长沙中考数学试题及答案解析

合集下载

2023长沙中考数学试卷及答案

2023长沙中考数学试卷及答案

2023长沙中考数学试卷及答案尊敬的教师、学生和家长:以下是2023年长沙市中考数学试卷及答案,仅供参考:一、选择题1. 下列四个数中,最小的数是()。

A. $-\dfrac{3}{5}$B. $-\dfrac{4}{7}$C. $-\dfrac{2}{3}$D. $-\dfrac{5}{8}$答案:B2. 若 $x+y=0$,则 $\dfrac{x}{y}+\dfrac{y}{x}$ 的值为()。

A. $-2$B. $0$C. $1$D. $2$答案:A3. 已知函数 $f(x)$ 的图象如图所示,那么下列说法中错误的是()。

![](image.png)A. $f(x)$ 为奇函数B. $f(3)=f(-3)$C. $f(1)>0$ 且 $f(-1)<0$D. $f(x)$ 在 $[-1,1]$ 内单调递减答案:D二、填空题1. 把 $8$ 千克的糖分成 $125$ 相等的部分,每部分重为\_\_\_\_\_ 克。

答案:$64$2. 已知等差数列 $a_1,a_2,\cdots,a_{10}$ 的公差为 $3$,$a_1+a_2+\cdots+a_{10}=55$,$a_2+a_4+\cdots+a_{10}=30$,则$a_1=\_\_\_\_$,$a_3=\_\_\_\_$。

答案:$2$,$8$3. 小明得到的一元二次方程 $x^2-2mx+n=0$ 的两根相差 $3$,则 $m=\_\_\_\_$,$n=\_\_\_\_$。

答案:$3$,$-4$三、解答题1. 设 $A,B,C$ 是三点,$AB=BC$,$\angle BAC=100^\circ$,$\angle ABC=140^\circ$。

求 $\angle BCA$ 的度数。

解答如下:连接 $AC$ 并作 $\angle BCA$ 的平分线 $CD$,如图所示:![](image2.png)由角平分线定理,可得:$$\dfrac{BD}{DC}=\dfrac{AB}{AC}=\dfrac{BC}{AC}$$又因为 $AB=BC$,所以 $\dfrac{BD}{DC}=1$,于是$BD=DC$。

2023年湖南省长沙市中考数学试卷及答案解析

2023年湖南省长沙市中考数学试卷及答案解析

2023年湖南省长沙市中考数学试卷及答案解析题目部分第一题请计算下列各题:1. ($-2.5) + 5$答案解析:将$-2.5$与$5$相加,得出结果$2.5$。

:将$-2.5$与$5$相加,得出结果$2.5$。

2. $8 \times 0.4$答案解析:将$8$与$0.4$相乘,得出结果$3.2$。

:将$8$与$0.4$相乘,得出结果$3.2$。

第二题请回答以下选择题:1. $\frac{3}{4} + \frac{5}{8}$ 的结果是:A. $\frac{1}{16}$B. $\frac{17}{8}$C. $\frac{7}{8}$D. $\frac{15}{8}$答案解析:将$\frac{3}{4}$与$\frac{5}{8}$相加,得出结果$\frac{7}{8}$,所以选项C是正确答案。

:将$\frac{3}{4}$与$\frac{5}{8}$相加,得出结果$\frac{7}{8}$,所以选项C是正确答案。

2. $\frac{5}{6} \div \frac{2}{3}$ 的结果是:A. $\frac{15}{12}$B. $\frac{25}{32}$C. $\frac{6}{5}$D. $\frac{6}{7}$答案解析:将$\frac{5}{6}$除以$\frac{2}{3}$,即$\frac{5}{6} \times \frac{3}{2}$,得出结果$\frac{5}{4}$,所以选项A是正确答案。

:将$\frac{5}{6}$除以$\frac{2}{3}$,即$\frac{5}{6} \times\frac{3}{2}$,得出结果$\frac{5}{4}$,所以选项A是正确答案。

总结本试卷共有两道题目,分为计算题和选择题两个部分。

通过审题和运算,我们可以得到每道题目的正确答案。

在数学中考中,正确的解答方法和答案解析是非常重要的,希望同学们能通过这份试卷来加深对数学知识的理解和掌握。

2024年湖南省长沙市中考数学试题(解析版)

2024年湖南省长沙市中考数学试题(解析版)

2024年长沙市初中学业水平考试试卷数学注意事项:1.答题前,请考生先将自己的姓名、准考证号填写清楚,并认真核对条形码上的姓名、准考证号、考室和座位号;2.必须在答题卡上答题,在草稿纸、试题卷上答题无效;3.答题时,请考生注意各大题题号后面的答题提示;4.请勿折叠答题卡,保持字体工整、笔迹清晰、卡面清洁;5.答题卡上不得使用涂改液、涂改胶和贴纸;6.本学科试卷共25个小题,考试时量120分钟,满分120分.一、选择题(在下列各题的四个选项中,只有一项是符合题的.请在答题卡中填涂符合题意的选项.本大题共10个小题,每小题3分,共30分)1. 下列图形中,既是轴对称图形又是中心对称图形的是( )A. B. C. D.【答案】B【解析】【分析】本题考查轴对称图形和中心对称图形的识别,熟知定义:轴对称图形:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;中心对称图形:把一个图形绕着某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形.据此逐项判断即可.【详解】解:A 中图形轴对称图形,不是中心对称图形,故本选项不符合题意;B 中图形既是轴对称图形又是中心对称图形,故本选项符合题意;C 中图形是轴对称图形,不是中心对称图形,故本选项不符合题意;D 中图形不是轴对称图形,是中心对称图形,故本选项不符合题意,故选:B .2. 我国近年来大力推进国家教育数字化战略行动,截至2024年6月上旬,上线慕课数量超过7.8万门,学习人次达1290000000建设和应用规模居世界第一.用科学记数法将数据1290000000表示为( )A. 81.2910×B. 812.910×C. 91.2910×D. 712910×【答案】C 是【解析】【分析】本题考查科学记数法,科学记数法的一般形式为10n a ×,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正整数;当原数的绝对值小于1时,n 是负整数.【详解】解:用科学记数法将数据1290000000表示为91.2910×,故选:C .3. “玉兔号”是我国首辆月球车,它和着陆器共同组成“嫦娥三号”探测器.“玉兔号”月球车能够耐受月球表面的最低温度是180−℃、最高温度是150℃,则它能够耐受的温差是( )A. 180−℃B. 150℃C. 30℃D. 330℃【答案】D【解析】【分析】本题考查了温差的概念和有理数的运算,解决本题的关键是气温最高值与最低值之差,计算解决即可. 【详解】解:能够耐受的温差是()150180330−−=℃, 故答案为:D .4. 下列计算正确的是( )A. 642x x x ÷=B.C. 325()x x =D. 222()x y x y +=+【答案】A【解析】【分析】此题主要考查同底数幂的除法、二次根式的加减、幂的乘方、完全平方公式的运算,解题的关键是熟知运算法则.【详解】解:A 、 642x x x ÷=,计算正确;BC 、326()x x =,原计算错误;D 、222()2x y x xy y +=++,原计算错误;故选A .5. 为庆祝五四青年节,某学校举办班级合唱比赛,甲班演唱后七位评委给出的分数为:9.5,9.2,9.6,9.4,9.5,8.8,9.4,则这组数据的中位数是( )A. 9.2B. 9.4C. 9.5D. 9.6【答案】B【解析】 【分析】本题考查了中位数的定义,中位数是一组数据从小到大排列后居于中间的一个数或中间两个数的平均数,根据中位数的定义解题即可.【详解】解:甲班演唱后七位评委给出的分数为:8.8,9.2,9.4,9.4,9.5,9.5,9.6,∴中位数为:9.4,故选B .6. 在平面直角坐标系中,将点()3,5P 向上平移2个单位长度后得到点P ′的坐标为( )A. ()1,5B. ()5,5C. ()3,3D. ()3,7【答案】D【解析】【分析】本题考查坐标与图形变换-平移变换,根据点的坐标平移规则:左减右加,上加下减求解即可.【详解】解:在平面直角坐标系中,将点()3,5P 向上平移2个单位长度后得到点P ′的坐标为()3,52+,即()3,7,故选:D . 7. 对于一次函数21y x =−,下列结论正确的是( ) A. 它的图象与y 轴交于点()0,1−B. y 随x 的增大而减小C. 当12x >时,0y <D. 它的图象经过第一、二、三象限【答案】A【解析】【分析】本题考查一次函数的性质,根据一次函数的性质逐个判断即可得到答案.【详解】解:A.当0x =时,1y =−,即一次函数21y x =−的图象与y 轴交于点()0,1−,说法正确; B.一次函数21y x =−图象y 随x 增大而增大,原说法错误; C.当12x >时,0y >,原说法错误; D.一次函数21y x =−图象经过第一、三、四象限,原说法错误; 故选A .的的8. 如图,在ABC 中,60BAC ∠=°,50B ∠=°,AD BC ∥.则1∠的度数为( )A. 50°B. 60°C. 70°D. 80°【答案】C【解析】 【分析】本题主要考查了三角形内角和定理、平行线的性质等知识点,掌握平行线的性质成为解题的关键. 由三角形内角和定理可得70C ∠=°,再根据平行线的性质即可解答.【详解】解:∵在ABC 中,60BAC ∠=°,50B ∠=°, ∴18070C BAC B ∠∠−∠−=°=°,∵AD BC ∥,∴170C ∠∠==°.故选:C .9. 如图,在O 中,弦AB 的长为8,圆心O 到AB 的距离4OE =,则O 的半径长为( )A. 4B.C. 5D. 【答案】B【解析】 【分析】本题考查垂径定理、勾股定理,先根据垂径定理得到AE ,再根据勾股定理求解即可.【详解】解:∵在O 中,弦AB 的长为8,圆心O 到AB 的距离4OE =,∴OE AB ⊥,142AE AB ==,在Rt AOE △中,OA, 故选:B .10. 如图,在菱形ABCD 中,6AB =,30B ∠=°,点E 是BC 边上的动点,连接AE ,DE ,过点A 作AF DE ⊥于点P .设DE x =,AF y =,则y 与x 之间的函数解析式为(不考虑自变量x 的取值范围)( )A. 9y x =B. 12y x =C. 18y x =D. 36y x= 【答案】C【解析】【分析】本题考查菱形的性质、含30度角的直角三角形的性质、相似三角形的判定与性质,利用相似三角形的性质求解x 、y 的关系式是解答的关键.过D 作DH BC ⊥,交BC 延长线于H ,则90DHE ∠=°,根据菱形的性质和平行线的性质得到6CD AD AB ===,ADF DEH ∠=∠,30DCH B ∠=∠=°,进而利用含30度角的直角三角形的性质132DH CD ==,证明AFD DHE ∽得到AF AD DH DE=,然后代值整理即可求解. 【详解】解:如图,过D 作DH BC ⊥,交BC 延长线于H ,则90DHE ∠=°,∵在菱形ABCD 中,6AB =,30B ∠=°,∴AB CD ∥,AD BC ∥,6CD AD AB ===,∴ADF DEH ∠=∠,30DCH B ∠=∠=°, 在Rt CDH △中,132DH CD ==, ∵AF DE ⊥, ∴90AFD DHE ∠=∠=°,又ADF DEH ∠=∠,∴AFD DHE ∽, ∴AF AD DH DE=, ∵DE x =,AF y =,∴63yx =,∴18yx =,故选:C.二、填空题(本大题共6个小题,每小题3分,共18分)11. 为了比较甲、乙、丙三种水稻秋苗的长势,每种秧苗各随机抽取40株,分别量出每株高度,计算发现三组秧苗的平均高度一样,并且得到甲、乙、丙三组秧苗高度的方差分别是3.6,10.8,15.8,由此可知____种秧苗长势更整齐(填“甲”、“乙”或“丙”).【答案】甲【解析】【分析】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵3.610.815.8<<,∴甲种秧苗长势更整齐,故答案为:甲.12. 某乡镇组织“新农村,新气象”春节联欢晚会,进入抽奖环节.抽奖方案如下:不透明的箱子里装有红、黄、蓝三种颜色的球(除颜色外其余都相同),其中红球有2个,黄球有3个,蓝球有5个,每次摇匀后从中随机摸一个球,摸到红球获一等奖,摸到黄球获二等奖,摸到蓝球获三等奖,每个家庭有且只有一次抽奖机会,小明家参与抽奖,获得一等奖的概率为______.【答案】15##0.2【解析】【分析】本题考查概率公式,掌握概率的意义是解题的关键.利用概率公式直接进行计算.【详解】解:小明家参与抽奖,获得一等奖的概率为21 2355=++,故答案为:15.13. 要使分式619x−有意义,则x需满足的条件是______.【答案】19x≠【解析】【分析】本题考查了分式有意义的条件,熟练掌握分式有意义的条件是解题的关键.【详解】解:∵分式619x −有意义, ∴190x −≠,解得19x ≠,故答案为:19x ≠.14. 半径为4,圆心角为90°的扇形的面积为______(结果保留π).【答案】4π【解析】 【分析】本题考查扇形的面积公式,根据扇形的面积公式2π360n r S =(n 为圆心角的度数,r 为半径)求解即可.【详解】解:由题意,半径为4,圆心角为90°的扇形的面积为290π44π360×=, 故答案为:4π.15. 如图,在ABC 中,点D ,E 分别是AC BC ,的中点,连接DE .若12DE =,则AB 的长为______.【答案】24【解析】【分析】本题主要考查三角形中位线定理,熟知三角形的中位线平行于第三边且等于第三边的一半是解题的关键.【详解】解:∵D ,E 分别是AC ,BC 的中点,∴DE 是ABC 的中点,∴221224AB DE ==×=,故答案为:24.16. 为庆祝中国改革开放46周年,某中学举办了一场精彩纷呈的庆祝活动,现场参与者均为在校中学生,其中有一个活动项目是“选数字猜出生年份”,该活动项目主持人要求参与者从1,2,3,4,5,6,7,8,9这九个数字中任取一个数字,先乘以10,再加上4.6,将此时的运算结果再乘以10,然后加上1978,最后减去参与者的出生年份(注:出生年份是一个四位数,比如2010年对应的四位数是2010),得到最终的运算结果.只要参与者报出最终的运算结果,主持人立马就知道参与者的出生年份.若某位参与者报出的最终的运算结果是915,则这位参与者的出生年份是______.【答案】2009【解析】【分析】本题考查二元一次方程的解,理解题意是解答的关键.设这位参与者的出生年份是x ,从九个数字中任取一个数字为a ,根据题意列二元一次方程,整理得1001109x a =+,根据a 的取值得到x 的9种可能,结合实际即可求解.【详解】解:设这位参与者的出生年份是x ,从九个数字中任取一个数字为a ,根据题意,得()10 4.6101978915a x +×+−=, 整理,得100461978915a x ++−=∴1001109x a =+, ∵a 是从1,2,3,4,5,6,7,8,9这九个数字中任取一个数字,∴x 的值可能为1209,1309,1409,1509,1609,1709,1809,1909,2009,∵是为庆祝中国改革开放46周年,且参与者均为在校中学生,∴x 只能是2009,故答案为:2009.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小题9分,第2425题每小题10分,共72分解答应写出必要的文字说明、证明过程或演算步骤)17. 计算:()011()π 6.84−−°−. 【答案】3【解析】【分析】本题考查了实数的混合运算,先根据绝对值、零指数幂、负整数指数幂的意义,特殊角的三角函值化简,再算加减即可.【详解】解:原式41=+3=.18. 先化简,再求值:()()()2233m m m m m −−++−,其中52m =. 【答案】49m −;1【解析】【分析】本题考查整式的混合运算及其求值,先根据整式的混合运算法则化简原式,再代值求解即可.【详解】解:()()()2233m m m m m −−++−22229m m m m =−++−49m =−. 当52m =时,原式54910912=×−=−=.19. 如图,在Rt ABC △中,90ACB ∠=°,AB =2AC =,分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧分别交于点M 和N ,作直线MN 分别交AB BC ,于点D ,E ,连接CD AE ,.(1)求CD 的长;(2)求ACE 的周长.【答案】(1(2)6【解析】【分析】本题考查了线段垂直平分线的性质:线段垂直平分线的点到线段两个端点的距离相等,斜中半定理:直角三角形中,斜边上的中线等于斜边的一半,以及勾股定理等知识点,熟记相关结论是解题关键. (1)由题意得MN 是线段AB 的垂直平分线,故点D 是斜边AB 的中点.据此即可求解;(2)根据EA EB =、ACE 的周长AC CE EA AC CE EB AC BC =++=++=+即可求解;【小问1详解】解:由作图可知,MN 是线段AB 的垂直平分线,∴在Rt ABC △中,点D 是斜边AB 的中点.∴1122CD AB ==×. 【小问2详解】解:在Rt ABC △中,4BC =.∵MN 是线段AB 的垂直平分线,∴EA EB =.∴ACE 的周长246AC CE EA AC CE EB AC BC =++=++=+=+=.20. 中国新能源产业异军突起.中国车企在政策引导和支持下,瞄准纯电、混动和氢燃料等多元技术路线,加大研发投入形成了领先的技术优势,2023年,中国新能源汽车产销量均突破900万辆,连续9年位居全球第一.在某次汽车展览会上,工作人员随机抽取了部分参展人员进行了“我最喜欢的汽车类型”的调查活动(每人限选其中一种类型),并将数据整理后,绘制成下面有待完成的统计表、条形统计图和扇形统计图 类型人数 百分比 纯电m 54% 混动 n %a氢燃料 3%b 油车 5 %c请根据以上信息,解答下列问题:(1)本次调查活动随机抽取了_____人;表中=a ______,b =______;(2)请补全条形统计图;(3)请计算扇形统计图中“混动”类所在扇形的圆心角的度数;(4)若此次汽车展览会的参展人员共有4000人,请你估计喜欢新能源(纯电、混动、氢燃料)汽车的有多少人?【答案】(1)50;30,6(2)见解析 (3)108°(4)3600人【解析】【分析】本题考查统计表、条形统计图和扇形统计图的综合,理解题意,能从统计图中获取有用信息是解答的关键.(1)用喜欢油车人数除以其所占的百分比可求得调查人数,用喜欢氢燃料人数除以调查人数可求得b ,进而用1减去喜欢其他车型所占的百分比可求解a ;(2)先求得n ,进而可补全条形统计图;(3)用360度乘以喜欢混动所占的百分比即可求解;(4)用总人数乘以样本中喜欢新能源汽车所占的百分比即可求解.【小问1详解】解:本次调查活动随机抽取人数为510%50÷=(人), %350100%6%b =÷×=,则6b =,%154%6%10%30%a =−−−=,则30a =,故答案为:50;30,6;【小问2详解】解:∵5030%15n =×=,∴补全条形统计图如图所示:【小问3详解】解:扇形统计图中“混动”36030%108°×=°;【小问4详解】解:()400054%30%6%3600×++=(人). 答:估计喜欢新能源(纯电、混动、氢燃料)汽车的有3600人.21. 如图,点C 在线段AD 上,AB AD =,B D ∠=∠,BC DE =.(1)求证:ABC ADE △≌△;(2)若60BAC ∠=°,求ACE ∠的度数. 【答案】(1)见解析 (2)60ACE ∠=°【解析】【分析】本题考查全等三角形的判定与性质、等边三角形的判定与性质,证明ACE △是等边三角形是解答的关键.(1)直接根据全等三角形的判定证明结论即可;(2)根据全等三角形的性质得到AC AE =,60CAE BAC ∠=∠=°,再证明ACE △是等边三角形,利用等边三角形的性质求解即可.【小问1详解】证明:在ABC 与ADE 中,AB AD B D BC DE = ∠=∠ =, 所以()SAS ABC ADE ≌;【小问2详解】解:因为ABC ADE △≌△,60BAC ∠=°, 所以AC AE =,60CAE BAC ∠=∠=°,所以ACE △是等边三角形.所以60ACE ∠=°.22. 刺绣是我国民间传统手工艺.湘绣作为中国四大刺绣之一,闻名中外,在巴黎奥运会倒计时50天之际,某国际旅游公司计划购买A 、B 两种奥运主题的湘绣作品作为纪念品.已知购买1件A 种湘绣作品与2件B 种湘绣作品共需要700元,购买2件A 种湘绣作品与3件B 种湘绣作品共需要1200元. (1)求A 种湘绣作品和B 种湘绣作品的单价分别为多少元?(2)该国际旅游公司计划购买A 种湘绣作品和B 种湘绣作品共200件,总费用不超过50000元,那么最多能购买A 种湘绣作品多少件?【答案】(1)A 种湘绣作品的单价为300元,B 种湘绣作品的单价为200元(2)最多能购买100件A 种湘绣作品【解析】【分析】本题考查了二元一次方程组的应用以及一元一次不等式的应用.(1)设A 种湘绣作品的单价为x 元,B 种湘绣作品的单价为y 元,根据“购买1件A 种湘绣作品与2件B 种湘绣作品共需要700元,购买2件A 种湘绣作品与3件B 种湘绣作品共需要1200元”,即可得出关于x ,y 的二元一次方程组,解之即可解题;(2)设购买A 种湘绣作品a 件,则购买B 种湘绣作品()200a −件,总费用=单价×数量,结合总费用不超过50000元,即可得出关于a 的一元一次不等式,解之即可得出a 的值,再取其中的最大整数值即可得出该校最大可以购买湘绣的数量.【小问1详解】设A 种湘绣作品的单价为x 元,B 种湘绣作品的单价为y 元.根据题意,得2700231200x y x y += +=, 解得300,200x y = = .答:A 种湘绣作品的单价为300元,B 种湘绣作品的单价为200元.【小问2详解】设购买A 种湘绣作品a 件,则购买B 种湘绣作品()200a −件.根据题意,得()30020020050000a a +−≤,解得100a ≤.答:最多能购买100件A 种湘绣作品.23. 如图,在ABCD 中,对角线AC ,BD 相交于点O ,90ABC ∠=°.(1)求证:AC BD =;(2)点E 在BC 边上,满足CEO COE ∠=∠.若6AB =,8BC =,求CE 的长及tan CEO ∠的值.【答案】(1)见解析 (2)5CE =,tan 3CEO ∠=【解析】【分析】本题考查矩形的判定与性质、勾股定理、等腰三角形的判定与性质、锐角三角函数等知识,熟练掌握矩形的判定与性质是解答的关键.(1)直接根据矩形的判定证明即可;(2)先利用勾股定理结合矩形的性质求得10AC =,OB OC =.进而可得152CO AC ==,再根据等腰三角形的判定得到5CE CO ==,过点O 作OF BC ⊥于点F ,根据等腰三角形的性质,结合勾股定理分别求得4CF =,1EF =,3OF =,然后利用正切定义求解即可.【小问1详解】证明:因为四边形ABCD 是平行四边形,且90ABC ∠=°,所以四边形ABCD 是矩形.所以AC BD =;【小问2详解】解:在Rt ABC △中,6AB =,8BC =,所以10AC =,因为四边形ABCD 是矩形, 所以152CO AC ==,OB OC =. 因为CEO COE ∠=∠,所以5CE CO ==.过点O 作OF BC ⊥于点F ,则142==CF BC ,所以541EF CE CF =−=−=,在Rt COF △中,3OF, 所以tan 3OF CEO EF∠==. 24. 对于凸四边形,根据它有无外接圆(四个顶点都在同一个圆上)与内切圆(四条边都与同一个圆相切),可分为四种类型,我们不妨约定:既无外接圆,又无内切圆的四边形称为“平凡型无圆”四边形;只有外接圆,而无内切圆的四边形称为“外接型单圆”四边形;只有内接圆,而无外接圆的四边形称为“内切型单圆”四边形;既有外接圆,又有内切圆的四边形称为“完美型双圆”四边形.请你根据该约定,解答下列问题:(1)请你判断下列说法是否正确(在题后相应的括号中,正确的打“√”,错误的打“×”,①平行四边形一定不是“平凡型无圆”四边形; ( )②内角不等于90°的菱形一定是“内切型单圆”四边形; ( )③若“完美型双圆”四边形的外接圆圆心与内切圆圆心重合,外接圆半径为R ,内切圆半径为r ,则有=R .( ) (2)如图1,已知四边形ABCD 内接于O ,四条边长满足:AB CD BC AD +≠+.①该四边形ABCD 是“______”四边形(从约定的四种类型中选一种填入); ②若BAD ∠的平分线AE 交O 于点E ,BCD ∠的平分线CF 交O 于点F ,连接EF .求证:EF 是O 的直径.(3)已知四边形ABCD 是“完美型双圆”四边形,它的内切圆O 与AB BC CD AD ,,,分别相切于点E ,F ,G ,H .①如图2.连接EG FH ,交于点P .求证:EG FH ⊥.②如图3,连接OA OB OC ,,,,若2OA =,6OB =,3OC =,求内切圆O 的半径r 及OD 的长.【答案】(1)①×;②√;③√(2)①外接型单圆;②见解析(3)r =OD = 【解析】【分析】(1)根据圆内接四边形和切线长定理可得:有外接圆的四边形的对角互补;有内切圆的四边形的对边之和相等,结合题中定义,根据对角不互补,对边之和也不相等的平行四边形无外接圆,也无内切圆,进而可判断①;根据菱形的性质可判断②;根据正方形的性质可判断③;(2)①根据已知结合题中定义可得结论; ②根据角平分线的定义和圆周角定理证明 EBF EDF=即可证得结论; (3)①连接OE 、OF 、OG 、OH 、HG ,根据四边形ABCD 是“完美型双圆”四边形,结合四边形的内角和定理可推导出180A EOH ∠+∠=°,180FOG C ∠+∠=°,180A C∠+∠=°,进而可得EOH C ∠=∠,180FOG EOH∠+∠=°,然后利用圆周角定理可推导出90HPG ∠=°,即可证得结论;②连接OE 、OF 、OG 、OH ,根据已知条件证明OAH COG ∠=∠,进而证明AOH OCG ∽得到32CG r =,再利用勾股定理求得r =,BE =BEO OHD ∽求解OD 即可. 【小问1详解】解:由题干条件可得:有外接圆的四边形的对角互补;有内切圆的四边形的对边之和相等,所以 ①当平行四边形对角不互补,对边之和也不相等时,该平行四边形无外接圆,也无内切圆, ∴该平行四边形是 “平凡型无圆”四边形,故①错误;②∵内角不等于90°的菱形的对角不互补,∴该菱形无外接圆,∵菱形的四条边都相等,∴该菱形的对边之和相等,∴该菱形有内切圆,∴内角不等于90°的菱形一定是“内切型单圆”四边形,故②正确;③由题意,外接圆圆心与内切圆圆心重合的“完美型双圆”四边形是正方形,如图,则OM r =,ON R =,OM MN ⊥,45ONM ∠=°,∴Rt OMN △为等腰直角三角形,∴ON =,即=R ;故③正确,故答案为:①×;②√;③√;【小问2详解】解:①∵四边形ABCD 中,AB CD BC AD +≠+,∴四边形ABCD 无内切圆,又该四边形有外接圆,∴该四边形ABCD 是“外接型单圆”四边形,故答案为:外接型单圆;的②∵BAD ∠的平分线AE 交O 于点E ,BCD ∠的平分线CF 交O 于点F ,∴BAE DAE ∠=∠,BCF DCF ∠=∠, ∴ BEDE =, BF DF =, ∴ BEBF DE DF +=+, ∴ EBF EDF=,即 EBF 和 EDF 均为半圆, ∴EF 是O 的直径.【小问3详解】①证明:如图,连接OE 、OF 、OG 、OH 、HG ,∵O 是四边形ABCD 的内切圆,∴OE AB ⊥,OF BC ⊥,OG CD ⊥,OH AD ⊥,∴90OEA OHA ∠=∠=°,在四边形AEOH 中,3609090180A ∠+∠°−°−°=°,同理可证,180FOG C ∠+∠=°,∵四边形ABCD 是“完美型双圆”四边形,∴该四边形有外接圆,则180A C ∠+∠=°,∴EOH C ∠=∠,则180FOG EOH∠+∠=°, ∵12FHG FOG ∠=∠,12EGH EOH ∠=∠, ∴()1902FHG EGH FOG EOH ∠+∠=∠+∠=°, ∴()18090HPGFHG EGH ∠=°−∠+∠=°, ∴EG FH ⊥;②如图,连接OE 、OF 、OG 、OH ,∵四边形ABCD 是“完美型双圆”四边形,它的内切圆O 与AB BC CD AD ,,,分别相切于点E ,F ,G ,H ,∴∴OE AB ⊥,OF BC ⊥,OG CD ⊥,OH AD ⊥,OE OF OG OH ===,∴180EAH FCG ∠+∠=°,OAH OAE ∠=∠,OCG OCF ∠=∠, ∴90OAH OCG ∠+∠=°,∵90COG OCG ∠+∠=°,∴OAH COG ∠=∠,又90AHO OGC ∠=∠=°,∴AOH OCG ∽, ∴OA OH OC CG=, ∵2OA =,3OC =, ∴23r CG =,则32CG r =, 在Rt OGC △中,由222OG CG OC +=得222332r r +=,解得r = 在Rt OBE 中,6OB =,∴BE 同理可证BEO OHD ∽, ∴BE OB OH OD=,6OD=,∴OD =【点睛】本题主要考查平行四边形的性质、正方形的性质、菱形的性质、圆周角定理、内切圆的定义与性质、外接圆的定义与性质、相似三角形的判定与性质、四边形的内角和定理、勾股定理、角平分线的判定等知识,理解题中定义,熟练掌握这些知识和灵活运用性质和判定是解题的关键.另外还要求学生具备扎实的数学基础和逻辑思维能力,备考时,重视四边形知识的学习,提高解题技巧和速度,以应对中考挑战.25. 已知四个不同的点11(,)A x y ,22(,)B x y ,33(,)C x y ,44(,)D x y 都在关于x 的函数2y ax bx c ++(a ,b ,c 是常数,0a ≠)的图象上.(1)当A ,B 两点的坐标分别为()1,4−−,()3,4时,求代数式3202410127a b ++的值; (2)当A ,B 两点的坐标满足212122()40a y y a y y +++=时,请你判断此函数图象与x 轴的公共点的个数,并说明理由;(3)当0a >时,该函数图象与x 轴交于E ,F 两点,且A ,B ,C ,D 四点的坐标满足:222121222()0a y y a y y ++++=,222343422()0a y y a y y −+++=.请问是否存在实数(1)m m >,使得AB ,CD ,m EF ⋅这三条线段组成一个三角形,且该三角形的三个内角的大小之比为1:2:3?若存在,求出m 的值和此时函数的最小值;若不存在,请说明理由(注:m EF ⋅表示一条长度等于EP 的m 倍的线段).【答案】(1)3320241012202477a b ++= (2)此函数图象与x 轴的公共点个数为两个,理由见解析(3)存在两个m 的值符合题意;当m =时,此时该函数的最小值为53a −;当m =此时该函数的最小值为2a −【解析】【分析】本题主要考查了二次函数的性质、二次函数与一元二次方程的关系、二次函数与x 轴交点问题、直角三角形存在性问题等,熟练掌握相关知识和分类讨论是解题关键.(1)将A B 、代入得到关于a 、b 的关系式,再整体代入求解即可;(2)解方程212122()40a y y a y y +++=求解,再根据a 的正负分类讨论即可; (3)由内角之比可得出这是一个3060°°、的直角三角形,再将线段表示出来,利用特殊角的边角关系建立方程即可.【小问1详解】将()1,4A −−,()3,4B 代入2y ax bx c ++得4934a b c a b c −+=− ++=①②, ②-①得848a b +=,即22a b +=. 所以333202*********(2)2024777a ba b ++=++=. 【小问2详解】此函数图象与x 轴的公共点个数为两个. 方法1:由212122()40a y y a y y +++=,得12(2)(2)0a y a y ++=. 可得12a y =−或22a y =−. 当0a >时,<02a −,此抛物线开口向上,而A ,B 两点之中至少有一个点在x 轴的下方,此时该函数图象与x 轴有两个公共点;当0a <时,>02a −,此抛物线开口下,而A ,B 两点之中至少有一个点在x 轴的上方,此时该函数图象与x 轴也有两个公共点.综上所述,此函数图象与x 轴必有两个公共点.方法2:由212122()40a y y a y y +++=,得12(2)(2)0a y a y ++=. 可得12a y =−或22a y =−. 所以抛物线上存在纵坐标为2a −的点,即一元二次方程22a ax bx c ++=−有解. 所以该方程根的判别式24()02ab ac ∆=−+≥,即2242b ac a −≥. 因为0a ≠,所以240b ac −>.所以原函数图象与x 轴必有两个公共点.方法3:由()21212240a y y a y y +++=,可得12a y =−或22a y =−. 当12a y =−时,有2112a ax bx c ++=−,即2112a ax bx c ++=−, 所以2222211144()2(2)02ab ac b a ax bx a ax b ∆=−=+++=++>. 此时该函数图象与x 轴有两个公共点. 当22a y =−时,同理可得0∆>,此时该函数图象与x 轴也有两个公共点.综上所述,该函数图象与x 轴必有两个公共点.【小问3详解】因为0a >,所以该函数图象开口向上.由222121222()0a y y a y y ++++=,得()()22120a y a y +++=,可得12y y a ==−.由222343422()0a y y a y y −+++=,得2234()()0a y a y −+−=,可得34y y a ==. 所以直线AB CD ,均与x 轴平行.由(2)可知该函数图象与x 轴必有两个公共点,设()5,0E x ,()6,0F x . 由图象可知244ac b a a−−>,即2244b ac a −>. 所以2ax bx c a ++=−的两根为1x ,2x,可得12AB x x =−= 同理2ax bx c a ++=的两根为3x ,4x,可得34CD x x =−= 同理20ax bx c ++=的两根为5x ,6x,可得56m EF m x x m ⋅=⋅−= 由于1m >,结合图象与计算可得AB EF m EF <<⋅,<AB CD .若存在实数()1m m >,使得AB CD ,,m EF ⋅这三条线段组成一个三角形,且该三角形的三个内角的大小之比为1:2:3,则此三角形必定为两锐角分别为30°,60°的直角三角形,所以线段AB 不可能是该直角三角形的斜边.①当以线段CD 为斜边,且两锐角分别为30°,60°时,因为m EF AB ⋅>,所以必须同时满足:222()AB m EF CD +⋅=,m EF ⋅. 将上述各式代入化简可得2222288244a a m b ac a =<=−,且22223(44)4b ac a m b ac −−=−, 联立解之得222043a b ac −=,22286245a m b ac ==<−,解得1m =>符合要求.所以m =,此时该函数最小值为2220453443a acb a a a −−==−. ②当以线段m EF ⋅为斜边时,必有222()AB CD m EF +=⋅,同理代入化简可得的2222(4)(4)b ac m b ac −−,解得m =为斜边,且有一个内角为60°,而CD AB >,所以tan 60CD AB =⋅°, 化简得222484b ac a a −=>符合要求.所以m =2824a a a −==−. 综上所述,存在两个m 的值符合题意;当m =时,此时该函数的最小值为53a −;当m =2a −.。

