2018江苏省专转本高等数学真题
2018年普通高等学校招生全国统一考试(江苏卷)数学试题及详解精校版
2018年普通高等学校招生全国统一考试(江苏卷)数学I注意事项考生在答题前请认真阅读本注意事项及各题答题要求1 •本试卷共4页,均为非选择题(第1题〜第20题,共20题)。
本卷满分为160分,考试时间为120分钟。
考试结束后,请将本试卷和答题卡一片交回。
2 .答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。
3 •请认真核对监考员从答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符。
4•作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。
5 •如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗。
参考公式:1锥体的体积V =」Sh,其中S是锥体的底面积,h是锥体的高.3一、填空题:本大题共14小题,每小题5分,共计70分•请把答案填写在答题卡相应位置上.1.已知集合A 二{0,1,2,8}, B 二{-1,1,6,8},那么.1・【答案】「1,8?【解析】由题设和交集的定义可知,AnB=〈1,8?.2 •若复数z满足i N =1 2i,其中i是虚数单位,则z的实部为▲2. 【答案】2【解析】因为i n =1 • 2i,则=2 -i,则z的实部为2. i3•已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为▲.n 1 13. 【答案】90【解析】由茎叶图可知,5位裁判打出的分数分别为89,89, 90,91, 91,故平89 89 90 91 91 均数为90 .54 •一个算法的伪代码如图所示,执行此算法,最后输出的S的值为▲.—I■While /<6 ;:1+2 :;5—2S \■End While:■Prim S;…[科遍4. 【答案】8【解析】由伪代码可得1=3 , S=2 ; 1=5, S=4 ; 1=7, S=8 ;因为7 6 ,所以结束循环,输出S = 8 .5 .函数f (x^ log2 x -1的定义域为▲.5•【答案】12,::【解析】要使函数f x有意义,则log2x-1_0,解得x —2,即函数f x的定义域为2 •::.6 •某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为▲.36. 【答案】-10【解析】从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为—.107 •已知函数y二sin(2x •「)( )的图象关于直线x •对称,贝U :的值是▲2 2 3n7. 【答案】-丄6【解析】由题意可得sin . 2 n+® = ±1,所以—n+® =」+ k n,13 丿 3 2:护二一n• k n k ■ Z ,因为_n< -,所以k = 0,:护二一n.6 2 2 6【解析】因为双曲线的焦点F c,0到渐近线y = _^x即bx_ay = O的距离为a穿£上=b,所以b卫c ,.a2b2 c 22 2x y -&在平面直角坐标系xOy中,若双曲线 2 - 2 =1(a 0,b 0)的右焦点F(c,0)到一条渐近a b线的距离为fc,则其离心率的值是▲8. 【答案】2因此a2 =c2—b2 =c2—?c2=丄『,a =1c,e = 2 .4 4 27:Xcos ,0 :: x _ 2,29.函数f(x)满足f(x,4) =f(x)(x・R),且在区间(-2,2]上, f(x)二2则1| x |,-2:::x_0,L 2 f(f(15))的值为▲.29. 【答案】二2【解析】由f x • 4二f x得函数f x的周期为4,1 i 所以f (15 )= f (16 —1 )= f (―1 )= —1 +乙=-,因此 f f15 = f — = cos —.v f12 丿 4 210•如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为▲.(第10题)410. 【答案】—3【解析】由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1, 底面正方形的边长等于、、2,所以该多面体的体积为2 - 1 .2 2 = 3 4 .3 33 211•若函数f(x) 2x -ax 1(a R)在(0,;)内有且只有一个零点,则f(x)在[-1,1]上的最大值与最小值的和为▲.11. 【答案】-3且仅有一个零点且f(0)=1,所以a>0 , f Lo,; 3 13 丿因此2 \ —-a\—*1=0 , a=3 ,13丿13丿从而函数f x在丨-1,0 I上单调递增,在0,1 1上单调递减,所以f xmax 二f 0,f xmin 二min〈f -1, f 仁=f -1,fX max fX min 二f 0 f一1" 一4 一3 -12. 在平面直角坐标系xOy中,A为直线l:y=2x上在第一象限内的点,B(5,0),以AB为直径的圆C与直线I交于另一点D.若云B CD =0,则点A的横坐标为▲.12. 【答案】3【解析】设A a,2a a 0,则由圆心C为AB中点得c邑2 a ,I 2 丿易得C : x -5 x—a!亠yy -2a ]=0 ,与y "x联立解得点D的横坐标X D = 1,所以D 1,2 .所以"AB 二5-a,-2a , CD = :1-^5^ - a ,a2-2a- 3= 0 , a = 3 或a=-1,因为a 0,所以a = 3 .13. 在△ ABC中,角A,B,C所对的边分别为a, b,c , - ABC =120 , ■ ABC的平分线交AC 于点D,且BD =1,则4a c的最小值为▲.13. 【答案】9【解析】由题意可知,S\ABC =S U B D BCD,由角平分线性质和三角形面积公11 1 1 1式得—acsi n120 a 1 si n 60 — c 1 si n60,化简得ac = a c, 1 ,2 2 2 a c因此4a+c = (4a+c)Q +1 =5 + c+空巧口伫如=9 ,la c 丿a c i a c当且仅当c=2a =3时取等号,则4a c的最小值为9.14. 已知集合A={x|x=2n-1,n,N*} , B={x|x=2n,n,N*}.将AU B 的所有元素从小到大依次排列构成一个数列{a n}.记£为数列{a n}的前n项和,则使得S n 12a n -1成立的n的最小值为_▲ ___________________【解析】由f x =6x -2ax=0得x=0.14. 【答案】27【解析】设a n=2k,贝U S n = [(2工1 _1 )+(2 过 2 _1 )+ 山十(2,2k』一1 )〕+ _2 + 22+|||+2鋼二、解答题:本大题共 6小题,共计90分•请在答题卡指定区域.内作答,解答时应写出文字 说明、证明过程或演算步骤.〔5.(本小题满分〔4分) 在平行六面体 ABCD —ARGD ,中,AA= AB, AB ,丄B,G .求证:(D AB //平面AB ,C ; (2)平面 ABB , A -平面 A ,BC .〔5.【答案】(〔)见解析;(2)见解析.【解析】⑴在平行六面体ABCD - ABCP 中, AB// AB .AB , u 平面ARC ,所以AB II 平面A ,B ,C .(2)在平行六面体ABCD-ABGD,中,四边形ABBA 为平行四边形. 又因为AA = AB ,所以四边形ABBA 为菱形,因此 AB , _ AB .又因为 AB , _ BG ,BC I BG ,所以 AB , _ BC .又因为 ABPl BC = B ,AB U 平面 ABC ,BCu 平面 ABC , 所以AB , _平面ABC .因为AB, 平面ABBA , 所以平面ABB, A 丄平面ABC .,6.(本小题满分,4分)已知:■,:为锐角,tan :• , cos (、£ ' 巧 5 .3 5(,)求cos2>的值; (2) 求 tan (…)的值.7 2 16.【答案】(,)-丄;(2) --.2511【解析】(1)因为tan 〉= -, ta n > =虫 ,所以si n >二* cos 〉. 3 cos 。
2018年全国普通高等学校招生统一考试数学(江苏卷)(解析版)
绝密★启用前2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:锥体的体积13V Sh =,其中S 是锥体的底面积,h 是锥体的高. 一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上......... 1.已知集合{}0,1,2,8A =,{}1,1,6,8B =-,那么A B ⋂=________.【答案】{1,8}.【解析】分析:根据交集定义{}A B x x A x B 且⋂=∈∈求结果.详解:由题设和交集的定义可知:{}1,8A B ⋂=.点睛:本题考查交集及其运算,考查基础知识,难度较小.2.若复数z 满足i 12i z ⋅=+,其中i 是虚数单位,则z 的实部为________.【答案】2【解析】分析:先根据复数的除法运算进行化简,再根据复数实部概念求结果.详解:因为i 12i z ⋅=+,则12i 2i iz +==-,则z 的实部为2. 点睛:本题重点考查复数相关基本概念,如复数+i(,)a b a b R ∈的实部为a 、虚部为b 、模为22a b +、对应点为(,)a b 、共轭复数为i a b -.3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90.【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.详解:由茎叶图可知,5位裁判打出的分数分别为8989909191,,,,,故平均数为89+89+90+91+91905=. 点睛:12,,,n x x x L 的平均数为12n x x x n+++L .4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为________.【答案】8【解析】分析:先判断6I <是否成立,若成立,再计算I S ,,若不成立,结束循环,输出结果.详解:由伪代码可得3,2;5,4;7,8I S I S I S ======,因为76>,所以结束循环,输出8.S =点睛:本题考查伪代码,考查考生的读图能力,难度较小.5.函数()f x =________.【答案】[2,+∞)【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数()f x 有意义,则2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[2,)+∞. 点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________. 【答案】3.10【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为3.10点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.7.已知函数sin(2)()22y x ϕϕππ=+-<<图象关于直线3x π=对称,则ϕ的值是________. 【答案】6π-. 【解析】 分析:由对称轴得ππ()6k k Z ϕ=-+∈,再根据限制范围求结果.详解:由题意可得2sin π13ϕ⎛⎫+=±⎪⎝⎭,所以2πππππ()326k k k Z ϕϕ+=+=-+∈,,因为ππ22ϕ-<<,所以π0,.6k ϕ==- 点睛:函数sin()y A x B ωϕ=++(A >0,ω>0)的性质:(1)max min ,y A B y A B =+=-+;(2)最小正周期2πT ω=;(3)由ππ()2x k k ωϕ+=+∈Z 求对称轴;(4)由ππ2π2π()22k x k k ωϕ-+≤+≤+∈Z 求增区间; 由π3π2π2π()22k x k k ωϕ+≤+≤+∈Z 求减区间.8.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(c,0)F到一条渐近线的距离为,则其离心率的值是________. 【答案】2【解析】分析:先确定双曲线的焦点到渐近线的距离,再根据条件求离心率.详解:因为双曲线的焦点(c,0)F 到渐近线,b y x a =±即0bx ay ±=,bc b c ==所以2b c =,因此22222231,44a c b c c c =-=-=1, 2.2a c e == 点睛:双曲线的焦点到渐近线的距离为b ,焦点在渐近线上的射影到坐标原点的距离为a .9.函数()f x 满足(4)()()f x f x x R +=∈,且在区间(2,2]-上,cos ,02,2()1,20,2x x f x x x π⎧<≤⎪⎪=⎨⎪+-<≤⎪⎩则((15))f f 的值为____.【答案】2 【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.详解:由(4)()f x f x +=得函数()f x 的周期为4,所以11(15)(161)(1)1,22f f f =-=-=-+=因此1π2((15))()cos .242f f f === 点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现(())f f a 的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】43【解析】 分析:先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果.详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,2,,所以该多面体的体积为21421(2).33⨯⨯⨯= 点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.11.若函数()()3221f x x ax a R =-+∈在()0,+∞内有且只有一个零点,则()f x 在[]1,1-上的最大值与最小值的和为__________.【答案】3-.【解析】分析:先结合三次函数图象确定在(0,)+∞上有且仅有一个零点的条件,求出参数a ,再根据单调性确定函数最值,即得结果.详解:由()2620f x x ax '=-=得0,3a x x ==,因为函数()f x 在(0,)+∞上有且仅有一个零点且()0=1f ,所以0,033a a f ⎛⎫>= ⎪⎝⎭,因此322()()10, 3.33a a a a -+==从而函数()f x 在[1,0]-上单调递增,在[0,1]上单调递减,所以()max ()0,f x f ={}min ()min (1),(1)(1)f x f f f =-=-,max min ()()f x f x +=()0+(1)14 3.f f -=-=- 点睛:对于函数零点个数问题,可利用函数的单调性、草图确定其中参数取值条件.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u v u u u v ,则点A 的横坐标为________.【答案】3【解析】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果. 详解:设(),2(0)A a a a >,则由圆心C 为AB 中点得5,,2a C a +⎛⎫ ⎪⎝⎭易得()()():520C x x a y y a --+-=e ,与2y x =联立解得点D 的横坐标1,D x =所以()1,2D .