【好题】七年级数学上期末模拟试题(及答案)

合集下载

江西省育华学校2025届数学七年级第一学期期末综合测试模拟试题含解析

江西省育华学校2025届数学七年级第一学期期末综合测试模拟试题含解析

江西省育华学校2025届数学七年级第一学期期末综合测试模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B 铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.我国古代名著《九章算术》中有一题“今有凫起南海,七日至北海;雁起北海,九日至南海.今凫雁俱起,问何日相逢?”(凫:野鸭)设野鸭与大雁从北海和南海同时起飞,经过x 天相遇,可列方程为( )A .(9﹣7)x=1B .(9+7)x=1C .11()179x -=D .11()179x += 2.一个几何体的展开图如图所示,则该几何体的顶点有( )A .10个B .8个C .6个D .4个3.如果A ∠的补角与A ∠的余角互补,那么2A ∠是( )A .锐角B .直角C .钝角D .以上三种都可能4.下列计算正确的是( )A .3m+4n =7mnB .﹣5m+6m =1C .3m 2n ﹣2mn 2=m 2nD .2m 2﹣3m 2=﹣m 2 5.点B 在线段AC 上,则不能确定B 是AC 中点的是( )A .AB BC = B .12AB AC = C .2AB ACD .AB BC AC +=6.绝对值不大于5的所有整数的和是( )A .—1B .0C .1D .67.参加国庆70周年阅兵的全体受阅官兵由人民解放军、武警部队和民兵预备役部队月15000名官兵,把15000用科学记数法表示为( )A .31510⨯B .50.1510⨯C ..41510⨯D ..31510⨯8.如图,将两块三角板的直角顶点重合后叠放在一起,若∠1=40°,则∠2的度数为( )A .60°B .50°C .40°D .30°9.如图将一张长方形纸的一角折叠过去,使顶点A 落在'A 处,BC 为折痕,若AB AC =且BD 为CBE ∠的平分线,则A BD '∠=( )A .45B .67.5C .22.5D .89.510.如图,点A 到线段BC 的距离指的是下列哪条线段的长度A .AB B .AC C .AD D .AE11.在春节到来之际,某童装推出系列活动,一位妈妈看好两件衣服,她想给孩子都买下来作为新年礼物,与店员商量希望都以60元的价格卖给她.销售员发现这样一件就会盈利25%,另一件就会亏损25%,但是卖出这两件衣服总的是盈利还是亏损或是不盈不亏呢?请你用学过的知识帮着判断一下( )A .不盈不亏B .盈利50元C .盈利8元D .亏损8元12.若整数a 使关于x 的方程39ax x +=--有负整数解,且a 也是四条直线在平面内交点的个数,则满足条件的所有a 的个数为( )A .3B .4C .5D .6二、填空题(每题4分,满分20分,将答案填在答题纸上)13.已知下列各数1234,,,2345,按此规律第2019个数是__________14.当x =___时,代数式()31x -与()21x -+的值相等.15.如图,DE ∥BC ,EF ∥AB ,图中与∠BFE 互补的角有_____个.16.己知:如图,直线,AB CD 相交于点O ,90COE ∠=︒,:1BOD BOC ∠∠=:5,过点O 作OF AB ⊥,则∠EOF的度数为_______.17.已知代数式25x -与33x -互为相反数,则x 的值是________.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)如图所示,一张边长为10的正方形的纸片,剪去两个一样的小直角三角形和一个长方形,图中阴影部分得到一个形如“囧”字的图案,设剪去的小长方形长和宽分别为x 、y ,剪去的两个小直角三角形的两直角边长也分别为x 、y .(1)用含有x 、y 的代数式表示图中剪去后剩下“囧”字图案的面积;(2)当x =3,y =2时,求此时“囧”字图案的面积.19.(5分)解下列一元一次方程(1)()521x x +=- (2)43135x x --=- 20.(8分)学校购买一批教学仪器,由某班学生搬进实验室,若每人搬8箱,还余16箱,若每人搬9箱,还缺少32箱,这个班有多少名学生?这批教学仪器共有多少箱?21.(10分)如图,已知线段AB=20,C 是AB 上的一点,D 为CB 上的一点,E 为DB 的中点,DE=1.(1)若CE=8,求AC 的长;(2)若C 是AB 的中点,求CD 的长.22.(10分)解方程(1)()()2321161x x x +-=-+ ; (2)758142x x -+-=. 23.(12分)先化简后求值:M=(﹣1x 1+x ﹣4)﹣(﹣1x 1﹣),其中x=1.参考答案一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、D【分析】直接根据题意得出野鸭和大雁的飞行速度,进而利用它们相向而行何时相逢进而得出等式.【详解】解:设野鸭大雁与从北海和南海同时起飞,经过x 天相遇,可列方程为:11()179x +=.故选D .【点睛】此题主要考查了由实际问题抽象出一元一次方程,正确表示出每天飞行的距离是解题关键.2、C【解析】解:观察图可得,这是个上底面、下底面为三角形,侧面有三个正方形的三棱柱的展开图,则该几何体的顶点有6个.故选C .3、B【分析】由题意可得A ∠的补角为180°-∠A ,A ∠的余角为90°-∠A ,再根据它们互补列出方程求出∠A ,即可解答.【详解】解:∵A ∠的补角为180°-∠A ,A ∠的余角为90°-∠A∴180°-∠A+(90°-∠A )=180∴2A ∠=90°故答案为B .【点睛】本题考查了余角、补角以及一元一次方程,正确表示出∠A 的余角和补角是解答本题的关键.4、D【分析】根据合并同类项法则即可求解.【详解】解:A 、3m 与4n 不是同类项,所以不能合并,故本选项不合题意;B 、﹣5m+6m =m ,故本选项不合题意;C 、3m 2n 与﹣2mn 2不是同类项,所以不能合并,故本选项不合题意;D 、2m 2﹣3m 2=﹣m 2,故本选项符合题意;故选:D .【点睛】此题主要考查合并同类项,解题的关键是熟知整式的加减运算法则.5、D【分析】根据线段中点的特点,逐一判定即可.【详解】A 选项,AB BC =,可以确定B 是AC 中点;B 选项,12AB AC =,可以确定B 是AC 中点; C 选项,2AB AC ,可以确定B 是AC 中点;D 选项,AB BC AC +=,不能确定B 是AC 中点;故选:D.【点睛】此题主要考查线段中点的理解,熟练掌握,即可解题.6、B【分析】找出绝对值不大于5的所有整数,求出它们的和即可解答.【详解】解:绝对值不大于5的所有整数为-5,-4,-3,-2,-1,1,1,2,3,4,5,它们的和为1.故选B .【点睛】此题考查了有理数的加法和绝对值,数量掌握是解题的关键.7、C【分析】用科学记数法表示较大数时的形式是10n a ⨯ ,其中110a ≤< ,n 是正整数,只要找到a,n 即可.【详解】易知 1.5a =,15000整数位数是5位,所以4n =415000 1.510∴=⨯故选:C .【点睛】本题主要考查科学记数法,掌握科学记数法的形式是解题的关键.8、C【解析】如图:∵∠1+∠BOC=90°,∠2+∠BOC=90°,∴∠2=∠1=40°.故选:C.9、C【分析】利用等腰直角三角形的性质可求∠ABC=45°,利用折叠的性质可得∠A’BC=∠ABC =45°,再利用角平分线的性质和平角的定义可求∠CBD=67.5°,由此得到∠A’BD=∠CBD-∠A’BC即可求解.【详解】解:∵∠A=90°,AC=AB,∴∠ABC=45°,∵将顶点A折叠落在A’处,∴∠ABC=∠A’BC=45°,∵BD为∠CBE的平分线,∴∠CBD=∠DBE=12×(180°- 45°)=67.5°,∴∠A’BD=67.5°- 45°=22.5°.故选:C.【点睛】考查了图形的折叠问题,解题的关键是熟练掌握折叠的性质、等腰三角形的性质、角平分线定义及平角的定义等.10、C【分析】直线外一点到这条直线的垂线段的长度,叫做点到直线的距离.【详解】由图可得,AD⊥BC于D,点A到线段BC的距离指线段AD的长,故选:C.【点睛】此题主要考查了点到直线的距离的概念.点到直线的距离是一个长度,而不是一个图形,也就是垂线段的长度,而不是垂线段.11、D【解析】解:设盈利25%的那件衣服的进价是x元,亏损25%的那件衣服的进价是y元,由题意得:()125%60x +=,()125%60y -=,解得:48x =,80y =,故60248808⨯--=-,所以选D .【点睛】该题是关于销售问题的应用题,解答本题的关键是根据售价=进价(1+利润率)得出方程求解.12、B【分析】从平行线的角度考虑,先考虑四条直线都平行,再考虑三条、两条直至都不平行,作出草图即可看出四条直线在平面内交点的个数;再解方程求出关于a 的x 的值,根据“方程有负整数解”得出a 的值,看是否符合题意,即可得出满足条件的所有a 的个数.【详解】解:四条直线在平面内交点的个数有以下几种情况:(1)当四条直线平行时,无交点,(2)当三条平行,另一条与这三条不平行时,有三个交点,(3)当两两直线平行时,有4个交点,(4)当有两条直线平行,而另两条不平行时,有5个交点,(5)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点,(6)当四条直线同交于一点时,只有一个交点,(7)当四条直线两两相交,且不过同一点时,有6个交点,故四条直线在平面内交点的个数为:0或1或3或4或5或6;解方程39ax x +=--得:x=121a -+, ∵方程组有负整数解, ∴121a -+=-1或121a -+=-2或121a -+=-3或121a -+=-4或121a -+=-6或121a -+=-12, 解得:a=11或5或3或2或1或0,∵a 也是四条直线在平面内交点的个数,∴满足条件的a的值有:0,1,3,5共四个,故选:B.【点睛】本题考查平行线与相交线的位置关系,没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都平行,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出所有答案.也考查了解一元一次方程,一元一次方程的整数解.二、填空题(每题4分,满分20分,将答案填在答题纸上)13、2019 2020【分析】仔细观察这组数,找到规律,利用规律求解即可.【详解】观察这组数发现:各个数的分子等于序列数,分母等于序列数+1,所以第2019个数是2019 2020,故答案为:2019 2020.【点睛】考查了数字的变化类问题,解题的关键是仔细观察数据并认真找到规律,难度不大.14、1 5【解析】根据题意得:3(x-1)=-2(x+1),去括号得:3x-3=-2x-2,移项得:3x+2x=-2+3合并同类项得:5x=1系数为1得:x=15,故答案是:1 5 .15、1【分析】先找到∠BFE的邻补角∠EFC,再根据平行线的性质求出与∠EFC相等的角即可.【详解】∵DE∥BC,∴∠DEF=∠EFC,∠ADE=∠B,又∵EF∥AB,∴∠B=∠EFC,∴∠DEF=∠EFC=∠ADE=∠B,∵∠BFE的邻补角是∠EFC,∴与∠BFE 互补的角有:∠DEF 、∠EFC 、∠ADE 、∠B .故答案为1.【点睛】本题主要考查的是平行线的性质,解题时注意:两直线平行,同旁内角互补且同位角相等.16、150︒.【分析】先利用已知结合平角的定义得出∠BOD 的度数,利用垂线的定义结合互余的定义分析得出答案.【详解】∵:1:5BOD BOC ∠∠=,180BOD BOC ∠+∠=︒, ∴1180306BOD ∠=⨯︒=︒, ∵90COE ∠=︒∴∠EOD=180︒-∠EOC=90︒,∵OF ⊥AB ,∴∠BOF=90︒,∴∠DOF=∠BOF-∠BOD=90︒-30︒=60︒,∴∠EOF=∠EOD+∠DOF=90︒+60︒=150︒.故答案为:150︒.【点睛】本题考查了余角和补角的定义以及性质,等角的补角相等.等角的余角相等,解题时认真观察图形是关键.17、﹣2【分析】根据相反数的定义列出关于x 的方程,进而求出x 的值.【详解】解:∵代数式25x -与33x -互为相反数,∴25x -+33x -=0,∴x =﹣2故答案为:﹣2【点睛】本题考查相反数的定义和解一元一次方程,利用相反数的含义列出关于x 的方程是解题的关键.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18、(1)100﹣2xy ;(2)1【分析】(1)用正方形的面积减去两个三角形的面积和一个长方形的面积,列式即可;(2)将x =3,y =2代入(1)的结果计算即可.【详解】解:(1)S “囧”字图案=S 正方形﹣2S 三角形﹣S 长方形=100﹣2×12xy﹣xy=100﹣2xy;(2)当x=3,y=2时,S“囧”字图案=100﹣2×3×2=100﹣12=1.【点睛】此题考查列代数式,已知字母的值求代数式的值,正确掌握正方形的面积公式,长方形的面积公式,三角形的面积公式是解题的关键.19、(1)x=7;(2)x=5.5【分析】(1)先去括号,先移项,再合并同类项,最后化系数为1,从而得到方程的解;(2)要先去分母,再去括号,最后移项、合并同类项,化系数为1,从而得到方程的解.【详解】(1)去括号,得:x+5=2x-2,移项,合并同类项,得:-x=-7,系数化为1,得x=7;(2)去分母,得:5(4-x)=3(x-3)-15,去括号,得:20-5x=3x-9-15,移项,得:-5x−3x=-9-15-20,合并同类项,得:-8x=-44,则x=5.5【点睛】本题考查了一元一次方程的解法,去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.20、这个班有1名同学,这批教学仪器共有400箱【分析】设这个班有x名同学,就有教学仪器为(8x+16)或(9x−32)箱,根据教学仪器的数量不变建立方程求出其解即可.【详解】设这个班有x名同学,由题意,得8x+16=9x−32,解得:x=1.故这批教学仪器共有:8×1+16=400箱.答:这个班有1名同学,这批教学仪器共有400箱.【点睛】本题考查列方程解实际问题的运用,根据教学仪器的总箱数不变建立方程是关键.21、(1)9;(2)2.【解析】(1)由E 为DB 的中点,得到BD=DE=1,根据线段的和差即可得到结论;(2)由E 为DB 的中点,得到BD=2DE=6,根据C 是AB 的中点,得到BC=AB=10,根据线段的和差即可得到结论.【详解】解:(1)∵E 为DB 的中点,∴BD=DE=1,∵CE=8,∴BC=CE+BE=11,∴AC=AB ﹣BC=9;(2)∵E 为DB 的中点,∴BD=2DE=6,∵C 是AB 的中点,∴BC=AB=10,∴CD=BC ﹣BD=10﹣6=2.【点睛】此题考查了两点间的距离,熟练掌握中点的定义和线段的和差关系是解本题的关键.22、 (1) 2x =;(2) 3x =-【解析】试题分析:(1)先去括号,然后移项合并同类项,最后系数化为1,(2)先去分母,然后再去括号,再移项合并同类项,最后系数化为1.试题解析:(1)去括号得:263161x x x +-=--,移项得:261613x x x ++=-+,合拼同类项得:918x =,系数化为1得:2x =,(2)去分母得:()()72584x x --+=,去括号得:710164x x ---=,移项得:104716x x -=++,合并同类项得:927x -=,x=-,系数化为1得:323、x﹣5;-1.【解析】对M先去括号再合并同类项,最后代入x=1即可. 【详解】解:M=﹣1x1+x﹣4+1x1+x﹣1=x﹣5,当x=1时,原式=×1﹣5=3﹣5=﹣1.【点睛】本题考查了整式中的先化简再求值.。

2022-2023学年四川省观音片七年级数学第一学期期末监测模拟试题含解析

2022-2023学年四川省观音片七年级数学第一学期期末监测模拟试题含解析

2022-2023学年七上数学期末模拟试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列各式中,符合代数书写规则的是( )A .273xB .14a ⨯C .126p -D .2y z ÷2.如图是一个正方体的表面展开图,则原正方体中与“你”字所在面相对的面上标的字是( )A .遇B .见C .未D .来3.若单项式53a b -与m a b 是同类项,则m=( )A .5B .2C .1D .-34.如图,把六张形状大小完全相同的小长方形卡片(如图①)不重叠的放在一个底面为长方形(长为7cm ,宽为6cm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是( )A .16cmB .24cmC .28cmD .32cm 5.如果单项式13a xy +与2b x y 是同类项,那么a b 、的值分别为( ) A .2,3a b == B .1,2a b ==C .1,3a b ==D .2,2a b == 6.若n -m =1,则2()22m n n m --+的值是A .3B .2C .1D .-17.已知点P 是CD 的中点,则下列等式中正确的个数是( )①PC CD =;②12PC CD =;③2PC PD =;④PC PD CD += A .1个 B .2个 C .3个 D .4个8.用 “△”表示一种运算符号,其意义是2a b a b ∆=-,若(1)2x ∆-=,则x 等于( )A .1B .12C .32D .29.如图,三条直线a 、b 、c 相交于一点,则∠1+∠2+∠3=( )A .360°B .180°C .120°D .90°10.在下边图形中,不是如图立体图形的视图是( )A .B .C .D .11.下列各式中是同类项的是( )A .2ab -和2abcB .3x y 和23xyC .mn 和nm -D .a 和b12.如图,动点P 从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角(AOM BOM ∠=∠),当点P 第2019次碰到矩形的边时,点P 的坐标为( )A .(0,3)B .(5,0)C .(1,4)D .(8,3)二、填空题(每题4分,满分20分,将答案填在答题纸上)13.在数轴上,点A 与表示-1的点的距离为3,则点A 所表示的数是 .14.己知 2n =a ,3n =b ,则6n =_______15.﹣|﹣2|=____.16.已知多项式225x mx ++是完全平方式,且0m >,则m 的值为__________.17.x=1是关于x 的方程2x -a=0的解,则a 的值是_____.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)如图,点A 、B 、C 在数轴上分别表示的数为-10,2,8,点D 是BC 中点,点E 是AD 中点.(1)求EB 的长;(2)若动点P 从点A 出发,以1cm /s 的速度向点C 运动,达到点C 停止运动,点Q 从点C 出发,以2cm /s 的速度向点A 运动,到达点A 停止运动,若运动时间为ts ,当t 为何值时,PQ =3cm ?(3)点A ,B ,C 开始在数轴上运动,若点A 以1cm /s 的速度向左运动,同时,点B 和点C 分别以4cm /s 和9cm /s 的速度向右运动,假设t 秒钟过后,若点B 与点C 之间的距离表示为BC ,点A 与点B 之间的距离表示为AB ,请问:AB -BC 的值是否随时间t 的变化而变化?若变化,请说明理由;若不变,请求其常数值.19.(5分)计算:﹣42÷(﹣2)3-49×(﹣32)2 20.(8分)为了迎接期末考试,某中学对全校七年级学生进行了一次数学摸底考试,并随机抽取了部分学生的测试成绩作为样本进行分析,绘制成了如图两幅不完整的统计图,请根据图中所给出的信息,解答下列问题:(1)在这次调查中,被抽取的学生的总人数为多少?(2)请将表示成绩类别为“中”的条形统计图补充完整.(3)在扇形统计图中,表示成绩类别为“优”的扇形所对应的圆心角的度数是多少?(4)学校七年级共有1000人参加了这次数学考试,估计该校七年级共有多少名学生的数学成绩可以达到优秀.21.(10分)计算(1)-3+2-4×(-5);(2)27211(4)9353⎛⎫÷--⨯- ⎪⎝⎭ 22.(10分)先化简,再求值:22113122323a a b a b ⎛⎫⎛⎫--+-+ ⎪ ⎪⎝⎭⎝⎭,其中22203a b ⎛⎫-++= ⎪⎝⎭. 23.(12分)希腊数学家丢番图(公元3- -4世纪)的墓碑上记载着:“他生命的六分之一是幸福的童年;再活了他生命的十二分之一,两颊长起了细细的胡须;他结了婚,又度过了一生的七分之一;再过五年,他有了儿子,感到很幸福;可是儿子只活了他父亲全部年龄的一半;儿了死后,他在极度悲痛中度过了四年,也与世常辞了.”根据以上信息,请你求出:(1)丢番图的寿命;(2)儿子死时丢番图的年龄.参考答案一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1、A【分析】根据代数式的书写要求判断各项.【详解】A 、273x 符合代数书写规则,故选项A 正确. B 、应为14a ,故选项B 错误; C 、应为136p -,故选项C 错误; D 、应为2y z ,故选项D 错误; 故选:A .【点睛】此题考查代数式,代数式的书写要求:(1)在代数式中出现的乘号,通常简写成“•”或者省略不写;(2)数字与字母相乘时,数字要写在字母的前面;(3)在代数式中出现的除法运算,一般按照分数的写法来写.带分数要写成假分数的形式.2、D【解析】试题分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,由此可得“遇”与“的”是相对面,“见”与“未”是相对面,“你”与“来”是相对面.故答案选D .考点:正方体的展开图.3、A【分析】根据同类项的定义,即可得到答案.【详解】解:∵53a b -与m a b 是同类项,∴m 5=,故选择:A.【点睛】本题考查了同类项的定义,解题的关键是熟记同类项的定义.4、B【分析】根据题意,结合图形列出关系式,去括号合并即可得到结果.【详解】设小长方形的长为xcm ,宽为ycm ,根据题意得:7-x=3y ,即7=x+3y ,则图②中两块阴影部分周长和是:2×7+2(6-3y )+2(6-x )=14+12-6y+12-2x=14+12+12-2(x+3y )=38-2×7=24(cm ).故选B .【点睛】此题考查了整式的加减,正确列出代数式是解本题的关键.5、C【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.【详解】解:根据题意得:a+1=2,b=3,则a=1.故选:C .【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.6、D【解析】()222m n n m --+=()()22m n n m ---=(-1)2-2×1=-1,故选D. 7、C【分析】根据线段中点的性质、结合图形解答即可.【详解】如图,∵P 是CD 中点,∴PC=PD ,12PC CD =,CD=2PD ,PC+PD=CD , ∴正确的个数是①②④,共3个;故选:C .【点睛】本题考查的是两点间的距离的计算,掌握线段中点的概念和性质、灵活运用数形结合思想是解题的关键.8、B【分析】已知等式利用题中的新定义化简,计算即可求出x 的值.【详解】解:根据题中的新定义化简得:x △(-1)=2x+1=2,解得:x=12, 故选:B .【点睛】此题考查了解一元一次方程,弄清题中的新定义是解本题的关键.9、B【解析】解:根据对顶角相等及平角的定义可得∠1+∠2+∠3=180°,故选B .10、C【分析】直接利用简单组合体的三视图进而判断得出答案.【详解】解:A 选项为该立体图形的俯视图,不合题意;B 选项为该立体图形的主视图,不合题意;C选项不是如图立体图形的视图,符合题意;D选项为该立体图形的左视图,不合题意.故选:C.【点睛】此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.11、C【分析】根据同类项的定义(所含字母相同,相同字母的指数相同)来解答即可.-和2abc中所含的字母不同,所以它们不是同类项,故本选项错误;【详解】A、2ab3xy中所含字母相同,但相同字母的指数不同,此选项不符合题意;B、3x y和2-中所含的字母相同,它们的指数也相同,所以它们是同类项,故本选项正确;C、mn和nmD、a和b中所含的字母不同,所以它们不是同类项,故本选项错误.故选:C.【点睛】本题考查了同类项的定义:所含字母相同,并且相同字母的指数也相同,注意一是所含字母相同,二是相同字母的指数也相同,两者缺一不可.12、D【分析】根据反射角与入射角的定义可以在格点中作出图形,可以发现,在经过6次反射后,动点回到起始的位置,将2019除以6得到336,且余数为3,说明点P第2019次碰到矩形的边时为第337个循环组的第3次反弹,因此点P 的坐标为(8,3).【详解】如图,根据反射角与入射角的定义作出图形,解:如图,第6次反弹时回到出发点,∴每6次碰到矩形的边为一个循环组依次循环,∵2019÷6=336余3,∴点P第2019次碰到矩形的边时是第336个循环组的第3次碰边,坐标为(8,3).故选:D.【点睛】本题主要考查了点的坐标的规律,作出图形,观察出每6次反弹为一个循环组依次循环是解题的关键.二、填空题(每题4分,满分20分,将答案填在答题纸上)13、-4或1【分析】分两种情况:要求的点可以在已知点的左侧或右侧.【详解】解:若点在-1的左面,则点为-4;若点在-1的右面,则点为1.故答案为-4或1.14、ab【解析】试题分析:利用积的乘方把目标整式化成已知,整体代入.试题解析:6n =(2×3)n = 2n ×3n =ab .15、﹣1. 【分析】计算绝对值要根据绝对值的定义求解2-,然后根据相反数的性质得出结果.【详解】﹣|﹣1|表示﹣1的绝对值的相反数,|﹣1|=1,所以﹣|﹣1|=﹣1.【点睛】相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;绝对值规律总结:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.16、1【解析】根据多项式225x mx ++是完全平方式,可得:m=2×1×5±,由m >0,据此求出m 的值是多少即可.【详解】解:∵多项式225x mx ++是完全平方式,∴m=2×1×5±=±1.∵m >0,∴m=1故答案为:1.【点睛】此题主要考查了完全平方公式的应用,要熟练掌握,解答此题的关键是要明确:(a±b )2=a 2±2ab+b 2. 17、1【分析】将x=1代入方程即可解出a .【详解】将x=1代入方程得:1-a=0,解得a=1,故答案为:1.【点睛】本题考查解方程,关键在于掌握解方程的步骤.三、解答题(本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18、(1)9 2(2)3;7(3)AB-BC的值不随t的变化而变化,其常数值为6【分析】(1)根据点D是BC中点,点E是AD中点确定D、E表示的数,即可求出EB.(2)已知P、Q两点的运动速度和运动轨迹,AC之间的总长度,若运动时间为t,PQ=3cm,路程等于速度乘以时间,根据总路程是18,可列出关于t的方程,本题有两种情况,第一种情况P、Q未相遇距离为3 cm,第二种情况P、Q相遇之后继续前进之后相距为3 cm.(3)根据A,B,C的运动情况即可确定AB,BC的变化情况,即可确定AB-BC的值.【详解】(1)∵点D是BC中点,D表示的数为285 2+=又∵点E是AD中点确定,E表示的数为105522 -+=-∴EB=2-5 ()2-=92故答案:9 2(2)根据题意可得:AC=18①P、Q未相遇距离为3 cmt+3+2t=18t=5当t=5时,PQ=3cm②P、Q相遇之后继续前进之后相距为3 cm2t-3+t=18t=7答案:5;7t秒钟后,A点位置为:−10−t,B点的位置为:2+4t,C点的位置为:8+9t BC=8+9t−(2+4t)=6+5tAB=5t+12AB−BC=5t+12−(5t+6)=6AB-BC的值不随t的变化而变化,其常数值为6【点睛】本题考查了已知数轴上的两个点,如何表示出中点;考查了数轴上两点间的距离的意义和求法.19、1【解析】先计算乘方,再计算乘除,最后计算加减可得.【详解】原式=﹣16÷(﹣8)4994-⨯=2﹣1=1.【点睛】本题考查了有理数的混合运算,解题的关键是掌握有理数混合运算顺序和运算法则.20、(1)被抽取的学生的总人数为50人;(2)补图见解析;(3)72°;(4)估计该校七年级共有200名学生的数学成绩可以达到优秀.【分析】(1)利用成绩为良的人数以及百分比求出总人数即可.(2)求出成绩为中的人数,画出条形图即可.(3)根据圆心角=360°×百分比即可.(4)用样本估计总体的思想解决问题即可.【详解】(1)8÷16%=50(人).答:被抽取的学生的总人数为50 人.(2)50×20%=10(人),如图.(3)因为成绩类别为“优”的扇形所占的百分比为10÷50=20%,所以表示成绩类别为“优”的扇形所对应的圆心角的度数是360°×20%=72°(4)1000×20%=200(名).答:估计该校七年级共有200名学生的数学成绩可以达到优秀.【点睛】本题考查读条形统计图和扇形统计图的能力,考查利用统计图获取信息的能力,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.21、(1)19;(2)-113【分析】(1)原式先计算乘法运算,再进行回头运算即可得到结果;(2)原式先计算乘方和括号内的,再计算乘除运算,最后进行加减运算即可.【详解】(1)-3+2-4×(-5)=-3+2+20=19;(2)27211(4)9353⎛⎫÷--⨯- ⎪⎝⎭ =771169153÷-⨯ =51633- =113- 【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解答本题的关键.22、-3a+b 2,559-【分析】先对整式进行化简,然后代值求解即可.【详解】解:原式=2221231232323a ab a b a b -+-+=-+, 又22203a b ⎛⎫-++= ⎪⎝⎭,∴22,3a b ==-, 把22,3a b ==-代入求解得:原式=22453265399⎛⎫-⨯+-=-+=- ⎪⎝⎭. 【点睛】本题主要考查整式的化简求值及非负性,熟练掌握整式的运算及绝对值和偶次幂的非负性是解题的关键.23、(1)84岁; (2)80岁 .【分析】(1)设丢番图的寿命为x 岁,则根据题中的描述他的年龄=16x 的童年+生命的112x +17x +5年+儿子的年龄+4年,可列出方程,即可求解;(2)他的寿命减去4即可.【详解】解:(1)设丢番图的寿命为x 岁,由题意,得5461272x x x x x +++++=, 解得:x =84,经检验符合题意∴丢番图的寿命是84岁;(2)儿子死时丢番图的年龄:84-4=80(岁) .【点睛】本题考查了一元一次方程的应用,掌握列方程解应用题的方法与步骤,解题关键是要读懂题目的意思,根据题目给出的条件,列出丢番图的年龄的表达式,抓住等量关系,列出方程.。

山东省淄博市张店区2023-2024学年七年级上学期期末数学模拟试题(含答案)

山东省淄博市张店区2023-2024学年七年级上学期期末数学模拟试题(含答案)

....A.85︒=A.AC DF∠=∠ABC D...⨯8.如图,在66()-1,6A.6B.A.6A15.甲,乙车同时从地出发去地三、解答题(本题共8小题,请把解答过程写在答题纸上)16.计算:(1)()2212--17.如图,已知和线段,用尺规作一个三角形,使其一个内角等于α∠a ABC △BAD △BC AD (1)请判断与的数量关系,并说明理由;OA OB(1)当,且54A ∠=︒AB AC ==小明仔细阅读了通讯公司的手机话费收费套餐方案说明,发现话费与通话时间有关联.小明设采用套餐的通话费用为(元)采用套餐的通话费用为A A y B .(1)已知,两点,请直接写出,两点的距离;()2,1A -()3,3B -A B (2)如图2,已知,两点,请求出,两点的距离;(用,,()11,C x y ()22,D x y C D 1x 1y ,表达)2x 2y (3)如图3,直线与轴,轴分别交于点,,是射线上一动点,4y x =+x y E F M EF 是轴上点右边的一动点,在第一象限取点,连接,,.问N x E ()3,1P PM PN MN 的周长是否存在最小值?若存在,请求出周长的最小值;若不存在,请说明PMN △PMN △理由.图1图2图3(作出得3分,作出得α∠2α∠18.(本题共10分)△≌△(2)由(1)ABC⊥(2)作AM BC==因为,AB ACABC △AB C '△所以,,20BAE BAD ∠=∠=︒∠因为,,20BAD CAD ∠=∠=︒AD(每个图象2分)(2)由题意得,,解,得0.1150.15x x +=所以,当通话时间为300分钟时,套餐,A 图2所以,,DH x x =-图3因为,点,所以,点的坐标为()3,1P 2P 连接,交轴于点,作PP x F。