2022年长沙市中考数学试卷含参考解析

2022年长沙市中考数学试卷含参考解析

2022年长沙市中考数学试卷含参考解析参考答案与试题解析一、选择题(在下列各题的四个选项中,只有一项是符合要求的,请在答题卡中填涂符合题意的选项,本大题共12个小题,每小题3分,共36分)1.(3.00分)﹣2的相反数是()A.﹣2B.﹣C.2D.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣2的相反数是2,故选:C.2.(3.00分)据统计,2022年长沙市地区生产总值约为10200亿元,经济总量迈入“万亿俱乐部”,数据10200用科学记数法表示为()A.0.102某105B.10.2某103C.1.02某104D.1.02某103【分析】科学记数法的表示形式为a某10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:10200=1.02某104,故选:C.3.(3.00分)下列计算正确的是()A.a2+a3=a5B.3C.(某2)3=某5D.m5÷m3=m2【分析】直接利用合并同类项法则以及幂的乘方运算法则、同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、a2+a3,无法计算,故此选项错误;B、3﹣2=,故此选项错误;C、(某2)3=某6,故此选项错误;D、m5÷m3=m2,正确.故选:D.4.(3.00分)下列长度的三条线段,能组成三角形的是()A.4cm,5cm,9cmB.8cm,8cm,15cmC.5cm,5cm,10cmD.6cm,7cm,14cm【分析】结合“三角形中较短的两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论.【解答】解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选:B.5.(3.00分)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、不是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此选项错误;故选:A.6.(3.00分)不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】先求出各不等式的解集,再求出其公共解集即可.【解答】解:解不等式某+2>0,得:某>﹣2,解不等式2某﹣4≤0,得:某≤2,则不等式组的解集为﹣2<某≤2,将解集表示在数轴上如下:故选:C.7.(3.00分)将下列如图的平面图形绕轴l旋转一周,可以得到的立体图形是()A.B.C.D.【分析】根据面动成体以及圆台的特点进行逐一分析,能求出结果.【解答】解:绕直线l旋转一周,可以得到圆台,故选:D.8.(3.00分)下列说法正确的是()A.任意掷一枚质地均匀的硬币10次,一定有5次正面向上B.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C.“篮球队员在罚球线上投篮一次,投中”为随机事件D.“a是实数,|a|≥0”是不可能事件【分析】直接利用概率的意义以及随机事件的定义分别分析得出答案.【解答】解:A、任意掷一枚质地均匀的硬币10次,一定有5次正面向上,错误;B、天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨,错误;C、“篮球队员在罚球线上投篮一次,投中”为随机事件,正确;D、“a是实数,|a|≥0”是必然事件,故此选项错误.故选:C.9.(3.00分)估计+1的值是()A.在2和3之间B.在3和4之间C.在4和5之间D.在5和6之间【分析】应先找到所求的无理数在哪两个和它接近的整数之间,然后判断出所求的无理数的范围.【解答】解:∵32=9,42=16,∴∴,+1在4到5之间.故选:C.10.(3.00分)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间某之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明读报用了30minC.食堂到图书馆的距离为0.8kmD.小明从图书馆回家的速度为0.8km/min【分析】根据函数图象判断即可.【解答】解:小明吃早餐用了(25﹣8)=17min,A错误;小明读报用了(58﹣28)=30min,B正确;食堂到图书馆的距离为(0.8﹣0.6)=0.2km,C错误;小明从图书馆回家的速度为0.8÷10=0.08km/min,D错误;故选:B.11.(3.00分)我国南宋著名数学家秦九韶的著作《数书九章》里记载有这样一道题:“问有沙田一块,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知为田几何?”这道题讲的是:有一块三角形沙田,三条边长分别为5里,12里,13里,问这块沙田面积有多大?题中“里”是我国市制长度单位,1里=500米,则该沙田的面积为()A.7.5平方千米B.15平方千米C.75平方千米D.750平方千米【分析】直接利用勾股定理的逆定理进而结合直角三角形面积求法得出答案.【解答】解:∵52+122=132,∴三条边长分别为5里,12里,13里,构成了直角三角形,∴这块沙田面积为:某5某500某12某500=7500000(平方米)=7.5(平方千米).故选:A.12.(3.00分)若对于任意非零实数a,抛物线y=a某2+a某﹣2a总不经过点P(某0﹣3,某02﹣16),则符合条件的点P()A.有且只有1个B.有且只有2个C.有且只有3个D.有无穷多个【分析】根据题意可以得到相应的不等式,然后根据对于任意非零实数a,抛物线y=a某2+a某﹣2a总不经过点P(某0﹣3,某02﹣16),即可求得点P的坐标,从而可以解答本题.【解答】解:∵对于任意非零实数a,抛物线y=a某2+a某﹣2a总不经过点P(某0﹣3,某02﹣16),∴某02﹣16≠a(某0﹣3)2+a(某0﹣3)﹣2a∴(某0﹣4)(某0+4)≠a(某0﹣1)(某0﹣4)∴(某0+4)≠a(某0﹣1)∴某0=﹣4或某0=1,∴点P的坐标为(﹣7,0)或(﹣2,﹣15)故选:B.二、填空题(本大题共6个小题,每小题3分,共18分)13.(3.00分)化简:=1.【分析】根据分式的加减法法则:同分母分式加减法法则:同分母的分式想加减,分母不变,把分子相加减计算即可.【解答】解:原式=故答案为:1.14.(3.00分)某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为90度.=1.【分析】根据圆心角=360°某百分比计算即可;【解答】解:“世界之窗”对应扇形的圆心角=360°某(1﹣10%﹣30%﹣20%﹣15%)=90°,故答案为90.15.(3.00分)在平面直角坐标系中,将点A′(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(1,1).【分析】直接利用平移的性质分别得出平移后点的坐标得出答案.【解答】解:∵将点A′(﹣2,3)向右平移3个单位长度,∴得到(1,3),∵再向下平移2个单位长度,∴平移后对应的点A′的坐标是:(1,1).故答案为:(1,1).16.(3.00分)掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为偶数的概率是.【分析】先统计出偶数点的个数,再根据概率公式解答.13.(3.00分)化简:=1.【分析】根据分式的加减法法则:同分母分式加减法法则:同分母的分式想加减,分母不变,把分子相加减计算即可.【解答】解:原式=故答案为:1.14.(3.00分)某校九年级准备开展春季研学活动,对全年级学生各自最想去的活动地点进行了调查,把调查结果制成了如下扇形统计图,则“世界之窗”对应扇形的圆心角为90度.=1.【分析】根据圆心角=360°某百分比计算即可;【解答】解:“世界之窗”对应扇形的圆心角=360°某(1﹣10%﹣30%﹣20%﹣15%)=90°,故答案为90.15.(3.00分)在平面直角坐标系中,将点A′(﹣2,3)向右平移3个单位长度,再向下平移2个单位长度,那么平移后对应的点A′的坐标是(1,1).【分析】直接利用平移的性质分别得出平移后点的坐标得出答案.【解答】解:∵将点A′(﹣2,3)向右平移3个单位长度,∴得到(1,3),∵再向下平移2个单位长度,∴平移后对应的点A′的坐标是:(1,1).故答案为:(1,1).16.(3.00分)掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为偶数的概率是.【分析】先统计出偶数点的个数,再根据概率公式解答.。

2021年湖南省长沙市中考数学试卷含答案详解(高清word版)

2021年湖南省长沙市中考数学试卷含答案详解(高清word版)

2021年湖南省长沙市中考数学试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 下列四个实数中,最大的数是( )A. −3B. −1C. πD. 42. 2021年5月11日,第七次全国人口普查结果发布,长沙市人口总数首次突破千万,约为10040000人,将数据10040000用科学记数法表示为( )A. 1.004×106B. 1.004×107C. 0.1004×108D. 10.04×1063. 下列几何图形中,是中心对称图形的是( )A. B. C. D.4. 下列计算正确的是( )A. a3⋅a2=a5B. 2a+3a=6aC. a8÷a2=a4D. (a2)3=a55. 如图,AB//CD,EF分别与AB,CD交于点G,H,∠AGE=100°,则∠DHF的度数为( )A. 100°B. 80°C. 50°D. 40°6. 如图,点A,B,C在⊙O上,∠BAC=54°,则∠BOC的度数为( )A. 27°B. 108°C. 116°D. 128°7. 下列函数图象中,表示直线y=2x+1的是( )A.B.C.D.8. “杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取9株水稻苗,测得苗高(单位:cm)分别是:22,23,24,23,24,25,26,23,25.则这组数据的众数和中位数分别是( )A. 24,25B. 23,23C. 23,24D. 24,249. 有一枚质地均匀的正方体骰子,六个面上分别刻有1到6的点数.将它投掷两次,则两次掷得骰子朝上一面的点数之和为5的概率是( )A. 19B. 16C. 14D. 1310. 在一次数学活动课上,某数学老师将1∼10共十个整数依次写在十张不透明的卡片上(每张卡片上只写一个数字,每一个数字只写在一张卡片上,而且把写有数字的那一面朝下).他先像洗扑克牌一样打乱这些卡片的顺序,然后把甲,乙,丙,丁,戊五位同学叫到讲台上,随机地发给每位同学两张卡片,并要求他们把自己手里拿的两张卡片上的数字之和写在黑板上,写出的结果依次是:甲:11;乙:4;丙:16;丁:7;戊:17.根据以上信息,下列判断正确的是( )A. 戊同学手里拿的两张卡片上的数字是8和9B. 丙同学手里拿的两张卡片上的数字是9和7C. 丁同学手里拿的两张卡片上的数字是3和4D. 甲同学手里拿的两张卡片上的数字是2和9二、填空题(本大题共6小题,共18.0分)11. 分解因式:x2−2021x=______ .12. 如图,在⊙O中,弦AB的长为4,圆心到弦AB的距离为2,则∠AOC的度数为______ .13. 如图,菱形ABCD的对角线AC,BD相交于点O,点E是边AB的中点,若OE=6,则BC的长为______ .14. 若关于x的方程x2−kx−12=0的一个根为3,则k的值为.15. 如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB,垂足为E,若BC=4,DE=1.6,则BD的长为______ .16. 某学校组织了主题为“保护湘江,爱护家园”的手抄报作品征集活动.先从中随机抽取了部分作品,按A,B,C,D四个等级进行评价,然后根据统计结果绘制了如图两幅不完整的统计图.那么,此次抽取的作品中,等级为B等的作品份数为______ .三、计算题(本大题共1小题,共6.0分)17. 计算:|−√2|−2sin45°+(1−√3)0+√2×√8.四、解答题(本大题共8小题,共66.0分。

