAE =∠GEF ,(2)在△ABE 和△EGF 中,∠ABE =∠EGF ∠BAE =∠GEF AE =EF,∴△ABE ≌△EGF (AAS ),∴BE =GF ,AB =EG ,∴BE =CG ,∴CG =FG ;(3)223.解:(1)当点P在线段AO上时PE=PD且PE⊥PD.理由:当点P在线段AO上时,在△ABP和△ADP中AB=AD∠BAP=∠DAP=45∘AP=AP∴△ABP≌△ADP,∴BP=DP,∵PB=PE,∴PE=PD,如图,过点P作PM⊥CD于点M,作PN⊥BC于点N,∵AC平分∠BCD,∴PM=PN,在Rt△PNE与Rt△PMD中,∵PD=PE,PM=PN∴Rt△PNE≌Rt△PMD,∴∠DPM=∠EP N,易得∠MPN=90∘,∴∠DPE=90∘,故PE⊥PD,PE与PD的数量关系和位置关系分别为:PE=PD,PE⊥PD;(2)当点P在线段OC上时,(1)中的猜想成立;如图2,当点P在线段OC上时,∵四边形ABCD是正方形,AC为对角线,∴BA=DA,∠BAP=∠DAP=45°,又PA=PA,∴△BAP≌△DAP(SAS),∴PB=PD,又∵PB=PE,∴PE=PD,①当点E与点C重合时,PE⊥PD;②当点E在BC的延长线上时,如图2所示,∵△BAP≌△DAP,∴∠ABP=∠ADP,∠CDP=∠CBP,∵PB=PE,∴∠CBP=∠PEC,故∠PEC=∠PDC,∵∠1=∠2,∴∠DPE=∠DCE=90°,∴PE⊥PD,综上所述:PE⊥PD,当点P在线段OC上时,(1)中的猜想成立;4.解:(1)∵四边形ABCD是菱形∴AD=AB,∠BAD=60°∴△ADB是等边三角形∴AD=AB=BD,∠DAB=∠ADB=∠ABD∵AE=DF,∠DAB=∠ADB=60°,AD=BD∴△ADE≌△DBF(SAS)∴∠ADE=∠DBF又∠BGE=∠BDE+∠DBF=∠BDE+∠ADE=∠ADB∴∠BGE=∠ADB=60°(2)如图,过点C作CN⊥BF于点N,过点C作CM⊥ED于点M,由(1)得∠ADE=∠DBF∴∠CBF=60°+∠DBF=60°+∠ADE=∠DEB又∠DEB=∠MDC∴∠CBF=∠CDM∵BC=CD,∠CBF=∠CDM,∠CMD=∠CNG=90°∴Rt△CBN≌Rt△CDM(AAS)∴CN=CM,且CN⊥BF,CM⊥ED∴点C在∠BGD的平分线上即GC平分∠BGD5.856.(1)证明:∵ME⊥AO,MF⊥BO,∴∠MEO=90°,∠MFO=90°,∵正方形ABCD的対角线AC,BD交于点O,∴∠EOF=90°,∴四边形OEMF为矩形;(2)解:∵边长为8的正方形ABCD的対角线AC,BD交于点O,∴利用勾股定理可以得到OA=OB=42,当M在AB的中点时,EF有最小值,最小值=OE2+OF2=(22)2+(22)2=4.7.证明:(1)过点F作MN⊥AD于点M,交BC于点N,∴∠MEF+∠EFM=90°,∵∠EFB=90°,∴∠BFN +∠EFM =90°,∴∠MEF =∠BFN ,在正方形ABCD 中,AD ∥BC .∴MN ⊥BC ,∴∠FBN +∠BFN =90°,∴∠FBN +∠MEF =90°,即∠DEF +∠CBF =90°;证法二:在正方形ABCD 中,AD ∥BC ,∴∠DEB +∠CBE =180°,即∠DEF +∠BEF +∠EBF +∠CBF =180°,∵∠EFB =90°,∴∠BEF +∠EBF =90°,∴∠DEF +∠CBF =90°;(2)由(1)得MN ⊥AD ,∴正方形ABCD 的性质得四边形MNCD 是矩形,∴MN =CD =AB =3,在△BFN 与△FEM 中,由(1)得∠MEF =∠BFN ,∠EMF =∠FNB =90°,∵△BEF 为等腰直角三角形,∴BF =EF ,在△BFN 与△FEM 中,∠EMF =∠FNB ∠MEF =∠BFN BF =EF,∴△BFN ≌△FEM (AAS ),∵BC =AB =3,∴S △BCF =12BC ⋅FN =32FN =32,∴FN =1.∴BN =FM =MN -FN =2,在Rt △BFN 中,EF =BN 2+FN 2=12+22=5,∴S △BEF =12BF 2=12×(5)2=52;(3)在△BFN与△FEM中由(2)△BFN≌△FEM,MD=NC,∴BN=FM,EM=FN,∵MN=AB=BC,∴FM+FN=BN+NC,∴FN=NC=MD=EM,∴∠FCN=45°,DE=2MD=2CN,CF,在Rt△FNC中,CN=22∴DE=2×2CF=2CF.28.(1)证明:∵四边形ABCD是菱形,∴ND∥AM,∴∠NDE=∠MAE,∵点E是AD中点,∴DE=AE,在△NDE和△MAE中,∠NDE=∠MAEDE=AE,∠DEN=∠AEM∴△NDE≌△MAE(ASA);(2)∵△NDE≌△MAE,∴ND=MA,∴四边形AMDN是平行四边形;(3)解:当AM=1时,四边形AMDN是矩形.理由如下:∵四边形ABCD是菱形,∴AD=AB=2,∵四边形AMDN是矩形,∴DM⊥AB,即∠DMA=90°,∵∠DAB=60°,∴∠ADM=30°,∴AM=12AD=1.9.解:(1)如图所示,过E作EM⊥BC于M点,过E作EN⊥CD于N点,∵正方形ABCD,∴∠BCD=90°,∠ECN=45°,∴∠EMC=∠ENC=∠BCD=90°,且NE=NC,∴四边形EMCN为正方形,∵四边形DEFG是矩形,∴EM=EN,∠DEN+∠NEF=∠MEF+∠NEF=90°,∴∠DEN=∠MEF,又∠DNE=∠FME=90°,在△DEN和△FEM中,∠DNE=∠FME EN=EM∠DEN=∠FEM,∴△DEN≌△FEM(ASA),∴ED=EF,∴矩形DEFG为正方形,(2)CE+CG的值为定值,理由如下:∵矩形DEFG为正方形,∴DE=DG,∠EDC+∠CDG=90°,∵四边形ABCD是正方形,∵AD=DC,∠ADE+∠EDC=90°,∴∠ADE=∠CDG,在△ADE和△CDG中,AD=CD∠ADE=∠CDG DE=DG,∴△ADE≌△CDG(SAS),∴AE=CG,∴AC=AE+CE=2AB=2×42=8,∴CE+CG=8是定值.10. (1)∵点F,H分别是BC,CE的中点,∴FH //BE ,FH =12BE ,∴∠CFH =∠CBG .又∵点G 是BE 的中点,∴FH =BG .又∵BF =FC ,∴△BGF ≅△FHC .(2)连接EF ,GH .当四边形EGFH 是正方形时,可知EF ⊥GH且EF =GH .∵在△BEC 中,点G ,H 分别是BE ,EC 的中点,∴GH =12BC =12AD =12a ,且GH //BC ,∴EF ⊥BC .又∵AD //BC ,AB ⊥BC ,∴AB =EF =GH =12a ,∴S 矩形ABCD =AB ⋅AD =12a ⋅a =12a 211.解:(1)∵四边形EFGH 为正方形,∴HG =HE ,∠ADG =∠HAE =90°,∵∠DHG +∠AHE =90°,∠DHG +∠DGH =90°,∴∠DGH =∠AHE ,∴△DGH ≌△AHE (AAS ),∴DG =AH =2;(2)如图,作FM⊥DC,M为垂足,连结GE.∵AB∥CD,∴∠AEG=∠MGE,∵HE∥GF,∴∠HEG=∠FGE,∴∠AEG-∠HEG=∠MGE-∠FGE,即∠AEH=∠MGF,又∠A=∠M=90°,HE=FG,∴△AHE≌△MFG,∴FM=HA=2,即无论菱形EFGH如何变化,点F到直线CD的距离恒等于2,∴S▵FCG=1×2⋅GC=3,2解得GC=3,∴DG=2;(3)设DG=x,则CG=5-x,由(2)可知,S△FCG=5-x.要使△FCG的面积最小,须使x最大,∵在Rt△DHG中,DH=13,∴当GH取得最大时,x最大当点E与点B重合时,HE最大,此时,HE=22+52=29,则GH=HE=29,在Rt△DHG中,x=(29)2−(13)2=4,∴当DG=4时,△FCG的面积取得最小值.12.解:∵四边形ABCD是正方形,∴∠AEB=∠BFC=90°,AB=BC,又∵∠ABE+∠FBC=∠BCF+∠FBC,∴∠ABE=∠BCF,在△ABE和△BCF中,AB=BC∠ABE=∠BCF∴△ABE≌△BCF(AAS),∠AEB=∠BFC∴AE=BF,∴AE2+CF2=BF2+CF2=BC2=AD2=16为常数.13.解:(1)AP=1DE,理由如下:2连接AE.∵CE⊥CD,∴∠ACE+∠ACD=90°,∵∠ACB=90°,∴∠BCD+∠ACD=90°,∴∠ACE=∠BCD,在△BCD和△ACE中,CE=CD∠ACE=∠BCD,AC=BC∴△BCD≌△ACE(SAS),∴∠EAC=∠B=45°,∴∠EAD=90°,∵P为DE中点,DE.∴AP=12(2)①当Q在边AB上时,连接AE,EQ.∵P 为DE 中点,CE =CD ,∴PC 垂直平分DE ,∴DQ =QD ,∵AB =5,AQ =2,∴BD =3,设BD =AE =x ,则QD =EQ =3-x ,在Rt △AEQ 中,AE 2+AQ 2=QE 2,即x 2+22=(3-x )2解得x =56;当Q 在BA 延长线上时,连接AE ,EQ ,如图,设BD =AE =x ,同理可得AE 2+AQ 2=QE 2,即x 2+22=(7-x )2解得x =4514.综上可得BD =56或4514.14.解析 四边形DEGF 是平行四边形.理由:∵D 、E 分别是△ABC 的边AB 、AC 的中点,∴DE =12BC ,DE //BC ,∵F、G分别是OB、OC的中点,BC,FG//BC,∴FG=12∴DE=FG,DE//FG,∴四边形DEGF是平行四边形15.