2023-2024学年广东省深圳市七年级(上)数学期末试题含答案解析

2023-2024学年广东省深圳市七年级(上)数学期末试题含答案解析

广东省深圳市2023-2024学年七年级(上)期末考试数学模拟卷02答案与解析一.选择题(共10小题,满分30分,每小题3分)1.﹣2的相反数是()A.2B.﹣2C.D.【分析】利用相反数的定义判断即可.【解答】解:﹣2的相反数是2.故选:A.2.台湾岛是我国第一大岛,面积35800平方千米,在世界大岛中列第38位.将35800用科学记数法表示为()A.3.58×104B.3.58C.3.58×105D.0.358×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将35800用科学记数法表示是3.58×104.故选:A.3.我校要了解学生的课外作业负担情况,你认为下列抽样方法中比较合理的是()A.调查全体女生B.调查全体男生C.调查七年级全体学生D.随机调查七、八、九年级学生各50名【分析】利用抽样调查应具有全面性以及随机性,进而得出答案.【解答】解:∵我校要了解学生的课外作业负担情况,∴抽样方法中比较合理的是随机调查七、八、九年级学生各50名.故选:D.4.下列各图经过折叠不能围成一个正方体的是()A.B.C.D.【分析】由平面图形的折叠及正方体的表面展开图的特点解题.只要有“田”“凹”“一线超过四个正方形”字格的展开图都不是正方体的表面展开图.【解答】解:A、是正方体的展开图,不符合题意;B、是正方体的展开图,不符合题意;C、是正方体的展开图,不符合题意;D、不是正方体的展开图,缺少一个底面,符合题意.故选:D.5.下列运算中,正确的是()A.3a+2b=5ab B.2a3+3a2=5a5C.5a2﹣4a2=1D.3a2b﹣3ba2=0【分析】根据合并同类项系数相加字母及指数不变,可得答案.【解答】解:A、不是同类项不能合并,故A错误;B、合并同类项系数相加字母及指数不变,故B错误;C、合并同类项系数相加字母及指数不变,故C错误;D、合并同类项系数相加字母及指数不变,故D正确;故选:D.6.下列运用等式的性质,变形不正确的是()A.若x=y,则x+5=y+5B.若a=b,则ac=bcC.若=,则a=b D.若x=y,则=【分析】直接利用等式的基本性质进而判断得出即可.【解答】解:A、若x=y,则x+5=y+5,正确,不合题意;B、若a=b,则ac=bc,正确,不合题意;C、若=,则a=b,正确,不合题意;D、若x=y,则=,a≠0,故此选项错误,符合题意.故选:D.7.有理数a、b、c在数轴上所对应的点如图所示,则下列结论正确的是()A.a+b<0B.a+b>0C.a+c<0D.b+c>0【分析】先根据数轴判断出﹣4<b<﹣3<﹣1<a<0<1<c<2,再结合有理数的加法法则逐一判断即可.【解答】解:由数轴知,﹣4<b<﹣3<﹣1<a<0<1<c<2,∴a+b<0,a+c>0,b+c<0,故选:A.8.若a2+3a﹣4=0,则2a2+6a﹣3=()A.5B.1C.﹣1D.0【分析】将已知条件变形可得a2+3a=4,然后将2a2+6a﹣3变形为2(a2+3a)﹣3后代入数值计算即可.【解答】解:∵a2+3a﹣4=0,∴a2+3a=4,∴2a2+6a﹣3=2(a2+3a)﹣3=2×4﹣3=5,故选:A.9.我国古代《孙子算经》卷中记载“多人共车”问题,其原文如下:今有三人共车,二车空,二人共车,九人步,问人与车各几何?其大意为:若3个人乘一辆车,则空2辆车;若2个人乘一辆车,则有9个人要步行,问人与车数各是多少?若设有x个人,则可列方程是()A.3(x+2)=2x﹣9B.3(x+2)=2x+9C.+2=D.﹣2=【分析】根据“每3人乘1车,最终剩余2辆车;若每2人共乘1车,最终剩余9个人无车可乘”,即可得出关于x的一元一次方程,此题得解.【解答】解:依题意得:+2=.故选:C.10.如图,已知线段AB=10cm,M是AB中点,点N在AB上,NB=2cm,那么线段MN的长为()A.5cm B.4cm C.3cm D.2cm【分析】根据M是AB中点,先求出BM的长度,则MN=BM﹣BN.【解答】解:∵AB=10cm,M是AB中点,∴BM=AB=5cm,又∵NB=2cm,∴MN=BM﹣BN=5﹣2=3cm.故选:C.二.填空题(共5小题,满分15分,每小题3分)11.计算:|﹣5|=5.【分析】根据绝对值定义去掉这个绝对值的符号即可.【解答】解:|﹣5|=5.故答案为:512.若﹣2a2m b与a4b n﹣1是同类项,则2m﹣n=2.【分析】根据同类项是字母相同,且相同的字母的指数也相同,可得m、n的值,根据有理数的减法,可得答案案.【解答】解:∵﹣2a2m b与a4b n﹣1是同类项,∴2m=4,n﹣1=1,m=2,n=2.2m﹣n=2×2﹣2=2,故答案为:2.13.已知x=﹣1是方程﹣2(x﹣a)=4的解,则a的值为1.【分析】把x=﹣1代入方程计算即可求出a的值.【解答】解:把x=﹣1代入方程得:﹣2(﹣1﹣a)=4,去括号得:2+2a=4,解得a=1,故答案为:1.14.A、B,C三点在同一直线上,线段AB=5cm,BC=4cm,那么A,C两点的距离是1cm或9cm.【分析】由已知条件知A,B,C三点在同一直线上,做本题时应考虑到A、B、C三点之间的位置,分情况可以求出A,C两点的距离.【解答】解:第一种情况:C点在AB之间上,故AC=AB﹣BC=1cm;第二种情况:当C点在AB的延长线上时,AC=AB+BC=9cm.故答案为:1cm或9cm.15.如图图形都是由同样大小的小钢珠按一定规律排列的,按照此规律排列下去,第40个图形有小钢珠820颗.【分析】根据图形变化规律可知,第n个图形有个小球,据此规律计算即可.【解答】解:第1个图中有1个小球,第2个图中有3个小球,3=1+2,第3个图中有6个小球,6=1+2+3,第4个图中有10个小球,10=1+2+3+4,……,照此规律,第n个图形有个小球,当n=40时,小球个数为,故答案为:820.三.解答题(共7小题,满分55分)16.(5分)由6个棱一样长的正方体组成的几何体如图所示.在指定的方格内画出该几何体从三个方向看到的形状图.【分析】根据三视图的画法分别画出从正面看、从左面看,从上面看所得到的图形即可.【解答】解:这个组合体的三视图如下:17.(7分)解方程:(1)2x﹣(x+10)=6x;(2)1﹣.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:2x﹣x﹣10=6x,移项合并得:5x=﹣10,解得:x=﹣2;(2)去分母得:6﹣9x+15=2+10x,移项合并得:19x=19,解得:x=1.18.(8分)计算:(1)计算:﹣14﹣;(2)先化简,后求值:5(x2﹣xy)﹣[5x2﹣6y+3(xy+2y)],其中x=﹣,y=﹣3.【分析】(1)先算乘方,再算乘除,后算加减,有括号先算括号里边的;(2)先去小括号,再去中括号,最后合并同类项,进行计算即可解答.【解答】解:(1)﹣14﹣=﹣1﹣×(3﹣9)=﹣1﹣×(﹣6)=﹣1+1=0;(2)5(x2﹣xy)﹣[5x2﹣6y+3(xy+2y)]=5x2﹣5xy﹣(5x2﹣6y+3xy+6y)=5x2﹣5xy﹣5x2+6y﹣3xy﹣6y=﹣8xy,当x=﹣,y=﹣3,原式=﹣8×(﹣)×(﹣3)=﹣12.19.(8分)在疫情期间,某县城为了保障学校学生的正常学习,需每天抽取不低于总学生人数的30%进行核酸抽检.为了更好地统计每天抽测的学生人数,医务人员以每天抽测2000人为标准,超过的人数记作正,不足的人数记作负.下表是该县城学校一周核酸抽检情况的记录(单位:人):星期一二三四五与标准的差/人+21+16﹣10﹣11﹣26(1)该县城哪天抽检的学生人数最多?哪天抽检的最少?分别是多少人?(2)聪明的你,帮医务人员计算下这周该县城总共核酸抽检了学生多少人?【分析】(1)根据正数和负数的实际意义列式计算即可;(2)根据正数和负数的实际意义列式计算即可.【解答】解:(1)2000+21=2021(人),2000﹣26=1974(人),即该县城星期一抽检的学生人数最多,最多为2021人;星期五抽检的学生人数最少,最少为1974人;(2)2000×5+(21+16﹣10﹣11﹣26)=10000﹣10=9990(人),即这周该县城总共核酸抽检了学生9990人.20.(8分)某校随机抽取部分学生,就”对自己做错题进行整理、分析、改正”这一学习习惯进行问卷调查,选项为:很少、有时、常常、总是(每人只能选一项);调查数据进行了整理,绘制成部分统计图如图:请根据图中信息,解答下列问题:(1)该调查的总人数为200,a=12%,b=36%,“常常”对应扇形的圆心角的度数为108° ;(2)请你补全条形统计图;(3)若该校有2000名学生,请你估计其中”总是”对错题进行整理、分析、改正的学生有多少名?【分析】(1)首先用“有时”对错题进行整理、分析、改正的学生的人数除以22%,求出该调查的样本容量为多少;然后分别用很少、总是“对自己做错的题目进行整理、分析、改正”的人数除以样本容量,求出a、b的值各是多少;用360°乘以“常常”的人数所占比例.(2)求出常常“对自己做错的题目进行整理、分析、改正”的人数,补全条形统计图即可.(3)用该校学生的人数乘“总是”对错题进行整理、分析、改正的学生占的百分率即可.【解答】解:(1)∵44÷22%=200(名),∴该调查的样本容量为200;a=24÷200=12%,b=72÷200=36%,“常常”对应扇形的圆心角为:360°×30%=108°.故答案为:200、12、36、108°;(2)常常的人数为:200×30%=60(名),补全图形如下:.(3)∵2000×36%=720(名),∴“总是”对错题进行整理、分析、改正的学生约有720名.21.(9分)某车间为提高生产总量,在原有16名工人的基础上,新调入若干名工人,使得调整后车间的总人数是调入工人人数的3倍多4人.(1)求调入多少名工人;(2)在(1)的条件下,每名工人每天可以生产240个螺栓或400个螺母,1个螺栓需要2个螺母,为使每天生产的螺栓和螺母刚好配套,应该安排生产螺栓和螺母的工人各多少名?【分析】(1)设调入x名工人,根据“调整后车间的总人数是调入工人人数的3倍多4人“得:16+x =3x+4,可解得答案;(2)设y名工人生产螺栓,由“1个螺栓需要2个螺母”,可得240y×2=400(22﹣y),即可解得答案.【解答】解:(1)设调入x名工人,根据题意得:16+x=3x+4,解得x=6,∴调入6名工人;(2)由(1)知,调入6名工人后,车间有工人16+6=22(名),设y名工人生产螺栓,则(22﹣y)名工人生产螺母,∵每天生产的螺栓和螺母刚好配套,∴240y×2=400(22﹣y),解得y=10,∴22﹣y=22﹣10=12,答:10名工人生产螺栓,12名工人生产螺母,可使每天生产的螺栓和螺母刚好配套.22.(10分)(1)如图1,已知点C、D为线段AB上两点,且AB=4AD=5BC,点M和点N分别是线段AC和BD的中点.若线段AB=20cm,则线段AD=5cm,BC=4cm,MN= 4.5cm.(2)已知OC、OD为从∠AOB顶点出发的两条射线,∠AOB=5∠BOC且∠AOB=120°,射线OM和射线ON分别平分∠AOC、∠BOD.①如图2,若OC、OD均为∠AOB内的两条射线,且∠AOB=4∠AOD,求∠MON的度数.②如图3,若OC为∠AOB外的一条射线,且∠MON=20°,则∠AOD=64或16°.【分析】(1)根据题意可得AD=5cm,BC=4cm,计算出BD=AB﹣AD=15cm,AC=AB﹣BC=16cm,再根据中点的定义得出,,最后根据MN=AB﹣BN﹣AM即可得出答案;(2)①先计算∠BOC=24°,根据角平分线的定义得出∠AOM=∠COM=48°,,进而得出答案;②分两种情况:当OD在∠AOB内部时,当OD在∠AOB外部时,分别计算即可.【解答】解:(1)∵AB=20cm,AB=4AD=5BC,∴AD=5cm,BC=4cm,∴BD=AB﹣AD=20﹣5=15cm,AC=AB﹣BC=20﹣4=16cm,∵点M和点N分别是线段AC和BD的中点,∴,,∴,故答案为:5;4;4.5;(2)①∵∠AOB=5∠BOC=120°,∴∠BOC=24°,∴∠AOC=120°﹣24°=96°,∵OM平分∠AOC,∴∠AOM=∠COM=48°,∵∠AOB=4∠AOD=120°,∴∠AOD=30°,∴∠BOD=90°,∠DOM=18°,∵ON平分∠BOD,∴,∴∠MON=45°﹣18°=27°;②当OD在∠AOB内部时,∵∠AOC=120°+24°=144°,OM平分∠AOC,∴∠AOM=∠COM=72°,∴∠BOM=72°﹣24°=48°.∵∠MON=20°,∴∠BON=28°.∵ON平分∠BOD,∴∠DON=∠BON=28°,∴∠DOM=8°,∴∠AOD=72°﹣8°=64°;当OD在∠AOB外部时,∠DON=∠BON=20°+48°=68°,∵∠AOM=∠COM=72°,∴∠AON=72°﹣20°=52°,∴∠AOD=68°﹣52°=16°.。

2023届北京海淀区七年级数学第一学期期末综合测试模拟试题含解析

2023届北京海淀区七年级数学第一学期期末综合测试模拟试题含解析

2022-2023学年七上数学期末模拟试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。

写在试题卷、草稿纸上均无效。

2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。

一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.关于x 的方程2(x -1)-a =0的根是3,则a 的值为( )A .4B .-4C .5D .-52.某个体商贩在一次买卖中同时卖出两件上衣,每件售价均为135元,若按成本计算,其中一件盈利25%,一件亏本25%,则在这次买卖中他( )A .不赚不赔B .赚9元C .赔18元D .赚18元3.下列计算正确的是( )A .a •a 2=a 2B .(x 3)2=x 5C .(2a)2=4a 2D .(x+1)2=x 2+1 4.把方程2x +214x -=1-15x +去分母,正确的是( ) A .40x+5(2x-1)=1-4(x+1) B .2x+ (2x-1)=1-(x+1)C .40x+5(2x-1)=20-4(x+1)D .2x+5(2x-1)=20-4(x+1) 5.某市有5500名学生参加考试,为了了解考试情况,从中抽取1名学生的成绩进行统计分析,在这个问题中,有下列三种说法:①1名考生是总体的一个样本;②5500名考生是总体;③样本容量是1.其中正确的说法有( ) A .0种B .1种C .2种D .3种 6.单项式43b x y 与214a x y 是同类项,那么a 、b 的值分别为( ) A .4、2 B .2、4 C .4、4 D .2、27.在下列说法中:①方程311142x x ++-=的解为5x =;②方程()3126x --=的解为2x =-;③方程253164y y ---=的解为3y =;④方程()()62520412x x -+=-的解为7x =.正确的有( )A .1个B .2个C .3个D .4个8.要了解全校学生的课外作业负担情况,你认为以下抽样方法中比较合理的是( )A .调查全体女生B .调查全体男生C .调查九年级全体学生D .调查七,八,九年级各100名学生9.如图是一个简单的运算程序,如果输入的x 值为﹣2,则输出的结果为( )A .6B .﹣6C .14D .﹣1410.已知2016x n +7y 与–2017x 2m +3y 是同类项,则(2m –n )2的值是( )A .16B .4048C .–4048D .5 11.若23m xy -与2385n x y -的和是单项式,则m 、n 的值分别是( )A .m=2,n=2B .m=4,n=2C .m=4,n=1D .m=2,n=3 12.古希腊数学家把数1,3,6,10,15,21,…叫做三角数,它有一定的规律性,若把第一个三角数记为1a ,第二个三角数记为2a ,…,第n 个三角数记为n a ,计算20202019a a -的值为( )A .2020B .2019C .2018D .2017二、填空题(每题4分,满分20分,将答案填在答题纸上)13.下面是某个宾馆的五个时钟,显示了同一时刻国外四个城市时间和北京时间,你能根据表格给出的国外四个城市与北京的时差,分别在时钟的下方表明前四个时钟所在的城市名称_____ _____ _____ ____14.如图,数轴上的两个点A .B 所对应的数分别为−8、7,动点M 、N 对应的数分别是m 、m+1.若AN=2BM ,m 的值等于_________.15.任意写出一个含有字母,a b 的五次三项式,其中最高次项的系数为2,常数项为9-:____16.单项式﹣2xy 2的系数是_____,次数是_____.17.已知三点M 、N 、P 不在同一条直线上,且MN =4,NP =3,M 、P 两点间的距离为x ,那么x 的取值范围是_______.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18.(5分)老师买了13时30分开车的火车票,12时40分从家门口乘公交车赶往火车站.公交车的平均速度是30千米/时,在行驶13路程后改乘出租车,车速提高了1倍,结果提前10分钟到达车站.张老师家到火车站有多远? 19.(5分)(1)如图,A 、B 是河l 两侧的两个村庄.现要在河l 上修建一个抽水站C ,使它到A 、B 两村庄的距离的和最小,请在图中画出点C 的位置,并保留作图痕迹.(探索)(2)如图,C 、B 两个村庄在一条笔直的马路的两端,村庄A 在马路外,要在马路上建一个垃圾站O ,使得AO +BO +CO最小,请在图中画出点O 的位置.(3)如图,现有A 、B 、C 、D 四个村庄,如果要建一个垃圾站O ,使得AO +BO +CO +DO 最小,请在图中画出点O 的位置.20.(8分)先化简,再求值()()324323x y x y x x y ---++--⎡⎤⎣⎦,其中x 1=-,1y 2=-. 21.(10分)某粮库一周内进出库的吨数记录如下表(“+”表示进库,“-”表示出库,单位:顿): 星期一 二 三 四 五 六 日进出库数量 260+320- 150- 340+ 380- 200- 230+(1)经过这7天,粮库里的粮食是增多了还是减少了?增多了或减少了多少吨?(2)经过这7天,粮库管理员结算时发现粮库里还存有2480吨粮食,7天前粮库里存粮有多上吨?(3)如果进出库的装卸费都是每吨5元,那么这7天要付多少装卸费?22.(10分)如图,点O 是直线AE 上的一点,OC 是∠AOD 的平分线,∠BOD =13∠AOD .(1)若∠BOD=20°,求∠BOC的度数;(2)若∠BOC=n°,用含有n的代数式表示∠EOD的大小.23.(12分)如图,已知直线AB以及点C、点D、点E(1)画直线CD交直线AB于点O,画射线OE(2)在(1)所画的图中,若∠AOE=40°,∠EOD∶∠AOC=3∶4,求∠AOC的度数参考答案一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1、A【解析】试题分析:虽然是关于x的方程,但是含有两个未知数,其实质是知道一个未知数的值求另一个未知数的值.解:把x=3代入2(x﹣1)﹣a=0中:得:2(3﹣1)﹣a=0解得:a=4故选A.考点:一元一次方程的解.2、C【分析】要知道赔赚,就要先算出两件衣服的原价,要算出原价就要先设出未知数,然后根据题中的等量关系列方程求解.【详解】解:设在这次买卖中原价都是x,则可列方程:(1+25%)x=135,解得:x =108,比较可知,第一件赚了27元;第二件可列方程:(1﹣25%)x =135,解得:x =180,比较可知亏了45元,两件相比则一共亏了45﹣27=18元.故选:C .【点睛】此题考查了一元一次方程的应用,解题的关键是明白盈利与亏本的含义,准确列出计算式,计算结果,难度一般. 3、C【分析】直接利用同底数幂的乘法运算法则以及幂的乘方运算法则和积的乘方运算法则、完全平方公式分别计算得出答案.【详解】A 、a •a 2=a 3,故此选项错误;B 、(x 3)2=x 6,故此选项错误;C 、(2a)2=4a 2,正确;D 、(x+1)2=x 2+2x+1,故此选项错误.故选C .【点睛】此题主要考查了同底数幂的乘法运算以及幂的乘方运算和积的乘方运算、完全平方公式,正确掌握相关运算法则是解题关键.4、C【分析】方程两边都乘以20,注意不要漏乘,可得答案. 【详解】解: 2x +214x -=1-15x + ∴ 405(21)204(1)x x x +-=-+故选C .【点睛】本题考查的是解一元一次方程中的去分母,掌握去分母时,不漏乘是解题的关键.5、B【分析】根据总体:我们把所要考察的对象的全体叫做总体;个体:把组成总体的每一个考察对象叫做个体;样本:从总体中取出的一部分个体叫做这个总体的一个样本;样本容量:一个样本包括的个体数量叫做样本容量分别进行分【详解】解:抽取的1名学生的成绩是一个样本,故①错误;5500名考生的考试成绩是总体,故②错误;因为从中抽取1名学生的成绩,所以样本容量是1,故③正确.故选B .【点睛】此题主要考查了总体、个体、样本、样本容量,关键是掌握各个量的定义.6、A【分析】根据同类项的定义,即可求出a 、b 的值.【详解】解:∵单项式43b x y 与214a x y 是同类项, ∴4a =,2b =,故选:A .【点睛】本题考查了同类项的定义,解题的关键是熟练掌握同类项的定义进行解题.7、A【分析】根据方程的解的概念逐一进行判断即可. 【详解】解:①方程311142x x ++-=的解为5x =,所以①正确;②方程()3126x --=的解为2x =,所以②错误;③方程253164y y ---=的解为13y =所以③错误;方程()()62520412x x -+=-的解为710x =,所以④错误. 故应选A.【点睛】本题考查了一元一次方程的解的定义,正确理解方程解的定义是解题的关键.8、D【详解】在抽样调查中,样本的选取应注意广泛性和代表性,而本题中A 、B 、C 三个选项都不符合条件,选择的样本有局限性.故选D考点:抽样调查的方式9、C【分析】根据图示列出算式,继而计算可得.【详解】解:根据题意可列算式[(-2)-5]×(-2)=(-7)×(-2)=14,故选:C .本题主要考查有理数的混合运算,解题的关键是熟练掌握有理数的混合运算顺序和运算法则.10、A【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,注意同类项与字母的顺序无关,与系数无关.【详解】解:由题意,得:2m+3=n+7,移项,得:2m-n=4,(2m-n )2=16,故选A .【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.11、B【详解】试题分析:由题意,得:231{28n m -==,解得:42m n =⎧⎨=⎩.故选B . 考点:1.解二元一次方程组;2.同类项.12、A【分析】根据题意,分别求出2a -1a 、3a -2a 、4a -3a 、5a -4a ,找出运算结果的规律,并归纳出公式n a -1n a -,从而求出20202019a a -.【详解】解:根据题意:2a -1a =3-1=23a -2a =6-3=34a -3a =10-6=45a -4a =15-10=5∴n a -1n a -=n∴202020192020a a =-故选A .此题考查的是探索规律题,找出规律并归纳公式是解决此题的关键.二、填空题(每题4分,满分20分,将答案填在答题纸上)13、伦敦罗马北京纽约【分析】根据纽约、悉尼、伦敦、罗马,与北京的时差,结合钟表确定出对应的城市即可.【详解】解:由表格,可知北京时间是16点,则纽约时间为16-13=3点,悉尼时间为16+2=18点,伦敦时间为16-8=8点,罗马时间为16-7=9点,由钟表显示的时间可得对应城市为伦敦、罗马、北京、纽约、悉尼;故答案为:伦敦、罗马、北京、纽约.【点睛】此题考查了正数与负数,弄清各城市与北京的时差是解本题的关键.14、1或3【分析】根据A、B所对应的数分别是−8、7,M、N所对应的数分别是m、m+1,可得AN=|(m+1)−(−8)|=|m +11|,BM=|7−m|,分三种情况讨论,即可得到m的值.【详解】解:∵A、B所对应的数分别是−8、7,M、N所对应的数分别是m、m+1.∴AN=|(m+1)−(−8)|=|m+11|,BM=|7−m|,①当m≤−11时,有m+11≤2,7−m>2.∴AN=|m+11|=−m−11,BM=|7−m|=7−m,由AN=2BM得,−m−11=2(7−m),解得m=3,∵m≤−11,∴m=3不合题设,舍去;②当−11<m≤7时,有m+11>2,7−m≥2.∴AN=|m+11|=m+11,BM=|7−m|=7−m,由AN=2BM得,m+11=2(7−m),解得m=1,符合题设;③当m>7时,有m+11>2,7−m<2.∴AN=|m+11|=m+11,BM=|7−m|=m−7,由AN=2BM得,m+11=2(m−7),解得m=3,符合题设;综上所述,当m=1或m=3时,AN=2BM,故答案为:1或3.【点睛】本题考查了数轴上两点间的距离及一元一次方程的应用,表示出两点间的距离并能运用分类讨论的方法是解题的关键.15、429a b ab --(答案不唯一)【分析】根据题意,结合五次三项式、最高次项的系数为2,常数项可写出所求多项式,答案不唯一,只要符合题意即可.【详解】根据题意,此多项式是:429a b ab --(答案不唯一),故答案是:429a b ab --(答案不唯一).【点睛】本题考查了多项式,解题的关键是熟练掌握多项式中系数、最高次项、常数项的概念.16、-2 1【分析】根据单项式的系数和次数的定义解答即可【详解】解:单项式﹣2xy 2的系数是﹣2,次数是1+2=1.故答案是:﹣2;1.【点睛】考查了单项式,单项式中的数字因数叫做这个单项式的系数,几个单项式的和叫做多项式,单项式中,所有字母的指数和叫做这个单项式的次数.17、17x <<【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解.【详解】根据题意知,三点M 、N 、P 不在同一条直线上,则三点构成三角形,4-3=1,4+3=1,MN-NP<x<MN+NP , ∴1<x<1,故答案为:1<x<1.【点睛】本题考查了三角形的三边关系,掌握利用三角形三边关系式是解题的关键.三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)18、张老师家到火车站有1千米【分析】设张老师家到火车站有x 千米,根据老师行驶的两段路程与总路程间的数量关系和路程=时间×速度列出方程并解答.【详解】解:设张老师家到火车站有x 千米,根据题意,得 1251333030266x x +=-⨯解得x =1.答:张老师家到火车站有1千米.【点睛】考查了一元一次方程的应用,解题的关键是读懂题意,找到等量关系,列出方程.19、(1)见解析;(2)见解析;(3)见解析【分析】(1)根据两点之间线段最短,连接AB ,交l 于点C 即可;(2)根据BO +CO=BC 为定长,故需保证AO 最小即可,根据垂线段最短,过点A 作AO ⊥BC 于O 即可; (3)根据两点之间线段最短,故连接AC 、BD 交于点O 即可.【详解】解:(1)连接AB ,交l 于点C ,此时AC +BC=AB ,根据两点之间线段最短,AB 即为AC +BC 的最小值,如下图所示:点C 即为所求;(2)∵点O 在BC 上∴BO +CO=BC∴AO +BO +CO =AO +BC ,而BC 为定长,∴当AO +BO +CO 最小时,AO 也最小过点A 作AO ⊥BC 于O ,根据垂线段最短,此时AO 最小,AO +BO +CO 也最小,如下图所示:点O 即为所求;(3)根据两点之间线段最短,若使AO +CO 最小,连接AC ,点O 应在线段AC 上;若使BO +DO 最小,连接BD ,点O 应在线段BD 上,∴点O 应为AC 和BD 的交点如下图所示:点O 即为所求.【点睛】此题考查的是两点之间线段最短和垂线段最短的应用,掌握根据两点之间线段最短和垂线段最短,找出最值所需点是解决此题的关键.20、2x ;2-【分析】先去括号合并同类项,再把x 1=-,1y 2=-代入计算即可. 【详解】解:原式()324323x y x y x x y =---++-+324323x y x y x x y =-+---+2x =,当1x =-时,原式22x ==-.【点睛】本题考查了整式的化简求值,解答本题的关键是熟练掌握整式的运算法则,将所给多项式化简.21、(1)仓库里的货物减少了,减少了220吨;(2)仓库里有货物2700吨;(3)这7天要付9600元装卸费.【分析】(1)求出这7天进出货物的质量和,根据结果的符号和绝对值进行判断即可;(2)根据(1)的结果的意义,可列算式计算;(3)求出进出货物的总吨数,即各个数的绝对值的和,再求出总装卸费.【详解】解:(1)(+260)+(-320)+(-150)+(+340)+(-380)+(-200)+(+230)=-220(吨),所以仓库里的货物减少了,减少了220吨;(2)2480-(-220)=2700(吨),答:7天前,仓库里有货物2700吨;(3)|+260|+|-360|+|-150|+|+340|+|-380|+|-200|+|+230|=1920(吨),5×1920=9600(元),答:这7天要付9600元装卸费.【点睛】本题考查有理数的意义,理解正数和负数表示相反意义的量是正确解答的前提.22、(1)10°;(2)180°﹣6n【分析】(1)根据∠BOD=13∠AOD.∠BOD=20°,可求出∠AOD,进而求出答案;(2)设∠BOD的度数,表示∠AOD,用含有n的代数式表示∠AOD,从而表示∠DOE.【详解】解:(1)∵∠BOD=13∠AOD.∠BOD=20°,∴∠AOD=20°×3=60°,∵OC是∠AOD的平分线,∴∠AOC=∠COD=12∠AOD=12×60°=30°,∴∠BOC=∠COD﹣∠BOD=30°﹣20°=10°;(2)设∠BOD=x,则∠AOD=3x,有(1)得,∠BOC=∠COD﹣∠BOD,即:n=32x﹣x,解得:x=2n,∴∠AOD=3∠BOD=6n,∠EOD=180°﹣∠AOD=180°﹣6n,【点睛】考查角平分线的意义,以及角的计算,通过图形直观得到角的和或差是解决问题的关键.23、(1)见解析(2)80°【解析】(1)根据题意作图即可;(2)由∠AOE=40°,先求出∠BOE=140°,由对顶角知∠AOC=∠BOD,故∠EOD∶∠AOC=∠EOD∶∠BOD =3∶4,故求出BOD=434∠BOE=80°,即为∠AOC的度数.【详解】(1)如图,(2)∵∠AOE=40°,∴∠BOE=140°,∵∠AOC=∠BOD,∴∠EOD∶∠AOC=∠EOD∶∠BOD =3∶4,∴BOD=434∠BOE=80°,∴∠AOC=80°【点睛】此题主要考查角的和差关系,解题的关键是熟知角度的计算.。

湖北省武汉市汉阳区2023_2024学年七年级上学期数学期末卷(有答案)

湖北省武汉市汉阳区2023_2024学年七年级上学期数学期末卷(有答案)