2023年湖南省长沙市中考数学试卷(含答案)163742

2023年湖南省长沙市中考数学试卷(含答案)163742

2023年湖南省长沙市中考数学试卷试卷考试总分:120 分 考试时间: 120 分钟学校:__________ 班级:__________ 姓名:__________ 考号:__________一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1. 下列各数中,为无理数的是 A. B. C. D.2. 下列四个图案是四届冬奥会会徽图案上的一部分,其中为轴对称图形的是 A. B. C. D.3. 下列计算正确的是( )A.=B.=C.=D.=4. 下列各组数据能作为一个等腰三角形各边长的是( )A.,,B.,,C.,,D.,,5. 年某市固定资产总投资计划为亿元,将亿用科学记数法表示为( )()()+m 4m 3m 7(m 4)3m 7m(m−1)−mm 22÷m 5m 3m 22242344243372020268026805. 年某市固定资产总投资计划为亿元,将亿用科学记数法表示为( )A.B.C.D.6. 如图,直线,且, ,则的度数为( )A.B.C.D.7. 在演讲比赛中,位选手的成绩统计图如图所示,则这位选手成绩的众数是( )A.B. C.D.8. 不等式组的解集在数轴上表示正确的是( )A.B.C.D.9. 下列关于一次函数的说法,其中正确的是( )2020268026802.68×10112.68×10122.68×10132.68×1014AB//CD AC ⊥AD ∠ACD =58∘∠BAD 29∘42∘32∘58∘101080859095−2x+5≥3,<x−12x 3y =−2x+1A.图象经过第一、二、三象限B.图象经过点C.当时,D.随的增大而增大10. 育才学校积极开展志愿者服务活动,来自初三的名同学(男女)组成了“关爱老人”志愿小分队.若从该小分队中任选名同学参加周末的志愿活动,则恰好是男女的概率是( )A.B.C.D.二、 填空题 (本题共计 6 小题 ,每题 3 分 ,共计18分 )11. 因式分解:=________.12. 一组数据的平均数为________.13. 如图,四边形中,,点是对角线上一点,是等边三角形,,则的度数为 ________.14. 如图,过反比例函数的图象上一点作轴于点,连接,若,则的值为________.15. 如图,在 中,直径垂直于弦,若 ,则 的度数是_________.16. 已知线段,则经过,两点的最小的圆的半径为________.三、 解答题 (本题共计 9 小题 ,每题 8 分 ,共计72分 )(−2,1)x >1y <0y x 3122111323123425−20xy+4x 2y 2−2,−1,5,1,2,1ABCD ∠ABC =,BC =BD 50∘E BD △AED AE =BE ∠ADC y =(x >0)k x A AB ⊥x B OA =2S △AOB k ⊙O CD AB ∠C =25∘∠BOD AB =6cm A B sin ⋅++|1−|−217. 计算:. 18. 先化简,再求值:,其中,=. 19. 年月日时分,中国空间站天和核心舱在海南文昌航天发射场发射升空,准确进入预定轨道,任务取得成功.建造空间站、建成国家太空实验室,是实现我国载人航天工程“三步走”战略的重要目标,是建设科技强国、航天强国的重要引领性工程.天和核心舱发射成功,标志着我国空间站建造进入全面实施阶段,为后续任务展开奠定了坚实基础.某校航天爱好者的同学们构建数学模型,使用卷尺和测角仪测量天和核心舱的高度.如图所示,核心舱架设在米的稳固支架上,他们先在水平地面点处测得天和核心舱最高点的仰角为,然后沿水平方向前进米,到达点处,测得点的仰角为.测角仪的高度为米.求天和核心舱的高度.(结果精确到米,参考数据: ,,, 20. 月日是“世界读书日”,某校团委发起了“让阅读成为习惯”的读书活动,鼓励学生利用周末积极阅读课外书籍.为了解该校学生周末两天的读书时间,校团委随机调查了八年级部分学生的读书时间(单位:分钟),把读书时间分为四组:,,,. 部分数据信息如下:.组和组的所有数据:.根据调查结果绘制了如下尚不完整的统计图:请根据以上信息,回答下列问题:被调查的学生共有________人,并补全频数分布直方图;在扇形统计图中,组所对应的扇形圆心角是________:若该校八年级共有名学生,请估计八年级学生中周末两天读书时间不少于分钟的人数.21. 如图,,,,,垂足分别为,.如图,猜想,,之间的数量关系,并证明;如图,若,,当点在内部时,则的长为________.(直接用含,的式子表示).22. 某学校为奖励学生分两次购买,两种品牌的圆珠笔,两次的购买情况如下表:第一次第二次2sin ⋅++|1−|60∘(π−2)0()13−23–√(a −b +a(2b −3a))2a =−12b 4202142911231B A 22∘MN 24C A 45∘MB 1.60.1sin ≈0.3722∘cos ≈0.9322∘tan ≈0.4022∘≈1.41)2–√423x A(30≤x <60)B(60≤x <90)C(90≤x <120)D(120≤x <150)a B C 859060701107565781008090809590b (1)(2)C ∘(3)40090∠ACB =90∘AC =BC AD ⊥CE BE ⊥CE D E (1)1BE DE AD (2)2AD =m DE =n D △ABC BE m n A B品牌圆珠笔支品牌圆珠笔支总计采购款元问,两种品牌圆珠笔的购买单价各是多少元?由于奖励人数增加,学校决定第三次购买,且购买品牌圆珠笔支数比品牌圆珠笔支数的倍多支,在采购总价不超过元的情况下,最多能购进多少支品牌圆珠笔?23. 如图,在中, ,点在边上,且若直线经过点,将该平行四边形的面积平分,并与平行四边形的另一边交于点,用无刻度的直尺画出点连接,,判断四边形的形状,并说明理由.24. 如图,的直径为,弦为,的平分线交于点.(1)求的长;(2)试探究、、之间的等量关系,并证明你的结论;(3)连接,为半圆上任意一点,过点作于点,设的内心为,当点在半圆上从点运动到点时,求内心所经过的路径长. 25. 如图,在平面直角坐标系中,抛物线,经过点、,过点作轴的平行线交抛物线于另一点.(1)求抛物线的表达式及其顶点坐标;(2)如图,点是第一象限中上方抛物线上的一个动点,过点作于点,作轴于点,交于点,在点运动的过程中,的周长是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由;(3)如图,连接,在轴上取一点,使和相似,请求出符合要求的点坐标.A /2030B /3040/102144(1)A B (2)B A 1.55213A 加ABCD AD =6E AD AE =2(1)1E F F;(2)AF CE AFCE ⊙O AB 10cm AC 6cm ∠ACB ⊙O D AD CA CB CD OD P ADB P PE ⊥OD E △OPE M P B A M y =−+bx+c 12x 2A(1,3)B(0,1)A x C 1M BC MH ⊥BC H ME ⊥x E BC F M △MFH 2AB y P △ABP △ABC P参考答案与试题解析2023年湖南省长沙市中考数学试卷试卷一、 选择题 (本题共计 10 小题 ,每题 3 分 ,共计30分 )1.【答案】D【考点】无理数的识别【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.据此解答即可.【解答】解:、,是整数,属于有理数,故此选项不符合题意;、,是整数,属于有理数,故此选项不符合题意;、是分数,属于有理数,故此选项不符合题意;、属于无理数,故此选项符合题意.故选:.2.【答案】D【考点】轴对称图形【解析】此题暂无解析【解答】解:只有沿某条直线折叠后直线两旁的部分能够完全重合,是轴对称图形,其它三个不是轴对称图形.故选.3.【答案】C【考点】整式的混合运算【解析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【解答】A =28–√32B =24–√2c 14D 10−−√D D D (4)313−m 22÷5322=,故选项错误(1)=,故选项正确(2)=,故选项错误(3)故选:.4.【答案】C【考点】三角形三边关系【解析】此题暂无解析【解答】此题暂无解答5.【答案】A【考点】科学记数法--表示较大的数【解析】科学记数法的表示形式为的形式,其中,为整数.确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同.当原数绝对值时,是正整数;当原数的绝对值时,是负整数.【解答】亿==.6.【答案】C【考点】平行线的性质垂线【解析】先根据平行线的性质得出的度数,再由得出,进而可得出结论.【解答】解:直线,,.,,.故选.7.【答案】C(m 4)3m 13B m(m−1)−m m 2C 2÷m 5m 32m 2D C a ×10n 1≤|a |<10n n a n ≥10n <1n 2680268000000000 2.68×1011∠BAC AC ⊥AD ∠CAD =90∘∵AB//CD ∠ACD =58∘∴∠BAC =−∠ACD =−=180∘180∘58∘122∘∵AC ⊥AD ∴∠CAD =90∘∴∠BAD =∠BAC −∠CAD =−=122∘90∘32∘C折线统计图【解析】根据众数的定义和给出的数据可直接得出答案.【解答】解:根据统计图可得:分的人数有个,人数最多,则众数是.故选.8.【答案】B【考点】在数轴上表示不等式的解集解一元一次不等式组【解析】,解不等式①得:,解不等式②得:,则不等式组的解集为.【解答】解:解不等式①得:,解不等式②得:,则不等式组的解集为.故选.9.【答案】C【考点】一次函数的性质【解析】根据一次函数的图象与系数的关系即可得出结论.【解答】解:、∵函数中,,,∴该函数的图象经过一、二、四象限,故本选项错误;、时,,故本选项错误;、∵函数中,,则随的增大而减小,直线与轴的交点为,∴当时,,故本选项正确;、∵函数中,,,∴当值增大时,函数值减小,故本选项错误;故选.10.90590C −2x+5≥3①<②x−12x 3x ≤1x <3x ≤1 −2x+5≥3①,<②,x−12x 3x ≤1x <3x ≤1B A y =−2x+1k =−2<0b =1>0B x =−2y =−2×(−2)+1=5C y =−2x+1k =−2<0y x x (,0)12x >1y <0D y =−2x+3k =−2<0b =1>0x y C列表法与树状图法概率公式【解析】此题暂无解析【解答】解:根据列举法可得:(男,女1)(男,女2)(女1,女2)一共有种情况,恰好是一男一女的有种情况,所以,(恰好是一男一女)故选.二、 填空题 (本题共计 6 小题 ,每题 3 分 ,共计18分 )11.【答案】【考点】因式分解-运用公式法【解析】直接利用完全平方公式分解因式得出答案.【解答】原式=.12.【答案】【考点】算术平均数【解析】此题暂无解析【解答】解:由题意得,这组数据的平均数为:.故答案为:.13.32P =.23B (5x−2y)2(5x−2y)21=1−2−1+5+1+2+161等边三角形的性质等腰三角形的性质三角形的外角性质三角形内角和定理【解析】由等边三角形的性质可得,再由等边对等角可得,利用三角形的外角性质可得的度数,再结合,可得的度数,利用,可得的度数,进而得到答案.【解答】解:是等边三角形,.,.,,.,.,,.故答案为:.14.【答案】【考点】反比例函数系数k 的几何意义【解析】根据=利用反比例函数系数的几何意义即可求出值,再根据函数在第一象限有图象即可确定的符号,此题得解.【解答】解:∵轴于点,且,∴,∴.∵反比例函数在经过第一象限,∴.故答案为:15.【答案】【考点】∠AED =∠ADE =60∘∠BAE =∠ABE ∠ABE ∠ABC =50∘∠CBD BC =BD ∠CDB ∵△AED ∴∠AED =∠ADE =60∘∵AE =BE ∴∠BAE =∠ABE ∵∠AED =∠ABE+∠BAE ∴2∠ABE =60∘∴∠ABE =30∘∵∠ABC =50∘∴∠CBD =∠ABC −∠ABE =−=50∘30∘20∘∵BC =BD ∴∠C =∠BDC ===−∠CBD 180∘2−180∘20∘280∘∴∠ADC =∠ADE+∠BDC =+=60∘80∘140∘140∘4S △AOB 2k k k AB ⊥x B =2S △AOB =|k |=2S △AOB 12k =±4k =4 4.50∘圆周角定理垂径定理【解析】由垂径定理和“等弧所对的圆周角是所对的圆心角的一半”推知,得到答案.【解答】解:∵在中,直径垂直于弦,∴,∴.故答案为.16.【答案】【考点】圆的有关概念【解析】经过线段最小的圆即为以为直径的圆,求出半径即可.【解答】解:每个圆周上点就可以有一个内部交点,所以当这些交点不重合的时候,圆内交点最多,所以,本题等价于将个点个分组共有多少组,显然应该是:.三、 解答题 (本题共计 9 小题 ,每题 8 分 ,共计72分 )17.【答案】解:原式.【考点】特殊角的三角函数值负整数指数幂零指数幂实数的运算【解析】此题暂无解析【解答】解:原式.18.【答案】∠DOB =2∠C ⊙O CD AB =ADˆBD ˆ∠DOB =2∠C =50∘50∘3cmAB AB 464=156×5×4×34×3×2×1=2×−1×9+−1=2+73–√23–√3–√=2×−1×9+−1=2+73–√23–√3–√−2ab ++2ab −3222−2+22原式==,当,=时,原式=.【考点】整式的混合运算——化简求值【解析】原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把与的值代入计算即可求出值.【解答】原式==,当,=时,原式=.19.【答案】解:如图,过点作,垂足为点,交的延长线于点.由题意知,四边形和四边形均为矩形.设.在中,,∴,在中,,,∵,∴,∵,∴,解得,∵,∴,∴ .答:天和核心舱的高度为.【考点】解直角三角形的应用-仰角俯角问题【解析】此题暂无解析【解答】解:如图,过点作,垂足为点,交的延长线于点.由题意知,四边形和四边形均为矩形.设.−2ab ++2ab −3a 2b 2a 2−2+a 2b 2a =−12b 4−2×+16=14312a b −2ab ++2ab −3a 2b 2a 2−2+a 2b 2a =−12b 4−2×+16=14312A AF ⊥MN F BC E MBCN NCEF AE =xm Rt △AEC ∠AEC =90∘CE =AE =x Rt △ABE ∠AEB =90∘∠ABE =22∘tan =22∘AE BE BE =≈=x AE tan22∘x 0.4052BE−CE =BC x−x =2452x =16EF =BM =1.6AF =AE+EF =16+1.6=17.617.6−1=16.616.6m A AF ⊥MN F BC E MBCN NCEF AE =xm在中,,∴,在中,,,∵,∴,∵,∴,解得,∵,∴,∴ .答:天和核心舱的高度为.20.【答案】解:被调查的学生共有(人).故答案为:.由数据信息可得,组有人,则组有人.补全频数分布直方图如图所示.(人).答:八年级学生中周末两天读书时间不少于分钟的约有人.【考点】频数(率)分布直方图扇形统计图用样本估计总体【解析】此题暂无解析【解答】解:被调查的学生共有(人).故答案为:.由数据信息可得,组有人,则组有人.补全频数分布直方图如图所示.Rt △AEC ∠AEC =90∘CE =AE =x Rt △ABE ∠AEB =90∘∠ABE =22∘tan =22∘AE BE BE =≈=x AE tan22∘x 0.4052BE−CE =BC x−x =2452x =16EF =BM =1.6AF =AE+EF =16+1.6=17.617.6−1=16.616.6m (1)4÷20%=2020B 8D 2108(3)400×=1606+22090160(1)4÷20%=2020B 8D 2组所对应的扇形圆心角是.故答案为:.(人).答:八年级学生中周末两天读书时间不少于分钟的约有人.21.【答案】解:.证明:∵,∴.∵,,∴,∴,∴.在和中,∴,∴,,∴,即.【考点】全等三角形的性质与判定【解析】无无【解答】解:.证明:∵,∴.∵,,∴,∴,∴.在和中,∴,∴,,∴,即.同理可证,∴,,∴,∴.故答案为:.(2)C ×=620360∘108∘108(3)400×=1606+22090160(1)BE =DE+AD ∠ACB =90∘∠ACD+∠BCD =90∘AD ⊥CE BE ⊥CE ∠D =∠BEC =90∘∠CBE+∠BCD =90∘∠ACD =∠CBE △ACD △CBE ∠ACD =∠CBE,∠D =∠BEC,AC =BC,△ACD ≅△CBE(AAS)CE =AD BE =CD CD =CE+DE =AD+DEBE =DE+AD m−n(1)BE =DE+AD ∠ACB =90∘∠ACD+∠BCD =90∘AD ⊥CE BE ⊥CE ∠D =∠BEC =90∘∠CBE+∠BCD =90∘∠ACD =∠CBE △ACD △CBE ∠ACD =∠CBE,∠D =∠BEC,AC =BC,△ACD ≅△CBE(AAS)CE =AD BE =CD CD =CE+DE =AD+DE BE =DE+AD (2)△ACD ≅△CBE CE =AD BE =CD CE =CD+DE =BE+DE BE =AD−DE =m−n m−n22.【答案】解:设品牌圆珠笔的进货单价是元,品牌圆珠笔的进货单价是元,根据题意可得解得答:品牌圆珠笔的进货单价是元,品牌圆珠笔的进货价是元.设购进品牌圆珠笔支,购进品牌圆珠笔支,则,解得.经检验,不等式的解符合题意.答:最多能购进支品牌圆珠笔.【考点】二元一次方程组的应用——其他问题一元一次不等式的实际应用【解析】此题暂无解析【解答】解:设品牌圆珠笔的进货单价是元,品牌圆珠笔的进货单价是元,根据题意可得解得答:品牌圆珠笔的进货单价是元,品牌圆珠笔的进货价是元.设购进品牌圆珠笔支,购进品牌圆珠笔支,则,解得.经检验,不等式的解符合题意.答:最多能购进支品牌圆珠笔.23.【答案】【考点】平行四边形的性质勾股定理列表法与树状图法反比例函数综合题二次函数的应用【解析】此题暂无解析【解答】此题暂无解答24.【答案】(1)A x B y {20x+30y =102,30x+40y =144,{x =2.4,y =1.8.A 2.4B 1.8(2)A n B (1.5n+5)2.4n+1.8(1.5n+5)≤213n ≤4040A (1)A x B y {20x+30y =102,30x+40y =144,{x =2.4,y =1.8.A 2.4B 1.8(2)A n B (1.5n+5)2.4n+1.8(1.5n+5)≤213n ≤4040A∵是的直径,∴==,∵的平分线交于,∴==,∴=,∴=,∴=,∴===;=.证明如下:延长到,使=,∵=,=,∴=,在和中,,∴,∴=,=,∴==,为等腰直角三角形,∴==.连接,,∵,∴=,∵点为的内心,∴=,在和中,,∴,∴==,∴点在以为弦,并且所对的圆周角为的两段劣弧上(分左右两种情况):设弧所在圆的圆心为,∵=,∴=,∴==,∴的长为=,∴点的路径长为.【考点】圆的综合题【解析】AB ⊙O ∠ACB ∠ADB 90∘∠ACB ⊙O D ∠ACD ∠BCD 45∘AD BD A +B D 2D 2AB 4AD BD AB CA+CB CD CA F AF CB ∠CBD+∠CAD 180∘∠FAD+∠CAD 180∘∠CBD ∠FAD △ADF △BDC △ADF ≅△BDC(SAS)CD FD ∠CDB ∠FDA ∠CDF ∠ADB 90∘△CDF CA+CB CF CD OM PM PE ⊥OD ∠PEO 90∘M △OPE ∠OMP 135∘△OMD △OMP △OMD ≅△OMP(SAS)∠OMD ∠OMP 135∘M OD 135∘OD OMD O ′∠OMD 135∘∠OO D ′90∘O O ′OD πM π此题暂无解析【解答】此题暂无解答25.【答案】将,,代入,,解得,,∴抛物线的解析式为,∴顶点坐标为;延长交轴于点,由对称性得.则=,=,设直线的解析式为=,则有,解得,∴直线的解析式为,设,则,∴=,∵于点,轴,∴=,=,∴=,∴在和中,,∴,∴=,∴,,∴的周长=,当=时,的周长最大,最大值为 ,此时点的坐标为.∵,为公共角,∴.∴=.当=时,,∵,,=,∴,∴.当=时,,A(1,3)B(0,1)y =−+bx+c12x 2 −+b +c =312c =1 b =52c =1y =−+x+112x 252(,)52338CA y D C(4,3)CD 4BD 2BC y kx+m { 4k +m=3m=1 k =12m=1BC y =x+112M(a,−+a +1)12a 252F(a,a +1)12MF ME−EF =−+2a 12a 2MH ⊥BC H ME ⊥x ∠M +∠MFH 90∘∠C +∠MFH 90∘∠M ∠C Rt △MFH Rt △BDC tan ∠C ====tan ∠M BD CD 2412=FH MH 12FH :MH :MF 1:2:5–√FH =MF 5–√5MH =MF 25–√5△FMH FH+MH+MF =MF +MF +MF =(+1)MF =(+1)(−+2a)5–√525–√535–√535–√512a 2=(−)(a −2+3+55–√10)26+105–√5a 2△FMH 6+105–√5M (2,4)==AD BD DB CD 12∠CDB △ABD ∽△BCD ∠ABD ∠BCD 1∘∠PAB ∠ABC =PB AC AB BC BC ==2(0−4+(1−3)2)2−−−−−−−−−−−−−−−√5–√AB ==(0−1+(1−3)2)2−−−−−−−−−−−−−−−√5–√AC 3PB =32(0,)P 1522∘∠PAB ∠BAC =PB BC AB AC–√∴,∴,∴,综上所述满足条件的点有,.【考点】二次函数综合题【解析】(1)将,,代入抛物线,即可得出答案;(2)延长交轴于点,由点可求得,由=,设,求得,则,由勾股定理得,,所以的周长可用表示,最后利用二次函数的性质解决问题;(3)由,为公共角,可得.从而=.分当=时,当=时两种情况讨论即可得出答案.【解答】将,,代入,,解得,,∴抛物线的解析式为,∴顶点坐标为;延长交轴于点,由对称性得.则=,=,设直线的解析式为=,则有,解得,∴直线的解析式为,设,则,∴=,∵于点,轴,∴=,=,∴=,∴在和中,,∴,∴=,∴,,∴的周长=,=PB 25–√5–√3PB =103(0,)P 2133P (0,)52(0,)133A(1,3)B(0,1)y =−+bx+c12x 2CA y D C(4,3)=BD CD 12tan ∠C tan ∠M ==FH MH 12M(a,−+a +1)12a 252F(a,a +1)12MF =−+2a 12a 2FH =MF,MH =MF 5–√525–√5△MFH MF ==AD BD BD CD 12∠CDB △ABD ∽△BCD ∠ABD ∠BCD 1∘∠PAB ∠ABC 2∘∠PAB ∠BAC A(1,3)B(0,1)y =−+bx+c12x 2 −+b +c =312c =1 b =52c =1y =−+x+112x 252(,)52338CA y D C(4,3)CD 4BD 2BC y kx+m { 4k +m=3m=1 k =12m=1BC y =x+112M(a,−+a +1)12a 252F(a,a +1)12MF ME−EF =−+2a 12a 2MH ⊥BC H ME ⊥x ∠M +∠MFH 90∘∠C +∠MFH 90∘∠M ∠C Rt △MFH Rt △BDC tan ∠C ====tan ∠M BD CD 2412=FH MH 12FH :MH :MF 1:2:5–√FH =MF 5–√5MH =MF 25–√5△FMH FH+MH+MF =MF +MF +MF =(+1)MF =(+1)(−+2a)5–√525–√535–√535–√512a 2=(−)(a −2+3+55–√10)26+105–√56+10–√当=时,的周长最大,最大值为 ,此时点的坐标为.∵,为公共角,∴.∴=.当=时,,∵,,=,∴,∴.当=时,,∴,∴,∴,综上所述满足条件的点有,.a 2△FMH 6+105–√5M (2,4)==AD BD DB CD 12∠CDB △ABD ∽△BCD ∠ABD ∠BCD 1∘∠PAB ∠ABC =PB AC AB BC BC ==2(0−4+(1−3)2)2−−−−−−−−−−−−−−−√5–√AB ==(0−1+(1−3)2)2−−−−−−−−−−−−−−−√5–√AC 3PB =32(0,)P 1522∘∠PAB ∠BAC =PB BC AB AC =PB 25–√5–√3PB =103(0,)P 2133P (0,)52(0,)133。