(1)证明:∵BF⊥CE,∴∠CGB=90°,∴∠GCB+∠GBC=90°,又∵四边形ABCD为正方形,∴∠GBA+∠GBC=90°,∴∠GCB=∠FBA,又∵BC=AB,∠FAB=∠EBC=90°,在△ABF与△BCE中,∠GCB=∠FBABC=AB,∠EBC=∠FAB∴△ABF≌△BCE(SAS);(2)解:过点D作DH⊥CE于点H,∵E为AB中点,∴EB=1,∵AB=2,∴BC=2,∴CE=BC2+EB2=22+12=5,在Rt △CEB 中,由CE •BG =EB •BC 得BG =EB ⋅BC CE =1×25=255,∴CG =455,∵∠DCE +∠BCE =∠BCE +∠CBF =90°,∴∠DCE =∠CBF ,又∵DC =BC =2,∠CHD =∠CGB =90°,在△CHD 与△BGC 中,∠CHD =∠CGB =90°∠DCE =∠CBF DC =BC,∴△CHD ≌△BGC (AAS )∴CH =BG =255,∴GH =CG -CH =255=CH ,∵DH =DH ,∠CHD =∠GHD =90°,在△DGH 与△DCH 中,GH =CH ∠GHD =∠CHD DH =DH,∴△DGH ≌△DCH (SAS ),∴DG =DC =2.16.解:(1)在矩形ABCD 中,∠C =∠B =90°,CD =AB =10,在Rt △BCE 中,CE =CD -ED =10-7=3,根据勾股定理得,BE =BC 2+CE 2=42+32=5,(2)①当以P 为直角顶点时,即∠BPE =90°,则∠C =∠B =∠BPE =90°,∴四边形CBPE 是矩形,∴BP =CE =3,即10-t =3,∴t =7,②当以E 为直角顶点时,即∠BEP =90°,由勾股定理得,BE 2+PE 2=BP 2,过点P 作PF ⊥CD 于F ,则PF=AD=4,DF=AP,设AP=t,则EF=7-t,BP=10-t,PE2=42+(7-t)2,∴52+42+(7-t)2=(10-t)2,,解得,t=53∴当t=7或5秒时,△BPE是直角三角形.3。
初二数学平行四边形试题
初二数学平行四边形试题1.(2013淮安)如图,在平行四边形ABCD中,过AC的中点O作直线,分别交AD、BC于点E、F.求证:△AOE≌△COF.【答案】证明:∵AD∥BC,∴∠EAO=∠FCO,∠AEO=∠CFO.∵在△AOE和△COF中,∴△AOE≌△COF.【解析】三角形全等判定定理:有两角及其一角的对边对应相等的两个三角形全等2.如图所示,已知l1∥l2,AB∥CD,CE⊥l2于E,FG⊥l2于点G.则下列说法错误的是()A.AB=CDB.CE=FGC.CF=EGD.AB=FG【答案】D【解析】利用平行四边形的对边相等进行判断.3.(2013泸州)如图,已知□ABCD中,F是BC边的中点,连接DF并延长,交AB的延长线于点E.求证:AB=BE.【答案】证明:∵F是BC边的中点,∴BF=CF.∵四边形ABCD是平行四边形,∴AB=DC,AB∥CD,∴∠C=∠FBE,∠CDF=∠E.∵在△CDF和△BEF中,∴△CDF≌△BEF(AAS),∴BE=DC.∵AB=DC,∴AB=BE.【解析】根据三角形全等的判定,两角及其夹边对应相等的两个三角形全等,得△CDF≌△BEF,∴BE=DC。
又根据平行四边形性质,两组对边分别相等可得AB=DC,即可证明AB=BE。
4.平行四边形的面积等于平行四边形的底与________的积,用式子表示为S=ah,其中a为底,h为底边上的高.【答案】底边上的高【解析】根据平行四边形的面积公式解题5. (2014河南)如图,□ABCD的对角线AC与BD相交于点O,AB⊥AC.若AB=4,AC=6,则BD的长是()A.8B.9C.10D.11【答案】C【解析】在□ABCD中,OA=OC,OB=OD,所以.在Rt△AOB中,根据勾股定理得,所以BD=2OB=2×5=10.6.如图,在□ABCD中,下列结论不一定正确的是()A.AB=CDB.∠B=∠DC.AD∥BCD.∠A+∠C=180°【答案】D【解析】由平行四边形的性质可知,∠A=∠C.但∠A+∠C=180°不一定成立,故选D.7.(2011苏州)如图,在四边形ABCD中,AB∥CD,AD∥BC,AC、BD相交于点O,若AC =6,则线段AO的长度等于________.【答案】3【解析】∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,∴OA=OC.∵AC=6,∴OA =3.8.已知AD∥BC,要使四边形ABCD为平行四边形,需要添加的一个条件是________.(只需填一个)【答案】AB∥DC(答案不唯一)【解析】根据平行四边形的判定9.(2013莱芜)如图,在Rt△ABC中,∠ACB=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连接DE.(1)证明:DE∥CB;(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.【答案】(1)证明:连接CE.∵点E为Rt△ACB的斜边AB的中点,∴∵△ACD是等边三角形.∴AD=CD.在△ADE与△CDE中,∴△ADE≌△CDE(SSS),∴.∵∠DCB=90°+60°=150°,∴∠EDC+∠DCB=180°.∴DE∥CB.(2)解:∵∠DCB=150°,若四边形DCBE是平行四边形,则DC∥BE,∠DCB+∠B=180°.∠B=30°.在Rt△ACB中,有.∴当时,四边形DCBE是平行四边形.【解析】此题主要考查了平行线的判定、全等三角形的判定与性质,以及平行四边形的判定,关键是掌握直角三角形的性质,以及等边三角形的性质.10.如图,在□ABCD中,E、F分别是AB、CD的中点,连接DE、EF、BF,则图中平行四边形共有()A.2个B.4个C.6个D.8个【答案】B【解析】题图中平行四边形共有4个,分别是□ABCD,□ADFE,□EFCB,□EDFB.11.已知任意四边形ABCD,且线段AB、BC、CD、DA、AC、BD的中点分别是E、F、G、H、P、Q.(1)如图(1),判断下列结论是否正确(正确的在括号里填“√”,错误的在括号里填“×”):甲:顺次连接EF、FG、GH、HE,一定得到平行四边形;()乙:顺次连接EQ、QG、GP、PE,一定得到平行四边形;()(2)请选择甲、乙中的一个,证明你对它的判断;(3)如图(2),请你直接判断(1)中的两个结论是否成立.【答案】(1)√;√.(2)证明(1)中对甲的判断:∵E、F分别是AB、BC的中点,∴EF是△ABC的中位线,∴EF∥AC,,同理,HG∥AC,,∴EF∥HG,EF=HG.∴四边形EFGH是平行四边形.(3)类似于(2)中的证明过程,甲、乙均成立.【解析】本题主要考查对三角形中位线定理,平行四边形的判定等考点的理解12. (2013江西)如图,□ABCD与□DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为________.【答案】25°【解析】∵□ABCD与□DCFE的周长相等,且有公共边CD,∴AD=DE,在□ABCD和□CDEF 中,∠BCD=60°,∠DCF=180°-∠F=70°,∴∠BCF=∠BCD+∠DCF=60°+70°=130°,由平行知∠ADE=∠BCF=130°.∴.13.(2013杭州)如图,在□ABCD中,下列结论一定正确的是()A.AC⊥BDB.∠BAD+∠ABC=180°C.AB=ADD.∠A≠∠C【答案】B【解析】由四边形ABCD是平行四边形,可得AD∥BC,即可证得∠BAD+∠ABC=180°.14.如图,在□ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于()A.2cmB.4cmC.6cmD.8cm【答案】A【解析】∵DE平分∠ADC,AD∥BC,∴∠EDC=∠DEC,∴EC=DC.∵AB=DC,AD=BC,∴BE=8-6=2.15.(2013菏泽)如图□ABCD中,对角线AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折180°到其原来所在的同一平面内,若点B的落点记为B′,求DB′的长.【答案】∵四边形ABCD是平行四边形,BD=2,∴.如图,连接BB′.根据折叠的性质知,∠AEB=∠AEB′=45°,BE=B′E.∴∠BEB′=90°,∴△BB′E是等腰直角三角形,则.又∵BE=DE,B′E⊥BD,∴.【解析】如图,连接BB′.根据折叠的性质知△BB′E是等腰直角三角形,则.又易得B′E是BD的中垂线,则DB′=BB′.16.如图,D、E、F分别是△ABC的三边AB、AC、BC的中点,BF=2,BD=3.求四边形BDEF的周长.【答案】见解析【解析】∵D、E分别是AB、AC的中点,∴DE为△ABC的中位线,∴DE∥BC.∵F为BC的中点,∴EF为△ABC的中位线,∴EF∥AB.∴四边形BDEF为平行四边形.∴DE=BF=2,BD=EF=3,∴四边形BDEF的周长为(2+3)×2=10.17. (2014江苏徐州)已知:如图,在平行四边形ABCD中,点E、F在AC上,且AE=CF.求证:四边形BEDF是平行四边形.【答案】见解析【解析】证明:连接BD,与AC相交于点O.