所以()55,2,1,22a AB a a CD a +⎛⎫=--=-- ⎪⎝⎭u u u v u u u v , 由0AB CD ⋅=u u u v u u u v 得()()()2551220,230,32a a a a a a a +⎛⎫--+--=--== ⎪⎝⎭或1a =-, 因为0a >,所以 3.a =点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.13.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________.【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,ABC ABD BCD S S S =+△△△,由角平分线性质和三角形面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得11,1ac a c a c=++=,因此1144(4)()559,c a a c a c a c a c +=++=++≥+= 当且仅当23c a ==时取等号,则4a c +的最小值为9.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.14.已知集合*{|21,}A x x n n N ==-∈,*{|2,}n B x x n N ==∈.将A B U 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为________.【答案】27【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.详解:设=2k n a ,则12[(211)+(221)+(221)][222]k k n S -=⨯-⨯-+⋅-++++L L()11221212212(12)222212k k kk k ---++⨯--=+=+--由112n n S a +>得2211211522212(21),(2)20(2)140,22,6k k k k k k k -+---+->+-->≥≥所以只需研究5622n a <<是否有满足条件的解,此时25[(211)+(221)+(21)][222]n S m L L =⨯-⨯-+-++++25122m +=+-,+121n a m =+,m 为等差数列项数,且16m >.由25122212(21),2450022,527m m m m m n m ++->+-+>∴≥=+≥,得满足条件的n 最小值为27.点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如,2,n n n n a n ⎧=⎨⎩为奇数为偶数),符号型(如2(1)n n a n =-),周期型(如πsin 3n n a =).二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15.在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥。
(完整版)2018年江苏省普通高校“专转本”统一考试《高等数学》试卷
2018年江苏省普通高校“专转本”统一考试一、 选择题(本大题共6小题,每小题4分,满分24分)1、当0x →时,下列无穷小与()2sin f x x x =同阶的是 ( )A.2cos 1x -1 C. 31x - D 。
()3211x +- 2、设函数2()x a f x x x b-=++,若1x =为其可去间断点,则常数a ,b 的值分别为 ( ) A 。
1,2- B 。
1,2- C 。
1,2-- D. 1,23、设1()1x f x x ϕ-⎛⎫= ⎪+⎝⎭,其中()x ϕ为可导函数,且()13ϕ'=,则()0f '等于 ( ) A.6- B 。
6 C.3- D. 34、设()2x F x e =是函数()f x 的一个原函数,则()xf x dx '=⎰ ( ) A. 2112x e x C ⎛⎫-+ ⎪⎝⎭ B. ()221x e x C -+ C. 2112x e x C ⎛⎫++ ⎪⎝⎭D. ()221x e x C ++ 5、下列反常积分发散的是( )A 。
0x e dx -∞⎰B 。
311dx x +∞⎰C 。
211dx x +∞-∞+⎰D 。
011dx x+∞+⎰ 6、下列级数中绝对收敛的是( )A. 1n n ∞=∑()1121nn n ∞=+-∑ C. 21sin n n n ∞=∑ D 。
31(3)n n n ∞=-∑ 二、填空题(本大题共6小题,每小题4分,共24分)7设()102lim 1lim sin x x x ax x x→→∞+=,则常数a =_________. 8、设函数()0y x =>,则y '=____________.9、设(),z z x y =是由方程21z xyz +=所确定的函数,则z x ∂=∂___________. 10、曲线43234612y x x x x =+--的凸区间为___________.11、已知空间三点()1,1,1M ,()1,1,0A ,()2,1,2B ,则AMB ∠的大小为__________.12、幂级数1(4)5nn n x n ∞=+∑的收敛域为____________.三、计算题(本大题共8小题,每小题8分,共64分)13、求极限()22011lim ln 1x x x →⎡⎤⎢⎥-+⎢⎥⎣⎦. 14、设函数)(x y y =由参数方程323101x xt t y t t ⎧-+-=⎪⎨=++⎪⎩所确定,求0t dy dx =. 15、求不定积分. 16、计算定积分()2121ln x xdx +⎰ .17、求通过点()1,2,3M 及直线131415x t y t z t =+⎧⎪=+⎨⎪=+⎩的平面方程.18、求微分方程()323220y x y dx x dy -+=的通解. 19、设,x z xf y y ⎛⎫= ⎪⎝⎭,其中函数具有一阶连续偏导数,求全微分dz .20、计算二重积分D xydxdy ⎰⎰,其中()(){}22,11,0D x y x y y x =-+≤≤≤. 四、证明题(本大题共2小题,每小题9分,共18分)21、证明:当0x >时,ln x ≤ 22、设0()0()00x f t dt x F x x x⎧⎪≠=⎨⎪⎩⎰ =,其中函数()f x 在),(+∞-∞上连续,且0()lim 1x f x x →=,证明:()F x '在点0=x 处连续.五、综合题(本大题共2小题,每小题10分,共20分)23、设D 是由曲线弧cos 42y x x ππ⎛⎫=≤≤ ⎪⎝⎭与sin 4y x x ππ⎛⎫=≤≤ ⎪⎝⎭及x 轴所围成的平面图形,试求: (1)D 的面积;(2)D 绕x 轴旋转一周所形成的旋转体的体积.24、设函数()f x 满足方程()()()320f x f x f x '''-+=,且在0x =处取得极值1,试求:(1)函数)(x f 的表达式;(2)曲线()()f x y f x '=的渐近线.。
江苏省“专转本”《高等数学》试卷分类解析不定积分.
同方专转本高等数学核心教程第三章不定积分本章主要知识点:● 不定积分的意义,基本公式● 不定积分的三种基本方法● 杂例历年考试真题1.(2001)不定积分=( D )A.B. +CC. arcsinxD. arcsinx+C解析: 利用不定积分的定义.2001)计算⎰e2x2. (1+exdx。
解: ⎰e2xe2x+ex-exx1+exdx=⎰1+exdx=e-ln(1+ex)+C3. (2002)设f(x)有连续的导函数,且a≠0,1,则下列命题正确的是(A. ⎰f'(ax)dx=1af(ax)+C B. ⎰f'(ax)dx=f(ax)+CC. (⎰f'(ax)dx)'=af(ax)D. ⎰f'(ax)dx=f(x)+C解析: 由⎰f'(x)dx=f(x)+C⎰f'(ax)dx=1a⎰f'(ax)dax=1af(ax)+C4. (2002)求积分2解: 14arcsin2x2+C5. (2003)若F'(x)=f(x),f(x)连续,则下列说法正确的是( C ) - 78 - A )第三章不定积分A.C. ⎰F(x)dx=f(x)+c B. ⎰⎰dF(x)dx=f(x)dx dx⎰dF(x)dx=f(x) f(x)dx=F(x)+c D. dx⎰解析: 不定积分的定义 6. (2003)xlnxdxx2x2x2=lnx-⎰dlnx 解: 设u=lnx,dv=xdx,则⎰xlnxdx=⎰lnxd222x21=lnx-⎰xdx22 11=x2(lnx-)+C227. (2004)求不定积分3=1arcsin4x+C 4解析: 31dx=⎰arcsin3xdarcsinx=arcsin4x+C 4ex8. (2004)设f(x)的一个原函数为,计算⎰xf'(2x)dx xexex(x-1)ex解: 因为f(x)的一个原函数为,所以f(x)=()'=, xx2x1111⎰xf'(2x)dx=⎰xf'(2x)d(2x)=⎰xdf(2x)=xf(2x)-⎰f(2x)dx 222211x(2x-1)e2xx-12x-+C=e+C =xf(2x)-⎰f(2x)d(2x)=248x28x4x9. (2005)若⎰f(x)dx=F(x)+C,则⎰sinxf(cosx)dx=( D )A. F(sinx)+CB. -F(sinx)+CC. F(cosx)+CD. -F(cosx)+C解析: ⎰sinxf(cosx)dx=-⎰f(cosx)dcosx=-F(cosx)+C⎰310. (2005)计算tanxsecxdx2 解:原式=tanxtanxsecxdx=⎰⎰(secx-1)d- 79 - 22secx=⎰secxdsecx-secx同方专转本高等数学核心教程=secx-secx+C11.(2006)已知A.2e-2x133⎰f(x)dx=e2x+C,则⎰f'(-x)dx=( C ). 11+CB.e-2x+CC. -2e-2x+CD. -e-2x+C 22解析: 由题意f(x)=2e2x,∴f'(x)=4e2x,f'(-x)=4e-2x所以⎰f'(-x)dx=⎰4e-2x-2xdx=⎰-2e-2xd(-2x)=-2e+C12.(2006)计算⎰dx x解:原式=32(1+lnx)=(1+lnx)2+C 313. (2007) 设函数f(x)的一个原函数为sin2x,则⎰f'(2x)dx=( A )1cos4x+C 2C. 2cos4x+CD. sin4x+C A. cos4x+C B.解析: f(x)=2cos2x,所以f'(x)=4sin2x,⎰f'(2x)dx=⎰4sin4xdx=⎰sin4xd(4x)=cos4x+C2-x14. (2007)求不定积分xedx.⎰2-x2-x 解:xedx=-xd(e) ⎰⎰2-x-x2-x-x =-xe+2xedx=-xe-2xd(e) ⎰⎰2-x-x-x =-xe-2xe+2edx ⎰=-xe单元练习题3 2-x-2xe-x-2e-x+C1.dcos2x=- 80 - ⎰第三章不定积分2.已知f(cosx)=sin2x,则⎰f(x-1)dx=。
2018年普通高等学校招生全国统一考试 数学 (江苏卷) 精校版(含答案)
好教育云平台 高考真题汇编卷 第1页(共12页) 好教育云平台 高考真题汇编卷 第2页(共12页)2018年普通高等学校招生全国统一考试数 学(江苏卷)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
数学I 试题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合{}0,1,2,8A =,{}1,1,6,8B =-,那么A B =________. 2.若复数z 满足i 12i z ⋅=+,其中i 是虚数单位,则z 的实部为________.3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为________.5.函数()f x =________.6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.7.已知函数()sin 22π2πy x ϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线π3x =对称,则ϕ的值是________.8.在平面直角坐标系xOy 中,若双曲线()222210,0x y a b a b-=>>的右焦点(),0F c 到一条,则其离心率的值是________. 9.函数()f x 满足()()()4f x f x x +=∈R ,且在区间(]2,2-上,()πcos ,0221,202x x f x x x ⎧<≤⎪⎪=⎨⎪+-<≤⎪⎩,则()()15f f 的值为________.10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.11.若函数()()3221f x x ax a =-+∈R 在()0,+∞内有且只有一个零点,则()f x 在[]1,1-上的最大值与最小值的和为________.12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为________. 13.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________.14.已知集合{}*21,A x x n n ==-∈N ,{}*2,n B x x n ==∈N .将A B 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数{}n a 列的前n 项和,则使得112n n S a +>成立的n 的最小值为________.二、解答题:本大题共6小题,共计90分.请在答题卡的指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在平行六面体1111ABCD A BC D -中,1AA AB =,111ABB C ⊥. 此卷只装订不密封班级 姓名 准考证号 考场号 座位号好教育云平台 高考真题汇编卷 第3页(共12页) 好教育云平台 高考真题汇编卷 第4页(共12页)求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC .16.(14分)已知α,β为锐角,4tan 3α=,()cos 5αβ+=- (1)求cos 2α的值; (2)求()tan αβ-的值.17.(14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求A ,B 均在线段MN 上,C ,D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.好教育云平台 高考真题汇编卷 第5页(共12页) 好教育云平台 高考真题汇编卷 第6页(共12页)18.(16分)如图,在平面直角坐标系xOy 中,椭圆C过点12⎫⎪⎭,焦点()1F,)2F ,圆O 的直径为12F F .(1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标; ②直线l 与椭圆C 交于A ,B 两点.若OAB △的面积为7,求直线l 的方程.19.(16分)记()f x ',()g x '分别为函数()f x ,()g x 的导函数.若存在0x ∈R ,满足()()00f x g x =且()()00f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”. (1)证明:函数()f x x =与()222g x x x =+-不存在“S 点”; (2)若函数()21f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数()2f x x a =-+,()e xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间()0,+∞内存在“S 点”,并说明理由.