湖北省武汉市汉阳区2023_2024学年七年级上学期数学期末模拟试题考生须知:1.本试题分试题卷和答题卷两部分,满分120分,考试时间120分钟.2.请务必在答题卷上答题,在试题卷上答题是无效的3. 考试结束后,请将试题卷和答题卷一并交回.一、选择题(本大题有10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列运算中,结果最大的是( ).2×(−3)A.2+(-3)B.C.2-(-3)D.-322.下列各组单项式中,是同类项的一组是()C.-2xy与-3ab D.xy与-xy3.下列选项中,是三棱柱的侧面展开图的为( )A.B.4.太阳内部高温核聚变反应释放的辐射能功率为3.8×1023千瓦,到达地球的仅占20亿分之一,到达地球的辅射能功率为( )千瓦.(用科学记数法表示,保留2个有效数字)A.1.9×1014B.2.0×1014C.7.6×1015D.1.9×10155.点A 的位置如图所示,则关于点A 的位置下列说法中正确的是( )A .距点处O4km B .北偏东方向上处40∘4km C .在点北偏东方向上处O 50∘4km D .在点北偏东方向上距点处O 40∘O4km 6.如图所示的几何体是由六个相同的小正方体组合而成的,则从它左边看到的平面图形是( )A .B .C .D .7.某校进行校园歌手大奖赛预赛,评委给每位选手打分时,最高分不超过10分,所有评委的评分中去掉一个最高分,去掉一个最低分后的平均分即为选手的最后得分.小敏的最后得分为9.68分,若只去掉一个最低分,小敏的得分为9.72分,若只去掉一个最高分,小敏的得分为9.66分,那么可以算出这次比赛的评委有( )A .9名B .10名C .11名D .12名8.若代数式的值比的值小1,则的值是( )k +133k +12k A .0B .C .D .2747579.下列算式中,正确的是( )A .B .2x +2y =4xy2a 2+2a 3=2a 5C .D .4a 2−3a 2=1−2ba 2+a 2b =−a 2b10.如图,已知A,O,B 在一条直线上,∠1是锐角,则∠1的余角是( )A .B .C .D .∠2-∠112∠2−∠112∠2−32∠112(∠2−∠1)二、填空题(本大题有6个小题,每小题3分,共18分)11.|-2023|= .12.当时刻为下午3:30时,钟表上的时针与分针间的夹角是 度.13.去括号合并:= .(3a−b)−3(a +3b)14.任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数为0.·7例进行说明,设,由 ……可知,10x=7.7777 ……,所以,解方程,得0.·7=x 0.·7=0.777710x−x =7,于是,将写成分数的形式是 .x =790.7=790.·4·515.如图,点C 为线段AB 上一点,点C 将AB 分成2:3两部分,M 是AC 的中点,N 是BC 的中点,若AN =35cm,则AB 的长为 cm .16.我国古代的“九宫格”是由3*3的方格构成的,每个方格内均有不同的数,每一行、每一列以及每一条对角线上的三个数之和相等.如图给出了“九宫格”的一部分,请你推算x 的值是 .三、解答题(本大题有8小题,其中17-21题每题8分,22-23题每题10分,24题12分,共72分,解答应写出文字说明、证明过程或演算步骤)17.计算题:(1);(−45)÷(−9)×(−3)(2) .−23×14+|−4|3÷(−2)418.一辆出租车从A站出发,先向东行驶12km,接着向西行驶8km,然后又向东行驶4km.(1)画一条数轴,以原点表示A站,向东为正方向,在数轴上表示出租车每次行驶的终点位置.(2)求各次路程的绝对值的和.这个数据的实际意义是什么?19.定义一种新运算“⊕”:a⊕b=a﹣2b,比如:2⊕(﹣3)=2﹣2×(﹣3)=2+6=8.(1)求(﹣3)⊕2的值;(2)若(x﹣3)⊕(x+1)=1,求x的值.2(a2b+ab2)−5(ab2−1+a2b)−2a=1b=−220.先化简,后求值.求的值,其中,.A B C21.如图,在平面内有、、三点,.(1)利用尺规,按下面的要求作图要求:不写画法,保留作图痕迹,不必写结论;①BA作射线;②BC作线段;③AC AC AD AD=AB BD连接,并在线段上作一条线段,使,连接.(2)数数看,此时图中线段共有 条.22.在学习《展开与折叠》这一课时,老师让同学们将准备好的正方体或长方体沿某些棱剪开,展开成平面图形.其中,阿中同学不小心多剪了一条棱,把一个长方体纸盒剪成了图①、图②两部分.根据你所学的知识,回答下列问题:(1)阿中总共剪开了几条棱?(2)现在阿中想将剪断的图②重新粘贴到图①上去,而且经过折叠以后,仍然可以还原成一个长方体纸盒,他有几种粘贴方法?请在图①上画出粘贴后的图形(画出一种即可);(3)已知图③是阿中剪开的图①的某些数据,求这个长方体纸盒的体积.23.某学校通过体测结果显示.发现该校学生需要加强体育锻炼,学校计划从商场购买一些篮球和足球.商场价格为篮球每个80元.足球每个60元.(1)若购买篮球的总费用和购买足球的总费用相同,第一次购进足球和篮球共70个,求第一次购进篮球和足球各多少个?(2)第二次购买时,从商场得知,购买篮球超过50个,超过50个的部分,每个篮球打八折;购买足球超过100个,超过100个的部分,每个足球便宜10元.经统计,该校购买篮球超过50个,购买足球也超过100个,并且购买篮球个数比购买足球个数少50个,共花费12280元,求第二次购买篮球和足球各多少个?24.数轴上两点A、B,A在B左边,原点O是线段AB上的一点,已知AB=4,且OB=3OA.A、B对应的数分别是a、b,点P为数轴上的一动点,其对应的数为x.(1)a= ,b= ,并在数轴上面标出A、B两点;(2)若PA=2PB,求x的值;(3)若点P以每秒2个单位长度的速度从原点O向右运动,同时点A以每秒1个单位长度的速度向左运动,点B以每秒3个单位长度的速度向右运动,设运动时间为t秒.请问在运动过程中,3PB-PA的值是否随着时间t的变化而改变?若变化,请说明理由若不变,请求其值.答案1.【正确答案】C2.【正确答案】D3.【正确答案】A4.【正确答案】A5.【正确答案】D6.【正确答案】D7.【正确答案】A8.【正确答案】D9.【正确答案】D10.【正确答案】C11.【正确答案】202312.【正确答案】7513.【正确答案】-10 b14.【正确答案】51115.【正确答案】5016.【正确答案】617.【正确答案】(1)解:原式=-5×3=-15;(2)解:原式=-8× +64÷16=-2+4=21418.【正确答案】(1)解:如图所示,(2)解:=24km,|12|+|−8|+|4|这个数据的实际意义是出租车行驶的总路程为24km.19.【正确答案】(1)解:根据题中的新定义得:原式=﹣3﹣4=﹣7(2)解:已知等式变形得:x﹣3﹣2(x+1)=1,去括号得:x﹣3﹣2x﹣2=1,移项合并得:﹣x=6,解得:x=﹣6.20.【正确答案】解:原式=2a2b+2ab2−5ab2+5−5a2b−2−3a2b−3ab2+3=,当a=1,b=-2时,原式=−3×12×(−2)−3×1×(−2)2+3=−321.【正确答案】(1)解:如图所示.(2)622.【正确答案】(1)解:总共12条棱,其中有4条未剪开,故阿中总共剪开了8条棱.(2)解:有4种粘贴方法.如图,四种情况:(3)解:设高为xcm,则宽为(4﹣x)cm,长为[7﹣(4﹣x)]=(3+x)cm,∴4+(3+x)=8,解得:x=1,∴体积为:(3+1)×(4﹣1)×1=12(cm3),答:这个长方体纸盒的体积为12cm3.23.【正确答案】(1)解:设购进篮球x个,则购进足球(70-x)个,由题意,得80x = 60(70-x),解得x= 30,70- 30 = 40(个).答:第一次购进篮球30个,足球40个.(2)解:设第二次购买足球y个,则购买篮球(y-50)个,50×80+(y-50-50)×80×80%+60×100+(y- 100)(60- 10)= 12280,解得y= 120,120-50= 70(个).答:第二次购买足球120个,购买篮球70个.24.【正确答案】(1)-1;3(2)解:①当P点在A点左侧时,PA②当P点位于A、B两点之间∵PA=2PB∴x+1=2(3−x)解得x=53③当P点在B点右侧时∵PA=2PB∴x+1=2(x−3)解得x=7故x 的值为解得或.537(3)解:t 秒后,A 点的值为,P 点的值为2t,B 点的值为(−1−t)(3+3t)∴3(3+3t−2t)−[2t−(−1−t)]=9−3t−(2t +1+t)=9+3t−3t−1=8所以3PB-PA 的值为定值,不随着时间t 的变化而改变.。

人教版(七年级)初一上册数学期末模拟测试题及答案

人教版(七年级)初一上册数学期末模拟测试题及答案

人教版(七年级)初一上册数学期末模拟测试题及答案一、选择题1.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( )A .B .C .D .2.如图,一副三角尺按不同的位置摆放,摆放位置中∠α与∠β不相等...的图形是( )A .B .C .D .3.宁波港处于“一带一路”和长江经济带交汇点,地理位置得天独厚.全年货物吞吐量达9.2亿吨,晋升为全球首个“9亿吨”大港,并连续8年蝉联世界第一宝座.其中9.2亿用科学记数法表示正确的是( ) A .B .C .D .4.在实数:3.1415935-π2517,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( ) A .1个B .2个C .3个D .4个5.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28B .30C .32D .346.已知线段AB=8cm ,点C 是直线AB 上一点,BC =2cm ,若M 是AC 的中点,N 是BC 的中点,则线段MN 的长度是( ) A .6cmB .3cmC .3cm 或6cmD .4cm7.用代数式表示“m 的两倍与n 平方的差”,正确的是 ( )A .22()m n -B .2(2m-n)C .22m n -D .2(2)m n - 8.若(1,2)表示教室里第1列第2排的位置,则教室里第2列第3排的位置表示为( ) A .(2,1)B .(3,3)C .(2,3)D .(3,2)9.不等式x ﹣2>0在数轴上表示正确的是( ) A . B . C .D .10.估算15在下列哪两个整数之间( ) A .1,2 B .2,3 C .3,4 D .4,5 11.下列计算正确的是( )A .-1+2=1B .-1-1=0C .(-1)2=-1D .-12=112.正方形ABCD 的轨道上有两个点甲与乙,开始时甲在A 处,乙在C 处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm ,乙的速度为每秒5 cm ,已知正方形轨道ABCD 的边长为2 cm ,则乙在第2 020次追上甲时的位置在( )A .AB 上 B .BC 上 C .CD 上D .AD 上二、填空题13.数轴上到原点的距离不大于3个单位长度的点表示的最小整数的数是_____. 14.如图,是一个正方体的表面展开图,则原正方体中“国”字所在的面相对的面上标的字是_____.15.在灯塔O 处观测到轮船A 位于北偏西54︒的方向,同时轮船B 在南偏东15︒的方向,那么AOB ∠的大小为______.16.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.17.﹣30×(1223-+45)=_____. 18.已知23,9n mn aa -==,则m a =___________.19.若方程11222m x x --=++有增根,则m 的值为____. 20.比较大小:﹣(﹣9)_____﹣(+9)填“>”,“<”,或”=”符号) 21.五边形从某一个顶点出发可以引_____条对角线. 22.8点30分时刻,钟表上时针与分针所组成的角为_____度.23.一个几何体的主视图、俯视图和左视图都是大小相同的正方形,则该几何体是___. 24.规定:用{m }表示大于 m 的最小整数,例如{52}= 3,{4} = 5,{-1.5}= -1等;用[m ] 表示不大于 m 的最大整数,例如[72]= 3, [2]= 2,[-3.2]= -4,如果整数 x 满足关系式:3{x }+2[x ]=23,则 x =________________.三、解答题25.计算: (1)()7.532-⨯-(2(383+3233-- 26.解下列一元一次方程()1()23x x +=- ()2()113124x x --+=27.解方程:131 142x xx+-+=-28.知图①,在数轴上有一条线段AB,点,A B表示的数分别是2-和11-.(1)线段AB=____________;(2)若M是线段AB的中点,则点M在数轴上对应的数为________;(3)若C为线段AB上一点.如图②,以点C为折点,将此数轴向右对折;如图③,点B落在点A的右边点B'处,若15AB B C''=,求点C在数轴上对应的数是多少?29.在11•11期间,掀起了购物狂潮,现有两个商场开展促销优惠活动,优惠方案如下表所示;商场优惠方案甲全场按标价的六折销售乙单件商品实行“满100元减50元的优惠”(比如:某顾客购买了标价分别为240元和170元的两件商品,她实际付款分别是140元和120元.根据以上信息,解决以下问题(1)两个商场同时出售一件标价290元的上衣和一条标价270元的裤子,小明妈妈想以最少的钱购买这一套衣服,她应该选择哪家商场?完成下表并做出选择.商场甲商场乙商场实际付款/元(2)小明爸爸发现:在甲、乙商场同时出售的一件标价380的上衣和一条标价300多元的裤子,在两家商场的实际付款钱数是一样的,请问:这条裤子的标价是多少元?30.某学校安排学生住宿,若每室住7人,则有10人无法安排;若每室住8人,则恰好空出2个房间.这个学校的住宿生有多少人?四、压轴题31.已知数轴上两点A、B,其中A表示的数为-2,B表示的数为2,若在数轴上存在一点C,使得AC+BC=n,则称点C叫做点A、B的“n节点”.例如图1所示:若点C表示的数为0,有AC+BC=2+2=4,则称点C为点A、B的“4节点”.请根据上述规定回答下列问题:(1)若点C 为点A 、B 的“n 节点”,且点C 在数轴上表示的数为-4,求n 的值; (2)若点D 是数轴上点A 、B 的“5节点”,请你直接写出点D 表示的数为______; (3)若点E 在数轴上(不与A 、B 重合),满足BE=12AE ,且此时点E 为点A 、B 的“n 节点”,求n 的值.32.从特殊到一般,类比等数学思想方法,在数学探究性学习中经常用到,如下是一个具体案例,请完善整个探究过程。

七年级上期末考试试题--数学(解析版)

七年级上期末考试试题--数学(解析版)

七年级(上)期末数学模拟试卷一.选择题(共12小题,满分36分,每小题3分)1.﹣3的倒数是()A.3B.C.﹣D.﹣32.下列计算正确的是()A.x2+x3=x5B.x2•x3=x5C.(﹣x2)3=x8D.x6÷x2=x33.将0.000 102用科学记数法表示为()A.1.02×10﹣4B.1.02×I0﹣5C.1.02×10﹣6D.102×10﹣34.下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是()A.B.C.D.5.下列现象:(1)用两个钉子就可以把木条固定在墙上.(2)从A地到B地架设电线,总是尽可能沿着线段AB架设.(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.(4)把弯曲的公路改直,就能缩短路程.其中能用“两点确定一条直线”来解释的现象有()A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)6.若是同类项,则m+n=()A.﹣2B.2C.1D.﹣17.已知x=2是关于x的一元一次方程mx+2=0的解,则m的值为()A.﹣1B.0C.1D.28.在下列四个选项中,不适合普查的是()A.了解全班同学每周体育锻炼的时间B.学校招聘新教师,对应聘教师面试C.鞋厂检查生产鞋底能承受的弯折次数D.安庆市某中学调查九年级全体540名学生数学成绩9.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB的长等于()A.2cm B.3cm C.6cm D.7cm10.如图,将长方形纸片ABCD的角C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部点E处,若FH平分∠BFE,则∠GFH的度数α是()A.0°<α<90°B.α=90°C.90°<α<180°D.α随折痕GF位置的变化而变化11.一商场某品牌服装统一按进价增加10%作为定价,元旦期间以9折促销.李老师在该摊位以198元的价格买了一件服装,则对于商家来说,这次生意的盈亏情况为()A.亏2元B.不亏不赚C.赚2元D.亏5元12.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()A.B.C.D.二.填空题(共4小题,满分12分,每小题3分)13.计算:(a2)3=.14.方程(a﹣2)x|a|﹣1+3=0是关于x的一元一次方程,则a=.15.若点C为线段AB上一点,AB=12,AC=8,点D为直线AB上一点,M、N分别是AB、CD的中点,若MN=10,则线段AD的长为.16.已知a,b互为相反数,c,d互为倒数,m是绝对值等于3的负数,则m2+(cd+a+b)×m+(cd)2018的值为.三.解答题(共7小题,满分52分)17.(6分)+|﹣|﹣(﹣2006)0+()﹣118.(6分)解方程:(1)x﹣7=10﹣4(x+0.5)(2)﹣=1.19.(7分)6月5日是世界环境日,中国每年都有鲜明的主题,旨在释放和传递:建设美丽中国,人人共享,人人有责的信息,小明积极学习与宣传,并从四个方面A﹣空气污染,B﹣淡水资源危机,C﹣土地荒漠化,D﹣全球变暖,对全校同学进行了随机抽样调查,了解他们在这四个方面中最关注的问题(每人限选一项),以下是他收集数据后,绘制的不完整的统计图表:根据表中提供的信息解答以下问题:(1)表中的a=,b=;(2)请将条形统计图补充完整;(3)如果小明所在的学校有4200名学生,那么根据小明提供的信息估计该校关注“全球变暖”的学生大约有多少人?20.(8分)(1)2ab•(﹣b3)(2)利用整式乘法公式计算:(m+n﹣3)(m+n+3)(3)先化简,再求值:(2xy)2﹣4xy(xy﹣1)+(8x2y+4x)÷4x,其中x=﹣2,y=﹣21.(8分)用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:线段a,b,求作:线段AB,使AB=2b﹣a.22.(8分)如图,已知∠AOB=∠COD(1)试说明∠AOC=∠BOD;(2)若∠AOB=∠COD=90°,指出∠AOD和∠BOC之间的数量关系,并说明理由.23.(9分)制作一张餐桌要用一个桌面和4条桌腿.某家具公司的木工师傅用1m3木材可制作15个桌面或300个桌腿,公司现有18m3的木材.(1)应怎样安排用料才能使制作的桌面和桌腿配套?(2)家具公司欲将制作餐桌全部出售,为尽快回收资金,决定以标价的八折出售,一张餐桌仍可获利28%,这样全部出售后总获利31500元.求每张餐桌的标价是多少?2017-2018学年广东省深圳市盐田区七年级(上)期末数学模拟试卷参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.﹣3的倒数是()A.3B.C.﹣D.﹣3【分析】利用倒数的定义,直接得出结果.【解答】解:∵﹣3×(﹣)=1,∴﹣3的倒数是﹣.故选:C.【点评】主要考查倒数的定义,要求熟练掌握.需要注意的是负数的倒数还是负数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2.下列计算正确的是()A.x2+x3=x5B.x2•x3=x5C.(﹣x2)3=x8D.x6÷x2=x3【分析】直接利用合并同类项法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案.【解答】解:A、x2+x3,无法计算,故此选项错误;B、x2•x3=x5,正确;C、(﹣x2)3=﹣x6,故此选项错误;D、x6÷x2=x4,故此选项错误;故选:B.【点评】此题主要考查了合并同类项以及同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.3.将0.000 102用科学记数法表示为()A.1.02×10﹣4B.1.02×I0﹣5C.1.02×10﹣6D.102×10﹣3【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 102=1.02×10﹣4.故选:A.【点评】此题主要考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.4.下面每个图形都是由6个边长相同的正方形拼成的图形,其中能折叠成正方体的是()A.B.C.D.【分析】利用正方体及其表面展开图的特点解题.能组成正方体的“一,四,一”“三,三”“二,二,二”“一,三,二”的基本形态要记牢.【解答】解:能折叠成正方体的是故选:C.【点评】本题主要考查展开图折叠成几何体的知识点,熟练正方体的展开图是解题的关键.5.下列现象:(1)用两个钉子就可以把木条固定在墙上.(2)从A地到B地架设电线,总是尽可能沿着线段AB架设.(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线.(4)把弯曲的公路改直,就能缩短路程.其中能用“两点确定一条直线”来解释的现象有()A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)【分析】直接利用直线的性质以及两点确定一条直线的性质分析得出答案.【解答】解:(1)用两个钉子就可以把木条固定在墙上,根据是两点确定一条直线;(2)从A地到B地架设电线,总是尽可能沿着线段AB架设,根据是两点之间线段最短;(3)植树时,只要确定两棵树的位置,就能确定同一行树所在的直线,根据是两点确定一条直线;(4)把弯曲的公路改直,就能缩短路程,根据是两点之间线段最短.故选:B.【点评】此题主要考查了线段以及直线的性质,正确把握相关性质是解题关键.6.若是同类项,则m+n=()A.﹣2B.2C.1D.﹣1【分析】本题考查同类项的定义,所含字母相同,相同字母的指数也相同的项叫做同类项,由同类项的定义可先求得m和n的值,从而求出m+n的值.【解答】解:由同类项的定义可知m+2=1且n﹣1=1,解得m=﹣1,n=2,所以m+n=1.故选:C.【点评】本题考查同类项的定义,关键要注意同类项定义中的两个“相同”:所含字母相同,相同字母的指数相同,是易混点,因此成了中考的常考点.7.已知x=2是关于x的一元一次方程mx+2=0的解,则m的值为()A.﹣1B.0C.1D.2【分析】把x=2代入方程计算,即可求出m的值.【解答】解:把x=2代入方程得:2m+2=0,解得:m=﹣1,故选:A.【点评】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.8.在下列四个选项中,不适合普查的是()A.了解全班同学每周体育锻炼的时间B.学校招聘新教师,对应聘教师面试C.鞋厂检查生产鞋底能承受的弯折次数D.安庆市某中学调查九年级全体540名学生数学成绩【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【解答】解:A、了解全班同学每周体育锻炼的时间,宜用全面调查,故本选项不符合题意;B、学校招聘新教师,对应聘教师面试适合普查,此选项不符合题意;C、鞋厂检查生产的鞋底能承受的弯折次数,具有破坏性,不适合全面调查,故本选项符合题意;D、调查安庆市某中学调查九年级全体540名学生数学成绩适合普查,此选项不符合题意;故选:C.【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9.如图,点C、D是线段AB上的两点,点D是线段AC的中点.若AB=10cm,BC=4cm,则线段DB的长等于()A.2cm B.3cm C.6cm D.7cm【分析】先根据线段的和差关系求出AC,再根据中点的定义求得CD的长,再根据BD=CD+BC即可解答.【解答】解:∵AB=10,BC=4,∴AC=AB﹣BC=6,∵点D是AC的中点,∴AD=CD=AC=3.∴BD=BC+CD=4+3=7cm,故选:D.【点评】此题考查了两点间的距离,根据是熟练掌握线段的和差计算,以及中点的定义.10.如图,将长方形纸片ABCD的角C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部点E处,若FH平分∠BFE,则∠GFH的度数α是()A.0°<α<90°B.α=90°C.90°<α<180°D.α随折痕GF位置的变化而变化【分析】根据折叠的性质可以得到△GCF≌△GEF,即∠CFG=∠EFG,再根据FH平分∠BFE即可求解.【解答】解:∵∠CFG=∠EFG且FH平分∠BFE.∠GFH=∠EFG+∠EFH∴∠GFH=∠EFG+∠EFH=∠EFC+∠EFB=(∠EFC+∠EFB)=×180°=90°.故选:B.【点评】本题主要考查了角平分线的定义,折叠的性质,注意在折叠的过程中存在的相等关系.11.一商场某品牌服装统一按进价增加10%作为定价,元旦期间以9折促销.李老师在该摊位以198元的价格买了一件服装,则对于商家来说,这次生意的盈亏情况为()A.亏2元B.不亏不赚C.赚2元D.亏5元【分析】设这件服装的进价为x元,根据“一商场某品牌服装统一按进价增加10%作为定价,元旦期间以9折促销.李老师在该摊位以198元的价格买了一件服装”,列出关于x的一元一次方程,解之即可.【解答】解:设这件服装的进价为x元,根据题意得:0.9×(1+10%)x=198,解得:x=200,即这件服装的进价为200元,∵李老师在该摊位以198元的价格买了这件服装,又∵198﹣200=﹣2,∴这次生意的盈亏情况为:亏2元,故选:A.【点评】本题考查了一元一次方程的应用,正确找出等量关系,列出一元一次方程是解题的关键.12.如图,小正方形是按一定规律摆放的,下面四个选项中的图片,适合填补图中空白处的是()A.B.C.D.【分析】根据题意知原图形中各行、各列中点数之和为10,据此可得.【解答】解:由题意知,原图形中各行、各列中点数之和为10,符合此要求的只有故选:C.【点评】本题主要考查图形的变化规律,解题的关键是得出原图形中各行、各列中点数之和为10.二.填空题(共4小题,满分12分,每小题3分)13.计算:(a2)3=a6.【分析】直接利用幂的乘方运算法则计算得出答案.【解答】解:(a2)3=a6.故答案为:a6.【点评】此题主要考查了幂的乘方运算,正确掌握运算法则是解题关键.14.方程(a﹣2)x|a|﹣1+3=0是关于x的一元一次方程,则a=﹣2.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,它的一般形式是ax+b=0(a,b是常数且a≠0).【解答】解:由一元一次方程的特点得:|a|﹣1=1,a﹣2≠0,解得:a=﹣2.故答案为:﹣2.【点评】本题主要考查了一元一次方程的一般形式,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.15.若点C为线段AB上一点,AB=12,AC=8,点D为直线AB上一点,M、N分别是AB、CD的中点,若MN=10,则线段AD的长为24或16.【分析】分2种情形讨论:①点D在AB的延长线上,②点D在线段BA的延长线上,画出图形根据线段和差定义即可解决.【解答】解:①如图,点D在AB的延长线上,∵AB=12,AC=8,∴BC=AB﹣AC=4.∵M是AB的中点,∴AM=BM=AB=6,∴MC=2,又MN=MC+BC+BN=2+4+BN=10,∴BN=4,又点N是CD的中点,∴BN=CN=BC+BN=8,∴AD=AB+BN+ND=12+4+8=24.②如图,点D在线段BA的延长线上∵AB=12,AC=8,∴BC=AB﹣AC=4.∵M是AB的中点,∴AM=BM=AB=6,又MN=AN+AM=10,∴AN=4,又点N是CD的中点,∴DN=CN=AN+AC=4+8=12,∴AD=ND+AN=12+4=16.综上所述,AD的长为24或16.故答案是:24或16.【点评】本题考查线段中点的定义、线段和差定义,学会分类讨论的思想是解决问题的关键,本题还考查了学生的动手画图能力.16.已知a,b互为相反数,c,d互为倒数,m是绝对值等于3的负数,则m2+(cd+a+b)×m+(cd)2018的值为7.【分析】根据题意可以求得a+b、cd、m的值,从而可以解答本题.【解答】解:∵a,b互为相反数,c,d互为倒数,m是绝对值等于3的负数,∴a+b=0,cd=1,|m|=3,∴m=﹣3,∴m2+(cd+a+b)×m+(cd)2018=(﹣3)2+(1+0)×(﹣3)+12018=9+1×(﹣3)+1=9+(﹣3)+1=7,故答案为:7.【点评】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.三.解答题(共7小题,满分52分)17.(6分)+|﹣|﹣(﹣2006)0+()﹣1【分析】先化简二次根式、计算绝对值、零指数幂和负整数指数幂,再合并同类二次根式即可得.【解答】解:原式=2+﹣1+2=1+3.【点评】本题主要考查实数的混合运算,解题的关键是掌握二次根式的性质、绝对值性质、零指数幂和负整数指数幂.18.(6分)解方程:(1)x﹣7=10﹣4(x+0.5)(2)﹣=1.【分析】(1)方程去括号,移项合并,把x系数化为1,即可求出解;(2)方程去分母,去括号,移项合并,把x系数化为1,即可求出解.【解答】解:(1)去括号得:x﹣7=10﹣4x﹣2,移项合并得:5x=15,解得:x=3;(2)去分母得:10x+2﹣2x+1=6,移项合并得:8x=3,解得:x=.【点评】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.19.(7分)6月5日是世界环境日,中国每年都有鲜明的主题,旨在释放和传递:建设美丽中国,人人共享,人人有责的信息,小明积极学习与宣传,并从四个方面A﹣空气污染,B﹣淡水资源危机,C﹣土地荒漠化,D﹣全球变暖,对全校同学进行了随机抽样调查,了解他们在这四个方面中最关注的问题(每人限选一项),以下是他收集数据后,绘制的不完整的统计图表:根据表中提供的信息解答以下问题:(1)表中的a=60,b=0.4;(2)请将条形统计图补充完整;(3)如果小明所在的学校有4200名学生,那么根据小明提供的信息估计该校关注“全球变暖”的学生大约有多少人?【分析】(1)根据B﹣淡水资源危机的频数除以对应的频率求出a的值,利用b=24÷a求出b的值;(2)由a的值,减去其它频数求出n的值,补全条形统计图即可;(3)求出表格中m的值,乘以4200即可得到结果.【解答】解:(1)根据题意得:12÷0.2=60,即a=60,b=24÷60=0.4;故答案为:60,0.4;(2)根据题意得:n=60﹣(24+12+18)=6,补全条形统计图,如图所示;(3)由表格得:m=18÷60=0.3,根据题意得:该校关注“全球变暖”的学生大约有4200×0.3=1260(人).【点评】此题考查了条形统计图,频数(率)分布表,以及用样本估计总体,读懂统计图表,从统计图表中获取有用信息是解题的关键.20.(8分)(1)2ab•(﹣b3)(2)利用整式乘法公式计算:(m+n﹣3)(m+n+3)(3)先化简,再求值:(2xy)2﹣4xy(xy﹣1)+(8x2y+4x)÷4x,其中x=﹣2,y=﹣【分析】(1)原式利用单项式乘以单项式法则计算即可求出值;(2)原式利用平方差公式,以及完全平方公式化简,去括号合并即可得到结果;(3)原式利用积的乘方运算法则,单项式乘以多项式,以及多项式除以单项式法则计算得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)原式=﹣ab4;(2)原式=(m+n)2﹣9=m2+2mn+n2﹣9;(3)原式=4x2y2﹣4x2y2+4xy+2xy+1=6xy+1,当x=﹣2,y=﹣时,原式=6+1=7.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.21.(8分)用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:线段a,b,求作:线段AB,使AB=2b﹣a.【分析】以A为端点画射线,在射线上截AC=b、CD=b、BD=a,如图AB即为所求作的线段.【解答】解:AB=2b﹣a.【点评】本题考查了作图中的复杂作图,熟练掌握尺规作图的方法是解题的关键.22.(8分)如图,已知∠AOB=∠COD(1)试说明∠AOC=∠BOD;(2)若∠AOB=∠COD=90°,指出∠AOD和∠BOC之间的数量关系,并说明理由.【分析】(1)根据直角的定义可得∠AOB=∠COD=90°,然后解答即可;(2)根据互补和角的关系解答即可.【解答】解(1)∵∠AOB=∠COD∴∠AOC+∠BOC=∠BOD+∠BOC∴∠AOC=∠BOD(2)∠AOD+∠BOC=180°(或∠AOD和∠BOC互补)理由:∵∠AOD=∠AOC+∠BOC+∠BOD∴∠AOD+∠BOC=∠AOC+∠BOC+∠BOD+∠BOC=(∠AOC+∠BOC)+(∠BOD+∠BOC)=∠AOB+∠COD∵∠AOB=∠COD=90°∴∠AOD+∠BOC=180°【点评】本题考查了余角和补角的定义,根据直角的定义可得∠AOB=∠COD=90°是解题的关键.23.(9分)制作一张餐桌要用一个桌面和4条桌腿.某家具公司的木工师傅用1m3木材可制作15个桌面或300个桌腿,公司现有18m3的木材.(1)应怎样安排用料才能使制作的桌面和桌腿配套?(2)家具公司欲将制作餐桌全部出售,为尽快回收资金,决定以标价的八折出售,一张餐桌仍可获利28%,这样全部出售后总获利31500元.求每张餐桌的标价是多少?【分析】(1)设用x m3木材制作桌面,则用(18﹣x)m3木材制作桌腿.根据“1m3木材可制作15个桌面,或者制作300条桌腿”建立方程求出其解即可.(2)可设每张餐桌的标价是y元,根据全部出售后总获利31500元,列出方程求解即可.【解答】解:(1)设用x立方米做桌面,则用(18﹣x)立方米做桌腿.根据题意得:4×15x=300(18﹣x),解得:x=15,则18﹣x=18﹣15=3.答:用15立方米做桌面,用3立方米做桌腿才能使制作的桌面和桌腿配套.(2)15×15=225(张),设每张餐桌的标价是y元,根据题意得:225[0.8y﹣0.8y÷(1+28%)]=31500,解得:y=800.故每张餐桌的标价是800元.【点评】本题考查了一元一次方程的应用,根据数量关系桌腿数=桌面数×4列出关于x的一元一次方程是解题的关键.。