∵四边形ABCD为平行四边形,∴OB=OD,OA=OC.∵AE=CF.∴OE=OF.∴四边形BEDF是平行四边形.18.木工师傅要做一个含有45°角的平行四边形,现只有一块如图所示的等腰直角三角形的木板,请你设计一种最简单的方案,并证明你的方案正确.【答案】见解析【解析】方案:如图,取AC,BC的中点E,D,连接ED,沿着ED锯开,使点E不变,点C 与点A重合,点D到点F的位置,再黏合在同一平面内.则粘合成的四边形ABDF为含有45°角的平行四边形.证明如下:在等腰Rt△ABC中,AC=BC,∠B=45°,∵E、D分别是AC、BC的中点,AC=BC,∴EC=DC.∴∠CDE=∠CED=45°,∴∠AEF=∠CED=45°.∴∠AEF+∠AED=∠CED+∠AED=180°.∴E、F、D在同一条直线上.∵∠EAF=∠C=90°,∴AF∥CB.又∵AF=CD=DB.∴四边形AFDB是平行四边形,且∠B=45°.19.(2013广西钦州)如图,图(1)、图(2)、图(3)分别表示甲、乙、丙三人由A地到B 地的路线图(箭头表示行进的方向),其中E为AB的中点,AH>HB,判断三人行进路线长度的大小关系为()A.甲<乙<丙B.乙<丙<甲C.丙<乙<甲D.甲=乙=丙【答案】D【解析】图(1)中,甲走的路线长是AC+BC的长度;如图(2),延长AD和BF交于C,∵∠DEA=∠B=60°,∴DE∥CF,同理EF∥CD,∴四边形CDEF是平行四边形,∴EF=CD,DE=CF,即乙走的路线长是AD+DE+EF+FB=AD+CD+CF+BF=AC+BC的长;如图(3),延长AG和BK交于C,与以上证明过程类似,GH=CK,CG=HK,即丙走的路线长是AG+GH+HK+KB=AG+CG+CK+BK=AC+BC的长.即甲=乙=丙.故选D.20.(2013柳州)如图,四边形ABCD为等腰梯形,AD∥BC,连接AC、BD,在平面内将△DBC沿BC翻折得到△EBC.(1)四边形ABEC一定是什么四边形?(2)证明你在(1)中所得出的结论.【答案】(1)解:四边形ABEC一定是平行四边形.(2)证明:∵四边形ABCD为等腰梯形,AD∥BC,∴AB=DC,AC=BD.由折叠的性质可得EC=DC,DB=BE,∴EC=AB,BE=AC,∴四边形ABEC是平行四边形.【解析】(1)首先观察图形,然后由题意可得四边形ABEC一定是平行四边形.(2)由四边形ABCD为等腰梯形,AD∥BC,可得AB=DC,AC=BD.又由在平面内将△DBC 沿BC翻折得到△EBC,可得EC=DC,DB=BE,继而可得EC=AB,BE=AC,则可证得四边形ABEC是平行四边形.。
初二数学平行四边形的性质试题与答案
姓 名密区内容 考试类型 考试【 】 考查【 】 审 批绝密★启用前 平行四边形的性质测试时间:20分钟一、选择题1、已知在平行四边形ABCD 中,∠B=5∠A,则∠D 的度数为( ) A.30° B.60° C.120° D.150°2.在平行四边形ABCD 中,对角线AC 与BD 交于点O,∠DAC=40°,∠CBD=25°,则∠COD=( )A.60°B.65°C.70°D.75°3、如果一个平行四边形相邻两边的长分别为5和3,那么它的周长是( ) A.6 B.10 C.16 D.204、如下图,平行四边形ABCD 中,∠B=60°,AB⊥AC,AC 的垂直平分线交AD 于点E,△CDE 的周长是15,则平行四边形ABCD 的面积为( )A.25√32B.40C.50D.25√3二、填空题5.如下图所示,在平行四边形ABCD 中,AD⊥BD,∠A=60°,如果AD=4,那么平行四边形ABCD 的周长是 .6.如下图,在▱ABCD 中,AB=6,BC=8,∠BCD 的平分线交AD 于E,交BA 的延长线于F,则AE+AF 的值等于 .三、解答题7.如下图,在平行四边形ABCD 中,∠B=∠AFE,EA 平分∠BEF,求证: (1)△ABE≌△AFE; (2)∠FAD=∠CDE.参考答案一、选择题1.答案 D 如下图所示,∵四边形ABCD 是平行四边形,∴AD∥BC,∠D=∠B,∴∠A+∠B=180°.∵∠B=5∠A,∴6∠A=180°,解得∠A=30°,∴∠D=∠B=30°×5=150°.故选D.2.答案 B ∵四边形ABCD 是平行四边形, ∴AD∥BC,∴∠ADB=∠CBD=25°,∴∠COD=∠DAO+∠ADO=40°+25°=65°, 故选B.3.答案 C ∵平行四边形的两组对边相等,且相邻两边的长分别为5和3, ∴这个平行四边形的四边长分别为5,3,5,3, ∴这个平行四边形的周长为16,故选C.4.答案 D ∵点E 在AC 的垂直平分线上, ∴EA=EC,∴△CDE 的周长=CD+DE+EC=CD+DE+EA=CD+DA=15, ∵四边形ABCD 是平行四边形, ∴∠B=∠D=60°,AB∥CD, ∵AB⊥AC, ∴AC⊥CD, ∴∠ACD=90°,∴∠CAD=30°, ∴AD=2CD, ∴CD=5,AD=10, ∴AC=√AD 2-CD 2=5√3,∴S 平行四边形ABCD =2·S △ADC =2×12×5×5√3=25√3,故选D.二、填空题5.答案 24解析 ∵AD⊥BD,∴∠ADB=90°. 又∵∠A=60°,∴∠ABD=30°. ∵AD=4,∴AB=2AD=8.在平行四边形ABCD 中,AB=CD,AD=BC,∴平行四边形ABCD 的周长=2×(4+8)=24. 6.答案 4解析 ∵四边形ABCD 是平行四边形, ∴AB∥CD,AD=BC=8,CD=AB=6,∴∠F=∠DCF,∵CF平分∠BCD,∴∠FCB=∠DCF,∴∠F=∠FCB,∴BF=BC=8,同理DE=CD=6,∴AF=BF-AB=2,AE=AD-DE=2,∴AE+AF=4.故答案为4.三、解答题7.证明(1)如下图,∵EA平分∠BEF,∴∠1=∠2.又∵∠B=∠AFE,AE=AE,∴△ABE≌△AFE(AAS).(2)∵∠B=∠AFE,∠AFE=∠3+∠4,∴∠B=∠3+∠4.∵四边形ABCD是平行四边形,∴∠B=∠ADC,∴∠3+∠4=∠4+∠CDE,∴∠3=∠CDE,即∠FAD=∠CDE.题答许不内以线横。
初二数学平行四边形的性质作业练习题(含答案)
初二数学平行四边形的性质作业练习题一.选择题(共7小题)1.下列结论正确的是( )A .平行四边形是轴对称图形B .平行四边形的对角线相等C .平行四边形的对边平行且相等D .平行四边形的对角互补,邻角相等2.如图,ABCD Y 中,下列说法一定正确的是( )A .AC BD =B .AC BD ⊥ C .AO CO = D .AB BC =3.平行四边形的周长为48,相邻两边长的比为3:5,则这个平行四边形的较短的边长为( )A .18B .30C .15D .94.在ABCD Y 中,若60A ∠=︒,则C ∠的度数是( )A .120︒B .30︒C .60︒D .90︒5.平行四边形ABCD 的四个内角度数的比:::A B C D ∠∠∠∠可以是( )A .2:3:3:2B .2:3:2:3C .1:2:3:4D .2:2:1:16.如图,ABCD Y 中,CE AB ⊥,E 为垂足,如果65D ∠=︒,则BCE ∠等于( )A .25︒B .30︒C .35︒D .55︒7.如图,平行四边形ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,若CED ∆的周长为8,则平行四边形ABCD 的周长为( )A .8B .16C .24D .32二.填空题(共5小题)8.平行四边形ABCD 中,若:1:2A B ∠∠=,那么A ∠= ,B ∠= ,C ∠= ,D ∠= .9.如图,在ABCD Y 中,AC 与BD 交于点O ,若8AB =,6BC =,AOD ∆的周长是16,则AOB ∆的周长等于 .10.如图,在ABCD Y 中,90ODA ∠=︒,10AC =,6BD =,则AD 的长为 .11.如图,在平行四边形ABCD 中,DE 平分ADC ∠,8AD =.3BE =,则平行四边形ABCD 的周长是 .12.如图,在ABCD Y 中,AE BC ⊥于点E ,AF DC ⊥于点F ,5BC =,4AB =,3AE =,则AF 的长度为 .三.解答题(共3小题)13.如图,平行四边形ABCD 中,4AD =,6AB =,AE 平分DAB ∠交CD 于E ,求CE 的长.14.如图,平行四边形ABCD 中,AE AD ⊥交BD 于点E ,CF BC ⊥交BD 于点F ,连接AF 、CE . 求证:AF CE =.15.如图所示,已知四边形ABCD 为平行四边形,BE 平分ABC ∠交AD 于点E .(1)若25AEB ∠=︒,求C ∠的度数;(2)若5AE cm =,求CD 的长度.答案与解析一.选择题(共7小题)1.下列结论正确的是()A.平行四边形是轴对称图形B.平行四边形的对角线相等C.平行四边形的对边平行且相等D.平行四边形的对角互补,邻角相等【分析】分别利用平行四边形的性质和判定逐项判断即可.【解答】解:A、平行四边形不一定是轴对称图形,故A错误;B、平行四边形的对角线不相等,故B错误;C、平行四边形的对边平行且相等,故C正确;D、平行四边形的对角相等,邻角互补,故D错误.故选:C.2.如图,ABCDY中,下列说法一定正确的是()A.AC BD=D.AB BC=⊥C.AO CO=B.AC BD【分析】根据平行四边形的性质解答即可.【解答】解:在ABCDY中,可得:AO OC=,故选:C.3.