好教育云平台 高考真题汇编卷 第7页(共12页) 好教育云平台 高考真题汇编卷 第8页(共12页)20.(16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设10a =,11b =,2q =,若1n n a b b -≤对1n =,2,3,4均成立,求d 的取值范围;(2)若110a b =>,*m ∈N,(q ∈,证明:存在d ∈R ,使得1n n a b b -≤对2n =,3,,1m +均成立,并求d 的取值范围(用1b ,m ,q 表示).数学II (附加题)21.[选做题]本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4—1:几何证明选讲]如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C.若PC =BC 的长.B .[选修4—2:矩阵与变换]已知矩阵2312A ⎡⎤=⎢⎥⎣⎦. (1)求A 的逆矩阵1A -;(2)若点P 在矩阵A 对应的变换作用下得到点()3,1P ',求点P 的坐标.好教育云平台 高考真题汇编卷 第9页(共12页) 好教育云平台 高考真题汇编卷 第10页(共12页)C .[选修4—4:坐标系与参数方程] 在极坐标系中,直线l 的方程为sin 2π6ρθ⎛⎫-= ⎪⎝⎭,曲线C 的方程为4cos ρθ=,求直线l被曲线C 截得的弦长.D .[选修4—5:不等式选讲]若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值.[必做题]第22题、第23题,每题10分,共计20分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.22.(10分)如图,在正三棱柱111ABC A B C -中,12AB AA ==,点P ,Q 分别为11A B ,BC 的中点.(1)求异面直线BP 与1AC 所成角的余弦值; (2)求直线1CC 与平面1AQC 所成角的正弦值.好教育云平台 高考真题汇编卷 第11页(共12页) 好教育云平台 高考真题汇编卷 第12页(共12页)23.(10分)设*n ∈N ,对1,2,···,n 的一个排列12n i i i ,如果当s t <时,有s t i i >,则称(),s t i i 是排列12n i i i 的一个逆序,排列12n i i i 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序()2,1,()3,1,则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数. (1)求()32f ,()42f 的值;(2)求()()25n f n ≥的表达式(用n 表示).好教育云平台 高考真题汇编卷答案 第1页(共10页) 好教育云平台 高考真题汇编卷答案 第2页(共10页)2018年普通高等学校招生全国统一考试数 学 答 案(江苏卷)数学I 试题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上. 1.【答案】{}1,8 2.【答案】2 3.【答案】90 4.【答案】8 5.【答案】[)2,+∞6.【答案】310 7.【答案】π6-8.【答案】2 9.【答案】2 10.【答案】4311.【答案】3- 12.【答案】3 13.【答案】9 14.【答案】27二、解答题:本大题共6小题,共计90分.请在答题卡的指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.【答案】(1)见解析;(2)见解析.【解析】(1)在平行六面体1111ABCD A BC D -中,11ABA B ∥.因为AB ⊄平面11A B C ,11A B ⊂平面11A B C ,所以AB ∥平面11A B C .(2)在平行六面体1111ABCD A BC D -中,四边形11ABB A 为平行四边形. 又因为1AA AB =,所以四边形11ABB A 为菱形,因此11AB A B ⊥.又因为111AB B C ⊥,11BC B C ∥,所以1AB BC ⊥. 又因为1A BBC B =,1A B ⊂平面1A BC ,BC ⊂平面1A BC ,所以1AB ⊥平面1A BC .因为1AB ⊂平面11ABB A , 所以平面11ABB A ⊥平面1A BC .16.【答案】(1)725-;(2)211-. 【解析】(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=.因为22sin cos 1αα+=,所以29cos 25α=,因此,27cos 22cos 125αα=-=-.(2)因为α,β为锐角,所以()0,παβ+∈. 又因为()cos 5αβ+=-,所以()sin 5αβ+==, 因此()tan 2αβ+=-.因为4tan 3α=,所以22tan 24tan 21tan 7ααα==--, 因此,()()()()tan 2tan 2tan tan 21tan 2tan 11ααβαβααβααβ-+-=-+==-⎡⎤⎣⎦++. 17.【答案】(1)1,41⎡⎫⎪⎢⎣⎭;(2)当π6θ=时,能使甲、乙两种蔬菜的年总产值最大.【解析】(1)连结PO 并延长交MN 于H ,则PH MN ⊥,所以10OH =. 过O 作OE BC ⊥于E ,则OE MN ∥,所以COE θ∠=, 故40cos OE θ=,40sin EC θ=,则矩形ABCD 的面积为()()240cos 40sin 108004sin cos cos θθθθθ⨯+=+,CDP △的面积为()()1240cos 4040sin 1600cos sin cos 2θθθθθ⨯⨯-=-.好教育云平台 高考真题汇编卷答案 第3页(共10页) 好教育云平台 高考真题汇编卷答案 第4页(共10页)过N 作GN MN ⊥,分别交圆弧和OE 的延长线于G 和K ,则10GK KN ==. 令0GOK θ∠=,则01sin 4θ=,0π0,6θ⎛⎫∈ ⎪⎝⎭. 当0π2,θθ⎡⎫∈⎪⎢⎣⎭时,才能作出满足条件的矩形ABCD ,所以sin θ的取值范围是1,41⎡⎫⎪⎢⎣⎭.(2)因为甲、乙两种蔬菜的单位面积年产值之比为4:3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为()30k k >, 则年总产值为()()48004sin cos cos 31600cos sin cos k k θθθθθθ⨯++⨯- ()8000sin cos cos k θθθ=+,0π2,θθ⎡⎫∈⎪⎢⎣⎭.设() sin cos cos f θθθθ=+,0π2,θθ⎡⎫∈⎪⎢⎣⎭,则()()()()222cos sin sin 2sin sin 12sin 1sin 1f θθθθθθθθ'=--=-+-=--+. 令()=0f θ',得π6θ=,当0π6,θθ⎛⎫∈ ⎪⎝⎭时,()>0f θ',所以()f θ为增函数; 当ππ,62θ⎛⎫∈ ⎪⎝⎭时,()<0f θ',所以()f θ为减函数,因此,当π6θ=时,()f θ取到最大值. 18.【答案】(1)椭圆C 的方程为2214x y +=;圆O 的方程为223x y +=;(2)①点P的坐标为);②直线l的方程为y =+.【解析】(1)因为椭圆C的焦点为()1F,)2F ,可设椭圆C 的方程为()222210x y a b a b +=>>.又点12⎫⎪⎭在椭圆C 上,所以222231143a ba b +=-=⎧⎪⎨⎪⎩,解得2241a b ==⎧⎨⎩,因此,椭圆C 的方程为2214x y +=. 因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于()()00000,,0P x y x y >>,则22003x y +=, 所以直线l 的方程为()0000x y x x y y =--+,即0003x y x y y =-+.由22000143x y x y x y y ⎧⎪⎪⎨+==-+⎪⎪⎩,消去y ,得()222200004243640x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以()()()()22222200000024443644820x x y y y x ∆=--+-=-=.因为0x ,00y >,所以0x =01y =. 因此,点P的坐标为).②因为三角形OAB,所以1262AB OP ⋅=,从而7AB =. 设()11,A x y ,()22,B x y ,由(*)得1200x =,,所以()()()()2222200201212222200048214y x x AB x x y y y x y -⎛⎫=-+-=+⋅ ⎪⎝⎭+. 因为22003x y +=, 所以()()20222016232491x AB x -==+,即42002451000x x -+=, 解得2052x =(2020x =舍去),则2012y =,因此P的坐标为⎝⎭. 综上,直线l的方程为y =+.19.【答案】(1)见解析;(2)a 的值为e2;(3)对任意0a >,存在0b >,使函数()f x 与()g x 在区间()0,+∞内存在“S 点”.好教育云平台 高考真题汇编卷答案 第5页(共10页) 好教育云平台 高考真题汇编卷答案 第6页(共10页)【解析】(1)函数()f x x =,()222g x x x =+-,则()1f x '=,()22g x x '=+.由()()f x g x =且()()f x g x ''=,得222122x x x x =+-=+⎧⎨⎩,此方程组无解,因此,()f x 与()g x 不存在“S ”点.(2)函数()21f x ax =-,()ln g x x =,则()2f x ax '=,()1g x x'=. 设0x 为()f x 与()g x 的“S ”点,由()0f x 与()0g x 且()0f x '与()0g x ',得2001ln 12ax x ax x ⎧-==⎪⎨⎪⎩,即200201ln 21ax x ax -==⎧⎨⎩,(*) 得01ln 2x =-,即120e x -=,则2121e e 22a -==⎛⎫ ⎪⎝⎭. 当e2a =时,120e x -=满足方程组(*),即0x 为()f x 与()g x 的“S ”点.因此,a 的值为e2.(3)对任意0a >,设()323h x x x ax a =--+.因为()00h a =>,()11320h a a =--+=-<,且()h x 的图象是不间断的,所以存在()00,1x ∈,使得()00h x =,令()03002e 1x x b x =-,则0b >.函数()2f x x a =-+,()e x bg x x=,则()2f x x '=-,()()2e 1x b x g x x -'=. 由()()f xg x =且()()f x g x ''=,得()22e e 12x x b x a xb x x x -+⎧⎪⎪⎨=--=⎪⎪⎩,即()()()00320030202e e 1e 122e 1xx x x x x a x x x x x x x -+=⋅---=⋅-⎧⎪⎪⎨⎪⎪⎩(**), 此时,0x 满足方程组(**),即0x 是函数()f x 与()g x 在区间()0,1内的一个“S 点”.因此,对任意0a >,存在0b >,使函数()f x 与()g x 在区间()0,+∞内存在“S 点”.20.【答案】(1)d 的取值范围为75,32⎡⎤⎢⎥⎣⎦;(2)d 的取值范围为()112,m m b q b q m m ⎡⎤-⎢⎥⎢⎥⎣⎦,证明见解析.【解析】(1)由条件知:()1n a n d =-,12n n b -=. 因为1n n a b b -≤对1n =,2,3,4均成立, 即()1121n n d ---≤对1n =,2,3,4均成立, 即11≤,13d ≤≤,325d ≤≤,739d ≤≤,得7532d ≤≤. 因此,d 的取值范围为75,32⎡⎤⎢⎥⎣⎦.(2)由条件知:()11n a b n d =+-,11n n b b q -=. 若存在d ,使得1n n a b b -≤(2n =,3,,1m +)成立, 即()11111n b n d b q b -+--≤(2n =,3,,1m +),即当2n =,3,,1m +时,d 满足1111211n n q q b d b n n ---≤≤--.因为(q ∈,则112n mq q -<≤≤, 从而11201n q b n --≤-,1101n q b n ->-,对2n =,3,,1m +均成立. 因此,取0d =时,1n n a b b -≤对2n =,3,,1m +均成立.下面讨论数列121n q n -⎧⎫-⎨⎬-⎩⎭的最大值和数列11n q n -⎧⎫⎨⎬-⎩⎭的最小值(2n =,3,,1m +).①当2n m ≤≤时,()()()1112222111n n nn n n n n n q q q q q nq q nq n n n n n n -----+----+-==---, 当112mq <≤时,有2n m q q ≤≤,从而()120n n n n q q q ---+>.因此,当21n m ≤≤+时,数列121n q n -⎧⎫-⎨⎬-⎩⎭单调递增,好教育云平台 高考真题汇编卷答案 第7页(共10页) 好教育云平台 高考真题汇编卷答案 第8页(共10页)故数列121n q n -⎧⎫-⎨⎬-⎩⎭的最大值为2m q m -. ②设()()21x f x x =-,当0x >时,()()ln21ln220x f x x =--<', 所以()f x 单调递减,从而()()01f x f <=.当2n m ≤≤时,()111112111nn n qq n n f q n n n n --⎛⎫⎛⎫=≤-=< ⎪ ⎪⎝⎭⎝⎭-, 因此,当21n m ≤≤+时,数列11n q n -⎧⎫⎨⎬-⎩⎭单调递减,故数列11n q n -⎧⎫⎨⎬-⎩⎭的最小值为mq m . 因此,d 的取值范围为()112,m m b q b q m m ⎡⎤-⎢⎥⎢⎥⎣⎦. 数学II (附加题)21.[选做题]本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .【答案】2【解析】连结OC ,因为PC 与圆O 相切,所以OC PC ⊥.又因为PC =2OC =,所以4OP ==.又因为2OB =,从而B 为Rt OCP △斜边的中点,所以2BC =.B .【答案】(1)12312A --⎡⎤=⎢⎥-⎣⎦;(2)()3,1-. 【解析】(1)因为2312A ⎡⎤=⎢⎥⎣⎦,()det 221310A =⨯-⨯=≠, 所以A 可逆,从而12312A --⎡⎤=⎢⎥-⎣⎦. (2)设(),P x y ,则233121x y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以13311x A y -⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦, 因此点P 的坐标为()3,1-.C .【答案】直线l 被曲线C截得的弦长为 【解析】因为曲线C 的极坐标方程为4cos ρθ=, 所以曲线C 的圆心为()2,0,直径为4的圆.因为直线l 的极坐标方程为sin 2π6ρθ⎛⎫-= ⎪⎝⎭,则直线l 过()4,0A ,倾斜角为π6,所以A 为直线l 与圆C 的一个交点. 设另一个交点为B ,则π6OAB ∠=. 连结OB ,因为OA 为直径,从而π2OBA ∠=,所以4cos 6πAB ==.