2022-2023学年北京市三市联考七年级上册数学期末模拟试卷(卷一卷二)含解析

2022-2023学年北京市三市联考七年级上册数学期末模拟试卷(卷一卷二)含解析

2022-2023学年北京市三市联考七年级上册数学期末模拟试卷(卷一)一、选一选(每题3分,合计30分,每题只有一个正确答案,请将正确答案的序号填入括号内)1. -4的相反数是( )A. B. C. 4 D. -41414-2. 2017年国家将预计9500亿元用于解决群众“看病难、看病贵”的问题,将9500亿元用科学记数法表示为()A. B. C. D.29510⨯亿元40.9510⨯亿元49.510⨯亿元39.510⨯亿元3. 下列计算正确的是( )A. B. C. D. 3(3)9-=-2(2)4-=-2012(1)1-=224-=4. 下列适合采用普查方式的是( )A. 肃州区老年人的身体状况B. 酒泉市七年级学生参加家务劳动的时间C. 一批炮弹的伤半径D. 某校七年级(1)班的数学成绩5. 如图所示的四个平面图形中,没有是正方体的展开图的是() A. B. C. D.6. 计算的结果是( )21(4)()2-⨯-A. -8 B. 8 C. 1 D. -17. 解方程利用等式性质去分母正确的是( )3162x x+-=A. B. C. D. 133x x --=633x x --=633x x -+=133x x-+=8. 如图,与都是直角,则图中除直角外相等的角是( )AOB ∠COD ∠A. B. AOC BOD∠=∠BOD COB ∠=∠C. D. AOC COB ∠=∠AOB BOD∠=∠9. 点A 点B 点C 在一条直线上,已知线段AB=10cm,BC=3cm,则线段AC 的长是( )A. 13cmB. 7cmC. 13cm 或7cmD. 以上答案都没有对10. 现在的时间是9点30分,时钟面上的时针与分针的夹角度数是( )A. B. C. D. 090010001050107二、填 空 题(每题3分,合计24分)11. 一个几何体从正面、左面、上面看到的平面图形都是圆,则这个几何体是________;12. 如图是一个数值转换机,若输入的值是2,则输出的结果是______________;x13. 酒泉出租车的收费标准为:起步价为5元,3千米后每千米2.5元,(没有足1千米按1千米计费)则某人乘坐出租车行驶千米(>3),10元,则列方程为__________________.x x 14. 单项式的系数是________,次数是________.232x y -15. 单项式与是同类项,则的值为______.143a x y --224b x y -a b 16. 如图所示,∠AOB 是平角,∠AOC=30°,∠BOD=60°,OM ,ON 分别是∠AOC ,∠BOD 的平分线,∠MON 等于_____度.17. 已知则__________22(3)0x y -+-=22x y +=18. 已知数据则第n 个数据是__________.35791,,,...491625三、作图题(3分)19. 如图面内线段AB,BC,CD,DA 首尾相接,按下列要求作图:(根据要求画出图形,没有写作法)(1)连接AC ,BD ,相交于点O ;(2)分别延长线段AD ,BC 相交于点P ;(3)分别延长线段BA ,CD 相交于点Q.四、解 答 题(43分)20. 计算225(1)(3)[(39-⨯-+-31(2)16(2)()(4)8÷---⨯-21. 先化简,再求值:222222(53)()(52),1,1a b a b a b a b -+---==-其中22. 解方程(1)3(1)25x x +=-2151(2)136x x +--=23. 如图是由6个正方体组成的几何体,请分别画出从正面、左面、上面看到的这个几何体的形状图.24. 如图,∠AOB =∠COD =900,OC 平分∠AOB ,∠BOD =3∠DOE.(1) ∠DOE 的度数;(2)试求 ∠COE 的度数;25. 为了解某学校学生的个性特长发展情况,在全校范围内随机抽查了部分学生参加音乐、体育、美术、书法等项目(每人只限一项)的情况.并将所得数据进行了统计,结果如图所示.(1)求在这次中,一共抽查了多少名学生;(2)求出扇形统计图中参加“音乐”项目所对扇形的圆心角的度数;(3)若该校有2400名学生,请估计该校参加“美术”项目的人数26. 酒泉某校安排2名老师带领学生参加今年的科技夏令营,现有两家旅行社前来承包,报价均为每人2000元,他们都表示优惠:敦煌旅行社表示带队老师,学生按8折收费;祁连旅行社表示师生一律按7折收费,经核算,教师和学生参加两家旅行社的实际费用正好相等.(1)该校参加科技夏令营的学生共有多少人?(2)如果又增加了6名学生,学校应选择哪家旅行社?2022-2023学年北京市三市联考七年级上册数学期末模拟试卷(卷一)一、选一选(每题3分,合计30分,每题只有一个正确答案,请将正确答案的序号填入括号内)1. -4的相反数是( )A. B. C. 4 D. -41414-【正确答案】C 【分析】根据相反数的定义即可求解.【详解】-4的相反数是4,故选C.【点晴】此题主要考查相反数,解题的关键是熟知相反数的定义.2. 2017年国家将预计9500亿元用于解决群众“看病难、看病贵”的问题,将9500亿元用科学记数法表示为()A. B. C. D.29510⨯亿元40.9510⨯亿元49.510⨯亿元39.510⨯亿元【正确答案】D【详解】9500亿元=9.5×103亿元.故选D.点睛:对于一个值较大的数,用科学记数法写成的形式,其中,n 是比原整10n a ⨯110a ≤<数位数少1的数.3. 下列计算正确的是()A. B. C. D. 3(3)9-=-2(2)4-=-2012(1)1-=224-=【正确答案】C【详解】A. ∵ ,故没有正确;()339-=B. ∵,故没有正确; ()224-=C. ∵,故正确; ()201211-=D. ∵ ,故没有正确;224-=-故选C.4. 下列适合采用普查方式的是()A. 肃州区老年人的身体状况B. 酒泉市七年级学生参加家务劳动的时间C. 一批炮弹的伤半径D. 某校七年级(1)班的数学成绩【正确答案】D 【详解】A. 肃州区老年人的身体状况 ,工作量比较大,故宜采用抽样;B. 酒泉市七年级学生参加家务劳动的时间,工作量比较大,故宜采用抽样;C. 一批炮弹的伤半径 ,工作量比较大,故宜采用抽样;D. 某校七年级(1)班的数学成绩,工作量比较小,故宜采用普查;故选D.点睛:由普查得到的结果比较准确,但所费人力、物力和时间较多,而抽样得到的结果比较近似.应该选用哪种方式要从重要性,破坏性,工作量等几个方面综合考虑.5. 如图所示的四个平面图形中,没有是正方体的展开图的是( )A. B. C. D.【正确答案】D 【详解】∵带有“凹”字和“田”字的图案一定没有是正方体的展开图,∴D 没有是正方体的展开图.故选D.6. 计算的结果是( )21(4)()2-⨯-A. -8B. 8C. 1D. -1【正确答案】D【详解】原式=.1414=-⨯=-故选D.7. 解方程利用等式性质去分母正确的是( )3162x x +-=A. B. C. D. 133x x--=633x x --=633x x -+=133x x-+=【正确答案】B 【分析】根据等式的基本性质进行计算即可判断.【详解】解:,3162x x+-=去分母,方程两边同时乘以6得:6-(x +3)=3x ,去括号得,6-x -3=3x∴解方程,利用等式性质去分母正确的是:6-x -3=3x ,3162x x+-=故选:B .本题考查了等式的性质,熟练掌握等式的基本性质是解题的关键.8. 如图,与都是直角,则图中除直角外相等的角是( )AOB ∠COD ∠A. B. AOC BOD ∠=∠BOD COB∠=∠C. D. AOC COB ∠=∠AOB BOD∠=∠【正确答案】A【详解】∵∠AOC+∠BOC=90°, ∠BOD+∠BOC=90°,∴∠AOC=∠BOD.故选A.9. 点A 点B 点C 在一条直线上,已知线段AB=10cm,BC=3cm,则线段AC 的长是()A . 13cm B. 7cm C. 13cm 或7cm D. 以上答案都没有对【正确答案】C【详解】当点C 在线段AB 上,如图1,则AC =AB −BC =10cm−3cm=7cm ;当点C 在线段AB 的延长线上,如图2,则AC =AB +BC =10cm+3cm=13cm ,所以A. C 两点之间的距离为7cm 或13cm.故选C.点睛:本题考察了线段的和差计算及分类讨论的数学思想.当点C 在线段AB 上,则有AC =AB -BC ;当点C 在线段AB 的延长线上,则AC =AB +BC ,然后把AB =4cm ,BC =2cm 分别定义计算即可.10. 现在的时间是9点30分,时钟面上的时针与分针的夹角度数是( )A. B. C. D. 090010001050107【正确答案】C【详解】30°×3+30÷2=105°.故选C .本题考查了钟面角的计算,根据分针与时针之间所夹角占的份数计算,每一份为30°,9点30分时,分针的位置在6时,时针的位置在9时与10时的中间,共占着3.5份.二、填 空 题(每题3分,合计24分)11. 一个几何体从正面、左面、上面看到的平面图形都是圆,则这个几何体是________;【正确答案】球体【详解】由该物体三视图的特点可知,这个几何体是球体.12. 如图是一个数值转换机,若输入的值是2,则输出的结果是______________;x【正确答案】-2【详解】由题意得(22-2) ×(-3)+4=2×(-3)+4=-6+4=-2.13. 酒泉出租车的收费标准为:起步价为5元,3千米后每千米2.5元,(没有足1千米按1千米计费)则某人乘坐出租车行驶千米(>3),10元,则列方程为__________________.x x 【正确答案】5+2.5(x-3)=10【详解】根据等量关系:前3千米的费用+3千米后的费用=总费用,可列方程为:5+2.5(x-3)=10.14. 单项式的系数是________,次数是________.232x y -【正确答案】 ①. -2 ②. 5【详解】解:单项式的系数是-2,次数是3.232x y -故-2;5本题考查单项式的系数和次数,掌握概念是本题的解题关键.15. 单项式与是同类项,则的值为______.143a x y --224b x y -a b 【正确答案】1【详解】由题意得:a -1=2,2b =4,∴a =3,b =2,∴a -b =3-2=1.故116. 如图所示,∠AOB 是平角,∠AOC=30°,∠BOD=60°,OM ,ON 分别是∠AOC ,∠BOD 的平分线,∠MON 等于_____度.【正确答案】135【详解】∵∠AOC=30°,OM 是∠AOC 的平分线,∴∠MOC=∠AOC=×30°=15°,1212∵∠BOD=60°,ON 是∠BOD 的平分线,∴∠DON=∠BOD=×60°=30°.1212∵∠AOB 是平角,∠AOC=30°,∠BOD=60°,∴∠COD=∠AOB-∠AOC-∠BOD=180°-30°-60°=90°.∵∠MOC=15°,∠COD=90°,∠DON=30°,∴∠MON=∠MOC+∠COD+∠DON=15°+90°+30°=135°.故答案为135°.17. 已知则__________22(3)0x y -+-=22x y +=【正确答案】13【详解】∵,()2230x y -+-=∴x-2=0,y-3=0,∴x=2,y=3,∴=22+32=13.22x y +18. 已知数据则第n 个数据是__________.35791,,,...491625【正确答案】221n n -【详解】∵分子是从1开始的连续奇数,分母是其序号的平方,∴第n 个数据是: .221n n 点睛:本题主要考查整式探索与规律.根据题意可知分子是从1开始的连续奇数,分母是其序号的平方,根据规律即可求解.三、作图题(3分)19. 如图面内线段AB,BC,CD,DA 首尾相接,按下列要求作图:(根据要求画出图形,没有写作法)(1)连接AC ,BD ,相交于点O ;(2)分别延长线段AD ,BC 相交于点P ;(3)分别延长线段BA ,CD 相交于点Q.【正确答案】图形见解析【详解】试题分析:本题可根据线段的画法即直接连接即可,以及延长线的画法,画延长线时注意延长的方向.(1)作线段AC 、BD 即可;(2)从点D 沿AD 方向延长,从点B 沿BC 方向延长,相交于P ;(3)从点A 沿BA 方向延长,从点D 沿CD 方向延长,相交于Q .如图所示:四、解 答 题(43分)20. 计算225(1)(3)[(39-⨯-+-31(2)16(2)()(4)8÷---⨯-【正确答案】(1)-11(2)122-【详解】试题分析:本题考查了有理数的混合运算.按照先算乘方,再算乘除,算加减,有括号的先算括号里的顺序计算即可.(1)()225339⎡⎤⎛⎫-⨯-+- ⎪⎢⎥⎝⎭⎣⎦65999⎡⎤⎛⎫=⨯-+- ⎪⎢⎥⎝⎭⎣⎦1199⎛⎫=⨯- ⎪⎝⎭=-11(2)()116(48-⎛⎫÷--⨯- ⎪⎝⎭()11682=÷--122=--122=-21. 先化简,再求值:222222(53)()(52),1,1a b a b a b a b -+---==-其中【正确答案】-1【详解】试题分析:本题考查了整式的化简求值,先去括号合并同类项,然后代入求值即可.解:=1-2=-122. 解方程(1)3(1)25x x +=-2151(2)136x x +--=【正确答案】(1)x=-8(2)x=-3【详解】试题分析:本题考察了一元方程的解法.(1)通过去括号,移项,合并同类项,系数化为1求解即可;(2)去分母时一是没有要漏乘没有分母的项,二是去掉分母后要把分子加括号.(1)(2)2151136x x +--=()2(21)516x x +--=42516x x +-+=45621x x -=--3x -=3x =-23. 如图是由6个正方体组成的几何体,请分别画出从正面、左面、上面看到的这个几何体的形状图.【正确答案】图形见解析【分析】从正面看有3列,左、右各一行,中间有两行;从左面看有2列,每列各有两行;从上面看有3列,左右错开,中间有两行.【详解】解:如图所示24. 如图,∠AOB=∠COD=900,OC平分∠AOB,∠BOD=3∠DOE.(1) ∠DOE的度数;(2)试求∠COE的度数;【正确答案】(1)15°(2)75°【详解】试题分析:本题考查了角平分线的定义及角的和差,根据角平分线的定义先求∠BOC 的度数,即可求得∠BOD,再由∠BOD=3∠DOE,求得∠DOE,进而可求出∠COE的度数.(1)(2)25. 为了解某学校学生的个性特长发展情况,在全校范围内随机抽查了部分学生参加音乐、体育、美术、书法等项目(每人只限一项)的情况.并将所得数据进行了统计,结果如图所示.(1)求在这次中,一共抽查了多少名学生;(2)求出扇形统计图中参加“音乐”项目所对扇形的圆心角的度数;(3)若该校有2400名学生,请估计该校参加“美术”项目的人数【正确答案】(1)、48;(2)、90°;(3)、300.【详解】(1)因为12+16+6+10+4=48所以在这次中,一共抽查了48名学生.(2)由条形图可求出参加“音乐”项目的人数所占抽查总人数的百分比为.12100%25%48⨯=所以参加“音乐”项目对扇形的圆心角的度数为360.25%90︒⨯=︒(3)2 400×=300(人).648答:该校参加“美术”项目的人数约为300人.26. 酒泉某校安排2名老师带领学生参加今年的科技夏令营,现有两家旅行社前来承包,报价均为每人2000元,他们都表示优惠:敦煌旅行社表示带队老师,学生按8折收费;祁连旅行社表示师生一律按7折收费,经核算,教师和学生参加两家旅行社的实际费用正好相等.(1)该校参加科技夏令营的学生共有多少人?(2)如果又增加了6名学生,学校应选择哪家旅行社?【正确答案】(1)14(2)选择祁连旅行社【详解】试题分析:(1)设学生共x 人,则参加敦煌旅行社费用为2000×80%x ,参加祁连旅行社费用为2000×70%×(x +2) ,根据参加两家旅行社的实际费用正好相等,列出等式得到关于x 的一元方程,求解即可;(2)根据(1)中结果,分别求出两家旅行社的费用,进而比较选择哪家旅行社更.解:()1x设参加夏令营的学生有名,则⨯=⨯⨯+⨯x x200080%2200070%200070%x=14答:参加夏令营的学生有名;14()26如果学生增加名,则:敦煌旅行社的费用为:元⨯⨯=200080%203200()祁连旅行社的费用为:元200070%14623080⨯⨯++=答:学校应该选择祁连旅行社点睛:本题考查了列一元方程解应用题,一般步骤是:①审题,找出已知量和未知量;②设未知数;③找等量关系,列方程;④解方程;⑤检验并写出答案.2022-2023学年北京市三市联考七年级上册数学期末模拟试卷(卷二)一.选一选(共12小题,满分36分,每小题3分)1. ﹣ 的相反数是( )12018A. B. ﹣ C. 2018 D. ﹣201812018120182. 下列方式合适的是( )A. 为了了解电视机的使用寿命,采用普查的方式B. 为了了解全国中学生的视力状况,采用普查的方式C. 对载人航天器“神舟十一号”零部件的检查,采用抽样的方式D. 为了了解人们保护水资源的意识,采用抽样的方式3. 深圳是一个美丽的海滨城市,海岸线长约230000米,东临大亚湾,西濒珠江口,数据230000用科学记数法表示为( )A. 23×104B. 2.3×105C. 2.3×106D. 0.23×1074. 下列各对数中,数值相等的是 ( )A. 与B. 与C. 与D. 与23+22+32-3(2)-23-2(3)-232⨯2(32)⨯5. 下面几何体的截面图可能是圆的是()A. 正方体B. 棱柱C. 圆锥D. 三棱锥6. 下边几何体的展开图最有可能是()A. B. C. D.7. 已知代数式x +2y 的值是3,则代数式2x +4y +1的值是( )A. 7B. 4C. 1D. 没有能确定8. 如果,那么的值一定是 ( )A. B. C. D. 或9. A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,t 小时两车相距50千米.则t 的值是( )A . 2 B. 2或2.25 C. 2.5 D. 2或2.510. 如图,直线a 、b 都与直线c 相交,给出下列条件:(1)∠1=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判断的是( )a b ∥A. (1)、(3)B. (2)、(4)C. (1)、(3)、(4)D. (1)、(2)、(3)、(4)11. 下午2点30分时(如图),时钟的分针与时针所成角的度数为( )A . 90° B. 105°C. 120°D. 135°12. 如图,若,则()AB CDA. ∠1= ∠2+∠3B. ∠1=∠3-∠2C. ∠1+∠2+∠3=180°D. ∠1-∠2+∠3=180°二.填 空 题(共4小题,满分12分,每小题3分)13. 单项式﹣2πa 2bc 的系数是_____,次数是______.14. 已知与是同类项,则=_______.2a b x y 347b x y --b a 15. 将两块直角三角尺的直角顶点重合为如图的位置,若∠AOD =110°,则∠COB =_____度.16. 如图,是用火柴棒拼成的图形,则第20个图形需______根火柴棒.三.解 答 题(第17题9分,第18题6分,第19题7分,题20题6分,第21题8分,第22题8分,第23题8分)17.22222(1)2(2)(3)()443---+-⨯--÷-(2)3(x+1)-2(-x+2)=2x+3(3)31146x x -+-=18. 化简求值:,其中22221223333x x xy y x ⎛⎫--+-- ⎪⎝⎭22(1)0x y ++-=19. 如图,已知∠1=∠2,∠C=∠D,求证:∠A=∠F.20. 阅读材料:用尺规作图要求作线段AB等于线段a时,小明的具体作法如下:已知:线段a,如图1求作:线段AB,使得线段AB=a.解:作图步骤如下:①作射线AM;②用圆规在射线AM上截取AB=a,如图2.∴线段AB为所求作的线段.解决下列问题:已知:线段b,如图1(1)请你依照小明的作法,在上图②中的射线AB作线段BD,使BD=b;(没有要求写作法和结论,保留作图痕迹,用签字笔加粗)(2)在(1)的条件下,取AD的中点E,若AB=3,BD=2,求线段BE的长.21. 保护环境,让我们从分类做起.某区环保部门为了提高宣传实效,抽样了部分居民小区一段时间内生活的分类情况(如图1),进行整理后,绘制了如下两幅尚没有完整的统计图:根据图表解答下列问题:(1)请将图2﹣条形统计图补充完整;(2)在图3﹣扇形统计图中,求出“D”部分所对应的圆心角等于 度;(3)在抽样数据中,产生的有害共有吨;(4)发现,在可回收物中废纸约占,若每回收1吨废纸可再造好红外线0.85吨.假设该城15市每月产生的生活为10000吨,且全部分类处理,那么每月回收的废纸可再造好纸多少吨?22. 据了解,个体服装要高出进价的20%方可盈利,一老板以高出进价的60%标价,如果一件服装标价240元,那么:(1)进价是多少元?(2)售价多少元时,老板方可盈利?23. 如图,在△ ABC 中,∠ ABC 、∠ ACB 的平分线交于点O .(1)若∠ABC=40°,∠ ACB=50°,则∠BOC=_______(2)若∠ABC+∠ ACB=lO0°,则∠BOC="________" (3)若∠A=70°,则∠BOC=_________(4)若∠BOC=140°,则∠A=________(5)你能发现∠ BOC与∠ A 之间有什么数量关系吗?写出并说明理由.2022-2023学年北京市三市联考七年级上册数学期末模拟试卷(卷二)一.选一选(共12小题,满分36分,每小题3分)1. ﹣ 的相反数是( )12018A. B. ﹣ C. 2018 D. ﹣20181201812018【正确答案】A【详解】由相反数的定义:“只有符号没有同的两个数互为相反数”可知,的相反数是12008.12008故选A.2. 下列方式合适的是( )A. 为了了解电视机的使用寿命,采用普查的方式B. 为了了解全国中学生的视力状况,采用普查的方式C. 对载人航天器“神舟十一号”零部件的检查,采用抽样的方式D. 为了了解人们保护水资源的意识,采用抽样的方式【正确答案】D【详解】试题分析:由普查得到的结果比较准确,但所费人力、物力和时间较多,而抽样得到的结果比较近似.解:A 、为了了解电视机的使用寿命,采用抽样,故A 错误;B 、为了了解全国中学生的视力状况,采用抽样,故B 错误;C 、对载人航天器“神舟六号”零部件的检查,采用普查的方式,故C 错误;D 、为了了解人们保护水资源的意识,采用抽样的方式,故D 正确;故选D .考点:全面与抽样.3. 深圳是一个美丽的海滨城市,海岸线长约230000米,东临大亚湾,西濒珠江口,数据230000用科学记数法表示为( )A. 23×104B. 2.3×105C. 2.3×106D. 0.23×107【正确答案】B【详解】.5230000 2.310=⨯故选B.点睛:在把一个值较大的数用科学记数法表示为的形式时,我们要注意两点:①必10na ⨯a 须满足:;②比原来的数的整数位数少1(也可以通过小数点移位来确定).110a ≤<n n 4. 下列各对数中,数值相等的是 ( )A. 与B. 与C. 与D. 与23+22+32-3(2)-23-2(3)-232⨯2(32)⨯【正确答案】B【详解】解:A.=9;=423+22+B. -8;=-832-3(2)-C. =-9;=923-2(3)-D. =12与=36232⨯2(32)⨯故应选:B5. 下面几何体的截面图可能是圆的是( )A. 正方体B. 棱柱C. 圆锥D. 三棱锥【正确答案】C【详解】根据各几何体的特征分析可知,正方体、棱柱和三棱锥的截面图都是多边形,没有会是圆,只有圆锥的截面图可能是圆.故选C.6. 下边几何体的展开图最有可能是()A. B. C. D.【正确答案】C【详解】A选项中,此展开图折叠成正方体,其带图案的三个面没有公共顶点,所以本选项错误;B选项中,此展开图折叠成正方体后,若带△的面和原正方体保持一致,则带○的面到了下面,和原正方体没有一样,所以本选项错误;C选项中,此展开图折叠成正方体后,能够和原正方体一样,所以C正确;D选项中,此展开图折叠成正方体后,若带△的面和原正方体保持一致,则带○的面到了上面,所以本选项错误;故选C.7. 已知代数式x+2y的值是3,则代数式2x+4y+1的值是( )A. 7B. 4C. 1D. 没有能确定【正确答案】A【分析】观察题中的代数式2x+4y+1,可以发现2x+4y+1=2(x+2y)+1,因此可整体代入,即可求得结果.【详解】由题意得,x+2y=3,∴2x+4y+1=2(x+2y)+1=2×3+1=7.故选A.本题主要考查了代数式求值,整体代入是解答此题的关键.8. 如果,那么的值一定是()A. B. C. D. 或【正确答案】D【详解】分析:首先根据值的意义求得a ,b 的值,则a 与b 的对应值有四种可能性,再分别代入a+b ,根据有理数的加法法则计算即可.解答:解:∵|a|=3,|b|=1,∴a=±3,b=±1.①当a=3,b=1时,a+b=4;②当a=3,b=-1时,a+b=2;③当a=-3,b=1时,a+b=-2;④当a=-3,b=-1时,a+b=-4.∴a+b=±4或±2.故选D .点评:本题主要考查值的定义:一个正数的值是它本身;一个负数的值是它的相反数;0的值是0.注意:互为相反数的两个数的值相等.9. A 、B 两地相距450千米,甲、乙两车分别从A 、B 两地同时出发,相向而行.已知甲车速度为120千米/小时,乙车速度为80千米/小时,t 小时两车相距50千米.则t 的值是( )A. 2B. 2或2.25C. 2.5D. 2或2.5【正确答案】D【详解】试题分析:应该有两种情况,次应该还没相遇时相距50千米,第二次应该是相遇后交错离开相距50千米,根据路程=速度×时间,可列方程求解.解:设t 小时两车相距50千米,根据题意,得120t+80t=450﹣50,或120t+80t=450+50,解得t=2,或t=2.5.答:2小时或2.5小时相距50千米.故选D .考点:一元方程的应用.10. 如图,直线a 、b 都与直线c 相交,给出下列条件:(1)∠1=∠2;(2)∠3=∠6;(3)∠4+∠7=180°;(4)∠5+∠8=180°,其中能判断的是()a b ∥A. (1)、(3)B. (2)、(4)C. (1)、(3)、(4)D. (1)、(2)、(3)、(4)【正确答案】D【详解】(1)∵∠1=∠2,∴a ∥b ;(2)∵∠3=∠6,∴a ∥b ;(3)∵∠4+∠7=180°,∠4+∠2=180°,∴∠7=∠2,∴a ∥b ;(4)∵∠5+∠8=180°,∠5+∠7=180°,∴∠7=∠8,∴a ∥b .综上所述,4个条件都能判定a ∥b .故选D .11. 下午2点30分时(如图),时钟的分针与时针所成角的度数为( )A. 90°B. 105°C. 120°D. 135°【正确答案】B【详解】下午2点30分时,时钟的分针与时针所成角的度数为:30°×4-30°×=120°-15°=105°.12故选B.点睛:(1)钟面被12小时分成12大格,每1格对应的度数是30°;(2)时针每分钟转动0.5°,分针每分钟转动6°.12. 如图,若,则()AB CDA. ∠1= ∠2+∠3B. ∠1=∠3-∠2C. ∠1+∠2+∠3=180°D. ∠1-∠2+∠3=180°【正确答案】A【详解】解:如图,过点E 作EF ∥CD ,∵AB ∥CD ,∴EF ∥AB ∥CD ,∴∠1+∠4=180°,∠3+∠2+∠4=180°,∴∠1+∠4=∠3+∠2+∠4,∴∠1=∠2+∠3.故选A二.填 空 题(共4小题,满分12分,每小题3分)13. 单项式﹣2πa 2bc 的系数是_____,次数是______.【正确答案】①. -2π,②.4【详解】的系数是,次数是.22a bc π-2π-414. 已知与是同类项,则=_______.2a b x y 347b x y --ba 【正确答案】1【详解】∵与是同类项,2a b x y 347b x y --∴ ,解得: ,34a b b =-⎧⎨=⎩14a b =⎧⎨=⎩∴.411ba ==故答案为1.点睛:两个单项式是同类项需同时满足两个条件:(1)两个单项式中所含字母相同;(2)两个单项式中同一字母的指数相等.15. 将两块直角三角尺的直角顶点重合为如图的位置,若∠AOD =110°,则∠COB =_____度.【正确答案】70【分析】根据图中的角的等量关系即可求出答案.【详解】解:∵∠A=∠C ,∠B=∠D ,∴∠AOC=∠CEA ,∠BED=∠BOD ,∵∠CEA=∠BED ,∴∠AOC=∠BOD ,∵∠AOD=110°,∴∠AOC+∠COD=110°,∴∠AOC=20°,∴∠BOC=90°-∠AOC=70°,故70°.本题考查直角三角形的性质,解题的关键是熟练运用直角三角形的性质,本题属于基础题型.16. 如图,是用火柴棒拼成的图形,则第20个图形需______根火柴棒.【正确答案】41【详解】观察图形可得:第1个图形中有:3根火柴;第2个图形中有:(3+2)根火柴;第3个图形中有:(3+2×2)根火柴;第4个图形中有:(3+2×3)根火柴;……,第n 个图形中有:[3+2×(n-1)]根火柴;∴第20个图形所需火柴数为:3+2(20-1)=41.即41.三.解 答 题(第17题9分,第18题6分,第19题7分,题20题6分,第21题8分,第22题8分,第23题8分)17.22222(1)2(2)(3)()443---+-⨯--÷-(2)3(x+1)-2(-x+2)=2x+3(3)31146x x-+-=【正确答案】(1) ;(2) ;(3)23.18-43【详解】试题分析:(1)首先确定好运算顺序,再按有理数相关运算的法则计算即可;(2)、(3)两题按解一元方程的一般步骤解答即可.试题解析:(1)原式=2449()1643--+⨯--÷ =8(6)4-+--=.18-(2)去括号得:,332423x x x ++-=+移项得:,322334x x x +-=-+合并同类项得:,34x =系数化为1得.43x =(3)去分母得:,3(3)2(1)12x x --+=去括号得:,392212x x ---=移项得:,321292x x -=++合并同类项得.23x =18. 化简求值:,其中22221223333x x xy y x ⎛⎫--+-- ⎪⎝⎭22(1)0x y ++-=【正确答案】-2xy+3 ,7.2y 【详解】试题分析:先将原式按整式的加减法进行化简,再由求得x 、y 的值,代值计算即可.()2210x y ++-=试题解析:原式=22222233x x xy y x ++--=.223xy y -+∵,()2210x y ++-=∴ ,解得: ,2010x y +=⎧⎨-=⎩21x y =-⎧⎨=⎩∴原式=.22(2)1317-⨯-⨯+⨯=19. 如图,已知∠1=∠2,∠C =∠D ,求证:∠A =∠F .【正确答案】详见解析【分析】先根据,得出,故,可得,再12∠=∠23∠∠=13∠=∠//BD CE C ABD ∠=∠由可知即可得到.C D ∠=∠//DF AC 【详解】证明:∵∠2=∠3,∠1=∠2,∴∠1=∠3,∴BD ∥CE ,∴∠C =∠ABD ,∵∠C =∠D ,∴∠ABD =∠D ,∴DF ∥AC ,∴∠A =∠F .本题考查的是平行线的判定与性质,用到的知识点为:同位角相等,两直线平行;内错角相等,两直线平行.20. 阅读材料:用尺规作图要求作线段AB 等于线段a 时,小明的具体作法如下:已知:线段a ,如图1求作:线段AB ,使得线段AB=a .解:作图步骤如下:①作射线AM ;②用圆规在射线AM 上截取AB=a ,如图2.∴线段AB 为所求作的线段.解决下列问题:已知:线段b ,如图1(1)请你依照小明的作法,在上图②中的射线AB 作线段BD ,使BD=b ;(没有要求写作法和结论,保留作图痕迹,用签字笔加粗)(2)在(1)的条件下,取AD 的中点E ,若AB=3,BD=2,求线段BE 的长.【正确答案】(1)作图见解析,(2)有两种情况,0.5 2.5BE 或【详解】试题分析:(1)题中没有说明点D 是在点B 的左侧还是点B 的右侧,因此要分两种情况按范例中作一条线段等于已知线段的方法作图;(2)根据(1)中所作的图形,题意分两种情况计算出线段BE 的长度即可.试题解析:(1)①当点D 在点B 左侧时,所作图形如图3;②当点D 在点B 右侧时,所作图形如图4;(2)①如图3,∵AB=3,BD=2,∴AD=AB-BD=3-2=1,又∵点E 是AD 的中点,∴DE=AD=0.5,12∴BE=BD+DE=2+0.5=2.5;②如图4,∵AB=3,BD=2,∴AD=AB+BD=3+2=5,又∵点E 是AD 的中点,∴DE=AD=2.5,12∴BE=DE-BD=2.5-2=0.5.综上所述,线段BE 的长度为0.5和2.5.点睛:解本题第2小题时,需注意:题目中没有指明点D 是在点B 的左侧还是右侧,因此解题时需分两种情况解答,没有要忽略了其中任何一种.21. 保护环境,让我们从分类做起.某区环保部门为了提高宣传实效,抽样了部分居民小区一段时间内生活的分类情况(如图1),进行整理后,绘制了如下两幅尚没有完整的统计图:根据图表解答下列问题:(1)请将图2﹣条形统计图补充完整;(2)在图3﹣扇形统计图中,求出“D”部分所对应的圆心角等于 度;(3)在抽样数据中,产生的有害共有 吨;(4)发现,在可回收物中废纸约占,若每回收1吨废纸可再造好红外线0.85吨.假设该城15市每月产生的生活为10000吨,且全部分类处理,那么每月回收的废纸可再造好纸多少吨?【正确答案】(1)见解析;(2)36(3)3(4)918(吨).【分析】(1)由统计图中的信息可知D 类5吨,占总数的10%,由此可计算出的总量,统计图中的信息即可计算出ABC 各类的吨数,并将条形统计图补充完整;(2)由“D 类占总数的10%”可得,扇形统计图中D 类所对应的圆心角为:360°×10%=36°;(3)由(1)中的计算结果可知在抽样数据中有害的数量;(4)由题意可得:该城市每月回收的废纸可再造纸:10000×54%××0.85(吨).15【详解】(1)由题意可得该小区总量为:5÷10%=50(吨);∴A 类有:50×54%=27(吨);B 类有:50×30%=15(吨);∴C 类有:50-27-15-5=3(吨);由此,补充完整条形统计图如下:(2)扇形统计图中,D 类所对应的圆心角为:360°×10%=36°;故答案为36(3)由(1)中计算可知,在抽样数据中,有害有3吨;故答案为3(4)由题意可得,该城市每月回收的废纸可再造纸的数量为:10000×54%××0.85=918(吨)15.答:该城市每月产生的生活回收的废纸可再造纸918吨.22. 据了解,个体服装要高出进价的20%方可盈利,一老板以高出进价的60%标价,如果一件服装标价240元,那么:(1)进价是多少元?(2)售价多少元时,老板方可盈利?【正确答案】(1)进价150元,(2)售价180.【详解】试题分析:(1)设进价为元/件,则标价可表示为,根据标价为240元/件可列方程:x (160%)x +=240,解方程即可得到进价;(160%)x +(2)设售价为元/件时,老板方看获利,(1)中所求进价即可根据题意列出算式,计算即可y 得到售价.试题解析:(1)设进价为元/件,根据题意可得:x。