平行四边形的周长为48,相邻两边长的比为3:5,则这个平行四边形的较短的边长为() A.18B.30C.15D.9【分析】根据平行四边形中对边相等和已知条件即可求得较短边的长.【解答】解:如图Q平行四边形的周长为4848224∴+=÷=AB BCQ:5:3BC AB=∴=AB9故选:D.4.在ABCD∠的度数是()∠=︒,则CY中,若60AA.120︒B.30︒C.60︒D.90︒【分析】由平行四边形的性质即可得出答案.【解答】解:Q四边形ABCD是平行四边形,∴∠=∠=︒,C A60故选:C.5.平行四边形ABCD的四个内角度数的比:::∠∠∠∠可以是()A B C DA.2:3:3:2B.2:3:2:3C.1:2:3:4D.2:2:1:1【分析】平行四边形两组对角相等,以此即可解决此题.【解答】解:在平行四边形中,两组对角相等,即A C∠=∠,∠=∠,B D所以在A、B、C、D四个选项中,只有B选项符合要求.故选:B .6.如图,ABCD Y 中,CE AB ⊥,E 为垂足,如果65D ∠=︒,则BCE ∠等于( )A .25︒B .30︒C .35︒D .55︒【分析】利用平行四边形的性质求出B ∠,再利用三角形内角和定理求出BCE ∠即可.【解答】解:Q 四边形ABC 都是平行四边形,65B D ∴∠=∠=︒,CE AB ⊥Q ,90CEB ∴∠=︒,906525BCE ∴∠=︒-︒=︒,故选:A .7.如图,平行四边形ABCD 中,对角线AC 的垂直平分线分别交AD 、BC 于点E 、F ,连接CE ,若CED ∆的周长为8,则平行四边形ABCD 的周长为( )A .8B .16C .24D .32【分析】由平行四边形的性质得出DC AB =,AD BC =,由线段垂直平分线的性质得出AE CE =,得出CDE ∆的周长AD DC =+,即可得出结果.【解答】解:Q 四边形ABCD 是平行四边形,DC AB ∴=,AD BC =,AC Q 的垂直平分线交AD 于点E ,AE CE ∴=,CDE ∴∆的周长8DE CE DC DE AE DC AD DC =++=++=+=,ABCD ∴Y 的周长2816=⨯=;故选:B .二.填空题(共5小题)8.平行四边形ABCD 中,若:1:2A B ∠∠=,那么A ∠= 60︒ ,B ∠= ,C ∠= ,D ∠= .【分析】利用平行四边形对角相等,邻角互补解答即可.【解答】解:Q 四边形ABCD 是平行四边形,180A B ∴∠+∠=︒,又:1:2A B ∠∠=Q ,60A ∴∠=︒,120B ∠=︒,60C A ∴∠=∠=︒,120D B ∠=∠=︒,故答案为:60︒,120︒,60︒,120︒.9.如图,在ABCD Y 中,AC 与BD 交于点O ,若8AB =,6BC =,AOD ∆的周长是16,则AOB ∆的周长等于 18 .【分析】由四边形ABCD 为平行四边形,得到对边相等,对角线互相平分,由三角形AOD 周长求出OA OD +的长,等量代换得到OA OB +的长,即可确定出三角形AOB 周长.【解答】解:Q 四边形ABCD 为平行四边形,6AD BC ∴==,8AB CD ==,OA OC =,OB OD =,AOD ∆Q 周长为16AD OA OD ++=,即10OA OD OA OB +=+=,AOB ∴∆周长为10818OA OB AB ++=+=.故答案为:18.10.如图,在ABCD Y 中,90ODA ∠=︒,10AC =,6BD =,则AD 的长为 4 .【分析】根据平行四边形的性质可知AO OC =,OD OB =,据此求出AO 、DO 的长,利用勾股定理求出AD 的长即可.【解答】解:Q 四边形ABCD 是平行四边形,10AC =,6BD =,152OA OC AC ∴===,132OB OD BD ===, 90ODA ∠=︒Q ,4AD ∴=.故答案为:4.11.如图,在平行四边形ABCD 中,DE 平分ADC ∠,8AD =.3BE =,则平行四边形ABCD 的周长是 26 .【分析】利用平行四边形的性质可得出AD BC =,AB CD =,//AD BC ,由角平分线的定义可得出ADE CDE ∠=∠,由//AD BC 可得出CED CDE ∠=∠,利用等角对等边可求出CD 的长,再利用平行四边形的周长公式即可求出平行四边形ABCD 的周长.【解答】解:Q 四边形ABCD 为平行四边形,AD BC ∴=,AB CD =,//AD BC .DE Q 平分ADC ∠,ADE CDE ∴∠=∠.//AD BC Q ,CED ADE CDE ∴∠=∠=∠,835CD CE BC BE ∴==-=-=,∴平行四边形ABCD 的周长2()2(85)26AD CD =+=⨯+=.故答案为:26.12.如图,在ABCD Y 中,AE BC ⊥于点E ,AF DC ⊥于点F ,5BC =,4AB =,3AE =,则AF 的长度为 154.【分析】根据平行四边形的对边相等求出CD AB =,再根据平行四边形的面积列式进行计算即可得解.【解答】解:在ABCD Y 中,4CD AB ==,AE BC ⊥Q ,AF DC ⊥,ABCD S BC AE CD AF ∴=⋅=⋅Y ,即534AF ⨯=g ,解得154AF =. 故答案为:154. 三.解答题(共3小题)13.如图,平行四边形ABCD 中,4AD =,6AB =,AE 平分DAB ∠交CD 于E ,求CE 的长.【分析】依据平行四边形ABCD 中,6AB =,可得6CD =,再根据AE 平分DAB ∠,//CD AB ,即可得出4DE AD ==,进而得到642CE CD DE =-=-=.【解答】解:Q 平行四边形ABCD 中,6AB =,6CD ∴=,又AE Q 平分DAB ∠,//CD AB ,DAE BAE AED ∴∠=∠=∠,4DE AD ∴==,642CE CD DE ∴=-=-=.14.如图,平行四边形ABCD 中,AE AD ⊥交BD 于点E ,CF BC ⊥交BD 于点F ,连接AF 、CE . 求证:AF CE =.【分析】先依据ASA 判定ADE CBF ∆≅∆,即可得出AE CF =,//AE CF ,进而判定四边形AECF 是平行四边形,即可得到AF CE =.【解答】证明:AE AD ⊥Q 交BD 于点E ,CF BC ⊥交BD 于点F ,90DAE BCF ∴∠=∠=︒,Q 平行四边形ABCD 中,//AD BC ,ADE CBF∴∠=∠,又Q平行四边形ABCD中,AD BC=,∴∆≅∆,ADE CBF ASA()∠=∠,AE CF∴=,AED CFB∴,AE CF//∴四边形AECF是平行四边形,∴=.AF CE15.如图所示,已知四边形ABCD为平行四边形,BE平分ABC∠交AD于点E.(1)若25∠的度数;∠=︒,求CAEB(2)若5AE cm=,求CD的长度.【分析】(1)由四边形ABCD是平行四边形,BE平分ABC∠,即可得出答案;(2)易证得ABE∆是等腰三角形,继而求得答案.【解答】解:(1)Q四边形ABCD是平行四边形,=,//∠=∠,AB CD∴,C AAB CDCBE AEB∴∠=∠=︒,25Q平分ABCBE∠,∴∠=∠=︒,ABE CBE25∴∠=∠=︒,ABE AEB25A ABE AEB∴∠=︒-∠-∠=︒,180130∴∠=︒;130C(2)由(1)得:ABE AEB∠=∠,AB AE cm∴==,5∴==.5CD AB cm。
初二下学期数学平行四边形经典题
初二下学期数学平行四边形经典题1.题目中提到的角度和线段可以用文字描述,不需要图示。
1.在菱形纸片ABCD中,角A等于60度。
将菱形纸片沿着AB的中点P所在的直线折叠,使得点C落在直线DP上,折痕经过点D得到线段DE。
求角DEC的大小。
答案:78度。
2.在矩形纸片ABCD中,AB等于6cm,BC等于8cm。
将矩形沿着AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E。
求CE的长度。
答案:2cm。
3.在△ABC中,AB等于AC等于10,BC等于8.线段AD 平分∠BAC并交BC于点D,点E为AC的中点,连接DE。
求△XXX的周长。
答案:14.4.在边长为2的正方形ABCD中,M为边AD的中点。
将线段MD延长至点E,使得ME等于MC。
以DE为边作正方形DEFG,点G在边CD上。
求DG的长度。
答案:3-1.5.在菱形ABCD中,角A等于60度,AB等于5.求△ABD的周长。
答案:10.6.把矩形ABCD沿着EF翻折,点B恰好落在AD边的B'处。
若AE等于2,DE等于6,∠EFB等于60度。
求矩形ABCD的面积。
答案:12.7.边长分别为4和8的两个正方形ABCD和CEFG并排放在一起,连结BD并延长交EG于点T,交FG于点P。
求GT的长度。
答案:2.8.矩形ABCD的面积为20cm^2,对角线交于点O。
以AB、AO为邻边做平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边做平行四边形AO1C2B;以AO1、AO2为邻边做平行四边形AO2C3B;以AO2、AO3为邻边做平行四边形AO3C4B;依此类推。
求平行四边形AO4C5B的面积。
答案:8cm^2.9.描述题目中的和液体的变化过程,不需要图示。
已知液体部分正面的面积保持不变,当AA1等于4时,求BB1的长度。