因此,直线l 被曲线C截得的弦长为 D .【答案】4【解析】由柯西不等式,得()()()222222212222x y z x y z ++++≥++.因为22=6x y z ++,所以2224x y z ++≥, 当且仅当122x y z ==时,不等式取等号,此时23x =,43y =,43z =, 所以222x y z ++的最小值为4.[必做题]第22题、第23题,每题10分,共计20分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.22.【答案】(1;(2【解析】如图,在正三棱柱111ABC A B C -中,设AC ,11AC 的中点分别为O ,1O ,则OB OC ⊥,1OO OC ⊥,1OO OB ⊥,以{}1,,OB OC OO 为基底,建立空间直角坐标系O xyz -.因为12AB AA ==,好教育云平台 高考真题汇编卷答案 第9页(共10页) 好教育云平台 高考真题汇编卷答案 第10页(共10页)所以()01,0A -,,)B,()0,1,0C ,()10,1,2A -,)12B ,()10,1,2C .(1)因为P 为11A B的中点,所以1,22P ⎫-⎪⎪⎝⎭,从而1,22BP ⎛⎫=-- ⎪ ⎪⎝⎭,()10,2,2AC =,故111cos ,205BPAC BP AC BP AC ⋅-<>===⋅. 因此,异面直线BP 与1AC 所成角的余弦值为20. (2)因为Q 为BC 的中点,所以31,022Q ⎛⎫⎪ ⎪⎝⎭,因此33,02AQ ⎛⎫= ⎪⎪⎝⎭,()10,2,2AC =,()10,0,2CC =.设(),,x y z =n 为平面1AQC 的一个法向量,则100AQ AC ⎧=⋅=⎨⎪⋅⎪⎩n n即3022220x y y z +=+=⎪⎨⎪⎩,不妨取)1,1=-n ,设直线1CC 与平面1AQC 所成角为θ,则111sin cos ,CCCC CC θ⋅=<>===⋅n n n, 所以直线1CC 与平面1AQC 23.【答案】(1)2,5;(2)5n ≥时,()2222n n n f --=.【解析】(1)记()abc τ为排列abc 的逆序数,对1,2,3的所有排列,有()123=0τ,()132=1τ,()213=1τ,()231=2τ,()312=2τ,()321=3τ,所以()301f =,()()33122f f ==.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,()()()()433322105f f f f =++=.(2)对一般的()4n n ≥的情形,逆序数为0的排列只有一个:12n ,所以()01n f =.逆序数为1的排列只能是将排列12n 中的任意相邻两个数字调换位置得到的排列,所以()11n f n =-.为计算()12n f +,当1,2,…,n 的排列及其逆序数确定后,将1n +添加进原排列,1n +在新排列中的位置只能是最后三个位置.因此,()()()()()122102n n n n n f f f f f n +=++=+.当5n ≥时,()()()()()()()()11254422222222n n n n n f f f f f f f f ---=-+-++-+⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦()()()24212422n n n n f --=-+-+++=,因此,5n ≥时,()2222n n n f --=.。
2018年普通高等学校招生全国统一考试(江苏卷) 数学试题及详解 精校精编版
2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:锥体的体积13V Sh =,其中S 是锥体的底面积,h 是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位......置上...1.已知集合{0,1,2,8}A =,{1,1,6,8}B =-,那么A B =I ▲ .1.【答案】{}1,8【解析】由题设和交集的定义可知,{}1,8A B =I .2.若复数z 满足i 12i z ⋅=+,其中i 是虚数单位,则z 的实部为 ▲ .2.【答案】2【解析】因为i 12i z ⋅=+,则12i2i iz +==-,则z 的实部为2.3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 ▲ .3.【答案】90【解析】由茎叶图可知,5位裁判打出的分数分别为89,89,90,91,91,故平均数为8989909191905++++=.4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 ▲ .4.【答案】8【解析】由伪代码可得3I =,2S =;5I =,4S =;7I =,8S =;因为76>,所以结束循环,输出8S =.5.函数()f x =的定义域为 ▲ .5.【答案】[)2,+∞【解析】要使函数()f x 有意义,则2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[)2,+∞.6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 ▲ .6.【答案】310【解析】从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为310.7.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 ▲ . 7.【答案】π6-【解析】由题意可得2sin π13ϕ⎛⎫+=± ⎪⎝⎭,所以2πππ32k ϕ+=+,()ππ6k k ϕ=-+∈Z ,因为ππ22ϕ-<<,所以0k =,π6ϕ=-.8.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c 到一条渐近,则其离心率的值是 ▲ .8.【答案】2【解析】因为双曲线的焦点(),0F c 到渐近线by x a=±即0bx ay ±=的距离为bcb c ==,所以2b =, 因此2222223144a c b c c c =-=-=,12a c =,2e =.9.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<≤⎪⎪=⎨⎪+<≤⎪⎩- 则((15))f f 的值为 ▲ .9.【答案】2【解析】由()()4f x f x +=得函数()f x 的周期为4,所以()()()11151611122f f f =-=-=-+=, 因此()()115cos 2π42f f f ⎛⎫=== ⎪⎝⎭.10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .10.【答案】43【解析】由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,2142133⨯⨯⨯=.11.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ .11.【答案】3-【解析】由()2620f x x ax '=-=得0x =,3ax =,因为函数()f x 在()0,+∞上有且仅有一个零点且()0=1f ,所以03a >,03a f ⎛⎫= ⎪⎝⎭,因此3221033a a a ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,3a =,从而函数()f x 在[]1,0-上单调递增,在[]0,1上单调递减,所以()()max 0f x f =,()()(){}()min min 1,11f x f f f =-=-,()()()()max min 01143f x f x f f +=+-=-=-.12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=u u u r u u u r,则点A 的横坐标为 ▲ .12.【答案】3【解析】设()(),20A a a a >,则由圆心C 为AB 中点得5,2a C a +⎛⎫⎪⎝⎭, 易得()()():520C x x a y y a --+-=,与2y x =联立解得点D 的横坐标1D x =,所以()1,2D .所以()5,2AB a a =--u u u r ,51,22a CD a +⎛⎫=-- ⎪⎝⎭u u u r , 由0AB CD ⋅=u u u r u u u r 得()()()5512202a a a a +⎛⎫--+--= ⎪⎝⎭,2230a a --=,3a =或1a =-,因为0a >,所以3a =.13.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC于点D ,且1BD =,则4a c +的最小值为 ▲ .13.【答案】9【解析】由题意可知,ABC ABD BCD S S S =+△△△,由角平分线性质和三角形面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得ac a c =+,111a c+=,因此()11444559c a a c a c a c a c ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当23c a ==时取等号,则4a c +的最小值为9.14.已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B U 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ .14.【答案】27【解析】设=2k n a ,则()()()12211+221+221+222k k n S -⎡⎤⎡⎤=⨯-⨯-+⋅-+++⎣⎦⎣⎦L L()()1122121221212222212k k k k k ---++⨯--=+=+--,由112n n S a +>得()()()22211122212212202140k k k k k -+--+->+-->,,1522k -≥,6k ≥,所以只需研究5622n a <<是否有满足条件的解,此时()()()25251211+221+21+22222n S m m +⎡⎤=⨯-⨯-+-+++=+-⎡⎤⎣⎦⎣⎦L L ,+121n a m =+,m 为等差数列项数,且16m >.由()251221221m m ++->+,224500m m -+>,22m ∴≥,527n m =+≥, 得满足条件的n 最小值为27.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥. 求证:(1)11AB A B C 平面∥; (2)111ABB A A BC ⊥平面平面.15.【答案】(1)见解析;(2)见解析.【解析】(1)在平行六面体1111ABCD A B C D -中,11AB A B ∥.因为AB ⊄平面11A B C ,11A B ⊂平面11A B C ,所以AB ∥平面11A B C . (2)在平行六面体1111ABCD A B C D -中,四边形11ABB A 为平行四边形. 又因为1AA AB =,所以四边形11ABB A 为菱形,因此11AB A B ⊥.又因为111AB B C ⊥,11BC B C ∥,所以1AB BC ⊥. 又因为1A B BC B =I ,1A B ⊂平面1A BC ,BC ⊂平面1A BC , 所以1AB ⊥平面1A BC .因为1AB ⊂平面11ABB A , 所以平面11ABB A ⊥平面1A BC .16.(本小题满分14分)已知,αβ为锐角,4tan 3α=,5cos()αβ+=(1)求cos2α的值;(2)求tan()αβ-的值.16.【答案】(1)725-;(2)211-. 【解析】(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=.因为22sin cos 1αα+=,所以29cos 25α=,因此,27cos 22cos 125αα=-=-.(2)因为α,β为锐角,所以()0,παβ+∈.又因为()5cos 5αβ+=-,所以()()225sin 1cos 5αβαβ+=-+=, 因此()tan 2αβ+=-.因为4tan 3α=,所以22tan 24tan 21tan 7ααα==--, 因此,()()()()tan 2tan 2tan tan 21tan 2tan 11ααβαβααβααβ-+-=-+==-⎡⎤⎣⎦++. 17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ. (1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围; (2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.17.【答案】(1)1,41⎡⎫⎪⎢⎣⎭;(2)当π6θ=时,能使甲、乙两种蔬菜的年总产值最大. 【解析】(1)连结PO 并延长交MN 于H ,则PH MN ⊥,所以10OH =. 过O 作OE BC ⊥于E ,则OE MN ∥,所以COE θ∠=, 故40cos OE θ=,40sin EC θ=,则矩形ABCD 的面积为()()240cos 40sin 108004sin cos cos θθθθθ⨯+=+,CDP △的面积为()()1240cos 4040sin 1600cos sin cos 2θθθθθ⨯⨯-=-.过N 作GN MN ⊥,分别交圆弧和OE 的延长线于G 和K ,则10GK KN ==.令0GOK θ∠=,则01sin 4θ=,0π0,6θ⎛⎫∈ ⎪⎝⎭.当0π2,θθ⎡⎫∈⎪⎢⎣⎭时,才能作出满足条件的矩形ABCD ,所以sin θ的取值范围是1,41⎡⎫⎪⎢⎣⎭.(2)因为甲、乙两种蔬菜的单位面积年产值之比为4:3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为()30k k >, 则年总产值为()()48004sin cos cos 31600cos sin cos k k θθθθθθ⨯++⨯-()8000sin cos cos k θθθ=+,0π2,θθ⎡⎫∈⎪⎢⎣⎭.设() sin cos cos f θθθθ=+,0π2,θθ⎡⎫∈⎪⎢⎣⎭,则()()()()222cos sin sin 2sin sin 12sin 1sin 1f θθθθθθθθ'=--=-+-=--+.令()=0f θ',得π6θ=,当0π6,θθ⎛⎫∈ ⎪⎝⎭时,()>0f θ',所以()f θ为增函数; 当ππ,62θ⎛⎫∈ ⎪⎝⎭时,()<0f θ',所以()f θ为减函数,因此,当π6θ=时,()f θ取到最大值.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C 过点1(3,)2,焦点12(3,0),(3,0)F F ,圆O 的直径为12F F . (1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △26,求直线l 的方程.18.【答案】(1)椭圆C 的方程为2214x y +=;圆O 的方程为223x y +=;(2)①点P 的坐标为)2,1;②直线l 的方程为532y x =+.【解析】(1)因为椭圆C 的焦点为()13,0F -,)23,0F ,可设椭圆C 的方程为()222210x y a b a b +=>>.又点13,2⎫⎪⎭在椭圆C 上,所以222231143a ba b +=-=⎧⎪⎨⎪⎩,解得2241a b ==⎧⎨⎩,因此,椭圆C 的方程为2214x y +=. 