人教版七年级数学上册 期末模拟测试题(二)(含答案)

人教版七年级数学上册 期末模拟测试题(二)(含答案)

七年级上册 数学 期末模拟测试(二)一、选择题共10小题,每小题3分,共30分. 在每小题给出的四个选项中,选出符合题目要求的一项并填在表格中.1.3-的相反数是 A .3B .3-C .13D . 13-2.2013年内,小明的体重增加了4kg ,我们记为+4,小亮的体重减少了3kg ,应记为 A .-3 B .3C .4-D . +43. 微信是现代社会人的一种生活方式,截止2013年8月,微信用户已超过4亿,目前还约以每天1 600 000用户人数在增长,将1 600 000用科学记数法表示为A . 70.1610⨯ B . 61.610⨯ C . 71.610⨯ D . 51610⨯ 4. 下列各式中运算正确的是A. 32m m -=B. 220a b ab -=C. 33323b b b -=D. 2xy xy xy -=-5. 若0>>b a ,则在数轴上表示数a ,b 的点正确的是A B C D6. 方程组25328x y x y -=⎧⎨-=⎩,消去y 后得到的方程是A. 01043=--x xB. 8543=+-x xC. 8)25(23=--x xD. 81043=+-x x 7.一个角的补角为158°,那么这个角的余角是A.22°B. 52°C. 68°D.112° 8.列式表示“x 的2倍与y 的和的平方”正确的是0b a0a b b 0a a 0bA . 2)2(y x +B . 2)(2y x +C . 22y x + D . 222y x +9. 下图是某月的日历表,在此日历表上可以用一个矩 形圈出33⨯个位置的9个数(如6,7,8,13,14, 15,20,21,22). 若圈出的9个数中,最大数与最 小数的和为46,则这9个数的和为 A .69 B .84 C .126 D .20710.如图,一个几何体上半部为正四棱椎,下半部为立方体,且有一个面涂有颜色,下列图形中,不是该几何体的表面展开图的是第二部分(非选择题 共70分)二、 填空题: 本大题共8小题,每题3分,共24分. 请把答案填在题中横线上. 11.数轴上,a 所表示的点A 到原点的距离是2,则a 等于 . 12. 单项式22m n -的系数是 ;次数是 . 13.方程10.2512x -=的解是 . 14. 如图,直线AB ,CD 相交于点O ,OA 平分∠EOC , ∠EOC =76°,则∠BOD = .15.已知22x x -=,则2332x x -+的值是 .16. 已知1=a ,2=b ,3=c ,如果c b a >>,则c b a -+= . 17. 若328a b +=,且31a b -=-,则()2014a b -的值是 .18. 如图,在边长为1的小正方形组成的网格中, 若一个多边形的顶点全是格点,则称该多边形为格点多边形. 格点多边形的面积记为S ,其内部的格点数记为N ,边界上的格点数记为L . 例如图中△ABC 是格点三角形,对应的1S =,0N =,4L =.图中格点四边形DEFG 对应的,,S N L 分别是 ;已知格点多边形的面积可表示为S aN bL c =++,其中a ,b ,c 为常数. 若某格点多边形对应的71N =,18L =, 则S = (用数值作答).三、计算题: 本大题共3小题,共13分.计算应有演算步骤. 19.(本小题满分4分)2(4)8(2)(3)--+÷-+-.20.(本小题满分4分)3201411(1)[(12)6]22⎛⎫--+-÷÷- ⎪⎝⎭.21. (本小题满分5分)先化简,再求值:()2223232x y x y xy x y xy ⎡⎤----⎣⎦,其中1,2x y =-=-.四、解方程(组): 本大题共4小题,共16分.解答应有演算步骤. 22.(本小题满分8分)(1)213(5)x x +=--; (2) 71132x x-+-=.23. (本小题满分8分)(1)212316x y x y -=⎧⎨+=⎩,; (2) 4(1)3(1)2,2.23x y y x y --=--⎧⎪⎨+=⎪⎩五、画图题24.(本小题满分5分)如图,已知平面上有四个点A ,B ,C ,D .(1)连接AB ,并画出AB 的中点P ; (2)作射线AD ;(3)作直线BC 与射线AD 交于点E .五、解答题: 本大题共2小题,共12分.解答应写出文字说明、证明过程或演算步骤. 25. (本小题满分6分)根据图中给出的信息,解答下列问题:(1)放入一个小球水面升高 cm ,放入一个大球水面升高 cm ;DC BA(2)如果要使水面上升到50cm ,应放入大球、小球各多少个 26.(本小题满分6分)已知, OM 和ON 分别平分∠AOC 和∠BO C.(1)如图:若C 为∠AOB 内一点,探究MON ∠与AOB ∠的数量关系;(2)若C 为∠AOB 外一点,且C 不在OA 、OB 的反向延长线上,请你画出图形,并探究MON ∠与AOB ∠的数量关系.参考答案一、选择题(每小题3分,共30分)二、填空题(每个题3分,共24分)11. 2±; 12. 23-,; 3. 6x =; 14.38︒; 15. 8; 16. 2或0; 17. 1 ; 18. 3,1,6, 79.注:第12题答对一个得2分,答对2个得3分;第18题第一空1分,第二空2分. 三、计算题:(共13分)19. 解:2(4)8(2)(3)--+÷-+- =2443+--=1-. ………4分 20. 解: 3201411(1)[(12)6]22⎛⎫--+-÷÷- ⎪⎝⎭=111(2)()28--÷-=3182-⨯ =11-. ………4分21. 解: ()2223232x y x y xy x y xy ⎡⎤----⎣⎦2223(263)x y x y xy x y xy =--+-()22357x y x y xy =--22357x y x y xy =-+227x y xy =-+当1,2x y =-=-时,原式22718x y xy =-+=. ………………………5分四、解方程(组)(共16分)22. (1)213(5)x x +=--解:去括号,得 21315x x +=-+. 移项合并同类项,得 514x =. 系数化1,得 145x =. ……….4分 (2)71132x x-+-= 解:去分母,得 2(7)3(1)6x x --+=. 去括号,得 214336x x ---= 移项合并同类项,得 23x -=系数化1,得 23x =-. …………….……….4分 23. (1)212316.x y x y -=⎧⎨+=⎩①②,解:由①得:21x y =+ ③把③代入②得:2(21)316y y ++=.解得2y =. ………….…….……..……….2分 把2y =代入③得,5x =. ….……..………. 3分∴这个方程组的解为5,2.x y =⎧⎨=⎩ .…….…….…….……….4分注:其它解法按相应标准给分.(2) 4(1)3(1)2,2.23x y y x y--=--⎧⎪⎨+=⎪⎩①②解:由①得:450x y --= ③ 由②得:3212x y += ④⨯+③2④得:1122x =.解得2x =. 把2x =代入④得,3y =.∴这个方程组的解为2,3.x y =⎧⎨=⎩ ……...……….…….…….……….4分注:其它解法按相应标准给分. 五、作图题 (共5分) 24. 如图……………………………… 5分 六、解答题(共12分)25. 解:(1) 2,3 . …………………… 2分 (2)设应放入x 个大球,y 个小球,由题意得325026,10.x y x y +=-⎧⎨+=⎩………………… 4分解这个方程组得4,6.x y =⎧⎨=⎩答:应放入4 个大球,6个小球. ……………………… 6分 注:列一元一次方程按照相应的标准给分. 26. 解:(1)OM 和ON 分别平分∠AOC 和∠BO C ,∴ 1111==()2222MON MOC NOC AOC BOC AOC BOC AOB ∠∠+∠∠+∠=∠+∠=∠. ……………………… 3分 (2)当C 在如图所示的位置时,11==2211().22MON MOC NOC AOC BOCAOC BOC AOB ∠∠-∠∠-∠=∠-∠=∠当C 在如图所示的位置时,PEABCD11==2211().22MON NOC MOC BOC AOCBOC AOC AOB ∠∠-∠∠-∠=∠-∠=∠当C 在如图所示的位置时,11==2211()(360)221180.2MON MOC NOC AOC BOCAOC BOC AOB AOB ∠∠+∠∠+∠=∠+∠=︒-∠=︒-∠ ………………………6分。

河南省商丘市夏邑县2023-2024学年七年级上册期末数学模拟试题(附答案)

河南省商丘市夏邑县2023-2024学年七年级上册期末数学模拟试题(附答案)

河南省商丘市夏邑县2023-2024学年七年级上学期期末数学模拟试题注意事项:1.本试卷共6页,三个大题,满分120分,考试时间100分钟.2.答卷前请将装订线内的项目填写清楚.一、选择题(每小题3分,共30分)下列各小题均有四个选项,其中只有一个是正确的,将正确答案的代号字母填在题后括号内.1.的绝对值是()12023A .2023 B . C . D .2023-1202312023-2.随着2024年2月第十四届全国冬季运动会临近,吉祥物成为焦点,某日通过搜索得出相关结果约为个.将“”用科学记数法表示为()A .B .C .D .61610⨯71.610⨯81.610⨯80.1610⨯3.下面是某教材中“用尺规作一条线段等于已知线段”的部分过程图,则下列与长A B ''A C ''短比较正确的是()A .B .C .D .无法A B A C >''''A B A C =''''A B A C <''''4.下列运算正确的是()A .B .C .D .2mn nm mn -=-2m m m -=236m n mn +=()m n m n--=-5.2024年1月1日起,《洛阳市洛阳牡丹保护与发展条例》实施,对于促进牡丹文化传承具有重要意义.将“牡丹文化传承”六个汉字分别写在下面展开图中,折成正方体后“传”与“文”相对的是()A .B .C .D .6.学校下午2:00考试,考试时间为90分钟,则考试结束时时针与分针所夹锐角为()A .B .C .D .90︒75︒60︒45︒7.若是方程的解,则的值是()12x =-26x k +=k A .7B .C .8D .7-8-8.如图,数轴上点所表示的数分别是,若,则原点的A B C 、、a b c 、、0,abc ac bc <<位置在()A .点的左边B .线段上C .线段上D .点A AB BC 的右边C 9.某商店卖出两件产品,每件售价150元,一件赚了,另一件亏了,那么商店50%25%卖这两件产品是()A .赚了50元B .亏了20元C .赚了25元D .不亏10.高中有机化学中“烷烃”的分子式如可分别按下图对应展开,则42638CH C H C H 、、中的值是()2023C H m mA .4046B .4048C .4044D .4047二、填空题(每小题3分,共15分)11.请任意写一个同时满足“①含未知数项的系数为负数;②方程左边只有两项且右边等于零”的一元一次方程:______.12.如果的相反数是,那么的倒数是______.m 12024m 13.一根铅笔元,一个本子元,买一根铅笔和两个本子共需______元.2a ()1.5a -14.若单项式与的和仍是单项式,则的值为______.22m x y -3n x y nm 15.如图,把一个角沿过点的射线对折后得到的图形为锐角,现从点引一条射O AOB ∠O 线,使,再沿把角剪开.若剪开后再展开,得到的三个角中有OC AOC m AOB ∠=∠OC 且只有一个角最大,最大角是最小角的3倍,则的值为______.m三、解答题(本大题共8个小题,共75分)16.(10分)(1)计算:;213424⎛⎫-⨯- ⎪⎝⎭(2)解方程:.3134x x --=17.(9分)现有甲种正方形、乙种长方形卡片各若干张,卡片的边长如图所示.某(1)a >同学分别拼出了两个长方形(不重叠无缝隙),如图1和图2,其面积分别为.12,S S图1图2(1)请用含的式子分别表示;a 12,S S (2)当时,求的值.3a =12S S +18.(9分)如图,为线段上一点,点为的中点,已知.C AD B CD 10,6AD AC ==(1)求的长;BC (2)若点是线段上靠近点的三等分点,求的长.P AC A BP 19.(9分)“曹冲称象”的故事取材于《三国志》,故事中称象方案是这样的:先将象牵到船上,并在船侧面标记水位,再将象牵出,然后往船上抬入20块等重的条形石,并在船上留3个体重相同的士兵,这时水位恰好在标记位置;如果再抬入1块同样的条形石,船上只留1个士兵,水位在标记位置不变.每块条形石的重量都是280斤,设每个士兵的体重是斤.x孙权曾致巨象,太祖欲知其斤重,访之群下,咸莫能出其理.冲曰:“置象大船之上,而刻其水痕所至,称物以载之,则校可知矣.”——《三国志》(1)可列出等量关系:“20块条形石的重量”+“3个士兵的体重”=“______块条形石的重量”+“______个士兵的体重”;(2)求;x(3)象的重量是______斤.20.(9分)如图,已知,在内引一条射线,且平120AOB ∠=︒AOB ∠OC OM 分.AOC ∠(1)若平分的度数为______.OC ,AOB MOC ∠∠(2)若平分,求的度数;OC BOM ∠MOC ∠(3)若,求的度数.14BOC AOB ∠=∠MOC ∠21.(9分)洛阳某初中数学小组学完“整式的加减”章节后对一道题进行了交流,请仔细阅读,并完成任务.试题:已知,求的值.21x x +=23x x ++小强:对于这个方程的求解,我们还没有学,常规方法不适合解决.21x x +=小丽:我知道一种“整体代换”的思想方法:将作为一个整体代入,则原2x x +式.134=+=小强:你的方法很巧妙,值得学习.……任务:(1)若,求的值;210x x +-=22024x x --+(2)若,求的值.3a b +=()2442a b a b +--+22.(10分)有一口深90厘米的枯井,井底有一只青蛙沿着井壁向上往井口跳跃,由于井壁较滑,每次跳跃之后青蛙会下滑一段距离才能稳住.下面是青蛙的几次跳跃和下滑情况(上跳为正,下滑为负,单位为厘米).第1次第2次第3次第4次第5次第6次第7次15+10+020+15+10+14+8-12-3-10-9-11-8-(1)除起跳点外,青蛙距离井底的最近距离是______厘米;青蛙距离井口的最近距离是______厘米;(2)在这7次跳跃并下滑稳定后,此时青蛙距离井口还有多远?(3)把每7次跳跃下滑记为一周,若青蛙之后的每周跳跃下滑情况都和第一周相同,那么青蛙在第几次跳出了井口?23.(10分)引入如图1,已知数轴上有三点.其中两点所表示的数分别为和5,点表A B P 、、A B 、3-P 示的数为.a图1观察(1)求两点之间的距离;A B 、(2)当点距离点个单位长度时,求;P 4A a 操作(3)折叠数轴,使两点重合,则折痕与数轴的交点表示的数是______;用此方法,则A B 、数轴上表示的点与表示的______点重合;4-(4)如图2,将此数轴沿两处虚线剪开,将中间的一段对折,使其左右两端重合,这A B 、样连续对折2次后,再将其展开,直接写出最右端的折痕与数轴的交点表示的数.图2七年级数学(B )(人教版)答案1-5CBCAB6-10BABDB11.(不唯一) 12. 13.3 14.9 15.或20x --=2024-253516解:(1)原式;()131616812424⎛⎫=-⨯+-⨯-=-+= ⎪⎝⎭(2),3134x x --=去分母,得,去括号,得,()43112x x --=43112x x -+=移项、合并同类项,得.11x =17.解:(1)222122S a a a a a a =+++=+2224S a a a a a a a=++++=+(2)当时,3a =221236336345S S a a +=+=⨯+⨯=18.解:(1)因为,所以,10,6AD AC ==4CD AD AC =-=因为点为的中点,所以;B CD 122BC CD ==(2)因为,点是线段上靠近点的三等分点,所以,6AC =P AC A 123AP AC ==则.所以4PC AC AP =-=42 6.BP PC BC =+=+=19.解:(1)211(2),解得20280321280x x ⨯+=⨯+140,x =(3)602020.解:(1);30︒(2)因为平分,所以,OM AOC ∠AOM COM ∠=∠因为平分,所以,OC BOM ∠BOC COM ∠=∠所以,AOM COM BOC ∠=∠=∠又因为,所以;120AOB ∠=︒120340MOC ∠=︒÷=︒(3)因为,所以.14BOC AOB ∠=∠30BOC ∠=︒故90AOC AOB BOC ∠=∠-∠=︒因为平分,所以OM AOC ∠1452MOC AOC ∠=∠=︒21.解:(1)因为,所以,210x x +-=21x x +=所以,所以.()221x x x x -+=-=--22024120242023x x --+=-+=(2)因为,所以,3a b +=()2236a b -+=-⨯=-所以()2442a b a b +--+.()()()24222624a b a b a b =+-++=-++=-+=-22.解:(1)2;59;(2),1581012032010159101114823+-+-+-+-+-+-+-=即在这7次跳跃并下滑稳定后,此时青蛙距离井口还有;902367cm -=(3)周……,90233÷=21cm 即第21次后,距离井口:,21cm 第22次后,距离井口:,2115814cm -+=第23次后,距离井口:,14101216cm -+=第24次后,距离井口:,16319cm +=第25次后,,此时跳出井口,192010-=-<故青蛙在第25次跳出了井口.23.解:(1)两点之间的距离是:;A B 、()538--=(2)当点在点左侧时,;当点在点右侧时,P A 347a =--=-P A 341a =-+=(3)16(4)3。