答案:10.10.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的所有▱ADCE中,DE最小的值是()A.2B.8C.6D.41.如图,把矩形ABCD沿EF折叠,使C与A重合,且AB=4,AD=8.1) 连接AE、AF,由于折叠后C与A重合,所以AE=AC,AF=AB,又因为AC=AD-CD=8-4=4,所以AE=AF。
人教版初二数学8年级下册 第18章(平行四边形)证明题专题训练(含答案)
人教版八年级下册数学第十八章平行四边形证明题专题训练1.如图,在平行四边形ABCD中,E、F是对角线AC所在直线上的两点,且AE=CF.求证:四边形EBFD 是平行四边形.2.如图,在△ABC中,点D,E分别是BC,AC的中点,延长BA至点F,使得AF= 1AB,连接DE,AD,EF,DF.2(1)求证:四边形ADEF是平行四边形;(2)若AB=6,AC=8,BC=10,求EF的长.的对角线AC的垂直平分线与边AD,BC分别相交于点E,3.如图所示,ABCDF.求证:四边形AFCE是菱形.AC BD交于点,O过点O任作直线分别交4.如图,在平行四边形ABCD中,对角线,AB CD于点E F,、.求证:OE OF =.5.已知:如图,在ABCD 中,,E F 是对角线BD 上两个点,且BE DF =.求证:.AE CF =6.已知:如图,矩形ABCD 中,O 是AC 与BD 的交点,过O 点的直线EF 与AB 、CD 的延长线分别相交于点E 、F .(1)求证:△BOE ≌△DOF ;(2)当EF 与AC 满足什么关系时,以A 、E 、C 、F 为顶点的四边形是菱形?并给出证明.7.如图,菱形ABCD 的对角线AC 、BD 相交于点O ,//BE AC ,//AE BD ,OE 与AB 交于点F .(1)求证:四边形AEBO 的为矩形;(2)若OE =10,AC =16,求菱形ABCD 的面积.8.已知:如图,在ABC 中,中线,BE CD 交于点,,O F G 分别是,OB OC 的中点.求证:(1)//DE FG ;(2)DG 和EF 互相平分.9.如图,在平行四边形ABCD 中,AC 是对角线,且AB =AC ,CF 是∠ACB 的角平分线交AB 于点F ,在AD 上取一点E ,使AB =AE ,连接BE 交CF 于点P .(1)求证:BP =CP ;(2)若BC =4,∠ABC =45°,求平行四边形ABCD 的面积.10.如图,AB,CD相交于点O,AC∥DB,OA=OB,E、F分别是OC,OD中点.(1)求证:OD=OC.(2) 求证:四边形AFBE平行四边形.11.如图所示,在菱形ABCD中,E、F分别为AB、AD上两点,AE=AF.(1)求证:CE=CF;(2)若∠ECF=60°,∠B=80°,试问BC=CE吗?请说明理由.12.已知:如图,在矩形ABCD中,M、N分别是边AD、BC的中点,E、F分别是线段BM、CM的中点.(1)求证:△ABM≌△DCM;(2)当AB:AD的值为多少时,四边形MENF是正方形?请说明理由.13.如图,在矩形ABCD中,过对角线AC的中点O作AC的垂线,分别交射线AD 和CB于点E,F连接AF,CE.(1)求证:OE=OF;(2)求证:四边形AFCE是菱形.14.如图,BD是△ABC的角平分线,过点作DE//BC交AB于点E,DF//AB交BC 于点F.(1)求证:四边形BEDF是菱形;(2)若∠ABC=60°,∠ACB=45°,CD=6,求菱形BEDF的边长.15.如图,在边长为6的正方形ABCD中,E是边CD的中点,将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG.(1)求证:△ABG≌△AFG;(2)求∠EAG的度数;(3)求BG的长.16.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D在AB边上一点.过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当点D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由.17.如图,在△ABC中,AB=AC,点D为边BC上一点,以AB,BD为邻边作▱ABDE,连接AD、EC.(1)求证:△ADC≌△ECD; (2)若BD=CD,求证:四边形ADCE是矩形.18.如图,在四边形ABCD中,AB=CD,BF=DE,AE⊥BD,CF⊥BD,垂足分别为E、F.(1)求证:△ABE≌△CDF;(2)若AC与BD交于点O,求证:AO=CO.19.在平行四边形ABCD中,点E在AD边上,连接BE、CE,EB平分∠AEC,(1)如图1,判断△BCE的形状,并说明理由;(2)如图2,若∠A=90°,BC=5,AE=1,求线段BE的长.20.如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于点F,连接DF.(1)求证:∠BAC=∠DAC,∠AFD=∠CFE;(2)若AB∥CD,试证明四边形ABCD是菱形;(3)在(2)的条件下,试确定E点的位置,使∠EFD=∠BCD,并说明理由.参考答案:1.解:证明:如图,连接BD交AC于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,又∵AE=CF,∴OA-AE=OC-CF,即OE=OF,∴四边形EBFD是平行四边形.2.(1)证明:∵点D,E分别是BC,AC的中点,∴DE是△ABC的中位线,∴DE∥AB,DE=12 AB,∵AF=12 AB,∴DE=AF,DE∥AF,∴四边形ADEF是平行四边形;(2)解:由(1)得:四边形ADEF是平行四边形,∴EF=AD,∵AB=6,AC=8,BC=10,∴AB2+AC2=BC2,∴△ABC是直角三角形,∠BAC=90°,∵点D是BC的中点,∴AD=12BC=5,∴EF=AD=5.3.证明:∵四边形ABCD 是平行四边形∴//AE FC ,AO CO =,∴EAC FCA ∠=∠,∵EF 是AC 的垂直平分线,∴EF AC ⊥,在AOE △与COF 中,EAO FCO AO COAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴()ASA AOE COF ≌△△,∴EO FO =,∴四边形AFCE 为平行四边形,又∵EF AC ⊥,∴四边形AFCE 为菱形.4.解:证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,OA =OC ,∴∠EAO =∠FCO ,在△AEO 和△CFO 中,OAE OCF OA OCAOE COF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEO ≌△CFO (ASA ),∴OE =OF .5.证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AB ∥CD .∴∠ABE =∠CDF .在△ABE 和△CDF 中AB CD ABE CDF BE DF =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△CDF (SAS )∴AE =CF .6.(1)证明:∵四边形ABCD 是矩形,∴OB =OD ,∵AE //CF ,∴∠E =∠F ,∠OBE =∠ODF ,在△BOE 与△DOF 中,E F OBE ODF OB OD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BOE ≌△DOF (AAS );(2)当EF ⊥AC 时,四边形AECF 是菱形. 证明:∵△BOE ≌△DOF ,∴OE =OF ,∵四边形ABCD 是矩形,∴OA =OC ,∴四边形AECF 是平行四边形,∵EF ⊥AC ,∴四边形AECF 是菱形.7.解:(1)证明:∵//BE AC ,//AE BD ,∴四边形AEBO 为平行四边形,又∵四边形ABCD 为菱形,∴BD AC ⊥,∴90AOB ∠=︒,∴平行四边形AEBO 为矩形;(2)∵四边形AEBO 为矩形,∴AB =OE =10,又∵四边形ABCD 为菱形,∴AO =12AC =8,∴90AOB ∠=︒,∴6BO ==,∴BD =2BO =12,∴菱形ABCD 的面积=12121696⨯⨯=.8.(1)在△ABC 中,∵BE 、CD 为中线∴AD =BD ,AE =CE ,∴DE ∥BC 且DE =12BC .在△OBC 中,∵OF =FB ,OG =GC ,∴FG ∥BC 且FG =12BC .∴DE ∥FG(2)由(1)知:DE ∥FG ,DE =FG .∴四边形DFGE 为平行四边形.∴DG 和EF 互相平分9.解:(1)设AP 与BC 交于H ,∵在平行四边形ABCD 中,AD ∥BC ,∴∠AEB=∠CBE,∵AB=AE,∴∠ABE=∠AEB,∴∠ABE=∠CBE,∴BE平分∠ABC,∵CF是∠ACB的角平分线,BE交CF于点P,∴AP平分∠BAC,∵AB=AC,∴AH垂直平分BC,∴PB=PC;(2)∵AH垂直平分BC,∴AH⊥BC,BH=CH=12BC=2,∵∠ABH=45°,∴AH=BH=2,∴平行四边形ABCD的面积=4×2=8.10.