因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于()()00000,,0P x y x y >>,则22003x y +=, 所以直线l 的方程为()000x y x x y y =--+,即0003x y x y y =-+.由22000143x y x y x y y ⎧⎪⎪⎨+==-+⎪⎪⎩,消去y ,得()222200004243640x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以()()()()22222200000024443644820x x y y y x ∆=--+-=-=. 因为0x ,00y >,所以0x 01y =. 因此,点P的坐标为).②因为三角形OAB,所以12AB OP ⋅=,从而AB =. 设()11,A x y ,()22,B x y ,由(*)得1200x =,所以()()()()2222200201212222200048214y x x AB x x y y y x y -⎛⎫=-+-=+⋅ ⎪⎝⎭+. 因为22003x y +=, 所以()()2022216232491x AB x-==+,即42002451000x x -+=, 解得2052x =(2020x =舍去),则2012y =,因此P的坐标为2⎫⎪⎪⎝⎭. 综上,直线l的方程为y =+.19.(本小题满分16分)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.19.【答案】(1)见解析;(2)a 的值为e 2; (3)对任意0a >,存在0b >,使函数()f x 与()g x 在区间()0,+∞内存在“S 点”.【解析】(1)函数()f x x =,()222g x x x =+-,则()1f x '=,()22g x x '=+.由()()f x g x =且()()f x g x ''=,得222122x x x x =+-=+⎧⎨⎩,此方程组无解,因此,()f x 与()g x 不存在“S ”点.(2)函数()21f x ax =-,()ln g x x =,则()2f x ax '=,()1g x x'=. 设0x 为()f x 与()g x 的“S ”点,由()0f x 与()0g x 且()0f x '与()0g x ', 得200001ln 12ax x ax x ⎧-==⎪⎨⎪⎩,即200201ln 21ax x ax -==⎧⎨⎩,(*) 得01ln 2x =-,即120e x -=,则2121e e 22a -==⎛⎫⎪⎝⎭. 当e2a =时,120e x -=满足方程组(*),即0x 为()f x 与()g x 的“S ”点.因此,a 的值为e2.(3)对任意0a >,设()323h x x x ax a =--+.因为()00h a =>,()11320h a a =--+=-<,且()h x 的图象是不间断的,所以存在()00,1x ∈,使得()00h x =,令()03002e 1x x b x =-,则0b >.函数()2f x x a =-+,()e xb g x x =,则()2f x x '=-,()()2e 1x b x g x x -'=.由()()f x g x =且()()f x g x ''=,得()22e e 12x x b x a xb x x x -+⎧⎪⎪⎨=--=⎪⎪⎩,即()()()00320030202e e 1e 122e 1xx x x x x a x x x x x x x -+=⋅---=⋅-⎧⎪⎪⎨⎪⎪⎩(**), 此时,0x 满足方程组(**),即0x 是函数()f x 与()g x 在区间()0,1内的一个“S 点”.因此,对任意0a >,存在0b >,使函数()f x 与()g x 在区间()0,+∞内存在“S 点”.20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列. (1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+L 均成立,并求d 的取值范围(用1,,b m q 表示).20.【答案】(1)d 的取值范围为75,32⎡⎤⎢⎥⎣⎦;(2)d 的取值范围为()112,m m b q b q m m ⎡⎤-⎢⎥⎢⎥⎣⎦,证明见解析. 【解析】(1)由条件知:()1n a n d =-,12n n b -=.因为1n n a b b -≤对1n =,2,3,4均成立, 即()1121n n d ---≤对1n =,2,3,4均成立, 即11≤,13d ≤≤,325d ≤≤,739d ≤≤,得7532d ≤≤. 因此,d 的取值范围为75,32⎡⎤⎢⎥⎣⎦.(2)由条件知:()11n a b n d =+-,11n n b b q -=.若存在d ,使得1n n a b b -≤(2n =,3,L ,1m +)成立, 即()11111n b n d b q b -+--≤(2n =,3,L ,1m +),即当2n =,3,L ,1m +时,d 满足1111211n n q q b d b n n ---≤≤--.因为(q ∈,则112n m q q -<≤≤, 从而11201n q b n --≤-,1101n q b n ->-,对2n =,3,L ,1m +均成立. 因此,取0d =时,1n n a b b -≤对2n =,3,L ,1m +均成立.下面讨论数列121n q n -⎧⎫-⎨⎬-⎩⎭的最大值和数列11n q n -⎧⎫⎨⎬-⎩⎭的最小值(2n =,3,L ,1m +).①当2n m ≤≤时,()()()1112222111n n nn n n n n n q q q q q nq q nq n n n n n n -----+----+-==---, 当112mq <≤时,有2n m q q ≤≤,从而()120n n n n q q q ---+>.因此,当21n m ≤≤+时,数列121n q n -⎧⎫-⎨⎬-⎩⎭单调递增,故数列121n q n -⎧⎫-⎨⎬-⎩⎭的最大值为2m q m -. ②设()()21x f x x =-,当0x >时,()()ln 21ln 220x f x x =--<', 所以()f x 单调递减,从而()()01f x f <=.当2n m ≤≤时,()111112111nn n q q n n f q n n n n --⎛⎫⎛⎫=≤-=< ⎪ ⎪⎝⎭⎝⎭-,因此,当21n m ≤≤+时,数列11n q n -⎧⎫⎨⎬-⎩⎭单调递减,故数列11n q n -⎧⎫⎨⎬-⎩⎭的最小值为mq m . 因此,d 的取值范围为()112,m m b q b q m m ⎡⎤-⎢⎥⎢⎥⎣⎦.数学Ⅱ(附加题)21.【选做题】本题包括 A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内...................作答...若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4—1:几何证明选讲](本小题满分10分)如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C .若23PC =,求 BC 的长.A .【答案】2【解析】连结OC ,因为PC 与圆O 相切,所以OC PC ⊥. 又因为23PC =,2OC =,所以224OP PC OC =+=. 又因为2OB =,从而B 为Rt OCP △斜边的中点,所以2BC =.B .[选修4—2:矩阵与变换](本小题满分10分)已知矩阵2312⎡⎤=⎢⎥⎣⎦A . (1)求A 的逆矩阵1-A ;(2)若点P 在矩阵A 对应的变换作用下得到点(3,1)P ',求点P 的坐标.B .【答案】(1)12312A --⎡⎤=⎢⎥-⎣⎦;(2)()3,1-. 【解析】(1)因为2312A ⎡⎤=⎢⎥⎣⎦,()det 221310A =⨯-⨯=≠, 所以A 可逆,从而12312A --⎡⎤=⎢⎥-⎣⎦. (2)设(),P x y ,则233121x y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以13311x A y -⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,因此点P 的坐标为()3,1-.C .[选修4—4:坐标系与参数方程](本小题满分10分)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l被曲线C 截得的弦长.C .【答案】直线l 被曲线C 截得的弦长为23 【解析】因为曲线C 的极坐标方程为4cos ρθ=, 所以曲线C 的圆心为()2,0,直径为4的圆.因为直线l 的极坐标方程为sin 2π6ρθ⎛⎫-= ⎪⎝⎭,则直线l 过()4,0A ,倾斜角为π6,所以A 为直线l 与圆C 的一个交点.设另一个交点为B ,则π6OAB ∠=.连结OB ,因为OA 为直径,从而π2OBA ∠=,所以4cos 236πAB ==l 被曲线C 截得的弦长为23D .[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z =6,求222x y z ++的最小值.D .【答案】4【解析】由柯西不等式,得()()()222222212222x y z x y z ++++≥++. 因为22=6x y z ++,所以2224x y z ++≥,当且仅当122x y z ==时,不等式取等号,此时23x =,43y =,43z =,所以222x y z ++的最小值为4.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值.22.【答案】(1)31020;(2)55. 【解析】如图,在正三棱柱111ABC A B C -中,设AC ,11A C 的中点分别为O ,1O ,则OB OC ⊥,1OO OC ⊥,1OO OB ⊥,以{}1,,OB OC OO u u u r u u u r u u u u r为基底,建立空间直角坐标系O xyz -.因为12AB AA ==, 所以()01,0A -,,)B,()0,1,0C ,()10,1,2A -,)12B ,()10,1,2C .(1)因为P 为11A B的中点,所以1,,222P ⎛⎫- ⎪ ⎪⎝⎭,从而1,222BP ⎛⎫=-- ⎪ ⎪⎝⎭u u u r ,()10,2,2AC =u u u ur ,故111cos ,BP AC BP AC BP AC ⋅<>===⋅u u u r u u u u r u u u r u u u u r u u u r u u u u r. 因此,异面直线BP 与1AC所成角的余弦值为20. (2)因为Q 为BC的中点,所以1,02Q ⎫⎪⎪⎝⎭,因此3,02AQ ⎫=⎪⎪⎝⎭u u u r ,()10,2,2AC =u u u ur ,()10,0,2CC =u u u u r .设(),,x y z =n 为平面1AQC 的一个法向量,则100AQ AC ⎧=⋅=⎨⎪⋅⎪⎩u u u r u u u u r n n即302220x y y z +=+=⎪⎩,不妨取)1,1=-n ,设直线1CC 与平面1AQC 所成角为θ,则111sin cos ,CC CC CC θ⋅=<>===⋅u u u u r u u u u r u u u u rn n n, 所以直线1CC 与平面1AQC23.(本小题满分10分)设*n ∈N ,对1,2,···,n 的一个排列12n i i i L ,如果当s <t 时,有s t i i >,则称(,)s t i i 是排列12n i i i L 的一个逆序,排列12n i i i L 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数.(1)求34(2),(2)f f 的值;(2)求(2)(5)n f n ≥的表达式(用n 表示).23.【答案】(1)2,5;(2)5n ≥时,()2222n n n f --=.【解析】(1)记()abc τ为排列abc 的逆序数,对1,2,3的所有排列,有()123=0τ,()132=1τ,()213=1τ,()231=2τ,()312=2τ,()321=3τ,所以()301f =,()()33122f f ==.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置. 因此,()()()()433322105f f f f =++=.(2)对一般的()4n n ≥的情形,逆序数为0的排列只有一个:12n L , 所以()01n f =.逆序数为1的排列只能是将排列12n L 中的任意相邻两个数字调换位置得到的排列,所以()11n f n =-.为计算()12n f +,当1,2,…,n 的排列及其逆序数确定后,将1n +添加进原排列,1n +在新排列中的位置只能是最后三个位置.因此,()()()()()122102n n n n n f f f f f n +=++=+.当5n ≥时,()()()()()()()()11254422222222n n n n n f f f f f f f f ---=-+-++-+⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦L()()()24212422n n n n f --=-+-+++=L ,因此,5n ≥时,()2222n n n f --=.。
2001—2018年江苏专转本高等数学真题(及答案)
B、偶函数
C、非奇 非偶函数
D、不能确定奇偶性
4
8、设 I 1 x 4 dx ,则 I 的范围是
0 1 x
A、 0 I 2 2
B、 I 1
9、若广义积分
1
1 xp
dx
收敛,则
p
应满足
A、 0 p 1
B、 p 1
1
10、若
f (x)
1 2e x 1
f
' (x0 )
2 ,则 lim h0
f
(x0
h) h
f
(x0
h)
()
A、2
B、4
C、0
D、 2
2、若已知 F ' (x) f (x) ,且 f (x) 连续,则下列表达式正确的是
A、 F (x)dx f (x) c C、 f (x)dx F (x) c
B、 a b 1 2
D、 a b 1
二、填空题(本大题共 4 小题,每小题 3 分,共 12 分)
9、设函数 y y(x) 由方程 ln(x y) ) x3 3x 2 x 9 的凹区间为
11、 1 x 2 (3 x sin x)dx 1
(2)求 g ' (x) .
23、设 f (x) 在 0, c上具有严格单调递减的导数 f ' (x) 且 f (0) 0 ;试证明:
对于满足不等式 0 a b a b c 的 a 、 b 有 f (a) f (b) f (a b) .
24、一租赁公司有 40 套设备,若定金每月每套 200 元时可全租出,当租金每月每套增加 10 元 时,租出设备就会减少一套,对于租出的设备每套每月需花 20 元的维护费。问每月一套的定金 多少时公司可获得最大利润?
江苏省2018年专转本高等数学试卷及解答
0
,
x2
x
f (t)dt
∫ ∫ 当 x = 0 时= , F′(0)
lim F (= x) − F (0)
x→0
x
0
lim= x
x→0
x
x
f (t)dt lxi→m0= 0 x2
1= lim f (x) 2 x→0 x
1 ,
2
∫
xf
(
x)
−
x
f (t)dt
0
所以
F
′(
x)
=
x2
1
2
解 cos x2 −1~ − 1 x2 , 1 + x3 −1 ~ 1 x3 , 3x −1 ~ x ln 3 , (1 + x2 )3 −1 ~ 3x2 ,答案为:B
2
2
2.设函数
f
(x)
=
x−a x2 + x +
b
,若
x
= 1 为其可去间断点,则常数 a
,b
的值分别为(
A
).