2023年长沙市中考数学真题试卷及答案

2023年长沙市中考数学真题试卷及答案

2023年长沙市初中学业水平考试试卷数学1.下列各数中,是无理数的是()A.17B.πC.1-D.02.下列图形中,是轴对称图形的是()A. B. C. D.3.下列计算正确的是()A.235x x x ⋅= B.336()x x = C.2(1)1x x x +=+ D.22(21)41a a -=-4.下列长度的三条线段,能组成三角形的是()A .1,3,4B .2,2,7C .4,5,7D .3,3,65.2022年,长沙市全年地区生产总值约为1400000000000元,比上年增长4.5%.其中数据1400000000000用科学记数法表示为()A .121.410⨯B .130.1410⨯C .131.410⨯D .111.410⨯6.如图,直线//m 直线n ,点A 在直线n 上,点B 在直线m 上,连接AB ,过点A 作AC AB ⊥交直线m 于点C .若140O ∠=,则2∠的度数为()A.30oB.40oC.50oD.60o7.长沙市某一周内每口最高气温情况如图所示,下列说法中错误的是()A .这周最高气温是32℃B .这组数据的中位数是30C .这组数据的众数是24D .周四与周五的最高气温相差8℃8.不等式组24010x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是()A.B.C.D.9.下列一次函数中,y 随x 的增大而减小的函数是()A.21y x =+ B.4y x =- C.2y x= D.1y x =-+10.“千门万户瞳瞳日,总把新桃换旧符”.春节是中华民族的传统节日,古人常用写“桃符”的方式来祈福避祸,而现在,人们常用贴“福”字、贴春联、挂灯笼等方式来表达对新年的美好祝愿.某商家在春节期间开展商品促销活动,顾客凡购物金额满100元,就可以从“福”字、春联、灯笼这三类礼品中免费领取一件.礼品领取规则:顾客每次从装有大小、形状、质地都相同的三张卡片(分别写有“福”字、春联、灯笼)的不透明袋子中,随机摸出一张卡片,然后领取一件与卡片上文字所对应的礼品.现有2名顾客都只领取了一件礼品,那么他们恰好领取同一类礼品的概率是()A.19 B.16C.13D.12二、填空题(本大题共6个小题,每小题3分,共18分)11.分解因式:2100a -=.12.睡眠管理作为“五项管理”中重要的内容之一,也是学校教育重点关注的内容.某老师了解到班上某位学生的5天睡眠时间(单位:小时)如下:10,9,10,8,8,则该学生这5天的平均睡眠时间是小时.13.如图,已知50O ABC ∠=,点D 在BA 上,以点B 为圆心,BD 长为半径画弧,交BC 于点E ,连接DE ,则BDE ∠的度数是度.14.如图,在平面直角坐标系中,点A 在反比例函数ky x=(k 为常数,0k >,0x >)的图象上,过点A 作x 轴的垂线,垂足为B ,连接OA .若OAB ∆的面积为1912,则k =___________.15.如图,点,,A B C 在半径为2的⊙O 上,60O ACB ∠=,OD AB ⊥,垂足为E ,交⊙O 于点D ,连接OA ,则OE 的长度为.16.毛主席在《七律二首·送瘟神》中写道“坐地日行八万里,巡天遥看一千河”.我们把地球赤道看成一个圆,这个圆的周长大约为“八万里”.对宇宙千百年来的探索与追问,是中华民族矢志不渝的航天梦想.从古代诗人屈原发出的《天问》,到如今我国首次火星探测任务被命名为“天问一号”,太空探索无止境,伟大梦想不止步.2021年5月15日,我国成功实现火星着陆.科学家已经探明火星的半径大约是地球半径的12,若把经过火星球心的截面看成是圆形的,则该圆的周长大约为万里.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题8分,第22、23题每小题9分,第24、25题每小题10分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.计算:011(2023)2sin 45()2o----.18.先化简,再求值:2(2)(2)2(3)3a a a a a -+-++,其中13a =.19.2023年5月30日9点31分,“神舟十六号”载人飞船在中国酒泉卫星发射中心点火发射,成功把三名航天员送入到中国空间站.如图,在发射的过程中,飞船从地面O 处发射,当飞船到达A 点时,从位于地面C 处的雷达站测得AC 的距离是8km,仰角为30O ;10s 后飞船到达B 处,此时测得仰角为45O .(1)求点A离地面的高度AO;(2)求飞船从A处到B处的平均速度.≈)(结果精确到0.1km/s,参考数据: 1.7320.为增强学生安全意识,某校举行了一次全校3000名学生参加的安全知识竞赛.从中随机抽取n名学生的竞赛成绩进行了分析,把成绩(满分为100分,所有竞赛成绩均不低于60分)分成四个等级(D:60<x<70;C:70<x<80;B:80<x<90;A:90<x<100),并根据分析结果绘制了不完整的频数分布直方图和扇形统计图.请根据以上信息,解答下列问题:(1)填空:n=,m=;(2)请补全频数分布直方图;(3)扇形统计图中B等级所在扇形的圆心角度数为度;(4)若把A等级定为“优秀”等级,请你估计该校参加竞赛的3000名学生中达到“优秀”等级的学生人数.21.如图,,,AB AC CD AB BE AC =⊥⊥,垂足分别为,D E .(1)求证:ABE ACD ∆≅∆;(2)若6,8AE CD ==,求BD 的长.22.为提升学生身体素质,落实教育部门“在校学生每天锻炼时间不少于1小时”的文件精神.某校利用课后服务时间,在八年级开展“体育赋能,助力成长”班级篮球赛,共16个班级参加.(1)比赛积分规定:每场比赛都要分出胜负,胜一场积3分,负一场积1分.某班级在15场比赛中获得总积分为41分,问该班级胜负场数分别是多少?(2)投篮得分规则:在3分线外投篮,投中一球可得3分,在3分线内(含3分线)投篮,投中一球可得2分.某班级在其中一场比赛中,共投中26个球(只有2分球和3分球),所得总分不少于56分,问该班级这场比赛中至少投中了多少个3分球?23.如图,▱ABCD 中,DF 平分ADC ∠,交BC 于点E ,交AB 的延长线于点F .(1)求证:AD AF =;(2)若6,3,120O AD AB A ==∠=,求BF 的长和ADF ∆的面积.24.如图,点,,A B C 在⊙O 上运动,满足222AB BC AC =+,延长AC 至点D ,使得DBC CAB ∠=∠,点E 是弦AC 上一动点(不与点,A C 重合),过点E 作弦AB 的垂线,交AB 于点F ,交BC 的延长线于点N ,交⊙O 于点M (点M 在劣弧AC 上).(1)BD 是⊙O 的切线吗?请作出你的判断并给出证明;(2)记BDC ∆,ABC ∆,ADB ∆的面积分别为1S ,2S ,S ,若()212S S S =,求2(tan )D 的值;(3)若⊙O 的半径为1,设FM x =,FE FN y ⋅=,试求y 关于x 的函数解析式,并写出自变量x 的取值范围.25.我们约定:若关于x 的二次函数21111y a x b x c =++与22222y a x b x c =++同时满足22121()0b b c a ++-=,202312()0b b -≠.则称函数1y 与函数2y 互为“美美与共”函数.根据该约定,解答下列问题:(1)若关于x 的二次函数2123y x kx =++与22y mx x n =++互为“美美与共”函数,求,,k m n 的值;(2)对于任意非零实数,r s ,点(,)P r t 与点(,)()Q s t r s ≠始终在关于x 的函数212y x rx s =++的图象上运动,函数2y 与1y 互为“美美与共”函数.①求函数2y 的图象的对称轴;②函数2y 的图象是否经过某两个定点?若经过某两个定点,求出这两个定点的坐标;否则,请说明理由;(3)在同一平面直角坐标系中,若关于x 的二次函数21y ax bx c =++与它的“美美与共”函数2y 的图象顶点分别为点A ,点B ,函数1y 的图象与x 轴交于不同两点,C D ,函数2y 的图象与x 轴交于不同两点,E F .当CD EF =时,以,,,A B C D 为顶点的四边形能否为正方形?若能,求出该正方形面积的取值范围;若不能请说明理由.2023年长沙市初中学业水平考试数学试卷参考答案一、选择题.1.B2.D3.A4.C5.A6.C7.B 8.A 9.D10.C二、填空题.11.(10)(10)a a +-12.9136514.19615.116.4三、解答题.17.1-18.466a -,19.(1)4AO km =(2)0.3/v km s≈20.(1)150,36(2)略(3)144(4)480人21.(1)证明:90O AB AC A A AEB ADC =⎧⎪∠=∠⎨⎪∠=∠=⎩,所以ABE ACD ∆≅∆.(2)106AB AE AD AE ====,.所以4BD AB AD =-=.22.(1)胜13场负2场;(2)至少投进4个3分球.23.(1)证明:DE 平分ADC ∠,ADE CDE ∴∠=∠.//AB CD AFD CDE ∴∠=∠ .AFD ADE ∴∠=∠AF AD ∴∠=∠.(2)过D 作DH BA ⊥交BA 延长线于H .633BF AF AB AD AB =-=-=-=.602O HAD DH AD ∠=∴==,12AFD S AF DH ∆∴== .24.(1)22290O AB BC AC ACB AB =+∴∠=,,为直径.+90OA ABC ∴∠∠=A DBC ∠=∠+90O A DBC ∴∠∠=BD ∴为⊙O 的切线.(2)12111()222S DC BC S AC BC S DC AC BC ===+ ,,.()22222212S S S DC AC DC AC DC BC AC =∴+=∴+= .22221DC AC BC BC ∴+=设tan D m ∠=,则2221151,2m m m ++=∴=.(3)~,ABC NBF BC BN AB BF∆∆∴= ~,ABC AEF AE AC AB AF ∆∆∴= ~,AEF NBF EF FN AF BF ∆∆∴=y AF BF ∴= 22AF BF FM x == (01)y x x ∴=<≤.25.(1)3,2,1m n k ===-(2)32r sr s r +-=∴=- 22221321y sx rx rx rx =-+=--+对称轴13x =-222321(32)1y rx rx x x =--+=--+令2320x x --=,得1220,3x x ==-.所以过定点2(01)13⎛⎫- ⎪⎝⎭,,,.(3)2212,y ax bx c y cx bx a=++=-+2244(,,2424b ac b b ac b A B a a c c ⎛⎫--- ⎪⎝⎭224,44422C Dx x ac b CD b ac a --∴==∴-=.44,,CD EF a c a c=∴=∴= .当a c =-时,222444b ac b a -=+=,2244,01a a ∴<∴<<.2222S a∴==>.当a c =时,无法构成正方形.综上:a c =-时,存在正方形2S >.。

湖南省长沙市长雅中学2024届中考联考数学试卷含解析

湖南省长沙市长雅中学2024届中考联考数学试卷含解析

湖南省长沙市长雅中学2024年中考联考数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.下列二次根式中,最简二次根式是( )A .9aB .35aC .22a b +D .12a + 2.如图,在5×5的方格纸中将图①中的图形N 平移到如图②所示的位置,那么下列平移正确的是( )A .先向下移动1格,再向左移动1格B .先向下移动1格,再向左移动2格C .先向下移动2格,再向左移动1格D .先向下移动2格,再向左移动2格3.如图,点A 为∠α边上任意一点,作AC ⊥BC 于点C ,CD ⊥AB 于点D ,下列用线段比表示sinα的值,错误的是( )A .CD BCB .AC AB C .AD AC D .CD AC4.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是( )A .B .C .D .5.下列说法中,正确的是( )A .两个全等三角形,一定是轴对称的B .两个轴对称的三角形,一定是全等的C .三角形的一条中线把三角形分成以中线为轴对称的两个图形D .三角形的一条高把三角形分成以高线为轴对称的两个图形6.如图,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长,分别交对角线BD 于点F ,交BC 边延长线于点E .若FG =2,则AE 的长度为( )A .6B .8C .10D .127.如图,在正方形ABCD 和正方形CEFG 中,点D 在CG 上,BC=1,CE=3,连接AF 交CG 于M 点,则FM=( )A .52B .32C .352D .728.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π-9.如图,在三角形ABC 中,∠ACB=90°,∠B=50°,将此三角形绕点C 沿顺时针方向旋转后得到三角形A′B′C ,若点B′恰好落在线段AB 上,AC 、A′B′交于点O ,则∠COA′的度数是( )A .50°B .60°C .70°D .80°10.如图,已知AOB ∠,用尺规作图作2AOC AOB ∠=∠.第一步的作法以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点E ,F 第二步的作法是( )A .以点E 为圆心,OE 长为半径画弧,与第1步所画的弧相交于点DB .以点E 为圆心,EF 长为半径画弧,与第1步所画的弧相交于点DC .以点F 为圆心,OE 长为半径画弧,与第1步所画的弧相交于点DD .以点F 为圆心,EF 长为半径画弧,与第1步所画的弧相交于点D二、填空题(共7小题,每小题3分,满分21分)11.一艘货轮以18km/h 的速度在海面上沿正东方向航行,当行驶至A 处时,发现它的东南方向有一灯塔B ,货轮继续向东航行30分钟后到达C 处,发现灯塔B 在它的南偏东15°方向,则此时货轮与灯塔B 的距离是________km.12.如图, AB 是⊙O 的弦,∠OAB=30°.OC ⊥OA ,交AB 于点C ,若OC=6,则AB 的长等于__.13.如果抛物线y=ax 2+5的顶点是它的最低点,那么a 的取值范围是_____.14.如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_____米.15.在Rt△ABC中,∠C=90°,AB=6,cosB=23,则BC的长为_____.16.如图,网格中的四个格点组成菱形ABCD,则tan∠DBC的值为___________ .17.1-12的倒数是_____________.三、解答题(共7小题,满分69分)18.(10分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:本次抽样调查共抽取了多少名学生?求测试结果为C等级的学生数,并补全条形图;若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.19.(5分)如图1,在直角梯形ABCD中,AB⊥BC,AD∥BC,点P为DC上一点,且AP=AB,过点C作CE⊥BP 交直线BP于E.(1) 若,求证:;(2) 若AB=BC.①如图2,当点P与E重合时,求的值;②如图3,设∠DAP的平分线AF交直线BP于F,当CE=1,时,直接写出线段AF的长.20.(8分)在同一时刻两根木竿在太阳光下的影子如图所示,其中木竿AB =2m ,它的影子BC =1.6m ,木竿PQ 落在地面上的影子PM =1.8m ,落在墙上的影子MN =1.1m ,求木竿PQ 的长度.21.(10分)在平面直角坐标系xOy 中,若抛物线2y x bx c =++顶点A 的横坐标是1-,且与y 轴交于点()B 0,1-,点P 为抛物线上一点.()1求抛物线的表达式;()2若将抛物线2y x bx c =++向下平移4个单位,点P 平移后的对应点为Q.如果OP OQ =,求点Q 的坐标.22.(10分)某学校准备采购一批茶艺耗材和陶艺耗材.经查询,如果按照标价购买两种耗材,当购买茶艺耗材的数量是陶艺耗材数量的2倍时,购买茶艺耗材共需要18000元,购买陶艺耗材共需要12000元,且一套陶艺耗材单价比一套茶艺耗材单价贵150元.求一套茶艺耗材、一套陶艺耗材的标价分别是多少元?学校计划购买相同数量的茶艺耗材和陶艺耗材.商家告知,因为周年庆,茶艺耗材的单价在标价的基础上降价2m 元,陶艺耗材的单价在标价的基础降价150元,该校决定增加采购数量,实际购买茶艺耗材和陶艺耗材的数量在原计划基础上分别增加了2.5m %和m %,结果在结算时发现,两种耗材的总价相等,求m 的值.23.(12分)已知C 为线段AB 上一点,关于x 的两个方程()112x m +=与()23x m m +=的解分别为线段AC BC ,的长,当2m =时,求线段AB 的长;若C 为线段AB 的三等分点,求m 的值.24.(14分)如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.求证:四边形ABCD是菱形;过点D 作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8,求四边形ABED的周长.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解题分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【题目详解】A.被开方数含能开得尽方的因数或因式,故A不符合题意,B.被开方数含能开得尽方的因数或因式,故B不符合题意,C.被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意,D.被开方数含分母,故D不符合题意.故选C.【题目点拨】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.2、C【解题分析】根据题意,结合图形,由平移的概念求解.【题目详解】由方格可知,在5×5方格纸中将图①中的图形N平移后的位置如图②所示,那么下面平移中正确的是:先向下移动2格,再向左移动1格,故选C.【题目点拨】本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后物体的位置.3、D【解题分析】【分析】根据在直角三角形中,锐角的正弦为对边比斜边,可得答案.【题目详解】∵∠BDC=90°,∴∠B+∠BCD=90°,∵∠ACB=90°,即∠BCD+∠ACD=90°,∴∠ACD=∠B=α,A 、在Rt △BCD 中,sinα=CD BC,故A 正确,不符合题意; B 、在Rt △ABC 中,sinα=AC AB,故B 正确,不符合题意; C 、在Rt △ACD 中,sinα=AD AC ,故C 正确,不符合题意; D 、在Rt △ACD 中,cosα=CD AC,故D 错误,符合题意, 故选D .【题目点拨】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.4、B【解题分析】根据相似三角形的判定方法一一判断即可.【题目详解】解:因为111A B C 中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等,故选:B .【题目点拨】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.5、B【解题分析】根据轴对称图形的概念对各选项分析判断即可得解.解:A. 两个全等三角形,一定是轴对称的错误,三角形全等位置上不一定关于某一直线对称,故本选项错误;B. 两个轴对称的三角形,一定全等,正确;C. 三角形的一条中线把三角形分成以中线为轴对称的两个图形,错误;D. 三角形的一条高把三角形分成以高线为轴对称的两个图形,错误.故选B.6、D【解题分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF ABGF GD==2,结合FG=2可求出AF、AG的长度,由AD∥BC,DG=CG,可得出AG=GE,即可求出AE=2AG=1.【题目详解】解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF GD==2,∴AF=2GF=4,∴AG=2.∵AD∥BC,DG=CG,∴AG DGGE CG==1,∴AG=GE∴AE=2AG=1.故选:D.【题目点拨】本题考查了相似三角形的判定与性质、正方形的性质,利用相似三角形的性质求出AF的长度是解题的关键.7、C【解题分析】由正方形的性质知DG=CG-CD=2、AD∥GF,据此证△ADM∽△FGM得AD DMFG GM=,求出GM的长,再利用勾股定理求解可得答案.【题目详解】解:∵四边形ABCD和四边形CEFG是正方形,∴AD=CD=BC=1、CE=CG=GF=3,∠ADM=∠G=90°,∴DG=CG-CD=2,AD∥GF,则△ADM∽△FGM,∴AD DMFG GM=,即123GMGM-=,解得:GM=3 2,∴FM=22FG GM+=22332⎛⎫+ ⎪⎝⎭=352,故选:C.【题目点拨】本题主要考查相似三角形的判定与性质,解题的关键是熟练掌握正方形的性质、相似三角形的判定与性质及勾股定理等知识点.8、D【解题分析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【题目详解】过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,33∴△ABC的面积为12BC•AD=1232⨯3S扇形BAC=2602360π⨯=23π,∴莱洛三角形的面积S=3×23π﹣2×3﹣3故选D.【题目点拨】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.9、B【解题分析】试题分析:∵在三角形ABC中,∠ACB=90°,∠B=50°,∴∠A=180°﹣∠ACB﹣∠B=40°.由旋转的性质可知:BC=B′C,∴∠B=∠BB′C=50°.又∵∠BB′C=∠A+∠ACB′=40°+∠ACB′,∴∠ACB′=10°,∴∠COA′=∠AOB′=∠OB′C+∠ACB′=∠B+∠ACB′=60°.故选B.考点:旋转的性质.10、D【解题分析】根据作一个角等于已知角的作法即可得出结论.【题目详解】解:用尺规作图作∠AOC=2∠AOB的第一步是以点O为圆心,以任意长为半径画弧①,分别交OA、OB于点E、F,第二步的作图痕迹②的作法是以点F为圆心,EF长为半径画弧.故选:D.【题目点拨】本题考查的是作图-基本作图,熟知作一个角等于已知角的步骤是解答此题的关键.二、填空题(共7小题,每小题3分,满分21分)11、1【解题分析】作CE⊥AB于E,根据题意求出AC的长,根据正弦的定义求出CE,根据三角形的外角的性质求出∠B的度数,根据正弦的定义计算即可.【题目详解】作CE⊥AB于E,1km/h×30分钟=9km,∴AC=9km,∵∠CAB=45°,∴CE=AC•sin45°=9km,∵灯塔B在它的南偏东15°方向,∴∠NCB=75°,∠CAB=45°,∴∠B=30°,∴BC===1km,故答案为:1.【题目点拨】本题考查的是解直角三角形的应用-方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键.12、18【解题分析】连接OB,∵OA=OB,∴∠B=∠A=30°,∵∠COA=90°,∴AC=2OC=2×6=12,∠ACO=60°,∵∠ACO=∠B+∠BOC,∴∠BOC=∠ACO-∠B=30°,∴∠BOC=∠B,∴CB=OC=6,∴AB=AC+BC=18,故答案为18.13、a>1【解题分析】根据二次函数的图像,由抛物线y=ax2+5的顶点是它的最低点,知a>1,故答案为a>1.14、6.4【解题分析】根据平行投影,同一时刻物长与影长的比值固定即可解题.【题目详解】解:由题可知:1.628=树高,解得:树高=6.4米.【题目点拨】本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.15、4【解题分析】根据锐角的余弦值等于邻边比对边列式求解即可.【题目详解】∵∠C=90°,AB=6,∴2cos3BCBAB==,∴BC=23AB=4.【题目点拨】本题考查了勾股定理和锐角三角函数的概念,熟练掌握锐角三角函数的定义是解答本题的关键.在Rt△ABC中,sinAA∠=的对边斜边,cosAA∠=的邻边斜边,tanAAA∠=∠的对边的邻边.16、3【解题分析】试题分析:如图,连接AC与BD相交于点O,∵四边形ABCD是菱形,∴AC⊥BD,BO=12BD,CO=12AC,由勾股定理得,AC=2233+=32,BD=2211+=2,所以,BO=122⨯=22,CO=1322⨯=322,所以,tan∠DBC=COBO=32222=3.故答案为3.考点:3.菱形的性质;3.解直角三角形;3.网格型.17、2 3 -【解题分析】先把带分数化成假分数可得:13122-=-,然后根据倒数的概念可得:32-的倒数是23-,故答案为:23-.三、解答题(共7小题,满分69分)18、(1)50;(2)16;(3)56(4)见解析【解题分析】(1)用A等级的频数除以它所占的百分比即可得到样本容量;(2)用总人数分别减去A、B、D等级的人数得到C等级的人数,然后补全条形图;(3)用700乘以D等级的百分比可估计该中学八年级学生中体能测试结果为D等级的学生数;(4)画树状图展示12种等可能的结果数,再找出抽取的两人恰好都是男生的结果数,然后根据概率公式求解.【题目详解】(1)10÷20%=50(名)答:本次抽样调查共抽取了50名学生.(2)50-10-20-4=16(名)答:测试结果为C等级的学生有16名.图形统计图补充完整如下图所示:(3)700×450=56(名)答:估计该中学八年级学生中体能测试结果为D等级的学生有56名. (4)画树状图为:共有12种等可能的结果数,其中抽取的两人恰好都是男生的结果数为2,所以抽取的两人恰好都是男生的概率=21 126.【题目点拨】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.19、(1)证明见解析;(2)①;②3.【解题分析】(1) 过点A作AF⊥BP于F,根据等腰三角形的性质得到BF=BP,易证Rt△ABF∽Rt△BCE,根据相似三角形的性质得到,即可证明BP=CE.(2) ①延长BP、AD交于点F,过点A作AG⊥BP于G,证明△ABG≌△BCP,根据全等三角形的性质得BG=CP,设BG=1,则PG=PC=1,BC=AB=,在Rt△ABF中,由射影定理知,AB2=BG·BF=5,即可求出BF=5,PF=5-1-1=3,即可求出的值;②延长BF、AD交于点G,过点A作AH⊥BE于H,证明△ABH≌△BCE,根据全等三角形的性质得BG=CP,设BH=BP=CE=1,又,得到PG=,BG=,根据射影定理得到AB2=BH·BG ,即可求出AB=,根据勾股定理得到,根据等腰直角三角形的性质得到.【题目详解】解:(1) 过点A作AF⊥BP于F∵AB=AP∴BF=BP,∵Rt△ABF∽Rt△BCE∴∴BP=CE.(2) ①延长BP、AD交于点F,过点A作AG⊥BP于G∵AB=BC∴△ABG≌△BCP(AAS)∴BG=CP设BG=1,则PG=PC=1∴BC=AB=在Rt△ABF中,由射影定理知,AB2=BG·BF=5∴BF=5,PF=5-1-1=3∴②延长BF、AD交于点G,过点A作AH⊥BE于H ∵AB=BC∴△ABH≌△BCE(AAS)设BH=BP=CE=1∵∴PG=,BG=∵AB2=BH·BG∴AB=∴∵AF平分∠PAD,AH平分∠BAP∴∠FAH=∠BAD=45°∴△AFH为等腰直角三角形∴【题目点拨】考查等腰三角形的性质,勾股定理,射影定理,平行线分线段成比例定理等,解题的关键是作出辅助线.难度较大.20、木竿PQ 的长度为3.35米.【解题分析】过N 点作ND ⊥PQ 于D ,则四边形DPMN 为矩形,根据矩形的性质 得出DP ,DN 的长,然后根据同一时刻物高与影长成正比求出QD 的长,即可得出PQ 的长.试题解析:【题目详解】解:过N 点作ND ⊥PQ 于D ,则四边形DPMN 为矩形,∴DN =PM =1.8m ,DP =MN =1.1m , ∴AB QD BC DN=, ∴QD =AB DN BC ⋅=2.25, ∴PQ =QD +DP = 2.25+1.1=3.35(m ).答:木竿PQ 的长度为3.35米.【题目点拨】本题考查了相似三角形的应用,作出辅助线,根据同一时刻物高与影长成正比列出比例式是解决此题的关键.21、()1为2y x 2x 1=+-;()2点Q 的坐标为()3,2--或()1,2-. 【解题分析】()1依据抛物线的对称轴方程可求得b 的值,然后将点B 的坐标代入线22y x x c =-+可求得c 的值,即可求得抛物线的表达式;()2由平移后抛物线的顶点在x 轴上可求得平移的方向和距离,故此4QP =,然后由点QO PO =,//QP y 轴可得到点Q 和P 关于x 对称,可求得点Q 的纵坐标,将点Q 的纵坐标代入平移后的解析式可求得对应的x 的值,则可得到点Q 的坐标.【题目详解】()1抛物线2y x bx c =++顶点A 的横坐标是1-, b x 12a ∴=-=-,即b 121-=-⨯,解得b 2=. 2y x 2x c ∴=++.将()B 0,1-代入得:c 1=-,∴抛物线的解析式为2y x 2x 1=+-.()2抛物线向下平移了4个单位.∴平移后抛物线的解析式为2y x 2x 5=+-,PQ 4=.OP OQ =,∴点O 在PQ 的垂直平分线上.又QP //y 轴,∴点Q 与点P 关于x 轴对称.∴点Q 的纵坐标为2-.将y 2=-代入2y x 2x 5=+-得:2x 2x 52+-=-,解得:x 3=-或x 1=. ∴点Q 的坐标为()3,2--或()1,2-.【题目点拨】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、二次函数的平移规律、线段垂直平分线的性质,发现点Q 与点P 关于x 轴对称,从而得到点Q 的纵坐标是解题的关键.22、(1)购买一套茶艺耗材需要450元,购买一套陶艺耗材需要600元;(2)m 的值为95.【解题分析】(1)设购买一套茶艺耗材需要x 元,则购买一套陶艺耗材需要()150x +元,根据购买茶艺耗材的数量是陶艺耗材数量的2倍列方程求解即可;(2)设今年原计划购买茶艺耗材和陶艺素材的数量均为a ,根据两种耗材的总价相等列方程求解即可.【题目详解】(1)设购买一套茶艺耗材需要x 元,则购买一套陶艺耗材需要()150x +元,根据题意,得18000120002150x x =⨯+. 解方程,得450x =.经检验,450x =是原方程的解,且符合题意 150600x ∴+=.答:购买一套茶艺耗材需要450元,购买一套陶艺耗材需要600元.(2)设今年原计划购买茶艺耗材和陶艺素材的数量均为a ,由题意得:()()45021 2.5%m a m -⋅+ ()()6001501%a m =-⋅+整理,得2950m m -=解方程,得195m =,20m =(舍去).m ∴的值为95.【题目点拨】本题考查了分式方程的应用及一元二次方程的应用,找出等量关系,列出方程是解答本题的关键,列方程解决实际问题注意要检验与实际情况是否相符.23、(1)4AB =;(2)47=m 或1. 【解题分析】(1)把m=2代入两个方程,解方程即可求出AC 、BC 的长,由C 为线段AB 上一点即可得AB 的长;(2)分别解两个方程可得m BC 2=,AC 2m 1=-,根据C 为线段AB 的三等分点分别讨论C 为线段AB 靠近点A 的三等分点和C 为线段AB 靠近点B 的三等分点两种情况,列关于m 的方程即可求出m 的值.【题目详解】(1)当m 2=时,有()1x 122+=,()2x 223+=, 由方程()1x 122+=,解得x 3=,即AC 3=. 由方程()2x 223+=,解得x 1=,即BC 1=. 因为C 为线段AB 上一点,所以AB AC BC 4=+=.(2)解方程()1x 1m 2+=,得x 2m 1=-, 即AC 2m 1=-. 解方程()2x m m 3+=,得m x 2=,即m BC 2=. ①当C 为线段AB 靠近点A 的三等分点时, 则BC 2AC =,即()m 22m 12=-,解得4m 7=. ②当C 为线段AB 靠近点B 的三等分点时, 则AC 2BC =,即m 2m 12?2-=,解得m 1=. 综上可得,4m 7=或1. 【题目点拨】本题考查一元一次方程的几何应用,注意讨论C 点的位置,避免漏解是解题关键.24、(1)详见解析;(2)1.【解题分析】(1)根据平行线的性质得到∠ADB =∠CBD ,根据角平分线定义得到∠ABD =∠CBD ,等量代换得到∠ADB =∠ABD ,根据等腰三角形的判定定理得到AD =AB ,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE =90°,等量代换得到∠CDE =∠E ,根据等腰三角形的判定得到CD =CE =BC ,根据勾股定理得到DE 6,于是得到结论.【题目详解】(1)证明:∵AD ∥BC ,∴∠ADB =∠CBD ,∵BD 平分∠ABC ,∴∠ABD =∠CBD ,∴∠ADB =∠ABD ,∴AD =AB ,∵BA =BC ,∴AD =BC ,∴四边形ABCD 是平行四边形,∵BA =BC ,∴四边形ABCD 是菱形;(2)解:∵DE ⊥BD ,∴∠BDE=90°,∴∠DBC+∠E=∠BDC+∠CDE=90°,∵CB=CD,∴∠DBC=∠BDC,∴∠CDE=∠E,∴CD=CE=BC,∴BE=2BC=10,∵BD=8,∴DE22BE BD6,∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长=AD+AB+BE+DE=1.【题目点拨】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.。