证明:(1)∵AC∥DB,∴∠CAO=∠DBO,∵∠AOC=∠BOD,OA=OB,∴△AOC≌△BOD,∴OC=OD;(2)∵E是OC中点,F是OD中点,∴OE=12OC,OF=12OD,∵OC=OD,∴OE=OF,又∵OA=OB,∴四边形AFBE是平行四边形.11.(1)证明:∵ABCD是菱形,∴AB =AD ,BC =CD ,∠B =∠D ,∵AE =AF ,∴AB ﹣AE =AD ﹣AF ,∴BE =DF ,在△BCE 与△DCF 中,∵BE DF B D BC CD =⎧⎪∠=∠⎨⎪=⎩,∴△BCE ≌△DCF ,∴CE =CF ;(2)结论是:BC =CE .理由如下:∵ABCD 是菱形,∠B =80°,∴∠A =100°,∵AE =AF ,∴180100402AEF AFE ︒-︒∠=∠==︒由(1)知CE =CF ,∠ECF =60°,∴△CEF 是等边三角形,∴∠CEF =60°,∴∠CEB =180°﹣60°﹣40°=80°,∴∠B =∠CEB ,∴BC =CE .12.(1)证明:∵四边形ABCD 是矩形,∴AB =DC ,∠A =∠D =90°,∵M 为AD 中点,∴AM =DM ,在△ABM 和△DCM ,AM DM A D AB CD =⎧⎪∠=∠⎨⎪=⎩,∴△ABM ≌△DCM (SAS );(2)解:当AB :AD =1:2时,四边形MENF 是正方形,理由:当四边形MENF 是正方形时,则∠EMF =90°,∵△ABM ≌△DCM ,∴∠AMB =∠DMC =45°,∴△ABM 、△DCM 为等腰直角三角形,∴AM =DM =AB ,∴AD =2AB ,即当AB :AD =1:2时,四边形MENF 是正方形.13.解:(1)∵四边形ABCD 是矩形,∴//AD BC ,∴∠EAO =∠FCO ,∵AC 的中点是O ,∴OA =OC ,在EOA △和FOC 中,AOE COF AO COEAO FCO ∠=∠⎧⎪=⎨⎪∠=∠⎩,()EOA FOC ASA ∴ ≌,∴OE =OF ;(2)∵OE =OF ,AO =CO ,∴四边形AFCE 是平行四边形,∵EF ⊥AC ,∴四边形AFCE 是菱形.14.证明:(1)∵DE ∥BC ,DF ∥AB ,∴四边形DEBF 是平行四边形,∵DE ∥BC ,∴∠EDB =∠DBF ,∵BD平分∠ABC,∠ABC,∴∠ABD=∠DBF=12∴∠ABD=∠EDB,∴DE=BE,又∵四边形BEDF为平行四边形,∴四边形BEDF是菱形;(2)如图,过点D作DH⊥BC于H,∵DF∥AB,∴∠ABC=∠DFC=60°,∵DH⊥BC,∴∠FDH=30°,DF,DH,∴FH=12∵∠C=45°,DH⊥BC,∴∠C=∠HDC=45°,∴DC DH=6,∴DF=,∴菱形BEDF的边长为15.(1)证明;在正方形ABCD中,AD=AB=BC=CD,∠D=∠B=∠BCD=90°,∵将△ADE沿AE对折至△AFE,∴AD=AF,DE=EF,∠D=∠AFE=90°,∴AB=AF,∠B=∠AFG=90°,又∵AG=AG,在Rt △ABG 和Rt △AFG 中,AG=AG AB=AF ⎧⎨⎩,∴△ABG ≌△AFG (HL );(2)∵△ABG ≌△AFG ,∴∠BAG =∠FAG ,∴∠FAG =12∠BAF ,由折叠的性质可得:∠EAF =∠DAE ,∴∠EAF =12∠DAF ,∴∠EAG =∠EAF +∠FAG =12(∠DAF +∠BAF )=12∠DAB =12×90°=45°;(3)∵E 是CD 的中点,∴DE =CE =12CD =12×6=3,设BG =x ,则CG =6﹣x ,GE =EF +FG =x +3,∵GE 2=CG 2+CE 2∴(x +3)2=(6﹣x )2+32,解得:x =2,∴BG =2.16.(1)证明:∵DE ⊥BC ,∴∠DFB =90°,∵∠ACB =90°,∴∠ACB =∠DFB ,∴AC ∥DE ,∵MN ∥AB ,即CE ∥AD ,∴四边形ADEC 是平行四边形,∴CE =AD ;(2)解:四边形BECD 是菱形,理由是:∵D 为AB 中点,∴AD =BD ,∵CE =AD ,∴BD =CE ,∵BD ∥CE ,∴四边形BECD 是平行四边形,∵∠ACB =90°,D 为AB 中点,∴CD =BD ,∴四边形BECD 是菱形.17.(证明:(1)∵四边形ABDE 是平行四边形(已知),∴AB ∥DE ,AB =DE (平行四边形的对边平行且相等);∴∠B =∠EDC (两直线平行,同位角相等);又∵AB =AC (已知),∴AC =DE (等量代换),∠B =∠ACB (等边对等角),∴∠EDC =∠ACD (等量代换);∵在△ADC 和△ECD 中,AC ED ACD EDC DC CD =⎧⎪∠=∠⎨⎪=⎩,∴△ADC ≌△ECD (SAS );(2)∵四边形ABDE 是平行四边形(已知),∴BD ∥AE ,BD =AE (平行四边形的对边平行且相等),∴AE ∥CD ;又∵BD =CD ,∴AE =CD (等量代换),∴四边形ADCE 是平行四边形(对边平行且相等的四边形是平行四边形);在△ABC 中,AB =AC ,BD =CD ,∴AD ⊥BC (等腰三角形的“三合一”性质),∴∠ADC =90°,∴▱ADCE 是矩形.18.证明:(1)∵BF=DE ,∴BF EF DE EF -=-,即BE=DF ,∵AE ⊥BD ,CF ⊥BD ,∴∠AEB=∠CFD=90°,在Rt △ABE 与Rt △CDF 中,AB CD BE DF =⎧⎨=⎩,∴Rt ABE Rt CDF ∆∆≌(HL );(2)如图,连接AC 交BD 于O ,∵Rt ABE Rt CDF ∆∆≌,∴ABE CDF ∠=∠,∴//D AB C ,∵=D AB C ,∴四边形ABCD 是平行四边形,∴AO CO =.19.证明:∵四边形ABCD 是平行四边形,∴BC ∥AD ,∴∠CBE=∠AEB ,∵EB 平分∠AEC ,∴∠CBE=∠BEC ,∴CB=CE ,∴△CBE 是等腰三角形;(2)如图2中,∵四边形ABCD 是平行四边形,∠A=90°,∴四边形ABCD 是矩形,∴∠A=∠D=90°,BC=AD=5,在Rt △ECD 中,∵∠D=90°,ED=AD-AE=4,EC=BC=5,3AB CD ∴====,在Rt AEB 中,∵∠A=90°,AB=3.AE=1,BE ∴===20.(1)证明:在△ABC 和△ADC 中,AB AD CB CD AC AC =⎧⎪=⎨⎪=⎩∴△ABC ≌△ADC(SSS),∴∠BAC=∠DAC ,在△ABF 和△ADF 中,AB AD BAF DAF AF AF =⎧⎪∠=∠⎨⎪=⎩∴△ABF ≌△ADF(SAS),∴∠AFB=∠AFD ,∵∠CFE=∠AFB ,∴∠AFD=∠CFE ,∴∠BAC=∠DAC ,∠AFD=∠CFE ;(2)证明:∵AB ∥CD ,∴∠BAC=∠ACD ,∵∠BAC=∠DAC ,∴∠DAC=∠ACD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形;(3)BE⊥CD时,∠BCD=∠EFD;理由如下:∵四边形ABCD是菱形,∴BC=CD,∠BCF=∠DCF,∵CF=CF,∴△BCF≌△DCF,∴∠CBF=∠CDF,∵BE⊥CD,∴∠BEC=∠DEF=90°,∴∠BCD=∠EFD.。
人教版初二数学8年级下册 第18章(平行四边形)最值问题专题训练(含答案)
人教版数学八年级下期第十八章平行四边形最值问题训练一、选择题1.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A. 1B. 1C. 2D. 222.如图,已知菱形ABCD的边长为6,点M是对角线AC上的一动点,且∠ABC=120°,则MA+MB+MD的最小值是( )A. 33B. 3+33C. 6+3D. 633.如图,在矩形ABCD中,AB=3,BC=4,在矩形内部有一动点P满足S△PAB=3S△PDC,则动点P到点A,B两点距离之和PA+PB的最小值为()A. 5B. 35C. 3+32D. 2134.如图,在边长为4的菱形ABCD中,BD=4,E、F分别是AD、CD上的动点(包含端点),且AE+CF=4,连接BE、EF、FB.则EF的最大值与最小值分别为()A. 4,2B. 4,23C. 5,3D. 5,325.如图,点P是正方形ABCD的边AD上的一动点,正方形的边长为4,点P到正方形的两条对角线AC和BD的距离分别为PM,PN,则PM2+PN2的最小值为()A. 2B. 4C. 9D. 126.如图,四边形ABCD是菱形,AB=8,且∠ABC=60°,M为对角线BD(不含B点)BM的最小值为( )上任意一点,则AM+12A. 43B. 33C. 42D. 32二、填空题7.如图,P为菱形ABCD的对角线上一点,PF⊥AD于F,PF=3cm,点E为AB边上一动点,则PE的最小值为______cm.8.如图,在边长为4的菱形ABCD中,∠A=60°,若M是AD边的中点,N是AB边上的一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C,则A′C的最小值为 .9.如图,在菱形ABCD中,∠ABC=60°,AB=8,点M、N分别在边AB、CD上,且AM=2,DN=4,点P、Q分别为BC、AD上的动点,连接PM、PN、PQ,则PM+PN+PQ 的最小值为______.10.如图,长方形ABCD中,AB=6,BC=4,在长方形的内部以CD边为斜边任意作Rt△CDE,连接AE,则线段AE长的最小值是_____.11.