A .1,− 2
B . −1,2
∫
x 0
f (t)dt
22.设函数 F (x) = x
0
x ≠ 0 ,其中 f (x) 在 (−∞ , + ∞) 内连续,且 lim f (x) = 1 ,证明:F ′(x) x→0 x
x=0
在点 x = 0 处连续.
x
∫ xf (x) − f (t)dt
证明 当 x ≠ 0 时, F ′(x) =
+
x y
f2′)dx + x( f1′−
x y2
2018年普通高等学校招生全国统一考试(江苏卷) 数学试题及详解 精校精编版
2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:锥体的体积13V Sh =,其中S 是锥体的底面积,h 是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位......置上...1.已知集合{0,1,2,8}A =,{1,1,6,8}B =-,那么AB = ▲ .1.【答案】{}1,8【解析】由题设和交集的定义可知,{}1,8A B =.2.若复数z 满足i 12i z ⋅=+,其中i 是虚数单位,则z 的实部为 ▲ .2.【答案】2【解析】因为i 12i z ⋅=+,则12i2i iz +==-,则z 的实部为2.3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为 ▲ .3.【答案】90【解析】由茎叶图可知,5位裁判打出的分数分别为89,89,90,91,91,故平均数为8989909191905++++=.4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为 ▲ .4.【答案】8【解析】由伪代码可得3I =,2S =;5I =,4S =;7I =,8S =;因为76>,所以结束循环,输出8S =.5.函数()f x 的定义域为 ▲ .5.【答案】[2,+∞【解析】要使函数()f x 有意义,则2log 10x -≥,解得2x ≥,即函数()f x 的定义域为[)2,+∞.6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为 ▲ .6.【答案】310【解析】从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为310.7.已知函数sin(2)()22y x ϕϕππ=+-<<的图象关于直线3x π=对称,则ϕ的值是 ▲ .7.【答案】π6-【解析】由题意可得2sin π13ϕ⎛⎫+=± ⎪⎝⎭,所以2πππ32k ϕ+=+,()ππ6k k ϕ=-+∈Z ,因为ππ22ϕ-<<,所以0k =,π6ϕ=-.8.在平面直角坐标系xOy 中,若双曲线22221(0,0)x y a b a b-=>>的右焦点(,0)F c 到一条渐近,则其离心率的值是 ▲ . 8.【答案】2【解析】因为双曲线的焦点(),0F c 到渐近线by x a=±即0bx ay ±=的距离为bc b c ==,所以b =, 因此2222223144a c b c c c =-=-=,12a c =,2e =.9.函数()f x 满足(4)()()f x f x x +=∈R ,且在区间(2,2]-上,cos ,02,2()1||,20,2x x f x x x π⎧<≤⎪⎪=⎨⎪+<≤⎪⎩- 则((15))f f 的值为 ▲ .9.【答案】2【解析】由()()4f x f x +=得函数()f x 的周期为4,所以()()()11151611122f f f =-=-=-+=, 因此()()115cos 2π42f f f ⎛⎫=== ⎪⎝⎭.10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为 ▲ .10.【答案】43【解析】由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,2142133⨯⨯⨯=.11.若函数32()21()f x x ax a =-+∈R 在(0,)+∞内有且只有一个零点,则()f x 在[1,1]-上的最大值与最小值的和为 ▲ .11.【答案】3-【解析】由()2620f x x ax '=-=得0x =,3ax =,因为函数()f x 在()0,+∞上有且仅有一个零点且()0=1f ,所以03a >,03a f ⎛⎫= ⎪⎝⎭,因此3221033a a a ⎛⎫⎛⎫-+= ⎪ ⎪⎝⎭⎝⎭,3a =,从而函数()f x 在[]1,0-上单调递增,在[]0,1上单调递减,所以()()max 0f x f =,()()(){}()min min 1,11f x f f f =-=-,()()()()max min 01143f x f x f f +=+-=-=-.12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 ▲ .12.【答案】3【解析】设()(),20A a a a >,则由圆心C 为AB 中点得5,2a C a +⎛⎫ ⎪⎝⎭,易得()()():520C x x a y y a --+-=,与2y x =联立解得点D 的横坐标1D x =,所以()1,2D .所以()5,2AB a a =--,51,22a CD a +⎛⎫=-- ⎪⎝⎭,由0AB CD ⋅=得()()()5512202a a a a +⎛⎫--+--= ⎪⎝⎭,2230a a --=,3a =或1a =-,因为0a >,所以3a =.13.在ABC △中,角,,A B C 所对的边分别为,,a b c ,120ABC ∠=︒,ABC ∠的平分线交AC于点D ,且1BD =,则4a c +的最小值为 ▲ .13.【答案】9【解析】由题意可知,ABC ABD BCD S S S =+△△△,由角平分线性质和三角形面积公式得111sin1201sin 601sin 60222ac a c ︒=⨯⨯︒+⨯⨯︒,化简得ac a c =+,111a c+=,因此()11444559c a a c a c a c a c ⎛⎫+=++=++≥+= ⎪⎝⎭,当且仅当23c a ==时取等号,则4a c +的最小值为9.14.已知集合*{|21,}A x x n n ==-∈N ,*{|2,}n B x x n ==∈N .将A B 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的最小值为 ▲ .14.【答案】27【解析】设=2k n a , 则()()()12211+221+221+222k k n S -⎡⎤⎡⎤=⨯-⨯-+⋅-+++⎣⎦⎣⎦()()1122121221212222212k k k k k ---++⨯--=+=+--,由112n n S a +>得()()()22211122212212202140k k k k k -+--+->+-->,,1522k -≥,6k ≥,所以只需研究5622n a <<是否有满足条件的解,此时()()()25251211+221+21+22222n S m m +⎡⎤=⨯-⨯-+-+++=+-⎡⎤⎣⎦⎣⎦,+121n a m =+,m 为等差数列项数,且16m >.由()251221221m m ++->+,224500m m -+>,22m ∴≥,527n m =+≥, 得满足条件的n 最小值为27.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分)在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥. 求证:(1)11AB A B C 平面∥; (2)111ABB A A BC ⊥平面平面.15.【答案】(1)见解析;(2)见解析. 【解析】(1)在平行六面体1111ABCD A BC D -中,11AB A B ∥.因为AB ⊄平面11A B C ,11A B ⊂平面11A B C ,所以AB ∥平面11A B C . (2)在平行六面体1111ABCD A BC D -中,四边形11ABB A 为平行四边形. 又因为1AA AB =,所以四边形11ABB A 为菱形,因此11AB A B ⊥.又因为111AB B C ⊥,11BC B C ∥,所以1AB BC ⊥. 又因为1A B BC B =,1A B ⊂平面1A BC ,BC ⊂平面1A BC , 所以1AB ⊥平面1A BC .因为1AB ⊂平面11ABB A , 所以平面11ABB A ⊥平面1A BC .16.(本小题满分14分)已知,αβ为锐角,4tan 3α=,cos()αβ+=.(1)求cos 2α的值;(2)求tan()αβ-的值.16.【答案】(1)725-;(2)211-. 【解析】(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=.因为22sin cos 1αα+=,所以29cos 25α=,因此,27cos 22cos 125αα=-=-. (2)因为α,β为锐角,所以()0,παβ+∈.又因为()cos 5αβ+=-,所以()sin 5αβ+==, 因此()tan 2αβ+=-.因为4tan 3α=,所以22tan 24tan 21tan 7ααα==--, 因此,()()()()tan 2tan 2tan tan 21tan 2tan 11ααβαβααβααβ-+-=-+==-⎡⎤⎣⎦++. 17.(本小题满分14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求,A B 均在线段MN 上,,C D 均在圆弧上.设OC 与MN 所成的角为θ. (1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围; (2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.17.【答案】(1)1,41⎡⎫⎪⎢⎣⎭;(2)当π6θ=时,能使甲、乙两种蔬菜的年总产值最大. 【解析】(1)连结PO 并延长交MN 于H ,则PH MN ⊥,所以10OH =. 过O 作OE BC ⊥于E ,则OE MN ∥,所以COE θ∠=, 故40cos OE θ=,40sin EC θ=,则矩形ABCD 的面积为()()240cos 40sin 108004sin cos cos θθθθθ⨯+=+,CDP △的面积为()()1240cos 4040sin 1600cos sin cos 2θθθθθ⨯⨯-=-.过N 作GN MN ⊥,分别交圆弧和OE 的延长线于G 和K ,则10GK KN ==.令0GOK θ∠=,则01sin 4θ=,0π0,6θ⎛⎫∈ ⎪⎝⎭.当0π2,θθ⎡⎫∈⎪⎢⎣⎭时,才能作出满足条件的矩形ABCD ,所以sin θ的取值范围是1,41⎡⎫⎪⎢⎣⎭.(2)因为甲、乙两种蔬菜的单位面积年产值之比为4:3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为()30k k >,则年总产值为()()48004sin cos cos 31600cos sin cos k k θθθθθθ⨯++⨯-()8000sin cos cos k θθθ=+,0π2,θθ⎡⎫∈⎪⎢⎣⎭.设() sin cos cos f θθθθ=+,0π2,θθ⎡⎫∈⎪⎢⎣⎭,则()()()()222cos sin sin 2sin sin 12sin 1sin 1f θθθθθθθθ'=--=-+-=--+.令()=0f θ',得π6θ=,当0π6,θθ⎛⎫∈ ⎪⎝⎭时,()>0f θ',所以()f θ为增函数; 当ππ,62θ⎛⎫∈ ⎪⎝⎭时,()<0f θ',所以()f θ为减函数,因此,当π6θ=时,()f θ取到最大值.18.(本小题满分16分)如图,在平面直角坐标系xOy 中,椭圆C过点1)2,焦点12(F F ,圆O 的直径为12F F . (1)求椭圆C 及圆O 的方程;(2)设直线l 与圆O 相切于第一象限内的点P .①若直线l 与椭圆C 有且只有一个公共点,求点P 的坐标;②直线l 与椭圆C 交于,A B 两点.若OAB △,求直线l 的方程.18.【答案】(1)椭圆C 的方程为2214x y +=;圆O 的方程为223x y +=;(2)①点P的坐标为);②直线l的方程为y =+.【解析】(1)因为椭圆C的焦点为()1F,)2F ,可设椭圆C 的方程为()222210x y a b a b +=>>.又点12⎫⎪⎭在椭圆C 上,所以222231143a b a b +=-=⎧⎪⎨⎪⎩,解得2241a b ==⎧⎨⎩,因此,椭圆C 的方程为2214x y +=. 因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于()()00000,,0P x y x y >>,则22003x y +=,所以直线l 的方程为()0000x y x x y y =--+,即0003x y x y y =-+.由22000143x y x y x y y ⎧⎪⎪⎨+==-+⎪⎪⎩,消去y ,得()222200004243640x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以()()()()22222200000024443644820x x y y y x ∆=--+-=-=.因为0x ,00y >,所以0x =01y =. 因此,点P的坐标为).②因为三角形OAB,所以12AB OP ⋅=,从而AB =. 设()11,A x y ,()22,B x y ,由(*)得120024x x y =+,所以()()()()2222200201212222200048214y x x AB x x y y y x y -⎛⎫=-+-=+⋅⎪⎝⎭+. 因为22003x y +=, 所以()()2022216232491x AB x-==+,即42002451000x x -+=, 解得2052x =(2020x =舍去),则2012y =,因此P的坐标为⎝⎭. 综上,直线l的方程为y =+.19.(本小题满分16分)记(),()f x g x ''分别为函数(),()f x g x 的导函数.若存在0x ∈R ,满足00()()f x g x =且00()()f x g x ''=,则称0x 为函数()f x 与()g x 的一个“S 点”.(1)证明:函数()f x x =与2()22g x x x =+-不存在“S 点”; (2)若函数2()1f x ax =-与()ln g x x =存在“S 点”,求实数a 的值;(3)已知函数2()f x x a =-+,e ()xb g x x=.对任意0a >,判断是否存在0b >,使函数()f x 与()g x 在区间(0,)+∞内存在“S 点”,并说明理由.19.【答案】(1)见解析;(2)a 的值为e 2; (3)对任意0a >,存在0b >,使函数()f x 与()g x 在区间()0,+∞内存在“S 点”.【解析】(1)函数()f x x =,()222g x x x =+-,则()1f x '=,()22g x x '=+.由()()f x g x =且()()f x g x ''=,得222122x x x x =+-=+⎧⎨⎩,此方程组无解,因此,()f x 与()g x 不存在“S ”点.(2)函数()21f x ax =-,()ln g x x =,则()2f x ax '=,()1g x x'=. 