2022年湖南省长沙市中考数学试卷含答案详解(高清word版)

2022年湖南省长沙市中考数学试卷含答案详解(高清word版)

2022年湖南省长沙市中考数学试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. −6的相反数是( )A. −16B. −6 C. 16D. 62. 如图是由5个大小相同的正方体组成的几何体,该几何体的主视图是( )A.B.C.D.3. 下列说法中,正确的是( )A. 调查某班45名学生的身高情况宜采用全面调查B. “太阳东升西落”是不可能事件C. 为了直观地介绍空气各成分的百分比,最适合使用的统计图是条形统计图D. 任意投掷一枚质地均匀的硬币26次,出现正面朝上的次数一定是13次4. 下列计算正确的是( )A. a7÷a5=a2B. 5a−4a=1C. 3a2⋅2a3=6a6D. (a−b)2=a2−b25. 在平面直角坐标系中,点(5,1)关于原点对称的点的坐标是( )A. (−5,1)B. (5,−1)C. (1,5)D. (−5,−1)6. 《义务教育课程标准(2022年版)》首次把学生学会炒菜纳入劳动教育课程,并作出明确规定.某班有7名学生已经学会炒的菜品的种数依次为:3,5,4,6,3,3,4.则这组数据的众数和中位数分别是( )A. 3,4B. 4,3C. 3,3D. 4,47. 为落实“双减”政策,某校利用课后服务开展了主题为“书香满校园”的读书活动.现需购买甲、乙两种读本共100本供学生阅读,其中甲种读本的单价为10元/本,乙种读本的单价为8元/本,设购买甲种读本x本,则购买乙种读本的费用为( )A. 8x元B. 10(100−x)元C. 8(100−x)元D. (100−8x)元8. 如图,AB//CD,AE//CF,∠BAE=75°,则∠DCF的度数为( )A. 65°B. 70°C. 75°D. 105°9. 如图,PA,PB是⊙O的切线,A,B为切点,若∠AOB=128°,则∠P的度数为( )A. 32°B. 52°C. 64°D. 72°10. 如图,在△ABC中,按以下步骤作图:AB的长为半径画弧,两弧交于P,Q两点;①分别以点A,B为圆心,大于12②作直线PQ交AB于点D;③以点D为圆心,AD长为半径画弧,交PQ于点M,连接AM,BM.若AB=2√2,则AM的长为( )A. 4B. 2C. √3D. √2二、填空题(本大题共6小题,共18.0分)11. 若式子√x−19在实数范围内有意义,则实数x的取值范围是______.12. 分式方程2x =5x+3的解是______.13. 如图,A,B,C是⊙O上的点,OC⊥AB,垂足为点D,且D为OC的中点,若OA=7,则BC的长为______.14. 关于x的一元二次方程x2+2x+t=0有两个不相等的实数根,则实数t的值为.15. 为了解某校学生对湖南省“强省会战略”的知晓情况,从该校全体1000名学生中,随机抽取了100名学生进行调查,结果显示有95名学生知晓.由此,估计该校全体学生中知晓湖南省“强省会战略”的学生有______名.16. 当今大数据时代,“二维码”具有存储量大、保密性强、追踪性高等特点,它已被广泛应用于我们的日常生活中,尤其在全球“新冠”疫情防控期间,区区“二维码”已经展现出无穷威力.看似“码码相同”,实则“码码不同”.通常,一个“二维码”由1000个大大小小的黑白小方格组成,其中大约80%的小方格专门用做纠错码和其他用途的编码,这相当于1000个方格中只有200个方格作为数据码.根据相关数学知识,这200个方格可以生成2200个不同的数据二维码,现有四名网友对2200的理解如下:YYDS(永远的神):2200就是200个2相乘,它是一个非常非常大的数;DDDD(懂的都懂):2200等于2002;JXND(觉醒年代):2200的个位数字是6;QGYW(强国有我):我知道210=1024,103=1000,所以我估计2200比1060大.其中对2200的理解错误的网友是 (填写网名字母代号).三、解答题(本大题共9小题,共72.0分。

2020年中考数学试题解析(含答案)湖南长沙

2020年中考数学试题解析(含答案)湖南长沙
保证原创精品 已受版权保护
2020 年中考数学试卷参考答案与试题解析
湖南省长沙市
一、选择题(共 10 小题,每小题 3 分,共 30 分)
1. 1 的倒数是( ) 2
A、2 考点: 倒数.
B、-2
C、 1 2
分析:根据乘积为的 1 两个数倒数,可得一个数的倒数.
解答: 解:
1
的倒数是
2,
2
故选:A.
∴AD=AB=2, 又∵∠DAB=60°, ∴△DAB 是等边三角形, ∴AD=BD=AB=2, 则对角线 BD 的长是 2. 故选:C. 点评:此题主要考查了菱形的性质以及等边三角形的判定,得出△DAB 是等边三角形是解题关 键.
9.(3 分)(2020•长沙)下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转
1
保证原创精品 已受版权保护
故选 B. 点评: 本题考查了平均数及中位数的知识,中位数是将一组数据从小到大(或从大到小)重新排列
后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.
4.(3 分)(2020•长沙)平行四边形的对角线一定具有的性质是(
A. 相等
B. 互相平分
C.互相垂直
选项不符合题意;
B、六棱柱的主视图、左视图、俯视图分别为四边形,四边形,六边形,故 B 选项不符合题
意;
C、球的主视图、左视图、俯视图分别为三个全等的圆,故 C 选项符合题意;
D、四棱锥的主视图、左视图、俯视图分别为三角形,三角形,四边形,故 D 选项不符合题
意;
故选 C.
点评: 考查三视图的有关知识,注意三视图都相同的常见的几何体有球和正方体.
5.(3 分)(2020•长沙)下列计算正确的是( )

2023年湖南省长沙市中考数学真题(解析版)全文

2023年湖南省长沙市中考数学真题(解析版)全文

2023年湖南省长沙市中考数学试卷一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项,本大题共10个小题,每小题3分,共30分)1.【答案】B【解析】解:A 选项,17是分数,属于有理数,故本选项不符合题意;B 选项,π是无限不循环小数是无理数,故本选项符合题意;C 选项,﹣1是整数,属于有理数,故本选项不符合题意;D 选项,0是整数,属于有理数,故本选项不符合题意.故选:B .2.【答案】D【解析】解:根据轴对称图形的定义可知:A 、B 、C 都不是轴对称图形,只有D 是轴对称图形.故选:D .3.【答案】A【解析】解:A 选项,235x x x ×=,本选项符合题意;B 选项,()339x x =,本选项不符合题意;C 选项,()21x x x x +=+,本选项不符合题意;D 选项,()2221441a a a -=-+,本选项不符合题意;故选:A .4.【答案】C【解析】解:134+= ,∴1,3,4不能组成三角形,故A 选项不符合题意;227+< ,∴2,2,7不能组成三角形,故B 不符合题意;457+> ,754-<∴4,5,7能组成三角形,故C 符合题意;336+= ,∴3,3,6不能组成三角形,故D 不符合题意,故选:C .5.【答案】A【解析】解:∵科学记数法的表现形式为10n a ⨯的形式,其中110a ≤<,∴121400000000000 1.410⨯=,故选:A .6.【答案】C【解析】解:如图所示,∵直线m ∥直线n ,∴2180CAD ∠+∠=︒,∴12180BAC ∠+∠+∠=︒∵AC AB ⊥,∴90BAC ∠=︒,∵140∠=︒,∴40902180∠︒+︒+=︒,∴250∠=︒,故选:C .7.【答案】B【解析】解:A 选项,由纵坐标看出,这一天中最高气温是32℃,说法正确,故A 不符合题意;B 选项,这组数据的中位数是27,原说法错误,故B 符合题意;C 选项,这组数据的众数是24,说法正确,故C 不符合题意;D 选项,周四与周五的最高气温相差8℃,由图,周四、周五最高温度分别为32℃,24℃,故温差为32248-=(℃),说法正确,故D 不符合题意;故选:B .8.【答案】A【解析】解:由240x +>得2x >-,由10x -≤得1x ≤,解集在数轴上表示为:,则不等式组的解集为21x -<≤.故选:A .9.【答案】D【解析】解:由一次函数、正比例函数增减性知,x 系数小于0时,y 随x 的增大而减小,1y x =-+,10-<故只有D 符合题意,故选:D .二、填空题(本大题共6个小题,每小题3分,共18分)10.【答案】(n -10)(n +10)【解析】解:n 2-100=n 2-102=(n -10)(n +10).故答案为:(n -10)(n +10).11.【答案】9【解析】解:()109108859++++÷=(小时).即该学生这5天的平均睡眠时间是9小时.故答案为:9.12.【答案】65【解析】解:根据题意可得:BD BE =,∴BDE BED ∠=∠,∵18050ABC BDE BED ABC ∠+∠+∠=︒∠=︒,,∴65BDE BED ∠=∠=︒.故答案为:65.13.【答案】196##136【解析】解:AOB 的面积为||192212k k ==,所以k =196.故答案为:196.14.【答案】1【解析】解:如图,连接OB ,∵60ACB ∠=︒,∴2120AOB ACB ∠=∠=︒,∵OD AB ⊥,∴ AD BD=,90OEA ∠=︒,∴1602AOD BOD AOB ∠=∠=∠=︒,∴906030OAE ∠=︒-︒=︒,∴112122OE OA ==⨯=,故答案为:1.15.【答案】4【解析】解:设地球的半径为r 万里,则2π8r =,解得4πr =,∴火星的半径为2π万里,∴经过火星球心的截面的圆的周长大约为2π⨯2π4(=万里).故答案为:4.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分,解答应写出必要的文字说明、证明过程或演算步骤)16.【答案】1-【解析】解:原式1222=+-⨯-12=+--1=-.17.【答案】46a -,6【解析】解:()()()222233a a a a a -+-++,2224263a a a a =---+,46a =-;当13a =-时,原式1464263⎛⎫=-⨯-=+= ⎪⎝⎭.18.【答案】(1)4km (2)飞船从A 处到B 处的平均速度约为0.3km /s【解析】(1)解:在Rt AOC 中,90AOC ∠=︒ ,30ACO ∠=︒,8km AC =,AO ∴=12AC =1842⨯=()km ,(2)在Rt AOC 中,90AOC ∠=︒ ,30ACO ∠=︒,8km AC =,OC ∴=24AC =()km ,在Rt BOC 中,90BOC ∠=︒ ,45BCO ∠=︒,45BCO OBC ∠∠∴==︒,4OB OC ∴==km ,(4AB OB OA ∴=-=4)km ,∴飞船从A 处到B 处的平均速度=410()0.3km /s ≈.19.【答案】(1)150,36;(2)见解析(3)144(4)估计该校参加竞赛的3000名学生中达到“优秀”等级的学生人数有480人【解析】(1)6040%150n =¸=,∵54%100%36%150m =⨯=,∴36m =;故答案为:150,36;(2)D 等级学生有:150********---=(人),补全的频数分布直方图,如图所示:(3)扇形统计图中B 等级所在扇形的圆心角度数为36040%144⨯︒=︒;故答案为:144;(4)300016%480´=(人),答:估计该校参加竞赛的3000名学生中达到“优秀”等级的学生人数有480人.20.【答案】(1)见解析(2)4BD =【解析】(1)证明:CD AB ⊥ ,BE AC ⊥,90AEB ADC ∴∠=∠=︒,在ABE 和ACD 中,AEB ADC BAE CAD AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AAS ABE ACD ∴ ≌;(2)解:ABE ACD ≌,6AD AE ∴==,在Rt ACD中,AC ==,10AB AC == ,1064BD AB AD ∴=-=-=.21.【答案】(1)该班级胜负场数分别是13场和2场;(2)该班级这场比赛中至少投中了4个3分球.【解析】(1)解:设胜了x 场,负了y 场,根据题意得:15341x y x y +=⎧⎨+=⎩,解得132x y =⎧⎨=⎩,答:该班级胜负场数分别是13场和2场;(2)设班级这场比赛中投中了m 个3分球,则投中了()26m -个2分球,根据题意得:()322656m m +-≥,解得4m ≥,答:该班级这场比赛中至少投中了4个3分球.22.【答案】(1)见解析(2)3BF =;ADF △的面积为【解析】(1)证明:在ABCD Y 中,∴AB CD ∥,∴CDE F ∠=∠,∵DF 平分ADC ∠,∴ADE CDE ∠=∠,∴F ADF ∠=∠,∴AD AF =.(2)解:∵63AD AF AB ===,,∴3BF AF AB =-=;过D 作DH AF ⊥交FA 的延长线于H ,∵120BAD ∠=︒,∴60DAH ∠=︒,∴30ADH ∠=︒,∴132AH AD ==,∴2233D H A D A H =-=∴ADF △的面积1163922AF DH =⋅=⨯⨯=.23.【答案】(1)BD 是O 的切线,证明见解析(2)152+(3)()01y x x =<≤【解析】(1)解:BD 是O 的切线.证明:如图,在ABC 中,222AB BC AC =+,∴90ACB ∠=︒.又点A ,B ,C 在O 上,∴AB 是O 的直径.∵90ACB ∠=︒,∴90CAB ABC ∠+∠=︒.又DBC CAB ∠=∠,∴90DBC ABC ∠+∠=︒.∴90ABD Ð=°.∴BD 是O 的切线.(2)由题意得,12112122S BC CD S BC AC S AD BC ⋅⋅===⋅,,.∵()212S S S ⋅=,∴2112122BC CD AD BC BC AC =⎛⎫⋅⋅⋅⋅ ⎪⎝⎭.∴2•CD AD AC =.∴()2CD CD AC AC +=.又∵9090D DBC ABC A DBC A ∠+∠=︒∠+∠=︒∠=∠,,,∴D ABC ∠=∠.∴tan tan BC AC D ABC CD BC∠==∠=.∴2BC CD AC=.又()2CD CD AC AC +=,∴4222BC BC AC AC+=.∴4224BC AC BC AC +⋅=.∴241AC AC BC BC ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭.由题意,设()2tan D m =,∴2AC m BC ⎛⎫= ⎪⎝⎭.∴21m m +=.∴12m =.∵0m >,∴12m =.∴()22t an 1D =.(3)设A α∠=,∵90A ABC ABC DBC ABC N ∠+∠=∠+∠=∠+∠=︒,∴A DBC N α∠=∠=∠=.如图,连接OM .∴在Rt OFM △中,OF ==∴1BF BO OF =+=1AF OA OF =-=∴在Rt AFE 中,(tan 1tan EF AF αα=⋅=-⋅,1cos cos AF AE αα==.在Rt ABC △中,sin 2sin BC AB αα=⋅=.(∵1r =,∴2AB =)cos 2cos AC AB αα=⋅=.在Rt BFN △中,11sin sin BF BN αα+==,11tan tan BF FN αα+==.∴y FE FN =⋅2x =2x =2x =21x x =⋅x =.即y x =.∵FM AB ⊥,∴FM 最大值为F 与O 重合时,即为1.∴01x <≤.综上,()01y x x =<≤.24.【答案】(1)k 的值为1-,m 的值为3,n 的值为2;(2)①函数y 2的图像的对称轴为13x =-;②函数2y 的图像过两个定点()01,,2,13⎛⎫- ⎪⎝⎭,理由见解析;(3)能构成正方形,此时2S >.【解析】(1)解:由题意可知:2212120a c a c b b ===-≠,,,∴321m n k ===-,,.答:k 的值为1-,m 的值为3,n 的值为2.(2)解:①∵点()P r t ,与点()()Q s t r s ≠,始终在关于x 的函数212y x rx s =++的图像上运动,∴对称轴为222r s r x +==-,∴3s r =-,∴2221y sx xx =-+,∴对称轴为2123r r x s s -=-==-.答:函数2y 的图像的对称轴为13x =-.②()222321321y rx rx x x r =--+=-++,令2320x x +=,解得1220,3x x ==-,∴过定点()01,,2,13⎛⎫- ⎪⎝⎭.答:函数y 2的图像过定点()01,,2,13⎛⎫-⎪⎝⎭.(3)解:由题意可知21y ax bx c =++,22y cx bx a =-+,∴224,,2,4244b ac b b ac b A B aa c c ⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭,∴CD a =,11EF =-,∵CD EF =且240b ac ->,∴a c =;①若a c =-,则2212,y ax bx a y ax bx a =+-=--+,要使以A ,B ,C ,D 为顶点的四边形能构成正方形,则CAD CBD ,为等腰直角三角形,∴2A CD y =,∴2242||||4a b a a--=⋅,∴224b a =+,∴2244b a +=,∴2222222114142222b ac b a S CD a a a-+==⋅=⋅=正,∵22440b a =->,∴201a <<,∴2S >正;②若a c =,则A 、B 关于y 轴对称,以A ,B ,C ,D 为顶点的四边形不能构成正方形,综上,以A ,B ,C ,D 为顶点的四边形能构成正方形,此时2S >.。