人教版(七年级)初一上册数学期末模拟测试题及答案

人教版(七年级)初一上册数学期末模拟测试题及答案

人教版(七年级)初一上册数学期末模拟测试题及答案一、选择题1.有一个数值转换器,流程如下:当输入x的值为64时,输出y的值是()A.2 B.22C.2D.322.探索规律:右边是用棋子摆成的“H”字,第一个图形用了 7 个棋子,第二个图形用了12 个棋子,按这样的规律摆下去,摆成第 20 个“H”字需要棋子()A.97B.102C.107D.1123.下列方程变形正确的是()A.方程110.20.5x x--=化成1010101025x x--=B.方程 3﹣x=2﹣5(x﹣1),去括号,得 3﹣x=2﹣5x﹣1 C.方程 3x﹣2=2x+1 移项得 3x﹣2x=1+2D.方程23t=32,未知数系数化为 1,得t=14.若x=﹣13,y=4,则代数式3x+y﹣3xy的值为()A.﹣7 B.﹣1 C.9 D.75.已知关于x的方程ax﹣2=x的解为x=﹣1,则a的值为()A.1 B.﹣1 C.3 D.﹣36.如果+5米表示一个物体向东运动5米,那么-3米表示( ).A.向西走3米B.向北走3米C.向东走3米D.向南走3米7.有理数a、b在数轴上的位置如图所示,则下列结论中正确的是()A.a+b>0 B.ab>0 C.a﹣b<o D.a÷b>0 8.如图,将长方形ABCD绕CD边旋转一周,得到的几何体是()A.棱柱B.圆锥C.圆柱D.棱锥9.如果一个有理数的绝对值是6,那么这个数一定是()A.6B.6-C.6-或6D.无法确定10.下列计算正确的是()A.-1+2=1 B.-1-1=0 C.(-1)2=-1 D.-12=111.如图,经过刨平的木板上的两个点,能弹出一条笔直的墨线,而且只能弹出一条墨线,能解释这一实际应用的数学知识是()A.两点确定一条直线B.两点之间线段最短C.垂线段最短D.连接两点的线段叫做两点的距离12.某中学为检查七年级学生的视力情况,对七年级全体300名学生进行了体检,并制作了如图所示的扇形统计图,由该图可以看出七年级学生视力不良的学生有()A.45人B.120人C.135人D.165人二、填空题13.如图,线段AB被点C,D分成2:4:7三部分,M,N分别是AC,DB的中点,若MN=17cm,则BD=__________cm.14.如图所示是计算机程序设计,若开始输入的数为-1,则最后输出的结果是______.15.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元.支付宝帐单日期交易明细10.16乘坐公交¥ 4.00-10.17转帐收入¥200.00+10.18体育用品¥64.00-10.19零食¥82.00-10.20餐费¥100.00-16.写出一个比4大的无理数:____________.17.定义-种新运算:22a b b ab⊕=-,如21222120⊕=-⨯⨯=,则(1)2-⊕=__________.18.如图,在长方形ABCD中,10,13.,,,AB BC E F G H==分别是线段,,,AB BC CD AD上的定点,现分别以,BE BF为边作长方形BEQF,以DG为边作正方形DGIH.若长方形BEQF与正方形DGIH的重合部分恰好是一个正方形,且,BE DG=,Q I均在长方形ABCD内部.记图中的阴影部分面积分别为123,,s s s.若2137SS=,则3S=___19.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________;20.中国古代数学著作《孙子算经》中有个问题:今有三人共车,二车空;二人共车,九人步,问人与车各几何?这道题的意思是:今有若干人乘车,每三人乘一车,最终剩余2辆车,若每2人共乘一车,最终剩余9个人无车可乘,问有多少人,多少辆车?如果我们设有x辆车,则可列方程_____.21.若α与β互为补角,且α=50°,则β的度数是_____.22.若代数式x2+3x﹣5的值为2,则代数式2x2+6x﹣3的值为_____.23.用“>”或“<”填空:13_____35;223-_____﹣3.24.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm .三、解答题25.如图,甲、乙两个圆柱形玻璃容器各盛有一定量的液体, 甲、乙容器的内底面半径分别为6cm 和4cm ,现将一个半径为2cm 的圆柱形玻璃棒(足够长)垂直触底插入甲容器,此时甲、乙两个容器的液面高均为cm h (如图甲),再将此玻璃棒垂直触底插入乙容器(液体损耗忽略不计),此时乙容器的液面比甲容器的液面高3cm (如图乙).(1)求甲、乙两个容器的内底面面积.(2)求甲容器内液体的体积(用含h 的代数式表示). (3)求h 的值.26.如图1,将一副直角三角板的两顶点重合叠放于点O ,其中一个三角板的顶点C 落在另一个三角板的边OA 上.已知90ABO DCO ∠=∠=,45AOB ∠=,60COD ∠=,作AOD ∠的平分线交边CD 于点E . (1)求∠BOE 的度数;(2)如图2,若点C 不落在边OA 上,当15COE ∠=时,求BOD ∠的度数.27.计算: (1)17+(﹣1.5)﹣(﹣67)(2)32÷(﹣34)+(﹣27)2×2128.定义:从一个角的顶点出发,在角的内部引两条射线,如果这两条射线所成的角等于这个角的一半,那么这两条射线所成的角叫做这个角的内半角.如图1,若1COD AOB 2∠∠=,则COD ∠是AOB ∠的内半角.()1如图1,已知AOB 70∠=,AOC 25∠=,COD ∠是AOB ∠的内半角,则BOD ∠=______;()2如图2,已知AOB 60∠=,将AOB ∠绕点O 按顺时针方向旋转一个角度α(0α60)<<至COD ∠,当旋转的角度α为何值时,COB ∠是AOD ∠的内半角.()3已知AOB 30∠=,把一块含有30角的三角板如图3叠放,将三角板绕顶点O 以3度/秒的速度按顺时针方向旋转(如图4),问:在旋转一周的过程中,射线OA ,OB ,OC ,OD 能否构成内半角?若能,请求出旋转的时间;若不能,请说明理由. 29.解方程:(1)()()32324y y -=-; (2)13124x x +--=. 30.某水果销售店用1000元购进甲、乙两种新出产的水果共140千克,这两种水果的进价、售价如表所示:进价(元/千克) 售价(元/千克) 甲种 5 8 乙种913(1)这两种水果各购进多少千克?(2)若该水果店按售价销售完这批水果,获得的利润是多少元?四、压轴题31.数轴上A 、B 两点对应的数分别是﹣4、12,线段CE 在数轴上运动,点C 在点E 的左边,且CE =8,点F 是AE 的中点.(1)如图1,当线段CE 运动到点C 、E 均在A 、B 之间时,若CF =1,则AB = ,AC=,BE=;(2)当线段CE运动到点A在C、E之间时,①设AF长为x,用含x的代数式表示BE=(结果需化简.....);②求BE与CF的数量关系;(3)当点C运动到数轴上表示数﹣14的位置时,动点P从点E出发,以每秒3个单位长度的速度向右运动,抵达B后,立即以原来一半速度返回,同时点Q从A出发,以每秒2个单位长度的速度向终点B运动,设它们运动的时间为t秒(t≤8),求t为何值时,P、Q 两点间的距离为1个单位长度.32.如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)出数轴上点B表示的数;点P表示的数(用含t的代数式表示)(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.33.如图:在数轴上A点表示数a,B点示数b,C点表示数c,b是最小的正整数,且a、c满足|a+2|+(c-7)2=0.(1)a=______,b=______,c=______;(2)若将数轴折叠,使得A点与C点重合,则点B与数______表示的点重合;(3)点A、B、C开始在数轴上运动,若点A以每秒1个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和4个单位长度的速度向右运动,假设t秒钟过后,若点A与点B之间的距离表示为AB,点A与点C之间的距离表示为AC,点B与点C 之间的距离表示为BC.则AB=______,AC=______,BC=______.(用含t的代数式表示).(4)直接写出点B为AC中点时的t的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】把64代入转换器,根据要求计算,得到输出的数值即可.【详解】,是有理数,∴继续转换,,是有理数,∴继续转换,∵2,是无理数,∴输出,故选:C.【点睛】本题考查的是算术平方根的概念和性质,一个正数的平方根有两个,正的平方根是这个数的算术平方根;注意有理数和无理数的区别.2.B解析:B【解析】【分析】观察图形,正确数出个数,再进一步得出规律即可.【详解】摆成第一个“H”字需要2×3+1=7个棋子,第二个“H”字需要棋子2×5+2=12个;第三个“H”字需要2×7+3=17个棋子;第n个图中,有2×(2n+1)+n=5n+2(个).∴摆成第 20 个“H”字需要棋子的个数=5×20+2=102个.故B.【点睛】通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键规律为各个图形中两竖行棋子的个数均为2n+1,横行棋子的个数为n.3.C解析:C【解析】各项中方程变形得到结果,即可做出判断. 【详解】解:A 、方程x 1x 10.20.5--=化成10x 1010x25--=1,错误; B 、方程3-x=2-5(x-1),去括号得:3-x=2-5x+5,错误; C 、方程3x-2=2x+1移项得:3x-2x=1+2,正确,D 、方程23t 32=,系数化为1,得:t=94,错误; 所以答案选C. 【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.4.D解析:D 【解析】 【分析】将x 与y 的值代入原式即可求出答案. 【详解】 当x=﹣13,y=4, ∴原式=﹣1+4+4=7 故选D . 【点睛】本题考查代数式求值,解题的关键是熟练运用有理数运算法则,本题属于基础题型.5.B解析:B 【解析】 【分析】将1x =-代入2ax x -=,即可求a 的值. 【详解】解:将1x =-代入2ax x -=, 可得21a --=-, 解得1a =-, 故选:B . 【点睛】本题考查一元一次方程的解;熟练掌握一元一次方程的解与方程的关系是解题的关键.6.A解析:A∵+5米表示一个物体向东运动5米,∴-3米表示向西走3米,故选A.7.C解析:C【解析】【分析】利用数轴先判断出a、b的正负情况以及它们绝对值的大小,然后再进行比较即可.【详解】解:由a、b在数轴上的位置可知:a<0,b>0,且|a|>|b|,∴a+b<0,ab<0,a﹣b<0,a÷b<0.故选:C.8.C解析:C【解析】【分析】根据面动成体可得长方形ABCD绕CD边旋转所得的几何体.【详解】解:将长方形ABCD绕CD边旋转一周,得到的几何体是圆柱,故选:C.【点睛】此题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.9.C解析:C【解析】【分析】由题意直接根据根据绝对值的性质,即可求出这个数.【详解】或6.解:如果一个有理数的绝对值是6,那么这个数一定是6故选:C.【点睛】本题考查绝对值的知识,注意绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.10.A解析:A【解析】解:A,异号相加,取绝对值较大的符号,并把绝对值大的减去绝对值小的,故选A;B,同号相加,取相同的符号,并把绝对值相加,-1-1=-2;C,底数为-1,一个负数的偶次方应为正数(-1)2=1;D,底数为1,1的平方的相反数应为-1;即-12=-1,故选A.11.A解析:A【解析】【分析】根据公理“两点确定一条直线”来解答即可.【详解】解:经过刨平的木板上的两个点,能弹出一条笔直的墨线,此操作的依据是两点确定一条直线.故选:A.【点睛】此题考查的是直线的性质在实际生活中的运用,此类题目有利于培养学生生活联系实际的能力.12.D解析:D【解析】试题解析:由题意可得:视力不良所占的比例为:40%+15%=55%,视力不良的学生数:300×55%=165(人).故选D.二、填空题13.14【解析】因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x,因为M,N分别是AC,DB的中点,所以CM=,DN=,因为mn=17cm,所以x+4x+=1解析:14【解析】因为线段AB被点C,D分成2:4:7三部分,所以设AC=2x,CD=4x,BD=7x,因为M,N分别是AC,DB的中点,所以CM=12AC x=,DN=1722BD x=,因为mn=17cm,所以x+4x+72x=17,解得x=2,所以BD=14,故答案为:14.14.-5 【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果,此时就需要将结果返回重新计算,直到结果,才能输出结果.【详解】解:根据如图所示:当输入的是的时候,,此时结果解析:-5【解析】【分析】首先要理解该计算机程序的顺序,即计算顺序,一种是当结果1>-,此时就需要将结果返回重新计算,直到结果1<-,才能输出结果.【详解】解:根据如图所示:当输入的是1-的时候,1(3)21-⨯--=,此时结果1>-需要将结果返回,即:1(3)25⨯--=-,此时结果1<-,直接输出即可,故答案为:5-.【点睛】本题考查程序设计题,解题关键在于数的比较大小和读懂题意.15.810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛解析:810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛】本题考查有理数的加减运算,理解题意根据题意对支出与收入进行加减运算从而求解.16.答案不唯一,如:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4大的无理数如.故答案为.【点睛】本题考查了估算无理数的大小,实数的解析:【解析】【分析】无理数是指无限不循环小数,根据定义和实数的大小比较法则写出一个即可.【详解】一个比4.【点睛】本题考查了估算无理数的大小,实数的大小比较的应用,能估算无理数的大小是解此题的关键,此题是一道开放型的题目,答案不唯一.17.8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为;所以故填8.【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解解析:8【解析】【分析】根据题意原式利用题中的新定义计算将-1和2代入计算即可得到结果.【详解】解:因为22a b b ab ⊕=-;所以2(1)222(1)28.-⊕=-⨯-⨯=【点睛】本题结合新定义运算考查有理数的混合运算,熟练掌握运算法则是解本题的关键.18.【解析】【分析】设CG=a,然后用a分别表示出AE、PI和AH,根据,列方程可得a的值,根据正方形的面积公式可计算S3的值.【详解】解:如图,设CG=a,则DG=GI=BE=10−a,解析:1214【解析】【分析】设CG=a,然后用a分别表示出AE、PI和AH,根据2137SS=,列方程可得a的值,根据正方形的面积公式可计算S3的值.【详解】解:如图,设CG=a,则DG=GI=BE=10−a,∵AB=10,BC=13,∴AE=AB−BE=10−(10−a)=a, PI=IG−PG=10−a−a=10−2a,AH=13−DH=13−(10−a)=a+3,∵2137SS=,即23(3)7aa a=+,∴4a2−9a=0,解得:a1=0(舍),a2=94,则S3=(10−2a)2=(10−92)2=1214,故答案为1214.本题考查正方形和长方形边长之间的关系、面积公式以及解一元二次方程等知识,解题的关键是学会利用参数列方程解决问题.19.两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直解析:两点确定一条直线.【解析】【分析】根据两点确定一条直线解析即可.【详解】建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.故答案为:两点确定一条直线.【点睛】考核知识点:两点确定一条直线.理解课本基本公理即可.20.3(x﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x﹣2)解析:3(x﹣2)=2x+9【解析】【分析】根据每三人乘一车,最终剩余2辆车,每2人共乘一车,最终剩余9个人无车可乘,进而表示出总人数得出等式即可.【详解】设有x辆车,则可列方程:3(x﹣2)=2x+9.故答案是:3(x﹣2)=2x+9.【点睛】本题考查一元一次方程,解题的关键是读懂题意,掌握列一元一次方程.21.130°.【解析】【分析】若两个角的和等于,则这两个角互补,依此计算即可.【详解】解:与互为补角,,.故答案为:.【点睛】此题考查了补角的定义.补角:如果两个角的和等于(平角),解析:130°.【解析】【分析】若两个角的和等于180︒,则这两个角互补,依此计算即可.【详解】解:α与β互为补角,180αβ∴+=︒,180********βα∴=︒-=︒-︒=︒.故答案为:130︒.【点睛】此题考查了补角的定义.补角:如果两个角的和等于180︒(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.22.17【解析】【分析】【详解】解:根据题意可得:+3x=7,则原式=2(+3x )+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键解析:17【解析】【分析】【详解】解:根据题意可得:2x+3x=7,则原式=2(2x+3x)+3=2×7+3=17.故答案为:17【点睛】本题考查代数式的求值,利用整体代入思想解题是关键23.<>【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:<;>﹣3.故答解析:<>【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:13<35;223>﹣3.故答案为:<、>.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.24.4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=解析:4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm ,由题意得:50×40×8+20×20×h=50×40×h ,解得:h=10,则水箱中露在水面外的铁块的高度为:20-10=10(cm ),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm 3).故答案为:4000.【点睛】此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键.三、解答题25.(1) 236cm π和216cm π ;(2) 32h π ;(3)274. 【解析】【分析】(1)根据题意甲、乙容器的内底面半径,即可求甲、乙两个容器的内底面面积;(2)由题意用含h 的代数式表示甲容器内液体的体积即可;(3)根据题意乙容器的液面比甲容器的液面高3cm ,建立含h 的等量关系式,并求解即可.【详解】解:(1) 由甲、乙容器的内底面半径分别为6cm 和4cm ;可知甲、乙两个容器的内底面面积分别为236cm π和216cm π.(2)由题意可知甲容器内液体的体积为364h h ππ-=32h π3()cm .(3)由题意可知乙的液体体积不变以此建立方程得:3216(164)(3)36h h πππππ=-+, 解得274h =. 【点睛】本题考查一元一次方程的实际应用,根据题意列出一元一次方程是解题关键.26.(1)75;(2)135.【解析】【分析】(1)根据角平分线的定义可求出∠AOE 的度数,根据角的和差关系即可求出∠BOE 的度数;(2)根据角的和差关系可求出∠DOE 的度数,根据角平分线的定义可求出∠AOD 的度数,进而根据角的和差关系即可求出∠BOD 的度数.【详解】(1)∵60AOD ∠=,OE 平分AOD ∠, ∴1302AOE AOD ∠=∠=∵45AOB ∠=∴75BOE AOE AOB ∠=∠+∠=(2)∵60COD ∠=,15COE ∠=,∴45DOE COD COE ∠=∠-∠=∵OE 平分AOD ∠,∴290AOD DOE ∠=∠=∵45AOB ∠=∴135BOD AOD AOB ∠=∠+∠=.【点睛】本题考查角平分线的定义及角的和与差,从一个角的顶点引出一条射线,把这个角分成两个完全相同的角,这条射线叫做这个角的角平分线;熟练掌握定义是解题关键.27.(1)﹣0.5;(2)﹣27【解析】【分析】(1)原式利用减法法则变形,结合后计算即可求出值;(2)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可求出值.【详解】解:(1)原式=16+77﹣1.5=1﹣1.5=﹣0.5; (2)原式=﹣32×43+449 ×21=﹣2+127=﹣27 . 【点睛】本题考查了有理数的混合运算,熟练掌握运算法则和运算顺序是正确解题的关键.28.(1)10°;(2) 20;(3)见解析.【解析】【分析】(1)根据内半角的定义解答即可;(2)根据内半角的定义解答即可;(3)根据根据内半角的定义列方程即可得到结论.【详解】解:()1COD ∠是AOB ∠的内半角,AOB 70∠=,1COD AOB 352∠∠∴==, AOC 25∠=,BOD 70352510∠∴=--=,故答案为10,()2AOC BOD α∠∠==,AOD 60α∠∴=+,COB ∠是AOD ∠的内半角,()1BOC 60α60α2∠∴=+=-, α20∴=,∴旋转的角度α为20时,COB ∠是AOD ∠的内半角;()3在旋转一周的过程中,射线OA ,OB ,OC ,OD 能否构成内半角;理由:设按顺时针方向旋转一个角度α,旋转的时间为t ,如图1,BOC ∠是AOD ∠的内半角,AOC BOD α∠∠==,AOD 30α∠∴=+,()130302αα∴+=-, 解得:10α=,103t s ∴=; 如图2,BOC ∠是AOD ∠的内半角,AOC BOD ∠∠α==,30AOD ∠α∴=+,()130302αα∴+=-, 90α∴=,90303t s ∴==; 如图3,AOD ∠是BOC ∠的内半角,360AOC BOD ∠∠α==-,36030αBOC ∠∴=+-,()136030α360α302∴+-=--, α330∴=,330t 110s 3∴==, 如图4,AOD ∠是BOC ∠的内半角,AOC BOD 360α∠∠==-,BOC 36030α∠∴=+-, ()()136030α303036030α2∴+-=+-+-, 解得:α350=,350t s 3∴=, 综上所述,当旋转的时间为10s 3或30s 或110s 或350s 3时,射线OA ,OB ,OC ,OD 能构成内半角.【点睛】本题考查了角的计算,角的和差,准确识图理清图中各角度之间的关系是解题的关键.29.(1)14y =;(2)1x =-. 【解析】【分析】(1)根据一元一次方程的解法过程,去括号,移项,合并同类项,系数化为1解决即可.(2)根据一元一次方程的解法过程,去分母,去括号,移项,合并同类项,系数化为1解决即可.【详解】解方程:(1)3(2y -3)=2(y -4); 6928y y -=-.6298y y -=-.41y =.14y =. (2)13124x x +--=. 2(1)(3)4x x +--=.2234x x +-+=.-1x =.【点睛】本题考查了一元一次方程的解法,解决本题的关键是熟练掌握一元一次方程的解法过程,在去分母时不要漏乘项.30.(1)、甲种65千克,乙种75千克;(2)、495元.【解析】试题分析:首先设甲种水果x 千克,则乙种水果(140-x )千克,根据进价总数列出方程,求出x 的值;然后根据利润得出总利润.试题解析:(1)设购进甲种水果x 千克,则购进乙种水果(140﹣x )千克,根据题意得: 5x+9(140﹣x )=1000, 解得:x=65, ∴140﹣x=75(千克),答:购进甲种水果65千克,乙种水果75千克.(2)3×65+4×75=495,答:利润为495元.考点:一元一次方程的应用.四、压轴题31.(1)16,6,2;(2)①162x -②2BE CF =;(3)t=1或3或487或527 【解析】【分析】(1)由数轴上A 、B 两点对应的数分別是-4、12,可得AB 的长;由CE =8,CF =1,可得EF 的长,由点F 是AE 的中点,可得AF 的长,用AB 的长减去2倍的EF 的长即为BE 的长;(2)设AF =FE =x ,则CF =8-x ,用含x 的式子表示出BE ,即可得出答案(3)分①当0<t ≤6时; ②当6<t ≤8时,两种情况讨论计算即可得解【详解】(1)数轴上A 、B 两点对应的数分别是-4、12,∴AB=16,∵CE=8,CF=1,∴EF=7,∵点F 是AE 的中点,∴AF=EF=7,,∴AC=AF ﹣CF=6,BE=AB ﹣AE=16﹣7×2=2,故答案为16,6,2;(2)∵点F 是AE 的中点,∴AF=EF ,设AF=EF=x,∴CF=8﹣x ,∴BE=16﹣2x=2(8﹣x ),∴BE=2CF.故答案为①162x -②2BE CF =;(3) ①当0<t ≤6时,P 对应数:-6+3t ,Q 对应数-4+2t ,=4t t =2t =1PQ ﹣+2﹣(﹣6+3)﹣,解得:t=1或3;②当6<t ≤8时,P 对应数()33126t 22t ---=21 , Q 对应数-4+2t , 37=4t =t 2=12t PQ -﹣+2﹣()25﹣21, 解得:48t=7或527; 故答案为t=1或3或487或527. 【点睛】 本题考查了一元一次方程在数轴上的动点问题中的应用,根据题意正确列式,是解题的关健32.(1)﹣14,8﹣5t ;(2)2.5或3秒时P 、Q 之间的距离恰好等于2;(3)点P 运动11秒时追上点Q ;(4)线段MN 的长度不发生变化,其值为11,见解析.【解析】【分析】(1)根据已知可得B 点表示的数为8﹣22;点P 表示的数为8﹣5t ;(2)设t 秒时P 、Q 之间的距离恰好等于2.分①点P 、Q 相遇之前和②点P 、Q 相遇之后两种情况求t 值即可;(3)设点P 运动x 秒时,在点C 处追上点Q ,则AC =5x ,BC =3x ,根据AC ﹣BC =AB ,列出方程求解即可;(3)分①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差求出MN 的长即可.【详解】(1)∵点A 表示的数为8,B 在A 点左边,AB =22,∴点B 表示的数是8﹣22=﹣14,∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P 表示的数是8﹣5t .故答案为:﹣14,8﹣5t ;(2)若点P 、Q 同时出发,设t 秒时P 、Q 之间的距离恰好等于2.分两种情况: ①点P 、Q 相遇之前,由题意得3t +2+5t =22,解得t =2.5;②点P 、Q 相遇之后,由题意得3t﹣2+5t=22,解得t=3.答:若点P、Q同时出发,2.5或3秒时P、Q之间的距离恰好等于2;(3)设点P运动x秒时,在点C处追上点Q,则AC=5x,BC=3x,∵AC﹣BC=AB,∴5x﹣3x=22,解得:x=11,∴点P运动11秒时追上点Q;(4)线段MN的长度不发生变化,都等于11;理由如下:①当点P在点A、B两点之间运动时:MN=MP+NP=12AP+12BP=12(AP+BP)=12AB=12×22=11;②当点P运动到点B的左侧时:MN=MP﹣NP=12AP﹣12BP=12(AP﹣BP)=12AB=11,∴线段MN的长度不发生变化,其值为11.【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.33.(1)-2;1;7;(2)4;(3)3+3t;9+5t;6+2t;(4)3.【解析】【分析】(1)利用|a+2|+(c﹣7)2=0,得a+2=0,c﹣7=0,解得a,c的值,由b是最小的正整数,可得b=1;(2)先求出对称点,即可得出结果;(3)分别写出点A、B、C表示的数为,用含t的代数式表示出AB、AC、BC即可;(4)由点B为AC中点,得到AB=BC,列方程,求解即可.【详解】(1)∵|a+2|+(c﹣7)2=0,∴a+2=0,c﹣7=0,解得:a=﹣2,c=7.∵b是最小的正整数,∴b=1.故答案为﹣2,1,7.(2)(7+2)÷2=4.5,对称点为7﹣4.5=2.5,2.5+(2.5﹣1)=4.故答案为4.(3)点A表示的数为:-2-t,点B表示的数为:1+2t,点C表示的数为:7+4t,则AB=t+2t+3=3t+3,AC=t+4t+9=5t+9,BC=2t+6.故答案为3t+3,5t+9,2t+6.(4)∵点B为AC中点,∴AB=BC,∴3t+3=2t+6,解得:t=3.【点睛】本题考查了一元一次方程的应用、数轴及两点间的距离,解题的关键是利用数轴的特点能求出两点间的距离.。

七年级数学上册期末试卷及答案(多套题)

七年级数学上册期末试卷及答案(多套题)

七 年 级 上 册 期 末 数 学 试 卷(1)一、精心选一选1、下列式子正确的是( D )A .-0.1>-0.01B .—1>0C .21<31D .-5<3 2、多项式12++xy xy 是( D )A .二次二项式B .二次三项式C .三次二项式D .三次三项式3、桌上放着一个茶壶,4个同学从各自的方向观察,请指出图3右边的四幅图,从左至右分别是由哪个同学看到的( A )A .①②③④B .①③②④C .②④①③D .④③①②4、一个正方体的侧面展开图如图4所示,用它围成的正方体只可能是( A )5、已知4个矿泉水空瓶可以换矿泉水一瓶,现有16个矿泉水空瓶,若不交钱,最多可以喝矿泉水( C )A .3瓶B .4瓶C .5瓶D .6瓶 二、填空题6、52xy -的系数是 51- 。

7、一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第6次后剩下的绳子的长度是641米。

图3 O O O O A B C D8、如图点A 、O 、B 在一条直线上,且∠AOC =50°,OD 平分∠AOC 、,则图中∠BOD= 155 度。

-|c -b |化简9、有理数a ,b ,c 在数轴上的位置如图,式子|a |-|b|+|a+b|结果为___-b+c ____10、如图:A 地和B 地之间途经C 、D 、E 、F 四个火车站,且相邻两站之间的距离各不相同,则售票员应准备___30____种火车票.11、用小立方块搭一几何体,使得它的从正面看和从上面看 形状图如图所示,这样的几何体最少要____9__个立方块,最 多要____13___个立方块.12、已知A=2x 2+3xy -2x -1,B=-x 2+xy-1,若3A +6B 的值与x 的值无关,则y 的值___52__三、对号入座13、(1)把下列各整式填入相应圈里ab +c ,2m ,ax 2+c ,-ab 2c ,a, 0, -x 21,y +2.(1)单项式:2m ,-ab 2c ,a ,0,-x 21 多项式:ab +c ,ax 2+c ,y +2AOBC D 单项式多项式C 地在A 2×2, 3×2, 4×3, 5×4,……,(1) 同一行中两个算式的结果怎样?(2)算式2005+20042005和2005×20042005的结果相等吗?(3)请你试写出算式,试一试,再探索其规律,并用含自然数n 的代数式表示这一规律。

青岛版2022-2023学年七年级数学上册期末模拟测试题(附答案)

青岛版2022-2023学年七年级数学上册期末模拟测试题(附答案)

2022-2023学年七年级数学上册期末模拟测试题(附答案)一、选择题(本题满分30分)1.下列“祝你成功”的首拼字母中,属于轴对称图形的是()A.B.C.D.2.下列各式正确的是()A.=±4B.±=4C.=﹣4D.=﹣3 3.已知△ABC的三边为a,b,c,下列条件不能判定△ABC为直角三角形的是()A.a=3,b=2,B.a=40,b=50,c=60C.,b=1,D.,b=4,c=54.根据下列表述,能够确定具体位置的是()A.北偏东25°方向B.距学校800米处C.温州大剧院音乐厅8排D.东经20°北纬30°5.已知点A(a+9,2a+6)在y轴上,a的值为()A.﹣9B.9C.3D.﹣36.一个正比例函数的图象过点(﹣2,3),它的表达式为()A.B.C.D.7.如图,BD是△ABC的角平分线,AE⊥BD,垂足为F.若∠ABC=35°,∠C=50°,则∠CDE的度数为()A.35°B.40°C.45°D.50°8.如图,EF与△ABC的边BC,AC相交,则∠1+∠2与∠3+∠4的大小关系为()A.∠1+∠2>∠3+∠4B.∠1+∠2<∠3+∠4C.∠1+∠2=∠3+∠4D.大小关系取决于∠C的度数9.从地面竖直向上抛射一个物体,经测量,在落地之前,物体向上的速度v(m/s)与运动时间t(s)之间有如下的对应关系,则速度v与时间t之间的函数关系式可能是()v(m/s)25155﹣5t(s)0123 A.v=25t B.v=﹣10t+25C.v=t2+25D.v=5t+1010.在同一平面直角坐标系中,一次函数y=kx+b与正比例函数y=﹣x(k,b是常数,且kb≠0)的图象可能是()A.B.C.D.二、填空题(本题满分24分)11.的立方根是.12.在平面直角坐标系中,点(2,﹣3)到x轴距离是.13.BD是△ABC的中线,AB=5,BC=3,△ABD和△BCD的周长的差是.14.如图,∠MON内有一点P,点P关于OM的轴对称点是G,点P关于ON的轴对称点是H,GH分别交OM、ON于A、B点,若∠MON=35°,则∠GOH=.15.如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=.16.将直线y=5x﹣1向下平移2个单位,可以得到一个一次函数的图象,则这个一次函数的表达式为.17.如图,点E在正方形ABCD的边AB上,若EB=1,EC=2,那么正方形ABCD的面积为.18.如图,在平面直角坐标系中,点A,B,C的坐标分别为(8,0),(8,6),(0,6),点D为线段BC上一动点,将△OCD沿OD翻折,使点C落到点E处.当B,E两点之间距离最短时,点D的坐标为.三、尺规作图(4分)19.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,在△ABC中,AB=AC.求作:点D,使点D在AC边上,且AD=BD.四、解答题(本题满分62分)20.计算:(1)﹣2()2+;(2).21.已知正数a的两个平方根分别是2x﹣3和1﹣x,与互为相反数.求a+2b 的算术平方根.22.如图,B、F、C、E在同一直线上,AB=DE,AB∥DE,BF=EC,判定AC、DF的关系并加以证明.23.如图,在正方形网格中,每个小正方形的边长均为1,图中四边形ABCD的每一个顶点都在格点上,请解答下列问题:(1)画出以点A所在的横线为横轴,以点D所在的纵线为纵轴的直角坐标系;(2)在(1)的直角坐标系中,写出点C关于x轴对称的点C′的坐标;(3)在(1)的直角坐标系中,求直线BD的函数关系式;(4)求△ABD的面积.24.如图,(1)动手操作:如图①,将矩形纸片ABCD折叠,使点D与点B重合,点C落在点C'处,折痕为EF,若∠ABE=20°,那么∠EFC'的度数为;(2)观察发现:小明将三角形纸片ABC(AB>AC)沿过点A的直线折叠,使得AC落在AB边上,折痕为AD,展开纸片(如图②);再次折叠该三角形纸片,使点A和点D重合,折痕为EF,展平纸片后得到△AEF(如图③).小明认为△AEF是等腰三角形,你同意吗?请说明理由.25.A,B两地相距60km,甲乙两人沿同一条路从A地前往B地,甲先出发.图中l1,l2表示甲乙两人离A地的距离y(km)与乙所用时间x(h)之间的关系,请结合图象回答下列问题:(1)图中表示甲离A地的距离y(km)与乙所用时间x(h)之间关系的是(填l1或l2);(2)当其中一人到达B地时,另一人距B地km;(3)乙出发多长时间时,甲乙两人刚好相距10km?26.为了庆祝中国共产党成立100周年,某校组织了“请党放心,强国有我”党史知识竞赛,学校决定购买A,B两种奖品共120件,对表现优异的学生进行奖励.已知A种奖品的价格为32元/件,B种奖品的价格为15元/件.(1)请直接写出购买两种奖品的总费用y(元)与购买A种奖品的数量x(件)之间的关系式;(2)当购买了30件A种奖品时,总费用是多少元?(3)若购买的A种奖品不多于50件,则总费用最多是多少元?参考答案一、选择题(本题满分30分)1.解:A.不是轴对称图形,故本选项不合题意;B.不是轴对称图形,故本选项不合题意;C.是轴对称图形,故本选项符合题意;D.不是轴对称图形,故本选项不合题意.故选:C.2.解:A、=4,故本选项错误;B、=±4,故本选项错误;C、=4,故本选项错误;D、正确;故选:D.3.解:∵22+()2=32,故选项A中的三条线段能构成直角三角形,故选项A不符合题意;∵402+502≠602,故选项B中的三条线段不能构成直角三角形,故选项B符合题意;∵()2+12=()2,故选项C中的三条线段能构成直角三角形,故选项C不符合题意;∵42+52=()2,故选项D中的三条线段能构成直角三角形,故选项D符合题意;故选:B.4.解:根据题意可得,A、北偏东25°方向无法确定位置,故选项A不合题意;B、距学校800米处无法确定位置,故选项B不合题意;C、温州大剧院音乐厅8排无法确定位置,故选项C不合题意;D、地图上东经20°北纬30°可以确定一点的位置,故选项D符合题意,故选:D.5.解:∵点A(a+9,2a+6)在y轴上,∴a+9=0,解得a=﹣9.故选:A.6.解:设函数的解析式是y=kx.根据题意得:﹣2k=3.解得:k=﹣.故函数的解析式是:y=﹣x.故选:A.7.解:∵∠ABC=35°,∠C=50°,∴∠BAC=180°﹣35°﹣50°=95°,∵BD是△ABC的角平分线,∴∠ABF=∠EBF,∵AE⊥BD,∴∠AFB=∠EFB=90°,在△ABF和△EBF中,,∴△ABF≌△EBF(ASA),∴AB=EB,AF=EF,∴∠BAE=∠BEA,DA=DE,∴∠DAE=∠DEA,∴∠BAE+∠DAE=∠BEA+∠DEA,∴∠DEB=∠DAB=95°,∴∠CDE=∠DEB﹣∠C=45°,故选:C.8.解:∵∠3=∠CEF,∠4=∠CFE,∠C+∠CEF+∠CFE=180°,∴∠C+∠3+∠4=180°,又∵∠C+∠1+∠2=180°,∴∠1+∠2=∠3+∠4,故选:C.9.解:由表格的对应值发现:当时间每经过1秒,速度下降10m/s,∴判定速度v与时间t之间的函数关系式可能是一次函数,设速度v与时间t之间的函数关系式为:v=kt+b,将(0,25)和(1,15)代入得:.解得:.∴v=﹣10t+25.将t=2,v=5和t=3,v=﹣5代入上式均成立,∴速度v与时间t之间的函数关系式为v=﹣10t+25.故选:B.10.解:根据一次函数的图象分析可得:A、由一次函数y=kx+b图象可知k<0,b>0,﹣>0;正比例函数y=﹣x的图象可知﹣<0,故此选项不符合题意;B、由一次函数y=kx+b图象可知k>0,b>0;即﹣<0,与正比例函数y=﹣x的图象可知﹣>0,故此选项不符合题意;C、由一次函数y=kx+b图象可知k<0,b<0;即﹣<0,与正比例函数y=﹣x的图象可知﹣<0,故此选项符合题意;D、由一次函数y=kx+b图象可知k>0,b<0;即﹣>0,与正比例函数y=﹣x的图象可知﹣<0,故此选项不符合题意;故选:C.二、填空题(本题满分24分)11.解:∵(﹣)3=﹣,∴的立方根为﹣.故答案为﹣.12.解:在平面直角坐标系中,点(2,﹣3)到x轴的距离为3.故答案为:3.13.解:∵BD是△ABC的中线,∴AD=CD,∴△ABD和△BCD的周长的差=(AB+BD+AD)﹣(BC+BD+CD)=AB﹣BC,∵AB=5,BC=3,∴△ABD和△BCD的周长的差=5﹣3=2.故答案为:2.14.解:如图,连接OP,∵P点关于OM的轴对称点是G,P点关于ON的轴对称点是H,∴∠GOM=∠MOP,∠PON=∠NOH,∴∠GOH=∠GOM+∠MOP+∠PON+∠NOH=2∠MON,∵∠MON=35°,∴∠GOH=2×35°=70°.故答案为:70°.15.解:∵∠BAC=∠DAE,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠1=∠EAC,在△BAD和△CAE中,∴△BAD≌△CAE(SAS),∴∠2=∠ABD=30°,∵∠1=25°,∴∠3=∠1+∠ABD=25°+30°=55°,故答案为:55°.16.解:将直线y=5x﹣1向下平移2个单位,得到直线的解析式是:y=5x﹣1﹣2=5x﹣3,故答案为:y=5x﹣3.17.解:由勾股定理得,BC==,∴正方形ABCD的面积=BC2=3,故答案为:3.18.解:如图1,连接OB,∵点A,B,C的坐标分别为(8,0),(8,6),(0,6),∴OC=6,OA=BC=8,∴BO==10,∵BE≥OB﹣OE,∴当O,E,B三点共线时,BE的值最小,即当点E在对角线OB上时,BE的值最小,如图2,∵将△OCD沿OD翻折,使点C落到点E处,∴OE=OC=6,DE=CD,∠DEO=∠DCO=90°,∴∠BED=90°,BD=8﹣CD=8﹣DE,∵BD2=DE2+BE2,∴(8﹣DE)2=DE2+(10﹣6)2,解得:DE=3,∴CD=DE=3,∴点D的坐标为(3,6),故答案为:(3,6).三、尺规作图(4分)19.解:如图,点D即为所求.四、解答题(本题满分62分)20.解:(1)﹣2()2+=5﹣10﹣4=﹣9;(2)=2﹣(2﹣3)=2﹣(﹣1)=2+1=3.21.解∵:正数a的两个平方根分别是2x﹣3和1﹣x,∴2x﹣3+(1﹣x)=0,∴x=2,∴a=(1﹣x)2=(1﹣2)2=1,∵与互为相反数,∴1﹣2b+(3b﹣5)=0,∴b=4,∴a+2b=1+2×4=9,∴a+2b的算术平方根是3.22.解:AC=DF且AC∥DF,理由如下:∵AB∥DE,∴∠B=∠E,∵BF=EC,∴BF+FC=EC+CF,即BC=EF.在△ABC和△DEF中,,∴△ABC≌△DEF(SAS),∴AC=DF.∠ACB=∠DFE,∴AC∥DF.23.解:(1)如图,(2)C点坐标为(3,2),所以C点关于x轴对称的点C′的坐标为(3,﹣2);(3)设直线BD的解析式为y=kx+b,把B(2,﹣3),D(0,2)分别代入得,解得,∴直线BD的解析式为y=﹣x+2;(4)△ABD的面积=5×4﹣×2×2﹣×3×4﹣×2×5=7.24.解:(1)在Rt△ABE中,∠ABE=20°,∴∠AEB=70°,∴∠BED=110°,由折叠知,∠BEF=∠DEF=55°,∵AD∥BC,∴∠EFC=125°,∴∠EFC′=∠EFC=125°.故答案为:125°;(2)同意,理由如下:设AD与EF交于点G,如图:由折叠知,AD平分∠BAC,∴∠BAD=∠CAD.由折叠知,∠AGE=∠DGE,∠AGE+∠DGE=180°,∴∠AGE=∠AGF=90°,∴∠AEF=∠AFE,∴AE=AF,即△AEF为等腰三角形.25.(1)由题意可知,表示甲离A地的距离y(km)与乙所用时间x(h)之间关系的是l2;故答案为:l2;(2)乙的速度为:40÷2=20(km/h),甲的速度为:(40﹣20)÷2=10(km/h),乙到达B地所需时间为:60÷20=3(h),此时甲距B地:60﹣20﹣10×3=10(km);故答案为:10;(3)设乙出发多x小时时,甲乙两人刚好相距10km,根据题意,得:20+10x﹣20x=10或20x﹣(20+10x)=10,解得x=1或x=3.即乙出发多1小时或3小时时,甲乙两人刚好相距10km.26.解:(1)根据题意,得:y=32x+15(120﹣x)=17x+1800,即购买两种奖品的总费用y(元)与购买A种奖品的数量x(件)之间的关系式为y=17x+1800;(2)当x=30时,y=17×30+1800=2310,答:当购买了30件A种奖品时,总费用是2310元;(3)由题意,得x≤50,由(1)可知为y=17x+1800,∵17>0,∴y随x的增大而增大,∴当x=50时,y有最大值为y最大=17×50+1800=2650,答:若购买的A种奖品不多于50件,则总费用最多是2650元.。