如图,在矩形ABCD中,AB=3,AD=10,点E在AD上且DE=2.点G为AE的中点,点P为BC边上的一个动点,F为EP的中点,则GF+EF的最小值为________.12.如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连接CF交BD于点G,连接BE交AG于点H.若正方形的边长为4,则线段DH长度的最小值是____.三、解答题13.如图,在边长为m的菱形ABCD中,∠DAB=60°,E是AD上不同于A,D两点的一动点,F是CD上一动点,且AE+CF=m.(1)证明:无论E,F怎样移动,△BEF总是等边三角形;(2)求△BEF面积的最小值.14.如图,在菱形ABCD中,AB=6,∠ADC=120°,P为对角线AC上的一点,过P作PE∥AB交AD与E,PF∥AD交CD于F,连接BE、BF、EF(1)求AC的长;(2)求证:△BEF为等边三角形;(3)四边形BEPF面积的最小值为______15.如图1,四边形ABCD是矩形,点O位于对角线BD上,将△ADE,△CBF分别沿DE、BF翻折,点A,点C都恰好落在点O处.(1)求证:∠EDO=∠FBO;(2)求证:四边形DEBF是菱形:(3)如图2,若AD=2,点P是线段ED上的动点,求2AP+DP的最小值.16.如图,在矩形ABCD中,AD=2AB,E是边AD的中点,F是边AB上的一个动点,连结EF,过点E作EG⊥EF交BC于点G.(1)求证:EF=GE;(2)若AB=1,则AF+EF+CG的最小值为______.17.如图,正方形ABCD的边长为25,O是BC边的中点,P是正方形内一动点,且OP=2,连接DP,将线段DP绕点D逆时针旋转90°到DQ,连接AP,CQ.(1)直接写出线段AP和CQ的关系.(2)当A,O,P三点共线时,求线段DP的长.(3)连接PQ,求线段PQ的最小值.18.如图,菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.(1)如图1,若E是BC的中点,∠AEF=60°,求证:BE=DF;(2)如图2,若∠EAF=60°,求证:△AEF是等边三角形;(3)在(2)的条件下,如果AB=10,那么△AEF的周长是否存在最小值?如果存在,请求出来.参考答案1.B2.D3.B4.B5.B6.A7.38.27-29.231+4310.211.512.25-213.解:(1)连接BD,∵∠DAB=60°,∴△ABD是等边三角形,∴AB=DB,又∵AE+CF=m,∴AE=DF,在△ABE 和△DBF 中AB =DB ∠A =∠BDF =60°AE =DF,∴△ABE ≌△DBF (SAS ),∴BE =BF ∴∠EBF =∠ABD =60°,∴△BEF 是等边三角形.(2)当BE ⊥AD 时面积最小,此时BE =m 2−(12m )2=32m ,△BEF 的EF 边上的高=(32m )2−(34m )2=34m ,S △BEF =12×32m ×34m =3163m 2.14.解:(1)连接BD ,交AC 于G ,∵菱形ABCD 中,AC 和BD 是对角线,∴BD ⊥AC ,AG =CG =12AC ,∵AB =6,∠ADC =120°,∴∠BAC =∠BCA =30°,在Rt △ABG 中,AG =AB •cos ∠BAC =6×32=33,∴AC =2AG =63;(2)证明:∵在菱形ABCD 中,AB =6,∠ADC =120°,∴∠BAD =∠BCD =60°,∠ABD =∠CBD =∠ADB =∠CDB =60°,∴△ABD 是等边三角形,∴BD =AB =BC =6,∵PE ∥AB ,PF ∥AD ,∴∠CPF =∠CAD ,四边形DEPF 是平行四边形,∴ED =PF ,∵AD =DC ,∴∠CAD =∠ACD ,∴∠CPF =∠ACD ,∴PF =FC ,∴ED =FC ,在△BED 和△BFC 中ED =FC ∠EDB =∠FCB =60°BD =BC∴△BED ≌△BFC (SAS ),∴BE =BF ,∠EBD =∠FBC ,∵∠FBC +∠FBD =∠CBD =60°,∴∠EBD +∠FBD =∠EBF =60°,∴△BEF 是等边三角形;(3)93215.(1)证明:∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠ADB =∠CBD ,∵将△ADE ,△CBF 分别沿DE 、BF 翻折,点A ,点C 都恰好落在点O 处.∴△ADE ≌△ODE ,∴△CFB ≌△OFB ,∴∠ADE =∠ODE =12∠ADB ,∠CBF =∠OBF =12∠CBD ,∴∠EDO =∠FBO ;(2)证明:∵∠EDO =∠FBO ,∴DE ∥BF ,∵四边形ABCD 是矩形,∴AB ∥CD ,AD =BC ,∠A =90°,∵DE ∥BF ,AB ∥CD ,∴四边形DEBF 是平行四边形,又∵△ADE △≌△ODE ,∴∠A =∠DOE =90°,∴EF ⊥BD ,∴四边形DEBF 是菱形;(3)解:过点P 作PH ⊥AD 于点H ,∵四边形DEBF是菱形,△ADE≌△ODE,∴∠ADE=∠ODE=∠ODF=30°,∴在Rt△DPH中,2PH=PD,∴2AP+PD=2PA+2PH=2(AP+PH),过点O作OM⊥AD,与DE的交点即是2AP+PD的值最小的点P的位置.而此时(2AP+PD)的最小值=2OM,∵△ADE≌△ODE,AD=2,∴AD=DO=2,在Rt△OMD中,∵∠ODA=2∠ADE=60°,∴∠DOM=30°,∴DM=12DO=1,∵DM2+OM2=DO2,∴12+OM2=22,∴OM=3,∴(2PA+PD)的最小值为2OM=23.16.217.解:(1)AP=CQ,AP⊥CQ;理由如下:延长QC、AP交于点E,AP的延长线交BC于F,如图1所示:∵四边形ABCD是正方形,∴AD=CD,∠ADC=∠BCD=90°,AD∥BC,由旋转的性质得:∠PDQ=90°,DP=DQ,∴∠ADP=∠CDQ,在△ADP和△CDQ中,AD=CD∠ADP=∠CDQDP=DQ,∴△ADP≌△CDQ(SAS),∴AP=CQ,∠DAP=∠DCQ,∵∠BCD=90°,∴∠DCQ+∠ECF=90°,∵AD∥BC,∴∠DAP=∠CFE,∴∠CFE+∠ECF=90°,∴∠CEF=90°,∴AE⊥QE,∴AP⊥CQ;(2)作DH⊥AP于H,如图2所示:∵O是BC边的中点,∴OB=12BC=5,当A,O,P三点共线时,由勾股定理得:AO=AB2+OB2=(25)2+(5)2=5,∵四边形ABCD是正方形,∴∠B=90°,AD∥BC,∴∠DAH=∠BOA,∴sin∠DAH=sin∠BOA=ABAO =255,cos∠DAH=cos∠BOA=OBAO=55,∴DH=AD×sin∠DAH=25×255=4,AH=AD×cos∠DAH=25×55=2,∴PH=AO-AH-OP=5-2-2=1,∴DP=42+12=17;(3)连接OD,如图3所示:∵DQ=DP,∠PDQ=90°,∴PQ=2DP,OD=DC2+OC2=(25)2+(5)2=5,∵OP+DP≥OD,∴DP≥OD-OP=5-2=3,∴PQ≥32,∴线段PQ的最小值为32.18.证明:(1)如图1,连接AC,∵在菱形ABCD中,∠B=60°,∴AB=BC=CD,∠C=180°-∠B=120°,∴△ABC是等边三角形,∵E是BC的中点,∴AE⊥BC,∵∠AEF=60°,∴∠FEC=90°-∠AEF=30°,∴∠CFE=180°-∠FEC-∠ECF=180°-30°-120°=30°,∴∠FEC=∠CFE,∴EC=CF,∴BE=DF;(2)如图2,连接AC,∵△ABC是等边三角形,∴AB=AC,∠ACB=60°,∴∠B=∠ACF=60°,∵AD∥BC,∴∠AEB=∠EAD=∠EAF+∠FAD=60°+∠FAD,∠AFC=∠D+∠FAD=60°+∠FAD,∴∠AEB=∠AFC,在△ABE和△ACF中,∠B=∠ACF∠AEB=∠AFC,AB=AC∴△ABE≌△ACF(AAS),∴AE=AF,∵∠EAF=60°,∴△AEF是等边三角形.(3)由垂线段最短可知:当AE⊥BC时,AE有最小值.∵AE⊥BC,∠B=60°,∴AE AB =32.∴AE=10×32=53.∴△AEF周长的最小值为3×53=153.。
初二数学 平行四边形-期中必做题(学生版)
绕点 逆时针旋转,当点 恰好落在线段 上时,请你帮他
求出此时
的面积.
24 如图, 为 .
的中位线,点 在 上,且
,若
,
,则 的长为
25 如图,在四边形
中,对角线
,点 、 、 、 分别为 、 、 、 的中点.
若
,
,则四边形
的面积为( ).
A.
B.
C.
D.
26
如图,在 =
中, .
, , , 分别是 、 、 的中点,若
请举出一个反例,画出图形,并加以说明.
于点 ;
( )分别以 , 为圆心,以 , 的长为半径作弧,两弧相交于点
;
( )作直线 .
所以直线 即为所求.
老师说:“小云的作法正确.”请回答:小云的作图依据是
.
6 如图,平行四边形
中,
,
.
,点 , 分别在 和 的延长线上,
,
(1) 求证:四边形 (2) 求 的长.
是平行四边形.
7 如图,在矩形
中, 是 边的中点,沿直线 翻折
.(几分之几)
图
图
22 如图,正方形
的对角线交于 ,
,
,
.若
的面积为 ,则正
方形
的面积为
.