2020年湖南省长沙市中考数学试卷和答案解析

2020年湖南省长沙市中考数学试卷和答案解析

2020年湖南省长沙市中考数学试卷和答案解析一、选择题(在下列各题的四个选项中,只有一项是符合题意的.请在答题卡中填涂符合题意的选项.本大题共12个小题,每小题3分,共36分)1.(3分)(﹣2)3的值等于()A.﹣6B.6C.8D.﹣8解析:根据有理数的乘方的运算法则即可得到结果.参考答案:解:(﹣2)3=﹣8,故选:D.点拨:此题考查了有理数的乘方,熟练掌握有理数的乘方的运算法则是解本题的关键.2.(3分)下列图形中,是轴对称图形但不是中心对称图形的是()A.B.C.D.解析:根据轴对称图形与中心对称图形的概念结合各图形的特点求解即可.参考答案:解:A、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;B、是轴对称图形,不是中心对称图形,故此选项符合题意;C、既不是轴对称图形,也不是中心对称图形,故此选项不合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意;故选:B.点拨:本题考查了中心对称图形和轴对称图形的知识,注意掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.3.(3分)为了将“新冠”疫情对国民经济的影响降至最低,中国政府采取积极的财政税收政策,切实减轻企业负担,以促进我国进出口企业平稳发展.据国家统计局相关数据显示,2020年1月至5月,全国累计办理出口退税632400000000元,其中数字632400000000用科学记数法表示为()A.6.324×1011B.6.324×1010C.632.4×109D.0.6324×1012解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.参考答案:解:632 400 000 000=6.324×1011,故选:A.点拨:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)下列运算正确的是()A.+=B.x8÷x2=x6C.×=D.(a5)2=a7解析:根据合并同类项,系数相加字母和字母的指数不变;同底数幂的除法,底数不变指数相减;二次根式的乘法计算;幂的乘方,底数不变,指数相乘,利用排除法求解.参考答案:解:A、与不是同类项,不能合并,计算错误,故本选项不符合题意.B、原式=x8﹣2=x6,计算正确,故本选项符合题意.C、原式==,计算错误,故本选项不符合题意.D、原式=a5×2=a10,计算错误,故本选项不符合题意.故选:B.点拨:本题主要考查了二次根式的混合运算,幂的乘方与合并同类项以及同底数幂的除法,属于基础计算题,熟记相关计算法则即可解答.5.(3分)2019年10月,《长沙晚报》对外发布长沙高铁西站设计方案.该方案以“三湘四水,杜娟花开”为设计理念,塑造出“杜娟花开”的美丽姿态.该高铁站建设初期需要运送大量土石方.某运输公司承担了运送总量为106m3土石方的任务,该运输公司平均运送土石方的速度v(单位:m3/天)与完成运送任务所需时间t(单位:天)之间的函数关系式是()A.v=B.v=106t C.v=t2D.v=106t2解析:按照运送土石方总量=平均运送土石方的速度v×完成运送任务所需时间t,列出等式,然后变形得出v关于t 的函数,观察选项可得答案.参考答案:解:∵运送土石方总量=平均运送土石方的速度v×完成运送任务所需时间t,∴106=vt,∴v=,故选:A.点拨:本题考查了反比例函数的应用,理清题中的数量关系是得出函数关系式的关键.6.(3分)从一艘船上测得海岸上高为42米的灯塔顶部的仰角为30°时,船离灯塔的水平距离是()A.42米B.14米C.21米D.42米解析:在直角三角形中,已知角的对边求邻边,可以用正切函数来解决.参考答案:解:根据题意可得:船离海岸线的距离为42÷tan30°=42(米)故选:A.点拨:本题考查解直角三角形的应用﹣仰角的定义,要求学生能借助仰角构造直角三角形并解直角三角形.7.(3分)不等式组的解集在数轴上表示正确的是()A.B.C.D.解析:根据解不等式组的方法可以求得该不等组的解集,从而可以将该不等式组的解集在数轴上表示出来,本题得以解决.参考答案:解:由不等式组,得﹣2≤x<2,故该不等式组的解集在数轴表示为:故选:D.点拨:本题考查解一元一次不等式组、在数轴上表示不等式组的解集,解答本题的关键是明确解一元一次不等式组的方法.8.(3分)一个不透明袋子中装有1个红球,2个绿球,除颜色外无其他差别.从中随机摸出一个球,然后放回摇匀,再随机摸出一个.下列说法中,错误的是()A.第一次摸出的球是红球,第二次摸出的球一定是绿球B.第一次摸出的球是红球,第二次摸出的不一定是红球C.第一次摸出的球是红球的概率是D.两次摸出的球都是红球的概率是解析:根据概率公式分别对每一项进行分析即可得出答案.参考答案:解:A、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故本选项错误;B、第一次摸出的球是红球,第二次摸出的不一定是红球,故本选项正确;C、∵不透明袋子中装有1个红球,2个绿球,∴第一次摸出的球是红球的概率是,故本选项正确;D、共用9种等情况数,分别是红红、红绿、红绿、绿红、绿绿、绿绿、绿红、绿绿、绿绿,则两次摸出的球都是红球的概率是,故本选项正确;故选:A.点拨:此题考查了概率的求法,解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.9.(3分)2020年3月14日,是人类第一个“国际数学日”.这个节日的昵称是“π(Day)”.国际数学日之所以定在3月14日,是因为“3.14”是与圆周率数值最接近的数字.在古代,一个国家所算得的圆周率的精确程度,可以作为衡量这个国家当时数学与科技发展水平的一个主要标志.我国南北朝时的祖冲之是世界上最早把圆周率的精确值计算到小数点后第7位的科学巨匠,该成果领先世界一千多年.以下对于圆周率的四个表述:①圆周率是一个有理数;②圆周率是一个无理数;③圆周率是一个与圆的大小无关的常数,它等于该圆的周长与直径的比;④圆周率是一个与圆的大小有关的常数,它等于该圆的周长与半径的比.其中表述正确的序号是()A.②③B.①③C.①④D.②④解析:根据实数的分类和π的特点进行解答即可得出答案.参考答案:解:因为圆周率是一个无理数,是一个与圆的大小无关的常数,它等于该圆的周长与直径的比,所以表述正确的序号是②③;故选:A.点拨:此题考查了实数,熟练掌握实数的分类和“π”的意义是解题的关键.10.(3分)如图:一块直角三角板的60°角的顶点A与直角顶点C 分别在两平行线FD、GH上,斜边AB平分∠CAD,交直线GH 于点E,则∠ECB的大小为()A.60°B.45°C.30°D.25°解析:依据角平分线的定义以及平行线的性质,即可得到∠ACE的度数,进而得出∠ECB的度数.参考答案:解:∵AB平分∠CAD,∴∠CAD=2∠BAC=120°,又∵DF∥HG,∴∠ACE=180°﹣∠DAC=180°﹣120°=60°,又∵∠ACB=90°,∴∠ECB=∠ACB﹣∠ACE=90°﹣60°=30°,故选:C.点拨:本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.11.(3分)随着5G网络技术的发展,市场对5G产品的需求越来越大,为满足市场需求,某大型5G产品生产厂家更新技术后,加快了生产速度,现在平均每天比更新技术前多生产30万件产品,现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同.设更新技术前每天生产x万件产品,依题意得()A.=B.=C.=D.=解析:设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,根据工作时间=工作总量÷工作效率结合现在生产500万件产品所需时间与更新技术前生产400万件产品所需时间相同,即可得出关于x的分式方程,此题得解.参考答案:解:设更新技术前每天生产x万件产品,则更新技术后每天生产(x+30)万件产品,依题意,得:=.故选:B.点拨:本题考查了由实际问题抽象出分式方程,找准等量关系,正确列出分式方程是解题的关键.12.(3分)“闻起来臭,吃起来香”的臭豆腐是长沙特色小吃,臭豆腐虽小,但制作流程却比较复杂,其中在进行加工煎炸臭豆腐时,我们把“焦脆而不糊”的豆腐块数的百分比称为“可食用率”.在特定条件下,“可食用率”P与加工煎炸时间t(单位:分钟)近似满足的函数关系为:p=at2+bt+c(a≠0,a,b,c是常数),如图记录了三次实验的数据.根据上述函数关系和实验数据,可以得到加工煎炸臭豆腐的最佳时间为()A.3.50分钟B.4.05分钟C.3.75分钟D.4.25分钟解析:将图象中的三个点(3,0.8)、(4,0.9)、(5,0.6)代入函数关系p=at2+bt+c中,可得函数关系式为:p=﹣0.2t2+1.5t﹣1.9,再根据加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标,求出即可得结论.参考答案:解:将图象中的三个点(3,0.8)、(4,0.9)、(5,0.6)代入函数关系p=at2+bt+c中,,解得,所以函数关系式为:p=﹣0.2t2+1.5t﹣1.9,由题意可知:加工煎炸臭豆腐的最佳时间为抛物线顶点的横坐标:t =﹣=﹣=3.75,则当t=3.75分钟时,可以得到最佳时间.故选:C.点拨:本题考查了二次函数的应用,解决本题的关键是掌握二次函数的性质.二、填空题(本大题共4个小题,每小题3分,共12分)13.(3分)长沙地铁3号线、5号线即将试运行,为了解市民每周乘坐地铁出行的次数,某校园小记者随机调查了100名市民,得到如下统计表:次数7次及以上654321次及以下人数81231241564这次调查中的众数和中位数分别是5,5.解析:根据中位数和众数的概念求解即可.参考答案:解:这次调查中的众数是5,这次调查中的中位数是,故答案为:5;5.点拨:本题考查中位数和众数的概念;在一组数据中出现次数最多的数叫做这组数据的众数;将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.14.(3分)某数学老师在课外活动中做了一个有趣的游戏:首先发给A、B、C三个同学相同数量的扑克牌(假定发到每个同学手中的扑克牌数量足够多),然后依次完成以下三个步骤:第一步,A同学拿出二张扑克牌给B同学;第二步,C同学拿出三张扑克牌给B同学;第三步,A同学手中此时有多少张扑克牌,B同学就拿出多少张扑克牌给A同学.请你确定,最终B同学手中剩余的扑克牌的张数为7.解析:本题是整式加减法的综合运用,设每人有牌x张,解答时依题意列出算式,求出答案.参考答案:解:设每人有牌x张,B同学从A同学处拿来二张扑克牌,又从C同学处拿来三张扑克牌后,则B同学有(x+2+3)张牌,A同学有(x﹣2)张牌,那么给A同学后B同学手中剩余的扑克牌的张数为:x+2+3﹣(x ﹣2)=x+5﹣x+2=7.故答案为:7.点拨:本题考查了列代数式以及整式的加减,解决此题的关键根据题目中所给的数量关系,建立数学模型.根据运算提示,找出相应的等量关系.15.(3分)已知圆锥的母线长为3,底面半径为1,该圆锥的侧面展开图的面积为3π.解析:根据圆锥的侧面积公式:S侧=2πr•l=πrl.即可得圆锥的侧面展开图的面积.参考答案:解:∵圆锥的侧面展开图是扇形,∴S侧=πrl=3×1π=3π,∴该圆锥的侧面展开图的面积为3π.故答案为:3π.点拨:本题考查了圆锥的计算,解决本题的关键是掌握圆锥的侧面展开图的扇形面积公式.16.(3分)如图,点P在以MN为直径的半圆上运动(点P不与M,N重合),PQ⊥MN,NE平分∠MNP,交PM于点E,交PQ于点F.(1)+=1.(2)若PN2=PM•MN,则=.解析:(1)证明△PEN∽△QFN,得①,证明△NPQ∽△PMQ,得②,再①×②得,再变形比例式便可求得结果;(2)证明△NPQ∽△NMP,得PN2=NQ•MN,结合已知条件得PM =NQ,再根据三角函数得,进而得MQ与NQ的方程,再解一元二次方程得答案.参考答案:解:(1)∵MN为⊙O的直径,∴∠MPN=90°,∵PQ⊥MN,∴∠PQN=∠MPN=90°,∵NE平分∠PNM,∴∠MNE=∠PNE,∴△PEN∽△QFN,∴,即①,∵∠PNQ+∠NPQ=∠PNQ+∠PMQ=90°,∴∠NPQ=∠PMQ,∵∠PQN=∠PQM=90°,∴△NPQ∽△PMQ,∴②,∴①×②得,∵QF=PQ﹣PF,∴=1﹣,∴+=1,故答案为:1;(2)∵∠PNQ=∠MNP,∠NQP=∠NPM,∴△NPQ∽△NMP,∴,∴PN2=QN•MN,∵PN2=PM•MN,∴PM=QN,∴,∵cos∠M=,∴,∴,∴NQ2=MQ2+MQ•NQ,即,设,则x2+x﹣1=0,解得,x=,或x=﹣<0(舍去),∴=,故答案为:.点拨:本题主要考查了圆的性质,相似三角形的性质与判定,角平分线的定义,关键是灵活地变换比例式.三、解答题(本大题共9个小题,第17、18、19题每小题6分,第20、21题每小题6分,第22、23题每小题6分,第24、25题每小题6分,共72分.解答应写出必要的文字说明、证明过程或演算步骤)17.(6分)计算:|﹣3|﹣(﹣1)0+cos45°+()﹣1.解析:首先化简绝对值,求零指数幂,特殊角的三角函数,负整数指数幂,再按顺序进行加减运算.参考答案:解:原式=3﹣1+4=2+1+4=7.点拨:本题主要考查了化简绝对值,零指数幂,特殊角的三角函数,负整数指数幂,熟练掌握实数的运算法则是解答此题的关键.18.(6分)先化简再求值:•﹣,其中x=4.解析:根据分式的乘法和减法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.参考答案:解:•﹣===,当x=4时,原式==3.点拨:本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.19.(6分)人教版初中数学教科书八年级上册第48页告诉我们一种作已知角的平分线的方法:已知:∠AOB.求作:∠AOB的平分线.作法:(1)以点O为圆心,适当长为半径画弧,交OA于点M,交OB于点N.(2)分别以点M,N为圆心,大于MN的长为半径画弧,两弧在∠AOB的内部相交于点C.(3)画射线OC,射线OC即为所求(如图).请你根据提供的材料完成下面问题.(1)这种作已知角的平分线的方法的依据是①.(填序号)①SSS②SAS③AAS④ASA(2)请你证明OC为∠AOB的平分线.解析:(1)直接利用角平分线的作法得出基本依据;(2)直接利用全等三角形的判定与与性质得出答案.参考答案:解:(1)这种作已知角的平分线的方法的依据是①SSS.故答案为:①(2)由基本作图方法可得:OM=ON,OC=OC,MC=NC,则在△OMC和△ONC中,,∴△OMC≌△ONC(SSS),∴∠AOC=∠BOC,即OC为∠AOB的平分线.点拨:此题主要考查了应用设计与作图,正确掌握全等三角形的判定方法是解题关键.20.(8分)2020年3月,中共中央、国务院颁布了《关于全面加强新时代大中小学劳动教育的意见》.长沙市教育局发布了“普通中小学校劳动教育状况评价指标”.为了解某校学生一周劳动次数的情况,随机抽取若干学生进行调查,得到如图统计图表:(1)这次调查活动共抽取200人;(2)m=86,n=27;(3)请将条形统计图补充完整;(4)若该校学生总人数为3000人,根据调查结果,请你估计该校一周劳动4次及以上的学生人数.解析:(1)从统计图中可知,“1次及以下”的频数为20,占调查人数的10%,可求出调查人数;(2)“3次”的占调查人数的43%,可求出“3次”的频数,确定m的值,进而求出“4次以上”的频率,确定n值,(3)求出“2次”的频数,即可补全条形统计图;(4)“4次以上”占27%,因此估计3000人的27%是“4次以上”的人数.参考答案:解:(1)20÷10%=200(人),故答案为:200;(2)200×43%=86(人),54÷200=27%,即,m=86,n=27,故答案为:86,27;(3)200×20%=40(人),补全条形统计图如图所示:(4)3000×27%=810(人),答:该校3000名学生中一周劳动4次及以上的有810人.点拨:本题考查条形统计图、扇形统计图的意义和制作方法,从两个统计图中获取数量和数量关系是正确解答的前提.21.(8分)如图,AB为⊙O的直径,C为⊙O上一点,AD与过C 点的直线互相垂直,垂足为D,AC平分∠DAB.(1)求证:DC为⊙O的切线.(2)若AD=3,DC=,求⊙O的半径.解析:(1)如图,连接OC,根据已知条件可以证明∠OCA=∠DAC,得AD∥OC,由AD⊥DC,得OC⊥DC,进而可得DC为⊙O的切线;(2)过点O作OE⊥AC于点E,根据Rt△ADC中,AD=3,DC =,可得∠DAC=30°,再根据垂径定理可得AE的长,进而可得⊙O的半径.参考答案:解:(1)如图,连接OC,∵OA=OC,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠DAC=∠OAC,∴∠OCA=∠DAC,∴AD∥OC,∵AD⊥DC,∴OC⊥DC,又OC是⊙O的半径,∴DC为⊙O的切线;(2)过点O作OE⊥AC于点E,在Rt△ADC中,AD=3,DC=,∴tan∠DAC==,∴∠DAC=30°,∴AC=2DC=2,∵OE⊥AC,根据垂径定理,得AE=EC=AC=,∵∠EAO=∠DAC=30°,∴OA==2,∴⊙O的半径为2.点拨:本题考查了切线的判定与性质、圆周角定理,解决本题的关键是掌握切线的判定与性质.22.(9分)今年6月以来,我国多地遭遇强降雨,引发洪涝灾害,人民的生活受到了极大的影响.“一方有难,八方支援”,某市筹集了大量的生活物资,用A,B两种型号的货车,分两批运往受灾严重的地区.具体运输情况如下:第一批第二批A型货车的辆数(单位:辆)12B型货车的辆数(单位:辆)35累计运输物资的吨数(单位:吨)2850备注:第一批、第二批每辆货车均满载(1)求A、B两种型号货车每辆满载分别能运多少吨生活物资?(2)该市后续又筹集了62.4吨生活物资,现已联系了3辆A种型号货车.试问至少还需联系多少辆B种型号货车才能一次性将这批生活物资运往目的地?解析:(1)设A种型号货车每辆满载能运x吨生活物资,B种型号货车每辆满载能运y吨生活物资,根据前两批具体运输情况数据表,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设还需联系m辆B种型号货车才能一次性将这批生活物资运往目的地,根据要求一次性运送62.4吨生活物资,即可得出关于m的一元一次不等式,解之取其中最小的整数值即可得出结论.参考答案:解:(1)设A种型号货车每辆满载能运x吨生活物资,B种型号货车每辆满载能运y吨生活物资,依题意,得:,解得:.答:A种型号货车每辆满载能运10吨生活物资,B种型号货车每辆满载能运6吨生活物资.(2)设还需联系m辆B种型号货车才能一次性将这批生活物资运往目的地,依题意,得:10×3+6m≥62.4,解得:m≥5.4,又∵m为正整数,∴m的最小值为6.答:至少还需联系6辆B种型号货车才能一次性将这批生活物资运往目的地.点拨:本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.23.(9分)在矩形ABCD中,E为DC边上一点,把△ADE沿AE 翻折,使点D恰好落在BC边上的点F.(1)求证:△ABF∽△FCE;(2)若AB=2,AD=4,求EC的长;(3)若AE﹣DE=2EC,记∠BAF=α,∠FAE=β,求tanα+tanβ的值.解析:(1)根据两角对应相等的两个三角形相似证明即可.(2)设EC=x,证明△ABF∽△FCE,可得=,由此即可解决问题.(3)首先证明tanα+tanβ=+=+==,设AB =CD=a,BC=AD=b,DE=x,解直角三角形求出a,b之间的关系即可解决问题.参考答案:(1)证明:∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°,由翻折可知,∠D=∠AFE=90°,∴∠AFB+∠EFC=90°,∠EFC+∠CEF=90°,∴∠AFB=∠FEC,∴△ABF∽△FCE.(2)设EC=x,由翻折可知,AD=AF=4,∴BF===2,∴CF=BC﹣BF=2,∵△ABF∽△FCE,∴=,∴=,∴x=,∴EC=.(3)∵△ABF∽△FCE,∴=,∴tanα+tanβ=+=+==,设AB=CD=a,BC=AD=b,DE=x,∴AE=DE+2CE=x+2(a﹣x)=2a﹣x,∵AD=AF=b,DE=EF=x,∠B=∠C=∠D=90°,∴BF=,CF==,∵AD2+DE2=AE2,∴b2+x2=(2a﹣x)2,∴a2﹣ax=b2,∵△ABF∽△FCE,∴=,∴=,∴a2﹣ax=•,∴b2=•,整理得,16a4﹣24a2b2+9b4=0,∴(4a2﹣3b2)2=0,∴=,∴tanα+tanβ==.点拨:本题属于相似三角形综合题,考查了矩形的性质翻折变换,相似三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数解决问题,属于中考压轴题.24.(10分)我们不妨约定:若某函数图象上至少存在不同的两点关于原点对称,则把该函数称之为“H函数”,其图象上关于原点对称的两点叫做一对“H点”.根据该约定,完成下列各题.(1)在下列关于x的函数中,是“H函数”的,请在相应题目后面的括号中打“√”,不是“H函数”的打“×”.①y=2x(√);②y=(m≠0)(√);③y=3x﹣1(×).(2)若点A(1,m)与点B(n,﹣4)是关于x的“H函数”y =ax2+bx+c(a≠0)的一对“H点”,且该函数的对称轴始终位于直线x=2的右侧,求a,b,c的值或取值范围.(3)若关于x的“H函数”y=ax2+2bx+3c(a,b,c是常数)同时满足下列两个条件:①a+b+c=0,②(2c+b﹣a)(2c+b+3a)<0,求该“H函数”截x轴得到的线段长度的取值范围.解析:(1)根据“H函数”的定义判断即可.(2)先根据题意求出m,n的取值范围,代入y=ax2+bx+c得到a,b,c的关系,再根据对称轴在x=2的右侧即可求解.(3)设“H“点为(p,q)和(﹣p,﹣q),代入y=ax2+2bx+3c 得到ap2+3c=0,2bp=q,得到a,c异号,再根据a+b+c=0,代入(2c+b﹣a)(2x+b+3a)<0,求出的取值,设函数与x轴的交点为(x1,0),(x2,0),t=,利用根与系数的关系得到|x1﹣x2|==2,再利用二次函数的性质即可求解.参考答案:解:(1)①y=2x是“H函数”.②y=(m≠0)是“H 函数”.③y=3x﹣1不是“H函数”.故答案为:√,√,×.(2)∵A,B是“H点”,∴A,B关于原点对称,∴m=4,n=﹣1,∴A(1,4),B(﹣1,﹣4),代入y=ax2+bx+c(a≠0)得,∴,∵该函数的对称轴始终位于直线x=2的右侧,∴﹣>2,∴﹣>2,∴﹣1<a<0,∵a+c=0,∴0<c<1,综上所述,﹣1<a<0,b=4,0<c<1.(3)∵y=ax2+2bx+3c是“H函数”,∴设H(p,q)和(﹣p,﹣q),代入得到,解得ap2+3c=0,2bp=q,∵p2>0,∴a,c异号,∴ac<0,∵a+b+c=0,∴b=﹣a﹣c,∵(2c+b﹣a)(2c+b+3a)<0,∴(2c﹣a﹣c﹣a)(2c﹣a﹣c+3a)<0,∴(c﹣2a)(c+2a)<0,∴c2<4a2,∴<4,∴﹣2<<2,设t=,则﹣2<t<0,设函数与x轴交于(x1,0),(x2,0),∴x1,x2是方程ax2+2bx+3c=0的两根,∴|x 1﹣x2|=====2=2,∵﹣2<t<0,∴2<|x 1﹣x2|<2.点拨:本题属于二次函数综合题,考查了二次函数的性质,待定系数法,一元二次方程的根与系数的关系等知识,“H函数”,“H点”的定义等知识,解题的关键是理解题意,学会利用参数解决问题,属于中考压轴题.25.(10分)如图,半径为4的⊙O中,弦AB的长度为4,点C 是劣弧上的一个动点,点D是弦AC的中点,点E是弦BC的中点,连接DE、OD、OE.(1)求∠AOB的度数;(2)当点C沿着劣弧从点A开始,逆时针运动到点B时,求△ODE的外心P所经过的路径的长度;(3)分别记△ODE,△CDE的面积为S1,S2,当S12﹣S22=21时,求弦AC的长度.解析:(1)如图1中,过点O作OH⊥AB于H.利用等腰三角形的性质求出∠AOH即可.(2)连接OC,证明O,D,C,E四点共圆,OC的中点即为△ODE外接圆的圆心,再利用弧长公式计算即可.(3)如图3中,连接OC交AB于J,过点O作OH⊥AB于H,过点C作CK⊥AB于K.证明△CDE∽△CAB,推出=()2=,推出S△ABC=4S2,因为S△ADO=S△ODC,S△OBE=S△OEC,推出S 四边形ODCE=S四边形OACB,可得S1+S2=(4S2+4)=2S2+2,推出S 1=S2+2,因为S12﹣S22=21,可得S22+4S2+12﹣S22=21,推出S2=,利用三角形的面积公式求出CK,解直角三角形求出AK即可解决问题.参考答案:解:(1)如图1中,过点O作OH⊥AB于H.∵OA=OB=4,OH⊥AB,∴AH=HB=AB=2,∠AOH=∠BOH,∴sin∠AOH==,∴∠AOH=60°,∴∠AOB=2∠AOH=120°.(2)如图2中,连接OC,取OC的中点P,连接DP,∵OA=OC=OB,AD=DC,CE=EB,∴OD⊥AC,OE⊥CB,∴∠ODC=∠OEC=90°,∴∠ODC+∠OEC=180°,∴O,D,C,E四点共圆,∴OC是直径,∴OC的中点P是△OED的外接圆的圆心,∴OP=OC=2,∴点P在以O为圆心,2为半径的圆上运动,∵∠AOB=120°,∴点P的运动路径的长==.(3)当点C靠近A点时,如图3中,当AC<BC时,连接OC交AB于J,过点O作OH⊥AB于H,过点C作CK⊥AB于K.∵AD=CD,CE=EB,∴DE∥AB,AB=2DE,∴△CDE∽△CAB,∴=()2=,∴S△ABC=4S2,∵S△ADO=S△ODC,S△OBE=S△OEC,∴S四边形ODCE=S四边形OACB,∴S 1+S2=(4S2+4)=2S2+2,∴S 1=S2+2,∵S12﹣S22=21,∴S 22+4S2+12﹣S22=21,∴S2=,∴S △ABC=3=×AB×CK,∴CK=,∵OH⊥AB,CK⊥AB,∴OH∥CK,∴△CKJ∽△OHJ,∴=,∴==,∴CJ=×4=,OJ=×4=,∴JK===,JH===,∴KH=,∴AK=AH﹣KH=2﹣,∴AC====﹣.当AC>BC时,同法可得AC=+,同理,当点C靠近B点时,可知AC==+.综上所述,满足条件的AC的值为±.点拨:本题属于圆综合题,考查了等腰三角形的性质,相似三角形的判定和性质,一元二次方程,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考压轴题.。