七年级上册数学期末模拟试题及答案解答(1)

七年级上册数学期末模拟试题及答案解答(1)

七年级上册数学期末模拟试题及答案解答(1)一、选择题1.已知线段AB=m,BC=n,且m2﹣mn=28,mn﹣n2=12,则m2﹣2mn+n2等于()A.49B.40C.16D.92.“幻方”在中国古代称为“河图”、“洛书”,又叫“纵横图”.其主要性质是在一个由若干个排列整齐的数组成的正方形中,图中任意一横行,一纵行及对角线的几个数之和都相等.图⨯幻方.有人建议向火星发射如图(2)所示的幻方图案,如果火星上有(l)所示是一个33智能生物,那么他们可以从这种“数学语言”了解到地球上也有智能生物(人).图(3)是⨯幻方,请你类比图(l)推算图(3)中P处所对应的数字是()一个未完成的33A.1 B.2 C.3 D.4=++,则称n为“好3.对于一个自然数n,如果能找到正整数x、y,使得n x y xy=++⨯,则3是一个“好数”,在8,9,10,11这四个数中,“好数”.例如:31111数”的个数共有()个A.1 B.2 C.3 D.44.将正整数1至2018按一定规律排列如表,平移表中带阴影的方框,则方框中的三个数的和可以是()A.2019B.2018C.2016D.20135.如图表示的是用火柴棒搭成的一个个图形,第1个图形用了5根火柴,第2个图形用了8根火柴,…,照此规律,用295根火柴搭成的图形是()A.第80个图形B.第82个图形C.第84个图形D.第86个图形6.下列四个选项中,不是正方体展开图形的是()A .B .C .D .7.一个正方体的每个面都写有一个汉字,其平面展开图如图所示,则在该正方体中,和“我”相对面上所写的汉字是( )A .美B .丽C .琼D .海8. 已知:如图,C 是线段AB 的中点,D 是线段BC 的中点,AB =20 cm ,那么线段AD等于( )A .15 cmB .16 cmC .10 cmD .5 cm9.如图,若已知七巧板拼图中的平行四边形的面积为2,则图中,最大正方形面积为( )A .8B .10C .16D .3210.一组按规律排列的多项式: 233547,,,,x y x y x y x y +-+-,其中第10个式子是( ) A .1019x y -B .1019x y +C .1021x y -D .1017x y -11.下列解方程的步骤正确的是( ) A .由2x +4=3x +1,得2x +3x =1+4 B .由3(x ﹣2)=2(x +3),得3x ﹣6=2x +6C .由0.5x ﹣0.7x =5﹣1.3x ,得5x ﹣7=5﹣13xD .由1226x x -+-=2,得3x ﹣3﹣x +2=12 12.如果-2a m b 2与12a 5b n+1的和仍然是单项式,那么m +n 的值为( ). A .5B .6C .7D .813.按照如图所示的计算程序,若输入的x =﹣3,则输出的值为﹣1:若输入的x =3,则输出的结果为( )A .12B .112C .2D .314.如图,在1000个“○”中依次填入一列数字1231000,,,m m m m 使得其中任意四个相邻“○”中所填数字之和都等于10-,已知251m x =-,9992m x =-,则x 的值为( )A .1B .1-C .2D .2-15.若式子()222mx 2x 83x nx -+--的值与x 无关,n m 是( ) A .49B .32C .54D .9416.如果a+b <0,并且ab >0,那么( ) A .a <0,b <0B .a >0,b >0C .a <0,b >0D .a >0,b <017.若数a ,b 在数轴上的位置如图示,则( )A .a +b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >018.小颖随机抽查他家6月份某5天的日用电量(单位:度),结果如下:9,11,7,10,8.根据这些数据,估计他家6月份日用电量为( ) A .6度B .7度C .8度D .9度19.求1+2+22+23+…+22019的值,可令S =1+2+22+23+…+22019,则2S =2+22+23+…+22019+22020因此2S -S =22020-1.仿照以上推理,计算出1+5+52+53+…+52019的值为( ) A .52019-1 B .52020-1C .2020514-D .2019514-20.如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上第一行的数是1,第二行的数是13,第三行的数是43,…,依此规律,第五行的数是()A.183 B.157 C.133 D.9121.在求两位数的平方时,可以用“列竖式”的方法进行速算,求解过程如图1所示.仿照图1,用“列竖式”的方法计算一个两位数的平方,部分过程如图2所示,若这个两位数的个位数字为a,则这个两位数为()A.a﹣50 B.a+50 C.a﹣20 D.a+2022.现有一列数a1,a2,a3,…,a98,a99,a100,其中a3=2020,a7=-2018,a98=-1,且满足任意相邻三个数的和为常数,则a1+a2+a3+…+a98+a99+a100的值为( )A.1985 B.-1985 C.2019 D.-2019 23.2018年电影《我不是药神》反映了进口药用药贵的事实,从而引起了社会的广泛关注.国家针对部分药品进行改革,看病贵将成为历史.某药厂对售价为m元的药品进行了降价,现在有三种方案.方案一:第一次降价10%,第二次降价30%;方案二:第一次降价20%,第二次降价15%;方案三:第一、二次降价均为20%.三种方案哪种降价最多()A.方案一B.方案二C.方案三D.不能确定24.如图1是一个正方体的展开图,该正方体按如图2所示的位置摆放,此时这个正方体朝下的一面的字是()A.中B.国C.梦D.强25.用同样规格的黑白两种颜色的正方形瓷砖,按下图的方式铺满地面:第(1)个图形有黑色瓷砖6块,第(2)个图形有黑色瓷砖11块,第(3)个图形有黑色瓷砖16块,…,则第(9)个图形黑色瓷砖的块数为( ).A .36块B .41块C .46块D .51块26.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a ﹣b >0B .a +b >0C .b a>0 D .ab >027.“比a 的3倍大5的数”用代数式表示为( ) A .35a + B .3(5)a +C .35a -D .3(5)a -28.方程114xx --=-去分母正确的是( ). A .x-1-x=-1B .4x-1-x=-4C .4x-1+x=-4D .4x-1+x=-129.下列各组数中,数值相等的是( ) A .﹣22和(﹣2)2 B .23和 32C .﹣33和(﹣3)3D .(﹣3×2)2和﹣32×2230.骰子是一种特别的数字立方体(见下图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是( )A .B .C .D .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】将两个式子相减后即可求解. 【详解】 两式相减得:m2﹣mn-mn+ n2=28-12,即 m2﹣2mn+n2=16,故选C.【点睛】本题考查了整式加减的应用,正确进行整式的加减是解题的关键..2.B解析:B【解析】【分析】设第1列第3行的数字为x,P处对应的数字为p,根据每一横行、每一竖列以及斜对角线上的点数的和相等,可得x+1+(-2)=x +(-3)+p,可得P处数字.【详解】解:设第1列第3行的数字为x,P处对应的数字为p,根据题意得,x+(-2)+1=x+(-3)+p,解得p=2,故选:B.【点睛】本题通过九方格考查了有理数的加法.九方格题目趣味性较强,本题的关键是找准每一横行、每一竖列以及两条斜对角线上的数字的和相等,据此列方程求解.3.C解析:C【解析】【分析】根据题意,由n=x+y+xy,可得n+1=x+y+xy+1,所以n+1=(x+1)(y+1),因此如果n+1是合数,则n是“好数”,据此判断即可.【详解】根据分析,∵8=2+2+2×2,∴8是好数;∵9=1+4+1×4,∴9是好数;∵10+1=11,11是一个质数,∴10不是好数;∵11=2+3+2×3,∴11是好数.综上,可得在8,9,10,11这四个数中,“好数”有3个:8、9、11.故选C.【点睛】此题主要考查了有理数的混合运算,要熟练掌握,解答此题的关键是要明确:(1)有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.(2)进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化;此题还考查了对“好数”的定义的理解,要熟练掌握,解答此题的关键是要明确:如果n +1是合数,则n 是“好数”.4.D解析:D 【解析】 【分析】设中间数为x ,则另外两个数分别为11x x -+、,进而可得出三个数之和为3x ,令其分别等于四个选项中数,解之即可得出x 的值,由x 为整数、x 不能为第一列及第八列数,即可确定x 值,此题得解. 【详解】解:设中间数为x ,则另外两个数分别为11x x -+、, ∴三个数之和为()()113x x x x -+++=. 当32019x =时, 解得:673x =, ∵673=84×8+1,∴2019不合题意,故A 不合题意; 当32018x =时, 解得:26723x =,故B 不合题意; 当32016x =时, 解得:672x =, ∵672=84×8,∴2016不合题意,故C 不合题意; 当32013x =时, 解得:671x =, ∵671=83×8+7,∴三个数之和为2013,故D 符合题意. 故选:D . 【点睛】本题考查了一元一次方程的应用以及规律型中数字的变化类,找准等量关系,正确列出一元一次方程是解题的关键.5.C解析:C 【解析】 【分析】根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,由此可解决问题.【详解】解:根据图形可以看出第1个图形有5根火柴棒,第2个图形有8根火柴棒,第3个图形有12根火柴棒,第4个图形有15根火柴棒,不难看出奇数个图形的火柴棒个数为5+7(n-1)×12,偶数个图形的火柴棒个数,8+7(n-2)×12,若5+7(n-1)×12=295,没有整数解,若8+7(n-2)×12=295,解得n=84,即用295根火柴搭成的图形是第84个图形,故选:C.【点睛】本题考查了根据图象探索规律问题,从简单的情形考虑,发现规律解决问题.6.A解析:A【解析】【分析】根据平面图形的折叠及正方体的展开图解答,中间四联方,上下各一个,可以围成正方体.【详解】正方体共有11种表面展开图,B、C、D能围成正方体;A、不能,折叠后有两个面重合,不能折成正方体.故选:A.【点睛】本题考查的是学生的立体思维能力.解题时勿忘记四棱柱的特征及正方体展开图的各种情形.7.B解析:B【解析】【分析】利用正方体及其表面展开图的特点解题即可.【详解】解:这是一个正方体的平面展开图,共有六个面,其中面“爱”与面“琼”相对,面“海”与面“美”相对,面“我”与面“丽”相对;故选:B.【点睛】本题考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手、分析及解答问题.8.A解析:A【解析】【分析】根据C点为线段AB的中点,D点为BC的中点,可知AC=CB=12AB,CD=12CB,AD=AC+CD,又AB=4cm,继而即可求出答案.【详解】∵点C是线段AB的中点,AB=20cm,∴BC=12AB=12×20cm=10cm,∵点D是线段BC的中点,∴BD=12BC=12×10cm=5cm,∴AD=AB-BD=20cm-5cm=15cm.故选A.【点睛】本题考查了两点间的距离的知识,注意理解线段的中点的概念.利用中点性质转化线段之间的倍分关系是解题的关键.9.C解析:C【解析】【分析】根据七巧板的性质,分别计算出每一块图形的面积,最后再求和即可.【详解】由题意可知,6号的面积为:2,则1号的面积为:1,2号的面积为:2,3号的面积为:2,4号的面积为:4,5号的面积为:1,7号的面积为:4,所以最大正方形面积为:122412416++++++=.故选C.【点睛】本题考查了七巧板拼图,计算出每一块图形的面积是解题的关键.10.A解析:A【解析】【分析】把已知的多项式看成由两个单项式组成,分别找出两个单项式的规律,也就知道了多项式的规律.【详解】多项式的第一项依次是x,x2,x3,x4,…,x n,第二项依次是y,-y3,y5,-y7,…,(-1)n+1y2n-1,所以第10个式子即当n=10时,代入到得到x n+(-1)n+1y2n-1=x10-y19.故选:A.【点睛】本题主要考查了多项式,本题属于找规律的题目,把多项式分成几个单项式的和,分别找出各单项式的规律是解决这类问题的关键.11.B解析:B【解析】【分析】根据一元一次方程的解题步骤,去分母、去括号、移项、合并同类项、化系数为1一一判断即可,其中C选项利用等式的性质进行化简.【详解】解:A、2x+4=3x+1,移项得:2x-3x=1-4,故本选项错误;B、3(x-2)=2(x+3),去括号得:3x-6=2x+6,故本选项正确;C、0.5x-0.7x=5-1.3x,利用等式基本性质等式两边都乘以10得:5x-7x=50-13x,故本选项错误;D、1226x x-+-=2,去分母得:3x-3-x-2=12,故本选项错误;故选:B.【点睛】本题考查了一元一次方程的解法,能正确根据等式的性质进行变形是解此题的关键.解一元一次方程的一般步骤:去分母,去括号,移项,合并同类项,系数化成1.12.B解析:B【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵-2a m b2与12a5b n+1是同类项,∴m=5,n+1=2,解得:m=1,∴m+n=6.故选B.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的定义是解题的关键.13.D解析:D【解析】【分析】直接利用已知代入得出b的值,进而求出输入﹣3时,得出y的值.【详解】∵当输入x的值是﹣3,输出y的值是﹣1,∴﹣1=32b -+,解得:b=1,故输入x的值是3时,y=2331⨯-=3.故选:D.【点睛】本题主要考查了代数式求值,正确得出b的值是解题关键.14.C解析:C【解析】【分析】由于任意四个相邻数之和都是-10得到a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,则a1=a5=a9=…=,利用同样的方法可得到a1=a5=a9=…=x-1,a2=a6=a10=…-7,a3=a7=a11=…=-2x,a4=a8=a12=…=0,所以已知a999=a3=-2x,a25=a1=x-1,由此联立方程求得x即可.【详解】∵a1+a2+a3+a4=a2+a3+a4+a5,a5+a6+a7+a8=a6+a7+a8+a9,…,∴a1=a5=a9=…=x-1,同理可得a2=a6=a10=…=-7,a3=a7=a11=…=-2x,a4=a8=a12= 0∵a1+a2+a3+a4=-10,∴x-1-7-2x+0=-10,解得:x=2.故答案为:2.【点睛】本题考查数字的变化规律,通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.15.D解析:D【解析】【分析】直接利用去括号法则化简,再利用合并同类项法则计算得出答案.【详解】解:∵式子2mx2-2x+8-(3x2-nx)的值与x无关,∴2m-3=0,-2+n=0,解得:m=32,n=2,故m n=(32)2= 94.故选D.【点睛】此题主要考查了合并同类项,去括号,正确得出m,n的值是解题关键.16.A解析:A【解析】分析:根据ab大于0,利用同号得正,异号得负的取符号法则得到a与b同号,再由a+b 小于0,即可得到a与b都为负数.详解:∵ab>0,∴a与b同号,又a+b<0,则a<0,b<0.故选A.点睛:此题考查了有理数的乘法、加法运算,熟练掌握运算法则是解本题的关键.17.D解析:D【解析】【分析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案.【详解】由数轴可知:a <0<b ,a<-1,0<b<1,所以,A.a+b<0,故原选项错误;B. ab <0,故原选项错误;C.a-b<0,故原选项错误;D. 0a b -->,正确.故选D .【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系.18.D解析:D【解析】【分析】先求出所抽查的这5天的平均用电量,从而估计他家6月份日用电量为.【详解】解:∵这5天的日用电量的平均数为91171085++++=9(度), ∴估计他家6月份日用电量为9度,故选:D .【点睛】 本题考查平均数的定义和用样本去估计总体.平均数等于所有数据的和除以数据的个数.19.C解析:C【解析】【分析】根据题目信息,设S=1+5+52+53+…+52019,表示出5S=5+52+53+…+52020,然后相减求出S 即可.【详解】根据题意,设S=1+5+52+53+…52019,则5S=5+52+53+…52020,5S-S=(5+52+53+…52020)-(1+5+52+53+…52019),4S=52020-1,所以,1+5+52+53+…+52019 =2020 514故选C.【点睛】本题考查了有理数的乘方,读懂题目信息,理解等比数列的求和方法是解题的关键.20.B解析:B【解析】【分析】观察根据排列的规律得到:所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数比上次增加连续的三个偶数.依次计算即可得到结论.【详解】所有的数字都是奇数,发生弯折的数与上一个弯折的数的差依次是2,4,6,8…,每一行的数每次增加连续的三个偶数.第一行数字为1第二行数字为1+(2+4+6)=1+2(1+2+3)=1+3×4=13第三行数字为1+(2+4+6)+(8+10+12)=1+2(1+2+3+4+5+6)=1+6×7=43第四行数字为1+(2+4+6)+(8+10+12)+(14+16+18)=1+2(1+2+3+4+5+6+7+8+9)=1+9×10=91第五行数字为1+(2+4+6)+(8+10+12)+(14+16+18)+(20+22+24)=1+2(1+2+3+4+5+6+7+8+9+10+11+12)=1+12×13=157.故选B.【点睛】本题考查了规律型:数字的变化类:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.21.B解析:B【解析】【分析】根据表格可得,第一行从右向左分别为个位数和十位数字的平方,每个数的平方占两个空,平方是一位数的前面的空用0填补,第二行从左边第2个空开始向右是这个两位数的两个数字的乘积的2倍,然后相加即为这个两位数的平方,根据此规律求解设这个两位数的十位数字为b,根据图3,利用十位数字与个位数字的乘积的2倍的关系列出方程用a表示出b,然后写出即可.【详解】解:设这个两位数的十位数字为b,由题意得,2ab=10a,解得b=5,所以,这个两位数是10×5+a=a+50.故答案为B .【点睛】本题考查了数字变化规律的,仔细观察图形、观察出前两行的数与两位数的十位和个位上的数字的关系是解答本题的关键.22.B解析:B【解析】【分析】根据任意相邻三个数的和为常数列出求出a 1=a 4,a 2=a 5,a 3=a 6,从而得到每三个数为一个循环组依次循环,再求出a 100=a 1,然后分组相加即可得解.【详解】解:∵任意相邻三个数的和为常数,∴a 1+a 2+a 3=a 2+a 3+a 4,a 2+a 3+a 4=a 3+a 4+a 5,a 3+a 4+a 5=a 4+a 5+a 6,∴a 1=a 4,a 2=a 5,a 3=a 6,∴原式为每三个数一个循环;∵a 3=2020,a 7=-2018,a 98=-1,∵732÷=…1,98332÷=…2,∴a 1= a 7=-2018,a 2=a 98=-1,∴a 1+a 2+a 3=-2018-1+2020=1;∵100333÷=…1,∴a 100=a 1=-2018;∴a 1+a 2+a 3+…+a 98+a 99+a 100=(a 1+a 2+a 3)+…+(a 97+a 98+a 99)+a 100=133********⨯-=-;故选择:B.【点睛】本题是对数字变化规律的考查,求出每三个数为一个循环组依次循环是解题的关键,也是本题的难点.23.A解析:A【解析】【分析】先用代数式分别表示出三种方案降价前后的价格,然后进行比较即可.【详解】解:由题意可得:方案一降价0.1m+m (1-10%)30%=0.37m ;方案二降价0.2m+m (1-20%)15%=0.32m ;方案三降价0.2m+m(1-20%)20%=0.36m;故答案为A.【点睛】本题考查列代数式,解答本题的关键是明确题意、列出相应的代数式并进行比较..24.B解析:B【解析】【分析】动手进行实验操作,或者在头脑中模拟(想象)折纸、翻转活动即可求解.【详解】解:由图1可得,“中”和第三行的“国”相对;第二行“国”和“强”相对;“梦”和“梦”相对;由图2可得,此时小正方体朝下面的字即为“中”的相对面对应的字,即为“国”.故选:B.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.25.C解析:C【解析】【分析】根据题意观察图像找出数量上每次增加黑色瓷砖的变化规律,进而分析推出一般性的结论求解.【详解】⨯+=块.解:∵第1个图形有黑色瓷砖5116⨯+=块.第2个图形有黑色瓷砖52111⨯+=块.第3个图形有黑色瓷砖53116…⨯+=块.∴第9个图形中有黑色瓷砖59146故选:C.【点睛】本题主要考查图形的变化规律,解题的关键是通过归纳与总结,得到其中的一般规律.26.A解析:A【解析】【分析】根据数轴判断出a、b的正负情况以及绝对值的大小,再根据有理数的加减法法则以及乘除法法则对各选项分析判断后利用排除法求解.【详解】由图可知,b <0,a >0,且|b|>|a|,A 、a -b >0,故本选项符合题意;B 、a +b <0,故本选项不合题意;C 、b a<0,故本选项不合题意; D 、ab <0,故本选项不合题意.故选:A .【点睛】 本题考查了数轴,熟练掌握数轴的特点并判断出a 、b 的正负情况以及绝对值的大小是解题的关键.27.A解析:A【解析】【分析】根据题意可以用代数式表示比a 的3倍大5的数,本题得以解决.【详解】解:比a 的3倍大5的数”用代数式表示为:3a +5,故选A .【点睛】本题考查列代数式,解题的关键是明确题意,列出相应的代数式.28.C解析:C【解析】1144(1)4414x x x x x x --=---=--+=- 方程左右两边各项都要乘以4,故选C29.C解析:C【解析】【分析】将原式各项运用有理数的运算法则计算得到结果,比较即可.【详解】解:A 、-22=-4,(-2)2=4,不相等,故A 错误;B 、23=8,32=9,不相等,故B 错误;C 、-33=(-3)3=-27,相等,故C 正确;D 、(-3×2)2=36,-32×22=-36,不相等,故D 错误.故选C【点睛】此题考查了有理数的乘方,以及有理数的乘法,熟练掌握运算法则是解本题的关键.30.C解析:C【解析】【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点对各选项分析判断后利用排除法求解.【详解】根据正方体的表面展开图,相对的面之间一定相隔一个正方形,A、1点与3点是向对面,4点与6点是向对面,2点与5点是向对面,所以不可以折成符合规则的骰子,故本选项错误;B、3点与4点是向对面,1点与5点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误;C、4点与3点是向对面,5点与2点是向对面,1点与6点是向对面,所以可以折成符合规则的骰子,故本选项正确;D、1点与5点是向对面,3点与4点是向对面,2点与6点是向对面,所以不可以折成符合规则的骰子,故本选项错误.故选C.【点睛】本题主要考查了正方体相对两个面上的文字,注意正方体的空间图形,从相对面入手,分析及解答问题.。

济南市 2022-2023 七年级上册期末数学模拟卷(含答案解析)

济南市 2022-2023 七年级上册期末数学模拟卷(含答案解析)