23 在数学兴趣小组活动中,小明进行数学探究活动.将边长为 的正方形
与边长为 的正方形
按图 位置放置, 与 在同一条直线上, 与 在同一条直线上.
(1) 小明发现
且
,请你给出证明.
(2) 如图 ,小明将正方形
小南根据学习四边形的经验,对筝形的性质和判定方法进行了探究.
下面是小南的探究过程:
(1) 由筝形的定义可知,筝形的边的性质是:筝形的两组邻边分别相等,关于筝形的角的性
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学平行四边形试题一、选择题1. 下面关于平行四边形的说法不正确的是()A. 对边平行且相等B. 两组对角分别相等C. 对角线互相平分D. 每条对角线平分一组对角2. 如图,在▱ABCD中,EF过对角线的交点,若AB=4,BC=7,OE=3,则四边形EFDC的周长是()A. 14B. 17C. 10D. 113. 已知在▱ABCD中,∠A+∠C=140°,则∠B的度数是()A. 110°B. 120°C. 140°D. 160°4. 在▱ABCD中,∠A:∠B:∠C:∠D的值可能是()A. 1:2:3:4B. 1:2:1:2C. 2:2:1:1D. 1:2:2:15. 如图,已知▱ABCD中,对角线AC与BD相交于点O,下列结论错误的是()A. ∠BAD=∠BCD,∠ABC=∠ADCB. OA=OC,OB=ODC. AD∥BC,AB=CDD. AC=BD,AD=CD6. 如图,E是▱ABCD的一边AD上任意一点,若△EBC的面积为S1,▱ABCD的面积为S,则S与S1的大小关系是()A. S1=SB. S1<SC. S1>SD. 无法确定7. 如图,▱ABCD的对角线AC、BD相较于点O,点E、F分别是线段AO、BO的中点,若EF=3,△COD的周长是18,则▱ABCD的两条对角线的和是()A. 18B. 24C. 30D. 368. 如图,在四边形ABCD中,对角线AC于BD相交于点O,下列条件中,不能判定四边形ABCD是平行四边形的是()A. AB=CD,AD=BCB. AB∥CD,AD=BCC. AB∥CD,AD∥BCD. OA=OC,OB=OD9. 分别过△ABC的3个顶点作对边的平行线,这些平行线相交,则可构成()个平行四边形.A. 1B. 2C. 3D. 410. 四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD,从中任选两个条件,能使四边形ABCD为平行四边形的选法有()A. 6种B. 5种C. 4种D. 3种11. 如图,平行四边形ABCD中,AB=8cm,AD=12cm,点P在AD 边上以每秒1cm的速度从点A向点D运动,点Q在BC边上,以每秒4cm的速度从点C出发,在CB间往返运动,两个点同时出发,当点P到达点D时停止(同时点Q也停止),在运动以后,以P、D、Q、B四点组成平行四边形的次数有()A. 4次B. 3次C. 2次D. 1次12. 如图所示,四边形ABCD是平行四边形,按下列条件得到的四边形BFDE是平行四边形的个数是()①图甲,DE⊥AC,BF⊥AC ②图乙,DE平分∠ADC,BF平分∠ABC③图丙,E是AB的中点,F是CD的中点④图丁,E是AB上一点,EF⊥AB.A. 3个B. 4个C. 1个D. 2个13. 如图,在□ABCD中,对角线AC、BD相交于点O,E、F是对角线AC上的两点,当E、F满足下列哪个条件时,四边形DEBF不一定是平行四边形()A. AE=CFB. DE=BFC. ∠ADE=∠CBFD. ∠AED=∠CFB14. 已知三角形三条中位线的长分别为3、4、5,则此三角形的周长为()A. 48B. 24C. 12D. 1015. 如图,A、B两地间有一池塘阻隔,为测量A、B两地的距离,在地面上选一点C,连接CA、CB的中点D、E,若DE的长度为30m,则A,B两地的距离是()A. 15mB. 30mC. 60mD. 90m16. 如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若BC=6,则DF的长是()A. 2B. 3C.D. 417. 如图,已知矩形ABCD,R,P分别为DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点C向点B移动,点R从点D向点C移动时,那么下列结论成立的是()A. 线段EF的长逐渐增大B. 线段EF的长逐渐减小C. 线段EF的长逐渐不变 D. 线段EF的长不能确定18. 如图,△ABC的中线BD、CE交于点O,连接OA,点G、F分别为OC、OB的中点,BC=4,AO=3,则四边形DEFG的周长为()A. 6B. 7C. 8D. 1219. 如图,△ABC中,AB=AC=6,BC=8,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的周长是()A. 7+B. 10C. 4+2D. 1220. 如图,已知△ABC的周长为1,连接△ABC的三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形…依此类推,则第2016个三角形的周长为()A. B. C. ()2016 D. ()2015二、填空题21. 如图,平行四边形ABCD的对角线AC、BD交于一点O,AB=11,△OCD的周长为27,则AC+BD= ______ .22. 如图,过▱ABCD的顶点C作CE⊥AB,交BA的延长线于点E,若∠EAD=50°,则∠BCE 的度数为______ °.22题23题24题23. 如图,O为▱ABCD的对角线交点,E为AB的中点,DE交AC于点F,若S□ABCD=16,则S△DOE的值为______ .24. 如图,▱ABCD中,E是BC延长线上一点,连接AE,DE,若▱ABCD的面积为24,则△ADE的面积为______ .25. 如图,平行四边形ABCD中,AD=5cm,AB⊥BD,点O是两条对角线的交点,OD=2,则AB= ______ cm.25题26题27题26. 如图,在四边形ABCD中,E是BC边的中点,连接DE并延长,交AB的延长线于F点,CD∥AF,请你添加一个条件:______ ,使四边形ABCD是平行四边形.27. 如图,四边形ABCD中,AB∥CD,AB⊥BC,点E在AB边上从A向B以1cm/s的速度移动,同时点F在CD边上从C向D以2cm/s的速度移动,若AB=7cm,CD=9cm,则______ 秒时四边形ADFE是平行四边形.28. 如图,在▱ABCD中,点E、F分别在边AD、BC上,且BE∥DF,若∠EBF=45°,则∠EDF的度数是______ 度.29. 如图,DE∥BC,AE=EC,延长DE到点F,使EF=DE,连接AF,FC,CD,则图中四边形ADCF是______ .29题30题31题30. 如图,在四边形ABCD中,AB∥DC,AD=BC=5,DC=7,AB=11,点P从点A出发,以3个单位/s的速度沿AD→DC向终点C运动,同时点Q从点B出发,以1个单位/s的速度沿BA向终点A运动,在运动期间,当四边形PQBC为平行四边形时,运动时间为______ 秒.31. 如图,在△ABC中,M、N分别是AB、AC的中点,且∠A+∠B=136°,则∠ANM= ______32. 如图,在△ABC中,D,E分别是AB,AC的中点,若DE=8,则BC的长是______ .33. 如图,为农村一古老的捣碎器,已知支撑柱AB的高为0.4m,踏板DE长为1.2m,支撑点A到踏脚D的距离为0.6m,现在从捣头点E着地的位置开始,让踏脚D着地,则捣头点E上升______ m.33题34题35题34. 如图,CD是△ABC的中线,点E、F分别是AC、DC的中点,EF=1,则BD= ______ .35. 如图,Rt△ABC中,∠ACB=90°,∠ABC=60°,BC=4cm,D为BC的中点,若动点E以1cm/s 的速度从A点出发,沿着A→B的方向运动,设E点的运动时间为t秒,连接DE,当△BDE 是直角三角形时,t的值为______ 秒.三、解答题36. 如图所示,在平行四边形ABCD中,对角线AC与BD相交于点O,M,N在对角线AC上,且AM=CN,求证:BM∥DN.37. 已知如图,在▱ABCD中,延长AB到E,延长CD到F,使BE=DF,则线段AC与EF是否互相平分?说明理由.38. 如图,在平行四边形ABCD中,点E是AD边的中点,BE的延长线与CD的延长线相交于点F,求证:四边形ABDF是平行四边形.39. 已知,如图,DC∥AB,且DC=AB,E为AB的中点.(1)求证:△AED≌△EBC;(2)观察图形,在不添加辅助线的情况下,除△EBC外,请再写出两个与△AED的面积相等的三角形(直接写出结果,不要求证明):______ .40. 如图,BD是△ABC的角平分线,点E,F分别在边BC,AB上,且DE∥AB,EF∥AC.(1)求证:BE=AF;(2)若∠ABC=56°,∠ADB=120°,求∠AFE的度数.41. 补充完整三角形中位线定理,并加以证明:(1)三角形中位线定理:(2)已知:如图,DE是△ABC的中位线,求证:DE∥BC,DE=BC.42. 如图,在△ABC中,D是AB上一点,且AD=AC,AE⊥CD,垂足是E,F是CB的中点.求证:BD=2EF.43.已知:如图,在△ABC中,E、F、D分别是各边的中点,BD是角平分线.求证:(1)∠EBD=∠EDB;(2)BE=CF.44. 如图,△ABC中,D,E,F分别为BC,AC,AB的中点.(1)△ABC有______ 条中位线;(2)若△DEF的面积为4,则△ABC的面积是多少?45.已知如图在平行四边形ABCD中,E,F分别是边CD和AB上的点,AE平行CF,BE交CF于点H,DF交于点G.求证:EG=FH46. 如图,BM、CN分别平分△ABC的外角∠ABD、∠ACE,过A分别作BM、CN的垂线,垂足分别为M、N,交CB、BC的延长线于D、E,连结MN.求证:MN=(AB+BC+AC)。