湖南省长沙市2021年中考数学试卷 (word版+答案+解析)

湖南省长沙市2021年中考数学试卷 (word版+答案+解析)

湖南省长沙市2021年中考数学试卷一、单选题(共10题;共20分)1.下列四个实数中,最大的数是()A. -3B. -1C. πD. 42.2021年5月11日,第七次全国人口普查结果发布,长沙市人口总数首次突破千万,约为10040000人,将数据10040000用科学记数法表示为()A. 1.004×106B. 1.004×107C. 0.1004×108D. 10.04×1063.下列几何图形中,是中心对称图形的是()A. B. C. D.4.下列计算正确的是()A. a3⋅a2=a5B. 2a+3a=6aC. a8÷a2=a4D. (a2)3=a55.如图,AB//CD,EF分别与AB,CD交于点G,H,∠AGE=100°,则∠DHF的度数为()A. 100°B. 80°C. 50°D. 40°6.如图,点A,B,C在⊙O上,∠BAC=54°,则∠BOC的度数为()A. 27°B. 108°C. 116°D. 128°7.下列函数图象中,表示直线y=2x+1的是()A. B. C. D.8.“杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取9株水稻苗,测得苗高(单位:cm )分别是:22,23,24,23,24,25,26,23,25.则这组数据的众数和中位数分别是( )A. 24,25B. 23,23C. 23,24D. 24,249.有一枚质地均匀的正方体骰子,六个面上分别刻有1到6的点数.将它投掷两次,则两次掷得骰子朝上一面的点数之和为5的概率是( )A. 19B. 16C. 14D. 1310.在一次数学活动课上,某数学老师将1~10共十个整数依次写在十张不透明的卡片上(每张卡片上只写一个数字,每一个数字只写在一张卡片上,而且把写有数字的那一面朝下).他先像洗扑克牌一样打乱这些卡片的顺序,然后把甲,乙,丙,丁,戊五位同学叫到讲台上,随机地发给每位同学两张卡片,并要求他们把自己手里拿的两张卡片上的数字之和写在黑板上,写出的结果依次是:甲:11;乙:4;丙:16;丁:7;戊:17.根据以上信息,下列判断正确的是( )A. 戊同学手里拿的两张卡片上的数字是8和9B. 丙同学手里拿的两张卡片上的数字是9和7C. 丁同学手里拿的两张卡片上的数字是3和4D. 甲同学手里拿的两张卡片上的数字是2和9. 二、填空题(共6题;共6分)11.分解因式: x 2−2021x = ________.12.如图,在⊙O 中,弦 AB 的长为4,圆心 O 到弦 AB 的距离为2,则 ∠AOC 的度数为________.13.如图,菱形 ABCD 的对角线 AC , BD 相交于点 O ,点 E 是边 AB 的中点,若 OE =6 ,则 BC 的长为________.14.若关于 x 的方程 x 2−kx −12=0 的一个根为3,则 k 的值为________.15.如图,在 △ABC 中, ∠C =90° , AD 平分 ∠BAC 交 BC 于点 D , DE ⊥AB ,垂足为 E ,若 BC =4 , DE =1.6 ,则 BD 的长为________.16.某学校组织了主题为“保护湘江,爱护家园”的手抄报作品征集活动.先从中随机抽取了部分作品,按A,B,C,D四个等级进行评价,然后根据统计结果绘制了如下两幅不完整的统计图.那么,此次抽取的作品中,等级为B等的作品份数为________.三、解答题(共9题;共84分)17.计算:|−√2|−2sin45°+(1−√3)0+√2×√8..18.先化简,再求值:(x−3)2+(x+3)(x−3)+2x(2−x),其中x=−1219.人教版初中数学教科书八年级上册第35-36页告诉我们作一个三角形与已知三角形全等的方法:已知:△ABC.求作:△A′B′C′,使得△A′B′C′≌△ABC.作法:如图.( 1 )画B′C′=BC;( 2 )分别以点B′,C′为圆心,线段AB,AC长为半径画弧,两弧相交于点A′;( 3 )连接线段A′B′,A′C′,则△A′B′C′即为所求作的三角形.请你根据以上材料完成下列问题:(1)完成下面证明过程(将正确答案填在相应的横线上):证明:由作图可知,在△A′B′C′和△ABC中,{B′C′=BC,A′B′=_____,A′C′=_____,∴△A′B′C′≌_▲_.(2)这种作一个三角形与已知三角形全等的方法的依据是________.(填序号)①AAS;②ASA;③SAS;④SSS20.“网红”长沙入选2021年“五一”假期热门旅游城市.本市某景点为吸引游客,设置了一种游戏,其规则如下:凡参与游戏的游客从一个装有12个红球和若干个白球(每个球除颜色外,其他都相同)的不透明纸箱中,随机摸出一个球,摸到红球就可免费得到一个景点吉祥物.据统计参与这种游戏的游客共有60000人,景点一共为参与该游戏的游客免费发放了景点吉祥物15000个.(1)求参与该游戏可免费得到景点吉祥物的频率;(2)请你估计纸箱中白球的数量接近多少?21.如图,▱ABCD的对角线AC,BD相交于点O,△OAB是等边三角形,AB=4.(1)求证:▱ABCD是矩形;(2)求AD的长.22.为庆祝伟大的中国共产党成立100周年,发扬红色传统,传承红色精神,某学校举行了主题为“学史明理,学史增信,学史崇德,学史力行”的党史知识竞赛,一共有25道题,满分100分,每一题答对得4分,答错扣1分,不答得0分.(1)若某参赛同学只有一道题没有作答,最后他的总得分为86分,则该参赛同学一共答对了多少道题?(2)若规定参赛者每道题都必须作答且总得分大于或等于90分才可以被评为“学党史小达人”,则参赛者至少需答对多少道题才能被评为“学党史小达人”?23.如图,在△ABC中,AD⊥BC,垂足为D,BD=CD,延长BC至E,使得CE=CA,连接AE.(1)求证:∠B=∠ACB;(2)若AB=5,AD=4,求△ABE的周长和面积.24.我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于y轴对称,则把该函数称之为“T函数”,其图象上关于y轴对称的不同两点叫做一对“T点”.根据该约定,完成下列各题.(1)若点A(1,r)与点B(s,4)是关于x的“T函数” y={−4x(x<0),tx2(x≥0,t≠0,t是常数).的图象上的一对“T 点”,则r=________,s=________,t=________(将正确答案填在相应的横线上);(2)关于x的函数y=kx+p(k,p是常数)是“T函数”吗?如果是,指出它有多少对“T点”;如果不是,请说明理由;(3)若关于x的“T函数” y=ax2+bx+c(a>0,且a,b,c是常数)经过坐标原点O,且与直线l:y=mx+n(m≠0,n>0,且m,n是常数)交于M(x1,y1),N(x2,y2)两点,当x1,x2满足(1−x1)−1+x2=1时,直线l是否总经过某一定点?若经过某一定点,求出该定点的坐标;否则,请说明理由.25.如图,点O为以AB为直径的半圆的圆心,点M,N在直径AB上,点P,Q在AB⌢上,四边形MNPQ为正方形,点C在QP⌢上运动(点C与点P,Q不重合),连接BC并延长交MQ的延长线于点D,连接AC交MQ于点E,连接OQ.(1)求sin∠AOQ的值;(2)求AMMN的值;(3)令ME=x,QD=y,直径AB=2R(R>0,R是常数),求y关于x的函数解析式,并指明自变量x的取值范围.答案解析部分一、单选题1.【答案】D【考点】实数大小的比较【解析】【解答】解:∵π≈3.14,∴−3<−1<π<4,即这四个实数中,最大的数是4,故答案为:D.【分析】根据实数的大小比较法则“正数大于负数;0大于负数;0小于正数;两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小”即可求解.2.【答案】B【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:科学记数法:将一个数表示成a×10n的形式,其中1≤|a|<10,n为整数,这种记数的方法叫做科学记数法,则10040000=1.004×107,故答案为:B.【分析】科学记数法是指,任何一个绝对值大于或等于1的数可以写成a×10n的形式,其中,n=整数位数-1.根据科学记数法的意义即可求解.3.【答案】C【考点】中心对称及中心对称图形【解析】【解答】A、不是中心对称图形,此项不符题意;B、不是中心对称图形,此项不符题意;C、是中心对称图形,此项符合题意;D、不是中心对称图形,此项不符题意;故答案为:C.【分析】在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形;根据定义并结合图形即可判断求解.4.【答案】A【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方【解析】【解答】A、a3⋅a2=a5,此项正确;B、2a+3a=5a,此项错误;C、a8÷a2=a6,此项错误;D、(a2)3=a6,此项错误;故答案为:A.【分析】A、根据同底数幂的乘法法则“同底数幂相乘,底数不变,指数相加”可得原式=a5;B、根据合并同类项法则“把同类项的系数相加,字母和字母的指数不变”可得原式=5a;C、根据同底数幂的除法法则“同底数幂相除,底数不变,指数相减”可得原式=a6;D、根据幂的乘方法则“幂的乘方,底数不变,指数相乘”可得原式=a6.5.【答案】A【考点】平行线的性质【解析】【解答】解:∵AB//CD,∠AGE=100°,∴∠CHE=∠AGE=100°,∴∠DHF=∠CHE=100°(对顶角相等),故答案为:A.【分析】根据两直线平行同位角相等和对顶角相等可求解.6.【答案】B【考点】圆周角定理【解析】【解答】解:∵∠BAC=54°,∴由圆周角定理得:∠BOC=2∠BAC=108°,故答案为:B.【分析】根据圆周角定理“圆周角的度数等于它所对的弧的度数的一半”得∠BOC=2∠BAC可求解.7.【答案】B【考点】一次函数图象、性质与系数的关系【解析】【解答】解:∵一次函数y=2x+1的一次项系数为2>0,∴y随x的增大而增大,则可排除选项A,C,当x=0时,y=1,则可排除选项D,故答案为:B.【分析】由直线解析式可得k=2>0,b=1>0,根据一次函数的图象与系数之间的关系可知:当k>0时,直线经过一、三象限,且y随x的增大而增大;当b>0时,直线与y轴的交点在y轴的正半轴上;结合各选项可求解.8.【答案】C【考点】中位数,众数【解析】【解答】解:因为23出现的次数最多,所以这组数据的众数是23,将这组数据按从小到大进行排序为22,23,23,23,24,24,25,25,26,则这组数据的中位数是24,故答案为:C.【分析】众数是指一组数据中出现次数最多的数;中位数是指一组数据按序排列后①偶数个数据时,中间两个数的平均数就是这组数据的中位数;②奇数个数据时,中间的数就是这组数据的中位数.平均数是指在一组数据中所有数据之和再除以数据的个数;平均数是指在一组数据中所有数据之和再除以这组数据的个数;根据定义并结合已知条件可求解.9.【答案】A【考点】列表法与树状图法【解析】【解答】解:由题意,画树状图如下:由此可知,投掷两次的所有可能的结果共有36种,它们每一种出现的可能性都相等;其中,两次掷得骰子朝上一面的点数之和为5的结果有4种,则所求的概率为P=436=19,故答案为:A.【分析】由题意,画出树状图,由树状图的信息可知:投掷两次的所有可能的结果共有36种,其中,两次掷得骰子朝上一面的点数之和为5的结果有4种,根据概率公式计算即可求解.10.【答案】A【考点】有理数的加法【解析】【解答】解:由题意得:11,4,16,7,17是由1∼10中的两个不相同的数字相加所得的数,∴4只能是1与3的和,即乙同学手里拿的两张卡片上的数字是1和3,∵7=1+6=2+5=3+4,∴丁同学手里拿的两张卡片上的数字是2和5,∵11=1+10=2+9=3+8=4+7=5+6,∴甲同学手里拿的两张卡片上的数字是4和7,∵16=6+10=7+9,∴丙同学手里拿的两张卡片上的数字是6和10,∴戊同学手里拿的两张卡片上的数字是8和9,故答案为:A.【分析】由题意,将每一个数字可能是由哪两个数构成表示出来,再根据4=1+3且每一个数只用一次,可依次得到每一个同学所拿到的卡片.二、填空题11.【答案】x(x-2021)【考点】提公因式法因式分解【解析】【解答】解:x2−2021x=x(x−2021),故答案为:x(x-2021).【分析】观察多项式可知每一项都含有公因式x,所以提公因式x可求解.12.【答案】45°【考点】垂径定理【解析】【解答】解:由题意得:OC⊥AB,AB=4,AB=2,∴AC=12∵OC=2,∴AC=OC,∴Rt△AOC是等腰直角三角形,∴∠AOC=45°,故答案为:45°.AB,结合已知易证Rt△AOC是等腰直角三角形,由等腰直角三角形的性质【分析】由垂径定理可得AC=12可求解.13.【答案】12【考点】菱形的性质【解析】【解答】解:∵四边形ABCD是菱形,∴OA=OC,∵点E是边AB的中点,∴OE是△ABC的中位线,∴BC=2OE=2×6=12,故答案为:12.【分析】由菱形的对角线互相垂直平分可得OA=OC,AC⊥BD,由已知可知OE是三角形ABC的中位线,根据中位线定理得BC=2OE可求解.14.【答案】-1【考点】一元二次方程的根【解析】【解答】解:由题意,将x=3代入方程x2−kx−12=0得:32−3k−12=0,解得k=−1,故答案为:-1.【分析】由题意把x=3代入方程可得关于k的方程,解方程可求解.15.【答案】2.4【考点】角平分线的性质【解析】【解答】解:∵AD平分∠BAC,∠C=90°,DE⊥AB,DE=1.6,∴CD=DE=1.6,∵BC=4,∴BD=BC−CD=4−1.6=2.4,故答案为:2.4.【分析】由题意根据角平分线上的点到角两边的距离相等可得CD=DE,根据线段的构成BD=BC-CD=BC-DE 可求解.16.【答案】50份【考点】扇形统计图,条形统计图【解析】【解答】解:抽取的作品总份数为30÷25%=120(份),则 B 等级的作品份数为 120−30−28−12=50 (份),故答案为:50份.【分析】观察条形图和扇形图可知A 等级的频数和百分数,根据样本容量=频数÷百分数可求得抽取的作品总份数,再根据各小组频数之和等于样本容量可求得B 等级的作品数.三、解答题17.【答案】 解:原式 =√2−2×√22+1+√16 , =√2−√2+1+4 ,=5【考点】0指数幂的运算性质,二次根式的混合运算,特殊角的三角函数值【解析】【分析】由0指数幂的意义“任何一个不为0的数的0次幂等于1”可得(1-√3)0=1,由特殊角的三角函数值可得sin45°=√22 , 由二次根式的乘法法则“√a ×√b =√ab (a ≥0,b ≥0)”可得√2×√8=√16=4 , 再根据二次根式的混合运算法则计算即可求解.18.【答案】 解:原式 =x 2−6x +9+x 2−9+4x −2x 2 ,=−2x ,将 x =−12 代入得:原式 =−2x=−2×(−12) =1【考点】利用整式的混合运算化简求值【解析】【分析】根据平方差公式“(a+b )(a-b )=a 2-b 2”、完全平方公式“(a-b )2=a 2-2ab+b 2”和根据单项式与多项式的乘法法则“单项式与多项式相乘,就是依据分配律用单项式去乘多项式的每一项,再把所得的积相加”可去括号,再根据合并同类项法则“把同类项的系数相加,字母和字母的指数不变”可将多项式化简,然后把x 的值代入化简后的代数式计算即可求解.19.【答案】 (1)AB ;AC ;△ABC(2)④【考点】三角形全等的判定(SSS ),作图-三角形【解析】【解答】(1)证明:由作图可知,在 △A ′B ′C ′ 和 △ABC 中,{B ′C ′=BC A ′B ′=AB A ′C ′=AC,∴ △A ′B ′C ′≅△ABC .故答案为: AB,AC,△ABC .(2)这种作一个三角形与已知三角形全等的方法的依据是 SSS ,故答案为:④.【分析】(1)由作图可得{B ′C ′=BCA ′B ′=AB A ′C ′=AC;(2)根据边边边可证△A ′B ′C ′≅△ABC .20.【答案】 (1)解:由题意得: 15000÷60000=0.25 ,答:参与该游戏可免费得到景点吉祥物的频率为0.25(2)解:设纸箱中白球的数量为 x 个,由(1)可知,随机摸出一个球是红球的概率约为0.25,则 1212+x =0.25 ,解得 x =36 ,经检验, x =36 是所列分式方程的解,且符合题意,答:纸箱中白球的数量接近36个【考点】概率的简单应用【解析】【分析】(1)由题意用概率公式计算即可求解;(2) 设纸箱中白球的数量为 x 个,由概率公式可得关于x 的方程,解方程可求解.21.【答案】 (1)证明: ∵ 四边形 ABCD 是平行四边形,∴OA =OC =12AC,OB =OD =12BD ,∵△OAB 是等边三角形,∴OA =OB ,∴AC =BD ,∴▱ABCD 是矩形(2)解: ∵△OAB 是等边三角形, AB =4 ,∴OB =AB =4 ,∴BD =2OB =8 ,由(1)已证: ▱ABCD 是矩形,∴∠BAD =90° ,则在 Rt △ABD 中, AD =√BD 2−AB 2=√82−42=4√3【考点】勾股定理,矩形的判定与性质【解析】【分析】(1)由平行四边形的对角线互相平分可得OA=OC=12AC ,OB=OD=12BD ,由等边三角形的性质和已知条件可证得AC=BD ,根据对角线相等的平行四边形是矩形可得平行四边形ABCD 是矩形; (2)由(1)的结论可得BD=2OB=2AB ,在直角三角形ABD 中,用勾股定理可求得AD 的值.22.【答案】(1)解:设该参赛同学一共答对了x道题,则该参赛同学一共答错了(25−1−x)道题,由题意得:4x−(25−1−x)=86,解得x=22,答:该参赛同学一共答对了22道题(2)解:设参赛者需答对y道题才能被评为“学党史小达人”,则参赛者答错了(25−y)道题,由题意得:4y−(25−y)≥90,解得y≥23,答:参赛者至少需答对23道题才能被评为“学党史小达人”.【考点】一元一次不等式的应用,一元一次方程的实际应用-和差倍分问题【解析】【分析】(1)由题意可得相等关系:参赛同学答对x道题的分数-参赛同学答错的分数=所得分数,根据相等关系列方程可求解;(2)由题意可得不等关系:参赛同学答对x道题的分数-参赛同学答错的分数≥90,根据不等关系可列不等式可求解.23.【答案】(1)证明:∵AD⊥BC,∴∠ADB=∠ADC=90°,在△ABD和△ACD中,{AD=AD∠ADB=∠ADCBD=CD,∴△ABD≅△ACD(SAS),∴∠B=∠ACB(2)解:∵△ABD≅△ACD,AB=5,∴AB=AC=5,∵CE=CA,∴CE=5,∵AB=5,AD=4,AD⊥BC,∴BD=√AB2−AD2=3,∵BD=CD,∴CD=3,∴BE=BD+CD+CE=11,DE=CD+CE=8,∴AE=√AD2+DE2=4√5,则△ABE的周长为AB+BE+AE=5+11+4√5=16+4√5,△ABE的面积为12BE⋅AD=12×11×4=22【考点】勾股定理,三角形全等的判定(SAS)【解析】【分析】(1)由题意用边角边可证△ABD ≌△ACD ,由全等三角形的对应角相等可求解; (2)由(1)中的全等三角形可得AB=AC ,在直角三角形ABD 中,用勾股定理可求得BD 的值;由线段的构成BE=BD+CD+CE ,DE=CD+CE 可求得BE 和DE 的值;用勾股定理可求得AE 的值;再根据三角形的周长和三角形的面积公式可求解.24.【答案】 (1)4;-1;4(2)解:由题意,分以下两种情况:①当 k ≠0 时,假设关于 x 的函数 y =kx +p ( k , p 是常数)是“ T 函数”,点 (x 0,y 0)(x 0≠0) 与点 (−x 0,y 0) 是其图象上的一对“ T 点”,则 {kx 0+p =y 0−kx 0+p =y 0, 解得 k =0 ,与 k ≠0 相矛盾,假设不成立,所以当 k ≠0 时,关于 x 的函数 y =kx +p ( k,p 是常数)不是“ T 函数”;②当 k =0 时,函数 y =kx +p =p 是一条平行于 x 轴的直线,是“ T 函数”,它有无数对“ T 点”;综上,当 k ≠0 时,关于 x 的函数 y =kx +p ( k,p 是常数)不是“ T 函数”;当 k =0 时,关于 x 的函数 y =kx +p ( k,p 是常数)是“ T 函数”,它有无数对“ T 点”;(3)解:由题意,将 O(0,0) 代入 y =ax 2+bx +c 得: c =0 ,∴y =ax 2+bx ,设点 (x 3,y 3)(x 3≠0) 与点 (−x 3,y 3) 是“ T 函数” y =ax 2+bx 图象上的一对“ T 点”,则 {ax 32+bx 3=y 3ax 32−bx 3=y 3,解得 b =0 , ∴y =ax 2(a >0) ,联立 {y =ax 2y =mx +n得: ax 2−mx −n =0 , ∵ “ T 函数” y =ax 2 与直线 y =mx +n 交于点 M(x 1,y 1) , N(x 2,y 2) ,∴x 1,x 2 是关于 x 的一元二次方程 ax 2−mx −n =0 的两个不相等的实数根,∴x 1+x 2=m a,x 1x 2=−n a , ∵(1−x 1)−1+x 2=1 ,∴x 1+x 2=x 1x 2 ,即m a =−n a , 解得 n =−m ,则直线 l 的解析式为 y =mx −m ,当 x =1 时, y =m −m =0 ,因此,直线 l 总经过一定点,该定点的坐标为 (1,0)【考点】二次函数与一次函数的综合应用,二次函数图象上点的坐标特征【解析】【解答】解:(1)由题意得:点 A(1,r) 与点 B(s,4) 关于 y 轴对称,∴r =4,s =−1 ,∴A(1,4) ,∵1>0 ,∴ 将点 A(1,4) 代入 y =tx 2 得: t =4 ,故答案为: 4,−1,4 ;【分析】(1)由A ,B 关于y 轴对称求出r ,s ,由“T 函数”的定义求得t 的值;(2)由题意分两种情况:k =0和k≠0并结合“T 函数”的定义即可求解;(3)先根据“T 函数”过原点可求得c =0,再由“T 函数”的定义求得b 的值,确定二次函数解析式后,和直线联立解方程组求出交点的横坐标,写出l 的解析式,确定经过的定点即可求解.25.【答案】 (1)解:如图,连接 OP ,则 OP =OQ ,∵ 四边形 MNPQ 为正方形,∴PN =QM =MN,∠QMO =∠PNO =90° ,在 Rt △OPN 和 Rt △OQM 中, {PN =QM OP =OQ, ∴Rt △OPN ≅Rt △OQM(HL) ,∴ON =OM ,设 QM =MN =2a ,则 ON =OM =a ,在 Rt △OQM 中, OQ =√QM 2+OM 2=√5a ,则 sin ∠AOQ =QM OQ =√5a =2√55(2)解:设 QM =MN =2a ,则 ON =OM =a , OQ =√5a ,∴OA =OQ =√5a ,∴AM =OA −OM =(√5−1)a ,∴AM MN =(√5−1)a 2a =√5−12(3)解: ∵AB =2R ,∴OA =OQ =OB =R ,∵sin ∠AOQ =QMOQ =2√55 ,∴QMR =2√55,解得QM=2√55R,∴OM=√OQ2−QM2=√55R,∴BM=OB+OM=5+√55R,AM=AB−BM=5−√55R,∵QD=y,∴DM=QD+QM=y+2√55R,由圆周角定理得:∠ACB=90°,∴∠DBM+∠BAC=90°,∵∠QMO=90°,∴∠DBM+∠D=90°,∴∠D=∠BAC,在△DBM和△AEM中,{∠D=∠EAM∠DMB=∠AME=90°,∴△DBM∼△AEM,∴DMAM =BMME,即y+2√55R5−√55R=5+√55Rx,解得y=4R25x −2√55R,如图,连接AP,交QM于点F,∵PN=MN=QM=2√55R,AM=5−√55R,∴AN=AM+MN=5+√55R,∵四边形MNPQ为正方形,∴QM//PN,∴△AFM∼△APN,∴FMPN =AMAN,即2√55R=5−√55R5+√55R,解得FM=3√5−55R,∵点C在QP⌢上运动(点C与点P,Q不重合),∴点E在线段QF上运动(点E与点F,Q不重合),∴FM <ME <QM ,即3√5−55R <x <2√55R , 综上, y =4R 25x −2√55R(3√5−55R <x <2√55R) 【考点】圆的综合题【解析】【分析】(1)由HL 定理证得Rt △OPN ≌Rt △OQM ,由全等三角形的性质可得OM =ON ,设OM =ON =a ,则MQ =2a ,在Rt △OQM 中,用勾股定理求得OQ 的值,根据锐角三角函数sin ∠AOQ=QM OQ 可求解;(2)由(1)中的结论,求出AM ,MN (用a 的代数式表示),再求比值即可;(3)证明△AME ∽△DMB ,可得比例式DM AM =BM ME , 由此得y 与x 之间的关系式,连接AP ,交QM 于点F ,根据平行与三角形一边的直线(或两边的延长线)和其他两边相交,所构成的三角形与原三角形相似 可得△AFM ∽△APN ,得比例式FM PN =AM AN , 可将FM 用含R 的代数式表示出来,由题意可知FM <ME <QM ,可求得x 的范围,则结论可求解.。