济南市2022-2023七年级上册期末数学模拟卷满分150分时间120分钟一、选择题(本大题共12小题,每小题4分,共48分.在每个小题给出的四个选项中,只有一项符合题目要求)1.2023-的倒数是()A.2023B.12023C.2023- D.12023-2.据市旅游局统计,今年“五·一”小长假期间,我市旅游市场走势良好,假期旅游总收入达到8.55亿元,用科学记数法可以表示为()A.8.55×106B.8.55×107C.8.55×108D.8.55×1093.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是()A.5B.4C.8D.94.在数轴上表示数﹣1和2014的两点分别为A 和B ,则A 和B 两点间的距离为()A.2013B.2014C.2015D.20165.以下调查中,最适宜采用普查方式的是()A.检测某批次汽车的抗撞击能力B.调查全国中学生视力和用眼卫生情况C.调查黄河的水质情况D.检查我国“神舟十三号”飞船各零部件的情况6.实数a 、b 在数轴上的位置如图所示,下列各式成立的是A.a<0bB.a ﹣b >0C.ab >0D.a+b >07.下列说法中,正确的是()A.234x -的系数是34B.232a π的系数是32C.23ab 的系数是3aD.235xy 的系数是358.若单项式22m x y 与33n x y -是同类项,则m n +的值是()A.5B.1- C.1D.5-9.如果线段5cm AB =,线段4cm BC =,那么A ,C 两点之间的距离是()A.9cmB.1cmC.1cm 或9cmD.以上答案都不对10.当1x =时,多项式32ax bx +-的值是2,则当=1x -时,该多项式的值是()A.6- B.2- C.0D.211.将矩形ABCD 沿AE 折叠,得到如图的图形.已知50CEB '∠=︒,则AEB ∠等于()A.50︒B.65︒C.75︒D.130︒12.某校举行用火柴棒摆“金鱼”比赛,如图所示:按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为()A.62n +B.68n +C.44n + D.8n二、填空题(本大题共6小题,每题4分,共24分)13.中国是最早采用正负数表示相反意义的量的国家,一艘潜水艇向下潜50m 记为50m +,则向上浮15m 记为______m .14.若代数式576x -与3112x --的值互为相反数,则x =______.15.对于任意有理数a ,b ,规定一种新的运算*221a b a b a b =+--+,则()*35-=_______16.已知当1x =时,22ax bx +的值是3,则当2x =时,2ax bx +=_________.17.将数轴上一点P 先向右移动3个单位长度,再向左移动5个单位长度,此时它表示的数是4,则原来点P 表示的数是__________.18.已知∠AOB =80°,在其顶点O 处引一条射线OC ,且∠BOC =30°,则∠AOC =________;三、解答题(本大题共9个小题,请写出文字说明、证明过程或演算步骤)19.如图是由7个相同的小立方体组成的一个几何体,请画出这个几何体从正面、左面、上面看到的形状图.20.计算(1)()()()1251439--+---(2)()()3116248⎛⎫÷---⨯- ⎪⎝⎭21.(1)先化简,再求值()()2252224x x --+,其中2x =-;(2)已知 4x =-,12y =,求()22222253422xy xy xy x y x y xy ⎡⎤---+-⎣⎦.22.解方程(1)()315x x --=;(2)21232x x -+=+123.如图,线段4AB =cm ,延长线段AB 到C ,使1BC =cm ,再反向延长AB 到D ,使3AD =cm ,E 是AD 的中点,F 是CD 的中点,求CD 和EF 的长度.24.某商场从厂家批发电视机进行零售,批发价格与零售价格如表:电视机型号甲乙批发价(元/台)15002500零售价(元/台)25004000若商场购进甲、乙两种型号的电视机共50台,用去10万元.(1)求商场购进甲、乙型号的电视机各多少台?(2)迎“新年”商场决定进行优惠促销:以零售价的七五折销售乙种型号电视机,两种电视机销售完毕,商场共获利15%,求甲种型号电视机打几折销售?25.如图,由点O 引出6条射线OA ,OB ,OC ,OD ,OE ,OF ,且∠AOB =90°,OF 平分∠BOC ,OE 平分∠AOD ,若∠EOF =170°,求∠COD 的度数.26.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“社科类、文史类、生活类、小说类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了______名学生;(2)将条形统计图补充完整;(3)图(2)中“小说类”所在扇形的圆心角的度数为______度;(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.27.点A 、B 、C 、D 在数轴上的位置如图所示,已知2CD =,5BC =,7AC CD =.(1)若点C 为原点,则点A 表示的数是______;(2)若点P 、Q 分别从A 、D 两点同时出发,点P 沿线段AC 以每秒3个单位长度的速度向右运动,到达C 点后立即按原速向A 折返;点Q 沿线段DA 以每秒1个单位长度的速度向左运动.当P 、Q 中的某点到达A 时,两点同时停止运动.①求两点第一次相遇时,与点B 的距离;②设运动时间为t (单位:秒),则t 为何值时,PQ 的值为2?(请直接写出t 值)济南市2022-2023七年级上册期末数学模拟卷答案解析满分150分时间120分钟一、选择题(本大题共12小题,每小题4分,共48分.在每个小题给出的四个选项中,只有一项符合题目要求)1.2023-的倒数是()A.2023B.12023 C.2023- D.12023-【答案】B【解析】【分析】先化简绝对值,根据倒数的定义求解即可.【详解】解:20232023-=,2023的倒数是1 2023,故选:B【点睛】本题考查了绝对值的定义和倒数的定义,互为倒数的两个数乘积为1.2.据市旅游局统计,今年“五·一”小长假期间,我市旅游市场走势良好,假期旅游总收入达到8.55亿元,用科学记数法可以表示为()A.8.55×106B.8.55×107C.8.55×108D.8.55×109【答案】C【解析】【详解】8.55亿=855000000=8.55×108,故选C.3.由若干个相同的小正方体组合而成的一个几何体的三视图如图所示,则组成这个几何体的小正方体的个数是()A.5B.4C.8D.9【答案】B【解析】【分析】根据俯视图可判断底层的个数,根据主视图和左视图可判断第二层的个数.【详解】解:由俯视图可知底层有3个小正方体,由主视图和左视图可知第二层应该有1个小正方体,因此搭成这个几何体的小正方体的个数为3+1=4个,故选:B.【点睛】本题查了学生对三视图掌握程度和灵活运用能力,以及学生的空间想象能力.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.4.在数轴上表示数﹣1和2014的两点分别为A和B,则A和B两点间的距离为()A.2013B.2014C.2015D.2016【答案】C【解析】【分析】数轴上两点间的距离等于表示这两点的数的差的绝对值.【详解】解:2014﹣(﹣1)=2015,故A,B两点间的距离为2015.故选:C.5.以下调查中,最适宜采用普查方式的是()A.检测某批次汽车的抗撞击能力B.调查全国中学生视力和用眼卫生情况C.调查黄河的水质情况D.检查我国“神舟十三号”飞船各零部件的情况【答案】D【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【详解】解:A、测某批次汽车的抗撞击能力,适合抽样调查,故选项不符合题意;B、调查全国中学生视力和用眼卫生情况,适合抽样调查,故选项不符合题意;C、调查黄河的水质情况,适合抽样调查,故选项不符合题意;D、检查我国“神舟十三号”飞船各零部件的情况,适合全面调查,故选项符合题意;故选:D.【点睛】本题主要考查的是调查的两种方式:普查与抽样调查的区别用法,掌握其适用范围是解题的关键.6.实数a、b在数轴上的位置如图所示,下列各式成立的是A.a <0bB.a ﹣b >0C.ab >0D.a+b >0【答案】A 【解析】【详解】试题分析:由图可知,﹣2<a <﹣1,0<b <1,因此,A 、a<0b,正确,故本选项正确;B 、a ﹣b <0,故本选项错误;C 、ab <0,故本选项错误;D 、a+b <0,故本选项错误.故选A .7.下列说法中,正确的是()A.234x -的系数是34 B.232a π的系数是32C.23ab 的系数是3a D.235xy 的系数是35【答案】D 【解析】【分析】根据系数的定义逐项分析即可.【详解】A .234x -的系数是34-,故原说法不正确;B .232a π的系数是32π,故原说法不正确;C .23ab 的系数是3,故原说法不正确;D .235xy 的系数是35,正确;故选D .【点睛】本题考查了单项式的概念,不含有加减运算的整式叫做单项式,单独的一个数或一个字母也是单项式.单项式中的数字因数叫做单项式的的系数,系数包括它前面的符号,单项式的次数是所有字母的指数的和.8.若单项式22m x y 与33n x y -是同类项,则m n +的值是()A.5B.1- C.1D.5-【答案】A 【解析】【分析】先根据同类项的定义求出m 、n ,再相加即可.【详解】解:∵单项式22m x y 与33n x y -是同类项,∴3m =,2n =,∴325m n +=+=.故选A .【点睛】本题考查了同类项的定义,熟练掌握同类项的定义是解答本题的关键.同类项定义中的两个“相同”:①所含字母相同;②相同字母的指数相同.9.如果线段5cm AB =,线段4cm BC =,那么A ,C 两点之间的距离是()A.9cmB.1cmC.1cm 或9cmD.以上答案都不对【答案】D 【解析】【分析】题中没有说明A 、B 、C 三点是否在同一直线,所以A ,C 两点之间的距离有多种可能.【详解】解:当A ,B ,C 三点在一条直线上时,分点B 在A 、C 之间和点C 在A 、B 之间两种情况讨论.①点B 在A 、C 之间时,549cm AC AB BC =+=+=;②点C 在A 、B 之间时,541cm AC AB BC =-=-=,所以A 、C 两点间的距离是9cm 或1cm ,当A ,B ,C 三点不在一条直线上时,A ,C 两点之间的距离有多种可能;故选:D .【点睛】本题考查了两点间的距离,属于基础题,关键是分类讨论A ,B ,C 三点是否在一条直线上.10.当1x =时,多项式32ax bx +-的值是2,则当=1x -时,该多项式的值是()A.6-B.2- C.0D.2【答案】A 【解析】【分析】由已知先求出a b +的值,再整体代入即可得到答案.【详解】解:∵当1x =时,多项式32ax bx +-的值为2,∴22a b +-=,∴4a b +=,当=1x -时,32ax bx +-2a b =---()2a b =-+-42=--6=-,故选:A .【点睛】本题考查代数式求值,解题的关键是掌握整体代入思想的应用.11.将矩形ABCD 沿AE 折叠,得到如图的图形.已知50CEB '∠=︒,则AEB ∠等于()A.50︒B.65︒C.75︒D.130︒【答案】B 【解析】【分析】先根据邻补角的定义求出BEB '∠,根据折叠前后对应部分相等得AEB AEB '∠=∠,即可求解.【详解】解:∵50CEB '∠=︒,∴18050130BEB '∠=︒-︒=︒.∵AEB '△是AEB △沿AE 折叠而得,∴1652AEB AEB BEB ''∠=∠=∠=︒.故选B .【点睛】本题考查了角的计算,以及折叠问题.图形的折叠实际上相当于把折叠部分沿着折痕所在直线作轴对称,所以折叠前后的对应量相等.12.某校举行用火柴棒摆“金鱼”比赛,如图所示:按照上面的规律,摆n 个“金鱼”需用火柴棒的根数为()A.62n +B.68n +C.44n + D.8n【答案】A 【解析】【分析】观察不难发现,后一个图形比前一个图形多6根火柴棒,然后根据此规律写出第n个图形的火柴棒的根数即可.【详解】解:第1个图形有8根火柴棒,即(6×1+2)根;第2个图形有14根火柴棒,即(6×2+2)根;,第3个图形有20根火柴棒,即(6×3+2)根⋯,第n个图形有(62n+)根火柴棒.故选:A.【点睛】本题是对图形变化规律的考查.查出前三个图形的火柴棒的根数,并观察出后一个图形比前一个图形多6根火柴棒是解题的关键.二、填空题(本大题共6小题,每题4分,共24分)13.中国是最早采用正负数表示相反意义的量的国家,一艘潜水艇向下潜50m记为50m+,则向上浮15m记为______m.【答案】15-【解析】【分析】根据正负数的意义,直接写出答案即可.【详解】解:因为潜水艇向下潜50m记为50m+,所以向上浮15m记为15m-,故答案为:15-.【点睛】本题考查了正数和负数,根据相反意义的量正确地确定符号的正负是解题的关键.14.若代数式576x-与3112x--的值互为相反数,则x=______.【答案】1 2【解析】【分析】根据相反数的概念得到关于x的方程,求得x的值.【详解】解:依题意得:576x-+3112x--=05x-7+6-3(3x-1)=04x=2x=12【点睛】本题考查了解一元一次方程.解一元一次方程常见的过程有去括号、移项、系数化为1等.15.对于任意有理数a ,b ,规定一种新的运算*221a b a b a b =+--+,则()*35-=_______【答案】33【解析】【分析】根据*221a b a b a b =+--+计算即可.【详解】()()()*22353535192535133-=-+---+=++-+=,故答案为33.【点睛】本题考查了新定义,能够根据题意列出式子是解题的关键.16.已知当1x =时,22ax bx +的值是3,则当2x =时,2ax bx +=_________.【答案】6【解析】【分析】把1x =代入代数式求出2a b +的值,然后整体代入2x =时的代数式进行计算即可得解.【详解】解:当1x =时,22221123ax bx a b a b +=⨯+⨯=+=,当2x =时,()22224222236ax bx a b a b a b +=⨯+⨯=+=+=⨯=.故答案为:6.【点睛】本题考查了代数式求值,整体思想的利用是解本题的关键.17.将数轴上一点P 先向右移动3个单位长度,再向左移动5个单位长度,此时它表示的数是4,则原来点P 表示的数是__________.【答案】6【解析】【分析】设开始点P 表示的数为x ,由于在数轴上的点向左移时点表示的数要减小,向右移动时,点表示的数要增大,于是得到x+3-5=4,然后解一次方程即可.【详解】设点P 原来表示的数为x ,根据题意,得:x +3−5=4,解得:x =6,即原来点P 表示的数是6,故答案为6.18.已知∠AOB =80°,在其顶点O 处引一条射线OC ,且∠BOC =30°,则∠AOC =________;【答案】50°或110°【解析】【分析】分为两种情况:①当OC在∠BOA内部时,②当OC在∠BOA外部时,根据角之间的关系求出即可.【详解】解:分为两种情况:①当OC在∠BOA内部时,∠AOC=∠AOB-∠BOC=80°-30°=50°;②当OC在∠BOA外部时,∠AOC=∠AOB+∠BOC=80°+30°=110°.故答案为:50°或110°.【点睛】本题考查了角的有关计算的应用,主要考查了学生的计算能力,注意要进行分类讨论.三、解答题(本大题共9个小题,请写出文字说明、证明过程或演算步骤)19.如图是由7个相同的小立方体组成的一个几何体,请画出这个几何体从正面、左面、上面看到的形状图.【答案】见解析【解析】【分析】根据三视图的定义结合图形画图即可.【详解】如图所示,【点睛】本题考查作图-三视图.在画图时一定要将物体的边缘、棱、顶点都体现出来,看得见的轮廓线都画成实线,看不见的画成虚线,不能漏掉.本题画几何体的三视图时应注意小正方形的数目及位置.20.计算(1)()()()1251439--+---(2)()()3116248⎛⎫÷---⨯- ⎪⎝⎭【答案】(1)8(2)52-【解析】【小问1详解】()()()1251439--+---171439=--+3139=-+8=【小问2详解】()()3116248⎛⎫÷---⨯- ⎪⎝⎭()()116848⎛⎫=÷---⨯- ⎪⎝⎭122=--52=-【点睛】本题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.21.(1)先化简,再求值()()2252224x x --+,其中2x =-;(2)已知 4x =-,12y =,求()22222253422xy xy xy x y x y xy ⎡⎤---+-⎣⎦.【答案】(1)218x -,14-;(2)5-.【解析】【分析】(1)去括号后,合并同类项即可化简,然后代入x 的值计算即可;(2)先去中括号,再去小括号,然后合并同类项即可化简,再代入x ,y 的值计算即可.【详解】解:(1)原式2251048x x =---218x =-,当2x =-时,原式()221841814=--=-=-;(2)原式()22222253422xy xy xy x y x y xy =--++-22222253422xy xy xy x y x y xy =-+-+-25xy =;把 4x =-,12y =代入得:原式()2115420524⎛⎫=⨯-⨯=-⨯=- ⎪⎝⎭.【点睛】本题考查了整式的加减—化简求值,熟练掌握去括号法则与合并同类项法则是解题的关键.22.解方程(1)()315x x --=;(2)21232x x -+=+1【答案】(1)4x =(2)8x =【解析】【小问1详解】解:∵()315x x --=,∴335x x --=,∴353x x -=+,∴28x =,∴4x =;【小问2详解】解:∵21232x x -+=,∴()()22132x x -=+,∴4236x x -=+,∴4362x x -=+,∴8x =.【点睛】本题考查解一元一次方程,去分母、去括号、移项、合并同类项、系数化为1,这仅是解一元一次方程的一般步骤,针对方程的特点,灵活应用,各种步骤都是为使方程逐渐向x =a 形式转化.23.如图,线段4AB =cm ,延长线段AB 到C ,使1BC =cm ,再反向延长AB 到D ,使3AD =cm ,E 是AD 的中点,F 是CD 的中点,求CD 和EF 的长度.【答案】8CD =cm , 2.5EF =cm【解析】【分析】结合图形和题意,利用线段的和差知CD AD AB BC =++,即可求CD 的长度;再利用中点的定义,求得DF 和DE 的长度,又EF DF DE =-,即可求得EF 的长度.【详解】解:3418CD AD AB BC =++=++=cm ;∵E 是AD 的中点,F 是CD 的中点,∴118422DF CD ==⨯=cm ,113 1.522DE AD ==⨯=cm .∴4 1.5 2.5EF DF DE =-=-=cm .【点睛】本题考查了数轴上两点间的距离和中点的定义,解题的关键是运用数形结合思想.24.某商场从厂家批发电视机进行零售,批发价格与零售价格如表:电视机型号甲乙批发价(元/台)15002500零售价(元/台)25004000若商场购进甲、乙两种型号的电视机共50台,用去10万元.(1)求商场购进甲、乙型号的电视机各多少台?(2)迎“新年”商场决定进行优惠促销:以零售价的七五折销售乙种型号电视机,两种电视机销售完毕,商场共获利15%,求甲种型号电视机打几折销售?【答案】(1)25,25;(2)六四折【解析】【分析】(1)设商场购进甲型号电视机x 台,则乙型号电视机(50﹣x )台,根据“商场购进甲、乙两种型号的电视机共50台,用去10万元”列出方程并解答.(2)设甲种型号电视机打a 折销售,根据“两种电视机销售完毕,商场共获利15%”列出方程并解答.【详解】解:(1)设商场购进甲型号电视机x 台,则乙型号电视机(50﹣x )台,则1500x+2500(50﹣x )=100000.解得x =25.答:商场购进甲型号电视机25台,乙型号电视机25台;(2)设甲种型号电视机打a 折销售,依题意得:25×(4000×0.75﹣2500)+25×(2500×0.1a ﹣1500)=(25×1500+25×2500)×15%解得a =6.4答:甲种型号电视机打六四折销售.【点睛】考核知识点:一元一次方程的应用.理解销售中数量关系是关键.25.如图,由点O 引出6条射线OA ,OB ,OC ,OD ,OE ,OF ,且∠AOB =90°,OF 平分∠BOC ,OE 平分∠AOD ,若∠EOF =170°,求∠COD 的度数.【答案】∠COD =70°【解析】【分析】先利用周角的含义求解100,AOE BOF Ð+Ð=°再结合角平分线的定义证明∠EOD +∠COF =100°,再结合角的和差关系可得答案.【详解】解:∵∠AOB =90°,∠EOF =170°∴∠AOE +∠FOB =36090170°-°-°=100°.∵OF 平分∠COB ,OE 平分∠AOD ,∴∠COF =∠FOB ,∠AOE =∠EOD .∴∠EOD +∠COF =100°.∴∠COD =170°-100°=70°.【点睛】本题考查的是角平分线的定义,角的和差关系,证明∠EOD +∠COF =100°是解本题的关键.26.某校为满足学生的阅读需求,欲购进一批学生喜欢的图书,学校组织学生会成员随机抽取部分学生进行问卷调查,被调查学生须从“社科类、文史类、生活类、小说类”中选择自己喜欢的一类,根据调查结果绘制了统计图(未完成),请根据图中信息,解答下列问题:(1)此次共调查了______名学生;(2)将条形统计图补充完整;(3)图(2)中“小说类”所在扇形的圆心角的度数为______度;(4)若该校共有学生2500人,估计该校喜欢“社科类”书籍的学生人数.【答案】(1)200(2)见解析(3)126(4)300【解析】【分析】(1)用喜欢“文史类”书籍的人数除以其占比即可得到调查人数;(2)先求出喜欢“生活类”和“小说类”书籍的人数,然后补全统计图即可;(3)用360度乘以喜欢“小说类”书籍的人数占比即可得到答案;(4)用2000乘以样本中喜欢“社科类”书籍的人数占比即可得到答案.【小问1详解】÷=名学生,解:由题意得此次共调查了7638%200故答案为:200;【小问2详解】⨯=(人),解:喜欢“生活类”书籍的人数为20015%30---=(人),喜欢“小说类”书籍的人数为20024763070补全统计图如下:【小问3详解】解:由题意得图2中“小说类”所在扇形的圆心角为70360126200︒⨯=︒,故答案为:126;【小问4详解】由题意得估计该校喜欢“社科类”书籍的学生人数242500300200⨯=(人).【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,用样本估计总体,正确读懂统计图是解题的关键.27.点A 、B 、C 、D 在数轴上的位置如图所示,已知2CD =,5BC =,7AC CD =.(1)若点C 为原点,则点A 表示的数是______;(2)若点P 、Q 分别从A 、D 两点同时出发,点P 沿线段AC 以每秒3个单位长度的速度向右运动,到达C 点后立即按原速向A 折返;点Q 沿线段DA 以每秒1个单位长度的速度向左运动.当P 、Q 中的某点到达A 时,两点同时停止运动.①求两点第一次相遇时,与点B 的距离;②设运动时间为t (单位:秒),则t 为何值时,PQ 的值为2?(请直接写出t 值)【答案】(1)-14(2)①两点第一次相遇时,与点B 的距离是3个单位长度;②3.5s ,4.5s ,5s ,7s【解析】【分析】(1)根据2CD =,7AC CD =求出AC =14,即可得到答案;(2)①设运动时间为x 秒.由题意列方程316x x +=,求出x 值,再计算BP 或BQ 即可得到距离;②分四种情况:当两点没有相遇时,当两点第一次相遇后,当点P 到达点C 返回且未追上点Q 时,当点P 追上点Q 后,分别列方程求解.【小问1详解】解:∵2CD =,7AC CD =.∴AC =14,∵点C 为原点,∴点A 表示的数是-14,故答案为:-14;【小问2详解】解:①设运动时间为x 秒.由题意得316x x +=,解得4x =,∵AB =14-5=9,∴3493BP AP AB =-=⨯-=,答:两点第一次相遇时,与点B 的距离是3个单位长度.②当两点没有相遇时,3162t t +=-,解得t =3.5;当两点第一次相遇后,3162t t +=+,解得t =4.5;当点P 到达点C 返回且未追上点Q 时,31422t t -+=-,解得t =5;当点P 追上点Q 后,31422t t --=-,解得t =7;故t 为3.5s ,4.5s ,5s ,7s 时,PQ 的值为2.【点睛】此题考查了数值上的动点问题,数轴上两点之间的距离,一元一次方程与动点问题,正确理解题意列出一元一次方程求解是解题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

【好题】七年级数学上期末模拟试题(及答案)一、选择题1.如图,将一副三角板的直角顶点重合,摆放在桌面上,∠AOD=125°,则∠BOC= ( )A .25︒B .65︒C .55︒D .35︒2.一条数学信息在一周内被转发了2180000次,将数据2180000用科学记数法表示为( )A .2.18×106 B .2.18×105 C .21.8×106 D .21.8×105 3.下列关于多项式5ab 2-2a 2bc-1的说法中,正确的是( ) A .它是三次三项式 B .它是四次两项式 C .它的最高次项是22a bc -D .它的常数项是14.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x 只羊,则下列方程正确的是( ) A .x+1=2(x ﹣2) B .x+3=2(x ﹣1) C .x+1=2(x ﹣3)D .1112x x +-=+ 5.某商场购进一批服装,每件进价为200元,由于换季滞销,商场决定将这种服装按标价的六折销售,若打折后每件服装仍能获利20%,则该服装标价是( ) A .350元B .400元C .450元D .500元6.点C 是线段AB 上的三等分点,D 是线段AC 的中点,E 是线段BC 的中点,若6CE =,则AB 的长为( ) A .18 B .36C .16或24D .18或367.一项工程甲单独做要40天完成,乙单独做需要50天完成,甲先单独做4天,然后两人合作x 天完成这项工程,则可列的方程是( ) A .B .C .D .8.“校园足球”已成为灵武市第四张名片,这一新闻获得2400000的点击率,2400000这个数用科学记数法表示,结果正确的是( ) A .30.2410⨯B .62.410⨯C .52.410⨯D .42410⨯9.观察下列算式,用你所发现的规律得出22015的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. A .2B .4C .6D .810.如图,将一副三角板叠放在一起,使直角的顶点重合于O ,则∠AOC+∠DOB=( )A .90°B .180°C .160°D .120° 11.关于的方程的解为正整数,则整数的值为( )A .2B .3C .1或2D .2或312.下列解方程去分母正确的是( ) A .由,得2x ﹣1=3﹣3x B .由,得2x ﹣2﹣x =﹣4 C .由,得2y-15=3yD .由,得3(y+1)=2y+6二、填空题13.若一件商品按成本价提高40%后标价,又以8折优惠卖出,结果仍可获利15元,则这件商品的实际售价为______元. 14.对于正数x ,规定()1f x x x =+,例如:()221223f ==+,()333134f ==+,111212312f ⎛⎫== ⎪⎝⎭+,111313413f ⎛⎫== ⎪⎝⎭+……利用以上规律计算: 1111120192018201732f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()()()122019f f f +++⋅⋅⋅⋅⋅⋅+的值为:______.15.一件商品的售价为107.9元,盈利30%,则该商品的进价为_____. 16.-3的倒数是___________17.如图所示,O 是直线AB 与CD 的交点,∠BOM :∠DOM =1:2,∠CON =90°,∠NOM =68°,则∠BOD =_____°.18.由黑色和白色的正方形按一定规律组成的图形如图所示,从第二个图形开始,每个图形都比前一个图形多3个白色正方形,则第n 个图形中有白色正方形__________个 (用含n的代数式表示).19.已知多项式kx 2+4x ﹣x 2﹣5是关于x 的一次多项式,则k=_____.20.如图是用正三角形、正方形、正六边形设计的一组图案,按照规律,第n 个图案中正三角形的个数是__________.三、解答题21.先化简,再求值:﹣a 2b +(3ab 2﹣a 2b )﹣2(2ab 2﹣a 2b ),其中a =1,b =﹣2. 22.某校组织七年级师生旅游,如果单独租用45座客车若干辆,则好坐满;如果单独租用60座客车,可少租1辆,且余15个座位. (1)求参加旅游的人数.(2)已知租用45座的客车日租金为每辆250元,60座的客车日租金为每辆300元,在只租用一种客车的前提下,问:怎样租用客车更合算?23.先化简再求值:2(x 3﹣2y 2)﹣(x ﹣2y )﹣(x ﹣3y 2+2x 3),其中x=﹣3,y=﹣2. 24.某工厂原计划用26小时生产一批零件,后因每小时多生产5个,用24小时不但完成了任务,而且还比原计划多生产了60个,问原计划生产多少个零件. 25.先化简,再求值:223(2)2(3)x xy y x y ----,其中1x =-,2y =.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】由△AOB 与△COD 为直角三角形得到∠AOB=∠COD=90°,则∠BOD=∠AOD-∠AOB=125°-90°=35°,然后利用互余即可得到∠BOC=∠COD-∠BOD=90°-35°. 【详解】解:∵∠AOB=∠COD=90°,∠AOD=125°, ∴∠BOD=∠AOD-∠AOB=125°-90°=35°, ∴∠BOC=∠COD-∠BOD=90°-35°=55°. 故答案为C. 【点睛】本题考查了角的计算,属于基础题,关键是正确利用各个角之间的关系.2.A解析:A【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】2180000的小数点向左移动6位得到2.18, 所以2180000用科学记数法表示为2.18×106, 故选A.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.C解析:C 【解析】根据多项式的次数和项数,可知这个多项式是四次的,含有三项,因此它是四次三项式,最高次项为22a bc -,常数项为-1. 故选C.4.C解析:C 【解析】试题解析:∵甲对乙说:“把你的羊给我1只,我的羊数就是你的羊数的两倍”.甲有x 只羊, ∴乙有13122x x +++=只, ∵乙回答说:“最好还是把你的羊给我1只,我们的羊数就一样了”,∴311,2x x ++=- 即x +1=2(x −3) 故选C.5.B解析:B 【解析】 【分析】设该服装标价为x 元,根据售价﹣进价=利润列出方程,解出即可. 【详解】设该服装标价为x元,由题意,得0.6x﹣200=200×20%,解得:x=400.故选B.【点评】本题考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程.6.D解析:D【解析】【分析】分两种情况分析:点C在AB的13处和点C在AB的23处,再根据中点和三等分点的定义得到线段之间的关系求解即可.【详解】①当点C在AB的13处时,如图所示:因为6CE=,E是线段BC的中点,所以BC=12,又因为点C是线段AB上的三等分点,所以AB=18;②当点C在AB的23处时,如图所示:因为6CE=,E是线段BC的中点,所以BC=12,又因为点C是线段AB上的三等分点,所以AB=36.综合上述可得AB=18或AB=36.故选:D.【点睛】考查了线段有关计算,解题关键根据题意分两种情况分析,并画出图形,从而得到线段之间的关系.7.D解析:D【解析】【分析】由题意一项工程甲单独做要40天完成,乙单独做需要50天完成,可以得出甲每天做整个工程的,乙每天做整个工程的,根据文字表述得到题目中的相等关系是:甲完成的部分+两人共同完成的部分=1.【详解】设整个工程为1,根据关系式甲完成的部分+两人共同完成的部分=1列出方程式为:++ =1.故答案选:D.【点睛】本题考查了一元一次方程,解题的关键是根据实际问题抽象出一元一次方程.8.B解析:B【解析】解:将2400000用科学记数法表示为:2.4×106.故选B.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.D解析:D【解析】【分析】【详解】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….2015÷4=503…3,∴22015的末位数字和23的末位数字相同,是8.故选D.【点睛】本题考查数字类的规律探索.10.B解析:B【解析】【分析】本题考查了角度的计算问题,因为本题中∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解.【详解】解:设∠AOD=x,∠AOC=90︒+x,∠BOD=90︒-x,所以∠AOC+∠BOD=90︒+x+90︒-x=180︒.故选B.【点睛】在本题中要注意∠AOC始终在变化,因此可以采用“设而不求”的解题技巧进行求解. 11.D解析:D【解析】【分析】此题可将原方程化为x关于a的二元一次方程,然后根据x>0,且x为整数来解出a的值.【详解】ax+3=4x+1x=,而x>0∴x=>0∴a<4∵x为整数∴2要为4-a的倍数∴a=2或a=3.故选D.【点睛】此题考查的是一元一次方程的解,根据x的取值可以判断出a的取值,此题要注意的是x 取整数时a的取值.12.D解析:D【解析】【分析】根据等式的性质2,A方程的两边都乘以6,B方程的两边都乘以4,C方程的两边都乘以15,D方程的两边都乘以6,去分母后判断即可.【详解】A.由,得:2x﹣6=3﹣3x,此选项错误;B.由,得:2x﹣4﹣x=﹣4,此选项错误;C.由,得:5y﹣15=3y,此选项错误;D .由,得:3( y +1)=2y +6,此选项正确.故选D . 【点睛】本题考查了解一元一次方程,注意在去分母时,方程两端同乘各分母的最小公倍数时,不要漏乘没有分母的项,同时要把分子(如果是一个多项式)作为一个整体加上括号.二、填空题13.140【解析】【分析】首先根据题意设这件商品的成本价为x 元则这件商品的标价是(1+40)x 元;然后根据:这件商品的标价×80=15列出方程求出x 的值是多少即可【详解】解:设这件商品的成本价为x 元则这解析:140 【解析】 【分析】首先根据题意,设这件商品的成本价为x 元,则这件商品的标价是(1+40%)x 元;然后根据:这件商品的标价×80%x -=15,列出方程,求出x 的值是多少即可. 【详解】解:设这件商品的成本价为x 元,则这件商品的标价是(1+40%)x 元, ∴(1+40%)x×80%-x=15, ∴1.4x×80%-x=15, 整理,可得:0.12x=15, 解得:x=125;∴这件商品的成本价为125元.∴这件商品的实际售价为:125(140%)80%125 1.40.8140⨯+⨯=⨯⨯=元; 故答案为:140. 【点睛】此题主要考查了一元一次方程的应用,要熟练掌握,首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x ,然后用含x 的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答.14.【解析】【分析】按照定义式发现规律首尾两两组合相加剩下中间的最后再求和即可【详解】====故答案为:【点睛】本题考查了定义新运算在有理数的混合运算中的应用读懂定义发现规律是解题的关键解析:120182【解析】 【分析】 按照定义式()1f x x x=+,发现规律,首尾两两组合相加,剩下中间的12,最后再求和即可.【详解】11111(1)(2)(2019)20192018201732f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+++⋯⋯+++++⋯⋯+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭=11111122017201820192020201920184323201820192020+++⋯+++++⋯+++ =1201912018120171312120202020201920192018201844332⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫++++++⋯+++++⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ =120182+ =120182故答案为:120182【点睛】本题考查了定义新运算在有理数的混合运算中的应用,读懂定义,发现规律,是解题的关键.15.83元【解析】【分析】设该商品的进价是x 元根据售价﹣进价=利润列出方程并解答【详解】设该商品的进价是x 元依题意得:1079﹣x =30x 解得x =83故答案为:83元【点睛】本题考查一元一次方程的应用读解析:83元 【解析】 【分析】设该商品的进价是x 元,根据“售价﹣进价=利润”列出方程并解答. 【详解】设该商品的进价是x 元, 依题意得:107.9﹣x =30%x , 解得x =83, 故答案为:83元. 【点睛】本题考查一元一次方程的应用,读懂题意,掌握好进价、售价、利润三者之间的关系是解题的关键.16.【解析】【分析】乘积为1的两数互为相反数即a 的倒数即为符号一致【详解】∵-3的倒数是∴答案是解析:13- 【解析】 【分析】乘积为1的两数互为相反数,即a 的倒数即为1a,符号一致 【详解】∵-3的倒数是13- ∴答案是13-17.【解析】【分析】根据角的和差关系可得∠DOM=∠DON﹣∠NOM=22°再根据∠BOM:∠DOM=1:2可得∠BOM=∠DOM=11°据此即可得出∠BOD 的度数【详解】∵∠CON=90°∴∠DON=解析:【解析】 【分析】根据角的和差关系可得∠DOM =∠DON ﹣∠NOM =22°,再根据∠BOM :∠DOM =1:2可得∠BOM =12∠DOM =11°,据此即可得出∠BOD 的度数. 【详解】 ∵∠CON =90°, ∴∠DON =∠CON =90°,∴∠DOM =∠DON ﹣∠NOM =90°﹣68°=22°, ∵∠BOM :∠DOM =1:2, ∴∠BOM =12∠DOM =11°, ∴∠BOD =3∠BOM =33°. 故答案为:33. 【点睛】本题考查了余角的定义,角的和差的关系,掌握角的和差的关系是解题的关键.18.【解析】【分析】将每个图形中白色正方形的个数分别表示出来总结规律即可得到答案【详解】图①白色正方形:2个;图②白色正方形:5个;图③白色正方形:8个∴得到规律:第n 个图形中白色正方形的个数为:(3n 解析:()31-n【解析】 【分析】将每个图形中白色正方形的个数分别表示出来,总结规律即可得到答案. 【详解】图①白色正方形:2个; 图②白色正方形:5个; 图③白色正方形:8个,∴得到规律:第n 个图形中白色正方形的个数为:(3n-1)个,故答案为:(3n-1).【点睛】此题考查图形类规律的探究,会观察图形的变化用代数式表示出规律是解题的关键. 19.【解析】【分析】根据多项式的次数的定义来解题要先找到题中的等量关系然后列出方程求解【详解】多项式kx2+4x﹣x2﹣5是关于的一次多项式多项式不含x2项即k-1=0k=1故k的值是1【点睛】本题考査解析:【解析】【分析】根据多项式的次数的定义来解题.要先找到题中的等量关系,然后列出方程求解.【详解】Q多项式kx2+4x﹣x2﹣5是关于的一次多项式, 多项式不含x2项,即k-1=0,k=1.故k的值是1.【点睛】本题考査了以下概念:(1)组成多项式的每个单项式叫做多项式的项;(2)多项式中次数最高项的次数叫做多项式的次数.20.4n+2【解析】【分析】分析可知规律是每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个【详解】∵第一个图案正三角形个数为6=2+4;第二个图案正三角形个数为2+4+4=2+2×4;第三个解析:4n +2【解析】【分析】分析可知规律是每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个.【详解】∵第一个图案正三角形个数为6=2+4;第二个图案正三角形个数为2+4+4=2+2×4;第三个图案正三角形个数为2+2×4+4=2+3×4;…∴第n个图案正三角形个数为2+(n-1)×4+4=2+4n=4n+2.故答案为:4n+2.【点睛】此题考查了平面图形,主要培养学生的观察能力和空间想象能力,根据已知图形发现变化与不变的部分及变化部分按照何种规律变化是关键.三、解答题21.-4.【解析】【分析】首先根据整式的加减运算法则将原式化简,再代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【详解】解:原式=﹣a 2b+3ab 2﹣a 2b ﹣4ab 2+2a 2b =(﹣1﹣1+2)a 2b+(3﹣4)ab 2=﹣ab 2, 当a =1,b =﹣2时,原式=﹣1×(﹣2)2=﹣4.【点睛】考查整式的化简求值,解题关键是先化简,再代入求值.注意运算顺序及符号的处理.22.(1)该校参加社会实践活动有225人;(2)该校租用60座客车更合算.【解析】【分析】(1)设该校参加旅游有x 人,根据租用客车的数量关系建立方程求出其解即可;(2)分别计算出租用两种客车的数量,就可以求出租用费用,再比较大小就可以求出结论.【详解】解:(1)设该校参加旅游有x 人,根据题意,得:15_14560x x +=, 解得:x=225,答:该校参加社会实践活动有225人;(2):由题意,得需45座客车:225÷45=5(辆), 需60座客车:225÷60=3.75≈4(辆),租用45座客车需:5×250=1250(元), 租用60座客车需:4×300=1200(元), ∵1250>1200,∴该校租用60座客车更合算.【点睛】本题考查了列一元一次方程解实际问题的运用,一元一次方程的解法的运用,有理数大小的比较的运用,解答时租用不同客车的数量关系建立方程是关键.23.﹣y 2﹣2x+2y ,-2【解析】试题分析:先去括号,然后合并同类项,最后代入数值进行计算即可.试题解析:2(x 3﹣2y 2)﹣(x ﹣2y )﹣(x ﹣3y 2+2x 3)=2x 3﹣4y 2﹣x+2y ﹣x+3y 2﹣2x 3=﹣y 2﹣2x+2y ,当x=﹣3,y=﹣2时,原式=﹣(﹣2)2﹣2×(﹣3)+2×(﹣2)=﹣4+6﹣4=﹣2. 24.780个【解析】【分析】首先设原计划每小时生产x 个零件,然后根据零件总数量的关系列出一元一次方程,从而得出x 的值,然后得出生产零件的总数.【详解】解:设原计划每小时生产x 个零件,则后来每小时生产(x+5)个零件,根据题意可得: 26x=24(x+5)-60解得:x=30则26x=26×30=780(个) 答:原计划生产780个零件.【点睛】本题考查一元一次方程的应用.25.【解析】【分析】原式去括号合并得到最简结果,把x 与y 的值代入计算即可求出值.【详解】()()223x xy 2y 2x 3y ----223x 3xy 6y 2x 6y =---+2x 3xy =-.当x 1=-,y 2=时, ()()22x 3xy 1312-=--⨯-⨯ 167=+=.【点睛】本题考查整式的加减-化简求值,熟练掌握运算法则是解题关键.。

相关文档
最新文档