设0x 为()f x 与()g x 的“S ”点,由()0f x 与()0g x 且()0f x '与()0g x ',得200001ln 12ax x ax x ⎧-==⎪⎨⎪⎩,即200201ln 21ax x ax -==⎧⎨⎩,(*) 得01ln 2x =-,即120e x -=,则2121e e 22a -==⎛⎫⎪⎝⎭. 当e2a =时,120e x -=满足方程组(*),即0x 为()f x 与()g x 的“S ”点.因此,a 的值为e2.(3)对任意0a >,设()323h x x x ax a =--+.因为()00h a =>,()11320h a a =--+=-<,且()h x 的图象是不间断的,所以存在()00,1x ∈,使得()00h x =,令()03002e 1x x b x =-,则0b >.函数()2f x x a =-+,()e xb g x x =,则()2f x x '=-,()()2e 1x b x g x x-'=. 由()()f x g x =且()()f x g x ''=,得()22e e 12x x b x a xb x x x -+⎧⎪⎪⎨=--=⎪⎪⎩,即()()()00320030202e e 1e 122e 1xx x x x x a x x x x x x x -+=⋅---=⋅-⎧⎪⎪⎨⎪⎪⎩(**), 此时,0x 满足方程组(**),即0x 是函数()f x 与()g x 在区间()0,1内的一个“S 点”. 因此,对任意0a >,存在0b >,使函数()f x 与()g x 在区间()0,+∞内存在“S 点”.20.(本小题满分16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列. (1)设110,1,2a b q ===,若1||n n a b b -≤对1,2,3,4n =均成立,求d 的取值范围;(2)若*110,,(1a b m q =>∈∈N ,证明:存在d ∈R ,使得1||n n a b b -≤对2,3,,1n m =+均成立,并求d 的取值范围(用1,,b m q 表示).20.【答案】(1)d 的取值范围为75,32⎡⎤⎢⎥⎣⎦;(2)d 的取值范围为()112,m m b q b q m m ⎡⎤-⎢⎥⎢⎥⎣⎦,证明见解析.【解析】(1)由条件知:()1n a n d =-,12n n b -=.因为1n n a b b -≤对1n =,2,3,4均成立, 即()1121n n d ---≤对1n =,2,3,4均成立, 即11≤,13d ≤≤,325d ≤≤,739d ≤≤,得7532d ≤≤. 因此,d 的取值范围为75,32⎡⎤⎢⎥⎣⎦.(2)由条件知:()11n a b n d =+-,11n n b b q -=.若存在d ,使得1n n a b b -≤(2n =,3,,1m +)成立, 即()11111n b n d b q b -+--≤(2n =,3,,1m +),即当2n =,3,,1m +时,d 满足1111211n n q q b d b n n ---≤≤--.因为(q ∈,则112n mq q -<≤≤, 从而11201n q b n --≤-,1101n q b n ->-,对2n =,3,,1m +均成立. 因此,取0d =时,1n n a b b -≤对2n =,3,,1m +均成立.下面讨论数列121n q n -⎧⎫-⎨⎬-⎩⎭的最大值和数列11n q n -⎧⎫⎨⎬-⎩⎭的最小值(2n =,3,,1m +).①当2n m ≤≤时,()()()1112222111n n nn n n n n n q q q q q nq q nq n n n n n n -----+----+-==---, 当112mq <≤时,有2n m q q ≤≤,从而()120n n n n q q q ---+>.因此,当21n m ≤≤+时,数列121n q n -⎧⎫-⎨⎬-⎩⎭单调递增,故数列121n q n -⎧⎫-⎨⎬-⎩⎭的最大值为2m q m -. ②设()()21x f x x =-,当0x >时,()()ln21ln220x f x x =--<',所以()f x 单调递减,从而()()01f x f <=.当2n m ≤≤时,()111112111nn n q q n n f q n n n n --⎛⎫⎛⎫=≤-=< ⎪ ⎪⎝⎭⎝⎭-,因此,当21n m ≤≤+时,数列11n q n -⎧⎫⎨⎬-⎩⎭单调递减,故数列11n q n -⎧⎫⎨⎬-⎩⎭的最小值为mq m . 因此,d 的取值范围为()112,m m b q b q m m ⎡⎤-⎢⎥⎢⎥⎣⎦.数学Ⅱ(附加题)21.【选做题】本题包括 A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内...................作答...若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4—1:几何证明选讲](本小题满分10分)如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C.若PC =,求 BC 的长.A .【答案】2【解析】连结OC ,因为PC 与圆O 相切,所以OC PC ⊥.又因为PC =2OC =,所以4OP ==. 又因为2OB =,从而B 为Rt OCP △斜边的中点,所以2BC =.B .[选修4—2:矩阵与变换](本小题满分10分)已知矩阵2312⎡⎤=⎢⎥⎣⎦A . (1)求A 的逆矩阵1-A ;(2)若点P 在矩阵A 对应的变换作用下得到点(3,1)P ',求点P 的坐标.B .【答案】(1)12312A --⎡⎤=⎢⎥-⎣⎦;(2)()3,1-. 【解析】(1)因为2312A ⎡⎤=⎢⎥⎣⎦,()det 221310A =⨯-⨯=≠, 所以A 可逆,从而12312A --⎡⎤=⎢⎥-⎣⎦. (2)设(),P x y ,则233121x y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以13311x A y -⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦,因此点P 的坐标为()3,1-.C .[选修4—4:坐标系与参数方程](本小题满分10分)在极坐标系中,直线l 的方程为πsin()26ρθ-=,曲线C 的方程为4cos ρθ=,求直线l被曲线C 截得的弦长.C .【答案】直线l 被曲线C 截得的弦长为 【解析】因为曲线C 的极坐标方程为4cos ρθ=, 所以曲线C 的圆心为()2,0,直径为4的圆.因为直线l 的极坐标方程为sin 2π6ρθ⎛⎫-= ⎪⎝⎭,则直线l 过()4,0A ,倾斜角为π6,所以A 为直线l 与圆C 的一个交点.设另一个交点为B ,则π6OAB ∠=.连结OB ,因为OA 为直径,从而π2OBA ∠=,所以4cos 6πAB ==.因此,直线l 被曲线C 截得的弦长为D .[选修4—5:不等式选讲](本小题满分10分)若x ,y ,z 为实数,且x +2y +2z =6,求222x y z ++的最小值.D .【答案】4【解析】由柯西不等式,得()()()222222212222x y z x y z ++++≥++.因为22=6x y z ++,所以2224x y z ++≥,当且仅当122x y z ==时,不等式取等号,此时23x =,43y =,43z =,所以222x y z ++的最小值为4.【必做题】第22题、第23题,每题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)如图,在正三棱柱ABC -A 1B 1C 1中,AB =AA 1=2,点P ,Q 分别为A 1B 1,BC 的中点.(1)求异面直线BP 与AC 1所成角的余弦值; (2)求直线CC 1与平面AQC 1所成角的正弦值.22.【答案】(1;(2 【解析】如图,在正三棱柱111ABC A B C -中,设AC ,11AC 的中点分别为O ,1O ,则OB OC ⊥,1OO OC ⊥,1OO OB ⊥,以{}1,,OB OC OO 为基底,建立空间直角坐标系O xyz -.因为12AB AA ==, 所以()01,0A -,,)B,()0,1,0C ,()10,1,2A -,)12B ,()10,1,2C .(1)因为P 为11A B的中点,所以1,22P ⎫-⎪⎪⎝⎭,从而1,22BP ⎛⎫=- ⎪ ⎪⎝⎭,()10,2,2AC =,故111cos ,5BP AC BP AC BP AC ⋅-<>===⋅ 因此,异面直线BP 与1AC 所成角的余弦值为20. (2)因为Q 为BC 的中点,所以1,022Q ⎛⎫ ⎪⎪⎝⎭, 因此33,02AQ ⎛⎫= ⎪⎪⎝⎭,()10,2,2AC =,()10,0,2CC =.设(),,x y z =n 为平面1AQC 的一个法向量,则100AQ AC ⎧=⋅=⎨⎪⋅⎪⎩n n即302220x y y z +=+=⎪⎩, 不妨取)1,1=-n ,设直线1CC 与平面1AQC 所成角为θ,则111sin cos ,CC CC CC θ⋅=<>===⋅n n n, 所以直线1CC 与平面1AQC 所成角的正弦值为5.23.(本小题满分10分)设*n ∈N ,对1,2,···,n 的一个排列12n i i i ,如果当s <t 时,有s t i i >,则称(,)s t i i 是排列12n i i i 的一个逆序,排列12n i i i 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序(2,1),(3,1),则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数.(1)求34(2),(2)f f 的值;(2)求(2)(5)n f n ≥的表达式(用n 表示).23.【答案】(1)2,5;(2)5n ≥时,()2222n n n f --=.【解析】(1)记()abc τ为排列abc 的逆序数,对1,2,3的所有排列,有()123=0τ,()132=1τ,()213=1τ,()231=2τ,()312=2τ,()321=3τ,所以()301f =,()()33122f f ==.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置. 因此,()()()()433322105f f f f =++=.(2)对一般的()4n n ≥的情形,逆序数为0的排列只有一个:12n ,所以()01n f =.逆序数为1的排列只能是将排列12n 中的任意相邻两个数字调换位置得到的排列,所以()11n f n =-.为计算()12n f +,当1,2,…,n 的排列及其逆序数确定后,将1n +添加进原排列,1n +在新排列中的位置只能是最后三个位置.因此,()()()()()122102n n n n n f f f f f n +=++=+.当5n ≥时, ()()()()()()()()11254422222222n n n n n f f f f f f f f ---=-+-++-+⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦()()()24212422n n n n f --=-+-+++=,因此,5n ≥时,()2222n n n f --=.。
2018年成人高等学校招生全国统一考试专升本《高等数学(二)》试题及答案解析
2018年成人高等学校招生全国统一考试专升本高等数学(二)本试卷分第Ⅰ卷(选择题)和第卷(非选择题)两部分,满分150分,考试时间120分.第Ⅰ卷(选择题,共40分)一、选择题(1~10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1. lim x→0xcosx =( )A. eB.2C. 1D. 02. 若y =1+cosx ,则dy = ( )A. (1+ sinx)dxB. (1−sinx)dxC. sinxdxD.−sinxdx3. 若函数f(x)=5x ,则f′(x)= ( )A. 5x−1B. x5x−1C. 5x ln5D.5x4. 曲线y =x 3+2x 在点(1,3)处的法线方程是 ( )A. 5x +y −8=0B. 5x −y −2=0C. x +5y −16=0D. x −5y +14=05. ∫12−xdx =( )A. ln |2−x|+CB. −ln |2−x|+CC.−1(2−x)2+C D. 1(2−x )2+C6. ∫f′(2x)dx = ( )A. 12f(2x)+CB. f(2x)+CC. 2f(2x)+CD. 12f(x)+C7. 若f(x)为连续的奇函数,则∫f(x)1−1dx = ( )A. 0B. 2C. 2f(−1)D. 2f(1)8. 若二元函数z =x 2y +3x +2y ,则ðz ðx=( )A. 2xy +3+2yB. xy +3+2yC. 2xy +3D. xy +39. 设区域D ={(x ,y)|0≤y ≤x 2,0≤x ≤1},则D 绕x 轴旋转一周所得旋转体的体积为 ( )A. π5B. π3C. π2D. π10. 设A ,B 为两个随机事件,且相互独立,P(A)=0.6,P(B)=0.4,则P(A −B )=( )A. 0.24B. 0.36C. 0.4D. 0.6第Ⅱ卷(非选择题,共110分)二、填空题(11~20小题,每小题4分,共40分)11. 曲线y =x 3−6x 2+3x +4的拐点为 . 12. lim x→0(1−3x )1x = .13.若函数f(x)=x −arctanx ,则f′(x)= . 14. 若y =e 2x 则dy = . 15. 设f(x)=x 2x ,则f′(x)= . 16. ∫(2x +3)dx = . 17. ∫(x 5+x 2)1−1dx = . 18. ∫sin x 2π0dx = . 19. ∫e−x +∞0dx = .20. 若二元函数:z =x 2y 2,则ð2z ðxðy= .三、解答题(21~28题,共70分。
2018年普通高等学校招生全国统一考试数学试题(江苏卷,含解析)
S←1
I←1
【答案】7 While I
10
【解析】S←S+2
试题分析I:←第I+一3 次循环: S 3, I 4 ;第二次循环: S 5, I 7 ;第三次循环: S 7, I 10 ;结束循环,输出 SEn7d. While
Print S 考点:循环结构流程图
(第 4 题图)
6
6
6
6
4
62
6
因此
11 k 0
ak
ak 1
33 4
12
9
3
考点:向量数量积,三角函数性质
二、解答题 (本大题共 6 小题,共 90 分.解答应写出文字说明、证明过程或演算步骤.)
15.(本小题满分 14 分)
在 ABC 中,已知 AB 2, AC 3, A 60 .
g(x)
|
0,0 x 1
x2
4
|
2,
x
,则方程
1
|
f
(x)
g(x) | 1 实根的个数为
【答案】4
考点:函数与方程
14.设向量 ak
(cos
k 6
, sin
k 6
cos k 6
)(k
11
0,1,2,,12) ,则 (ak ak1) 的值为 k 0
5.袋中有形状、大小都相同的 4 只球,其中 1 只白球,1 只红球,2 只黄球,从中一次随机摸出 2 只球,
则这 2 只球颜色不同的概率为________. 【答案】 5 .