长沙市2024年中考数学试卷

长沙市2024年中考数学试卷

1、一个矩形的长是宽的2倍,如果它的面积是128平方厘米,那么它的周长是:A. 32厘米B. 48厘米C. 64厘米D. 96厘米解析:设矩形的宽为x厘米,则长为2x厘米。

根据面积公式,x * 2x = 128,解得x = 8。

因此,长为16厘米,宽为8厘米,周长为2 * (8 + 16) = 48厘米。

(答案)B2、下列哪个数不是有理数?A. 3/4B. 0.75C. √2D. -5解析:有理数是可以表示为两个整数之比的数。

√2无法表示为两个整数的比,因此它是无理数。

(答案)C3、若一个三角形的两边长分别为5和8,则第三边的长度可能是:A. 2B. 3C. 12D. 14解析:根据三角形三边关系,任意两边之和大于第三边,任意两边之差小于第三边。

所以,8 - 5 < 第三边 < 8 + 5,即3 < 第三边 < 13。

只有12满足这个条件。

(答案)C4、一个圆的半径扩大为原来的2倍,其面积将变为原来的:A. 2倍B. 3倍C. 4倍D. 6倍解析:圆的面积与半径的平方成正比。

半径扩大2倍,面积将变为(2r)²= 4r²,即原来的4倍。

(答案)C5、下列哪个表达式表示的是偶数?A. 2n + 1B. 2n - 1C. 2nD. 2n + 3解析:偶数可以表示为2的倍数,即形式为2n的数,其中n是整数。

(答案)C6、一个正方体的表面积是24平方米,那么它的体积是:A. 4立方米B. 6立方米C. 8立方米D. 12立方米解析:正方体有6个面,每个面面积为a²,总表面积6a²= 24,解得a²= 4,a = 2(边长)。

体积V = a³ = 2³ = 8立方米。

(答案)C7、下列哪个选项是方程x² - 5x + 6 = 0的解?A. x = 1B. x = 2C. x = 3D. x = 4解析:通过因式分解,x² - 5x + 6 = (x - 2)(x - 3) = 0,解得x = 2或x = 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长沙中考数学试题及答案解析6、某校篮球队12名同学的身高如下表:则该校篮球队12名同学的身高的众数是(单位:cm )【参考答案】:B7、下列各图中,∠1大于∠2的是【参考答案】:D【参考解析】:A,B,C 中∠1均等于∠2,D 选项中∠1=∠2+∠B ,∴∠1>∠2.8、下列各图中,内角和外角和相等的是A. 四边形B. 五边形C. 六边形D. 八边形【参考答案】:A【参考解析】:n 边形的内角和为(n-2)×180°,内角和与外角和的总和为n ×180°,即n ×180°=2(n-2)×180°⇒n=4.9.在下列某品牌T 恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是【参考答案】:C10.二次函数2y ax bx c =++的图象如图所示,则下列关系式错误的是A. a>0B.c>0C. 240b ac -> D. a+b+c>0【参考答案】: D【参考解析】:a+b+c 即为函数2y ax bx c =++当x=1时的值,由图可知,当x=1时,y<0,即a+b+c<0二、填空题(本小题共8个小题,每小题3分,共24分)11. 计算:82-=__________.【参考答案】:2【参考解析】:822222-=-= 12. 因式分解:221x x ++=________.【参考答案】:2(1)x +13. 已知∠A=67°,则∠A 的余角等于______度.【参考答案】:23°14. 方程211x x=+的解为x=________. 【参考答案】:x=1【参考解析】:首先分母不为0,则x ≠0且x ≠1, 212111x x x x x=⇒=+⇒=+ 满足条件。

15. 如图,BD 是∠ABC 的平分线,P 是BD 上的一点,PE ⊥BA 于点E ,PE=4cm ,则点P 到边BC 的距离为_______cm.【参考答案】:416. 如图△ABC 中,点D,点E 分别是边AB,AC 的中点,则△ADE 与△ABC 的周长之比等于_______.【参考答案】:12【参考解析】:D,E 分别为中点,那么DE 为△ABC 的中位线,则DE=12BC ,AD=12AB ,AE=12AC, ∴(AD+AE+DE)= 12(AB+AC+BC) 17. 在一个不透明的盒子中装有n 个小球,它们只有颜色上的区别,其中有2个红球.每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球实验后发现,摸到红球的频率稳定于0.2,那么可以推算出n 大约是________.【参考答案】:10【参考解析】:20.2n= ⇒ n=1018.如图,在梯形ABCD 中,AD ∥BC, ∠B=50°, ∠C=80°,AE ∥CD 交BC 于点E,若AD=2,BC=5,则边CD 的长是_______.【参考答案】:3【参考解析】:由AD ∥BC,AE ∥CD 知AECD 为平行四边形,则EC=AD=2三、解答题(本小题共2个小题,每小题6分,共12分)19. 计算:20|3|(2)(51)-+--+【参考答案】:20|3|(2)(51)-+--+=3+4-1=6 20. 解不等式组2(1)3,(1)43,(2)x x x x +≤+⎧⎨-<⎩并将其解集在数轴上表示出来.【参考答案】:由①得2(x+1) ≤x+3 ⇒x ≤1由②式x-4<3x ⇒-2<x联立有-2<x ≤1 .在数轴上:四、解答题(本小题共2个小题,每小题8分,共16分)21、“宜居长沙“是我国的共同愿景,空气质量倍受人们关注.我市某空气质量监测站点检测了该区域每天的空气质量情况,统计了2013年1月份至四月份若干天的空气质量情况,并绘制了如下两幅不完整的统计图.请根据图中信息,解答下列问题:(1)统计图共统计了________天的空气质量情况.(2)请将条形统计图补充完整,并计算空气质量为“优”所在扇形的圆心角度数.(3)从小源所在班级的40名同学中,随机选取一名同学去该空气质量监测站点参观,则恰好选到小源的概率是多少?【参考答案】:(1)70(天)(2)优所占扇形图比例为20%,所以其对应扇形图圆心角为20%×360°=72°(3)1 4022、如图,△ABC中,以AB为直径的⊙O交AC于点D,∠DBC=∠BAC.(1)求证:BC是⊙O的切线;(2)若⊙O的半径为2,∠BAC=30°,求图中阴影部分的面积.【参考答案】:(1)证明AB为⊙O的直径,∴∠ADB=90°,∠BAD+∠ABD=90°, 又∠DBC=∠BAC,∴∠ABD+∠DBC=90°即∠ABC=90°∴BC为⊙O的切线.(2)∠BAC=30°则连结OD,∠BOD=2∠BAC=60°∴△OBD为等边三角形23234OBDS∆=⋅=又扇形260223603 OBDSππ∆︒=⋅=︒∴2=33OBD OBDS S Sπ-=-阴影五、解答题(本题共2个小题,每小题9分,共18分)23. 为方便市民出行,减轻城市中心交通压力,长沙市正在修建贯穿星城南北,东西的地铁1、2号线.已知修建地铁1号线24千米和2号线22千米共需投资265亿元;若1号线每千米的平均造价比2号线每千米的平均造价多0.5亿元.(1)求1号线,2号线每千米的平均造价分别是多少亿元?(2)除1、2号线外,长沙市政府规划到2018年还要再建91.8千米的地铁线网,据预算,这91.8千米地铁线网每千米的平均造价是1号线每千米的平均造价的1.2倍,则还需投资多少亿元?【参考答案】:(1)设1号线每千米平均造价为x亿元,由题意可知24x+22(x-0.5)=265 解得x=6∴1号线每千米平均造价为6亿元,2号线每千米平均造价为5.5亿元.(2)还需投资的金额为:91.8×6×1.2=660.96(亿元)24. 如图,在▱ABCD中,M,N分别为AD,BC的中点,∠AND=90°,连接CM交DN于点O.(1)求证:△ABN≌△CDM;(2)过点C作CE⊥MN于点E,交DN于点P,若PE=1,∠1=∠2,求AN的长.【参考答案】: (1)ABCD 为平行四边形;∴AB=CD, AD=BC, ∠B=∠ADC,M,N 为中点,∴MD=12AD=12BC=BN∴△ABN ≌△CDM(2)M,N 为中点,易知MDCN 也为平行四边形,又∠AND=90°且M 为AD 中点,∴MN=12AD=MD, ∴MDCN 为菱形. 由菱形性质知,菱形对角线ND 平分∠MNC 以及∠MDC∴∠MNC=∠MDC=2∠1,又∠MNC+∠2=90°, ∠1=∠2∴∠1=∠2=30°∴在Rt △PEN 中,∠ENP=30°,PE=1 ⇒NE=3在Rt △NEC 中, ∠2=30°NE=3⇒NC=23又∠1=30°∴AN=12AD=NC=23六、解答题(本题共2个小题,每小题10分,共20分)25.设a,b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为{a,b},对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n,我们就称此函数是闭区间{m,n}上的“闭函数”.(1)反比列函数2013y x=是闭区间{1,2013}上的“闭函数”吗?请判断并说明理由; (2)若一次函数y=kx+b(k ≠0)是闭区间{m,n}上的“闭函数”,求此函数的解析式:(2若二次函数2147555y x x =--是闭区间{a,b}上的“闭函数”,求实数a,b 的值. 【参考答案】:(1)是,2013y x=在定义域上是单调递减的,∴当x ∈[1,2013]时,y ∈{1,2013} 即2013y x=是闭区间[1,2013]上的闭函数 (2)当m ≤x ≤n ,知y=kx+b(k ≠0)是单调函数.ⅰ)当k>0, y=kx+b 单调增加,有mk+b ≤y ≤nk+b221(47)51(47)5a a ab b b⎧--=⎪⎪⎨⎪--=⎪⎩由于a<b∴91099109,22a b-+==不成立综上,满足的a,b的值为115a=-91092b+=26.如图,在平面直角坐标系中,直线y=-x+2与x轴,y轴分别交于点A,点B,动点P(a,b)在第一象限内,由点P向x轴,y轴所作的垂线PM,PN(垂足为M,N)分别于直线AB相交于点E,点F,当点P(A,B)运动时,矩形PMON的面积为定值2.(1)求∠OAB的度数;(2)求证△AOF∽△BEO;(3)当点E,F都在线段AB上时,由三条线段AE,EF,BF组成一个三角形,记此三角形的外接圆面积为1S△OEF的面积为2S试探究:12S S+是否存在最小值?若存在,请求出该最小值:若不存在,请说明理由.【参考答案】:(1)y=-x+2交x,y轴于点A,点B,求得点A(2,0),点B(0,2)∴在Rt△OAB中,OA=OB, ∴∠OAB=45°(2)易求得点E,F坐标,E,F均在y=-x+2上,∴E(a,2-a) F(2-b,b)∴2222(2)288BF a a a=-=-+2222(2)288AE b b b=-=-+22222(2)224()4EF a b a b ab a b⎡⎤=--=++-++⎣⎦因为矩形PMON 面积为定值2,即a ·b=2,代入有2222()8()16EF a b a b =+-++22222()8()16BF AE a b a b +=+-++ ∴222BF AE EF += ①此时旋转OEA 90°,使OA 与OB 重合,如图,并连结E F '易之△OEA ≌△OE B ' ∴45EAO OBE '∠=∠=︒ E B EA '= 90E BF E BO OBA ''∠=∠+∠=︒∴222E B BF E F ''+= 222EA BF E F '+=联立①式⇒EF E F'= 又E O AO'= ∴E OF EOF '∆≅∆ ∴12EOF E OE '∠=∠ 90E OE E OB EOB EOA EOB ''∠=∠+∠=∠+∠=︒ ∴∠EOF=45°又∠FEO=45°+∠EOA∠FOA=45°+∠EOA∠FEO=∠FOA 又∠OBA=∠OAB=45°∴△AOF ∽△BEO(3)由(2)知AE,EF,BF 组成三角形是以EF 为斜边的直角三角形, ∴22211()4()842S EF a b a b ππ⎡⎤==+-++⎣⎦ 又 OEBE OAB S S '∆=, OE F OEF S S '∆∆=∴21()2OAB E BF S S S '∆∆=- 111(22)222BE BF '=⋅⋅-⋅ []1112(2)2(2)12()442a b ab a b =-⋅-⋅-=--++ []112()22b a b a b =--+=+-2212()(12)()422S S a b a b πππ+=++-++-令a+b=t 212(4)(12)422S S t t πππ+=-+-+-又222a b ab +≥= ∴22t ≥ 212(21)222S S t t πππ+=--+-关于21x ππ-=对称 ∴2122t ππ-≥> 此时12S S +递增∴12S S +有极小值,当2a b == 22t =时 12(42)222S S b π+=-+-。

相关文档
最新文档