6
考点:古典概型概率
6.已知向量 a= (2,1) ,b= (1,2) , 若 ma+nb= (9,8) ( m, n R ), m n 的值为______.
2018年全国普通高等学校招生统一考试数学真题及答案(江苏卷)
绝密★启用前2018年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ参考公式:锥体的体积,其中是锥体的底面积,是锥体的高.一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置.......上..1. 已知集合,,那么________.【答案】{1,8}【解析】分析:根据交集定义求结果.详解:由题设和交集的定义可知:.点睛:本题考查交集及其运算,考查基础知识,难度较小.2. 若复数满足,其中i是虚数单位,则的实部为________.【答案】2【解析】分析:先根据复数的除法运算进行化简,再根据复数实部概念求结果.详解:因为,则,则的实部为.点睛:本题重点考查复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭复数为.3. 已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.【答案】90【解析】分析:先由茎叶图得数据,再根据平均数公式求平均数.点睛:的平均数为.4. 一个算法的伪代码如图所示,执行此算法,最后输出的S的值为________.【答案】8【解析】分析:先判断是否成立,若成立,再计算,若不成立,结束循环,输出结果.详解:由伪代码可得,因为,所以结束循环,输出点睛:本题考查伪代码,考查考生的读图能力,难度较小.5. 函数的定义域为________.【答案】[2,+∞)【解析】分析:根据偶次根式下被开方数非负列不等式,解对数不等式得函数定义域.详解:要使函数有意义,则,解得,即函数的定义域为.点睛:求给定函数的定义域往往需转化为解不等式(组)的问题.6. 某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.【答案】【解析】分析:先确定总基本事件数,再从中确定满足条件的基本事件数,最后根据古典概型概率公式求概率.详解:从5名学生中抽取2名学生,共有10种方法,其中恰好选中2名女生的方法有3种,因此所求概率为点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法(理科):适用于限制条件较多且元素数目较多的题目.7. 已知函数的图象关于直线对称,则的值是________.【答案】【解析】分析:由对称轴得,再根据限制范围求结果.详解:由题意可得,所以,因为,所以点睛:函数(A>0,ω>0)的性质:(1);(2)最小正周期;(3)由求对称轴;(4)由求增区间; 由求减区间.8. 在平面直角坐标系中,若双曲线的右焦点到一条渐近线的距离为,则其离心率的值是________.【答案】2【解析】分析:先确定双曲线的焦点到渐近线的距离,再根据条件求离心率.点睛:双曲线的焦点到渐近线的距离为b,焦点在渐近线上的射影到坐标原点的距离为a. 9. 函数满足,且在区间上,则的值为________.【答案】【解析】分析:先根据函数周期将自变量转化到已知区间,代入对应函数解析式求值,再代入对应函数解析式求结果.详解:由得函数的周期为4,所以因此点睛:(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现的形式时,应从内到外依次求值.(2)求某条件下自变量的值,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.10. 如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.【答案】【解析】分析:先分析组合体的构成,再确定锥体的高,最后利用锥体体积公式求结果.详解:由图可知,该多面体为两个全等正四棱锥的组合体,正四棱锥的高为1,底面正方形的边长等于,所以该多面体的体积为点睛:解决本类题目的关键是准确理解几何体的定义,真正把握几何体的结构特征,可以根据条件构建几何模型,在几何模型中进行判断;求一些不规则几何体的体积时,常用割补法转化成已知体积公式的几何体进行解决.11. 若函数在内有且只有一个零点,则在上的最大值与最小值的和为________.【答案】–3【解析】分析:先结合三次函数图象确定在上有且仅有一个零点的条件,求出参数a,再根据单调性确定函数最值,即得结果.详解:由得,因为函数在上有且仅有一个零点且,所以,因此从而函数在上单调递增,在上单调递减,所以,点睛:对于函数零点个数问题,可利用函数的单调性、草图确定其中参数取值条件.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.12. 在平面直角坐标系中,A为直线上在第一象限内的点,,以AB为直径的圆C与直线l交于另一点D.若,则点A的横坐标为________.【答案】3【解析】分析:先根据条件确定圆方程,再利用方程组解出交点坐标,最后根据平面向量的数量积求结果.详解:设,则由圆心为中点得易得,与联立解得点D的横坐标所以.所以,由得或,因为,所以点睛:以向量为载体求相关变量的取值或范围,是向量与函数、不等式、三角函数、曲线方程等相结合的一类综合问题.通过向量的坐标运算,将问题转化为解方程或解不等式或求函数值域,是解决这类问题的一般方法.13. 在中,角所对的边分别为,,的平分线交于点D,且,则的最小值为________.【答案】9【解析】分析:先根据三角形面积公式得条件、再利用基本不等式求最值.详解:由题意可知,,由角平分线性质和三角形面积公式得,化简得,因此当且仅当时取等号,则的最小值为.点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.14. 已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________.【答案】27【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值.详解:设,则由得所以只需研究是否有满足条件的解,此时,,为等差数列项数,且.由得满足条件的最小值为.点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如).二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤.15. 在平行六面体中,.求证:(1);(2).【答案】答案见解析【解析】分析:(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得菱形ABB1A1,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.详解:证明:(1)在平行六面体ABCD-A1B1C1D1中,AB∥A1B1.因为AB平面A 1B1C,A1B1平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A 1B∩BC=B,A1B平面A1BC,BC平面A1BC,所以AB1⊥平面A1BC.因为AB 1平面ABB1A1,所以平面ABB1A1⊥平面A1BC.点睛:本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明.16. 已知为锐角,,.(1)求的值;(2)求的值.【答案】(1)(2)【解析】分析:先根据同角三角函数关系得,再根据二倍角余弦公式得结果;(2)先根据二倍角正切公式得,再利用两角差的正切公式得结果.详解:解:(1)因为,,所以.因为,所以,因此,.(2)因为为锐角,所以.又因为,所以,因此.因为,所以,因此,.点睛:应用三角公式解决问题的三个变换角度(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”.(2)变名:通过变换函数名称达到减少函数种类的目的,其手法通常有“切化弦”、“升幂与降幂”等.(3)变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与组合”、“配方与平方”等. 17. 某农场有一块农田,如图所示,它的边界由圆O的一段圆弧(P为此圆弧的中点)和线段MN构成.已知圆O的半径为40米,点P到MN的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD,大棚Ⅱ内的地块形状为,要求均在线段上,均在圆弧上.设OC与MN所成的角为.(1)用分别表示矩形和的面积,并确定的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为.求当为何值时,能使甲、乙两种蔬菜的年总产值最大.【答案】(1)矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)当θ=时,能使甲、乙两种蔬菜的年总产值最大【解析】分析:(1)先根据条件求矩形长与宽,三角形的底与高,再根据矩形面积公式以及三角形面积公式得结果,最后根据实际意义确定的取值范围;(2)根据条件列函数关系式,利用导数求极值点,再根据单调性确定函数最值取法.详解:解:(1)连结PO并延长交MN于H,则PH⊥MN,所以OH=10.过O作OE⊥BC于E,则OE∥MN,所以∠COE=θ,故OE=40cosθ,EC=40sinθ,则矩形ABCD的面积为2×40cosθ(40sinθ+10)=800(4sinθcosθ+cosθ),△CDP的面积为×2×40cosθ(40–40sinθ)=1600(cosθ–sinθcosθ).过N作GN⊥MN,分别交圆弧和OE的延长线于G和K,则GK=KN=10.令∠GOK=θ0,则sinθ0=,θ0∈(0,).当θ∈[θ0,)时,才能作出满足条件的矩形ABCD,所以sinθ的取值范围是[,1).答:矩形ABCD的面积为800(4sinθcosθ+cosθ)平方米,△CDP的面积为1600(cosθ–sinθcosθ),sinθ的取值范围是[,1).(2)因为甲、乙两种蔬菜的单位面积年产值之比为4∶3,设甲的单位面积的年产值为4k,乙的单位面积的年产值为3k(k>0),则年总产值为4k×800(4sinθcosθ+cosθ)+3k×1600(cosθ–sinθcosθ)=8000k(sinθcosθ+cosθ),θ∈[θ0,).设f(θ)= sinθcosθ+cosθ,θ∈[θ0,),则.令,得θ=,当θ∈(θ0,)时,,所以f(θ)为增函数;当θ∈(,)时,,所以f(θ)为减函数,因此,当θ=时,f(θ)取到最大值.答:当θ=时,能使甲、乙两种蔬菜的年总产值最大.点睛:解决实际应用题的步骤一般有两步:一是将实际问题转化为数学问题;二是利用数学内部的知识解决问题.18. 如图,在平面直角坐标系中,椭圆C过点,焦点,圆O的直径为.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于两点.若的面积为,求直线l的方程.【答案】(1)椭圆C的方程为;圆O的方程为(2)①点P的坐标为;②直线l的方程为【解析】分析:(1)根据条件易得圆的半径,即得圆的标准方程,再根据点在椭圆上,解方程组可得a,b,即得椭圆方程;(2)第一问先根据直线与圆相切得一方程,再根据直线与椭圆相切得另一方程,解方程组可得切点坐标.第二问先根据三角形面积得三角形底边边长,再结合①中方程组,利用求根公式以及两点间距离公式,列方程,解得切点坐标,即得直线方程. 详解:解:(1)因为椭圆C的焦点为,可设椭圆C的方程为.又点在椭圆C上,所以,解得因此,椭圆C的方程为.因为圆O的直径为,所以其方程为.(2)①设直线l与圆O相切于,则,所以直线l的方程为,即.由,消去y,得.(*)因为直线l与椭圆C有且只有一个公共点,所以.因为,所以.因此,点P的坐标为.②因为三角形OAB的面积为,所以,从而.设,由(*)得,所以.因为,所以,即,解得舍去),则,因此P的坐标为.综上,直线l的方程为.点睛:直线与椭圆的交点问题的处理一般有两种处理方法:一是设出点的坐标,运用“设而不求”思想求解;二是设出直线方程,与椭圆方程联立,利用韦达定理求出交点坐标,适用于已知直线与椭圆的一个交点的情况.19. 记分别为函数的导函数.若存在,满足且,则称为函数与的一个“S点”.(1)证明:函数与不存在“S点”;(2)若函数与存在“S点”,求实数a的值;(3)已知函数,.对任意,判断是否存在,使函数与在区间内存在“S点”,并说明理由.【答案】(1)证明见解析(2)a的值为(3)对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.【解析】分析:(1)根据题中“S点”的定义列两个方程,根据方程组无解证得结论;(2)同(1)根据“S点”的定义列两个方程,解方程组可得a的值;(3)通过构造函数以及结合“S 点”的定义列两个方程,再判断方程组是否有解即可证得结论.详解:解:(1)函数f(x)=x,g(x)=x2+2x-2,则f′(x)=1,g′(x)=2x+2.由f(x)=g(x)且f′(x)= g′(x),得,此方程组无解,因此,f(x)与g(x)不存在“S”点.(2)函数,,则.设x0为f(x)与g(x)的“S”点,由f(x0)与g(x0)且f′(x0)与g′(x0),得,即,(*)得,即,则.当时,满足方程组(*),即为f(x)与g(x)的“S”点.因此,a的值为.(3)对任意a>0,设.因为,且h(x)的图象是不间断的,所以存在∈(0,1),使得,令,则b>0.函数,则.由f(x)与g(x)且f′(x)与g′(x),得,即(**)此时,满足方程组(**),即是函数f(x)与g(x)在区间(0,1)内的一个“S点”.因此,对任意a>0,存在b>0,使函数f(x)与g(x)在区间(0,+∞)内存在“S点”.点睛:涉及函数的零点问题、方程解的个数问题、函数图象交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.20. 设是首项为,公差为d的等差数列,是首项为,公比为q的等比数列.(1)设,若对均成立,求d的取值范围;(2)若,证明:存在,使得对均成立,并求的取值范围(用表示).【答案】(1)d的取值范围为.(2)d的取值范围为,证明见解析。
江苏专升本高等数学真题(附答案)
江苏专转本高数考纲及重点总结一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。
(2)理解和把握函数的简单性质:单调性,奇偶性,有界性,周期性。
(3)了解反函数:反函数的定义,反函数的图象。
(4)把握函数的四则运算与复合运算。
(5)理解和把握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。
(6)了解初等函数的概念。
重点:函数的单调性、周期性、奇偶性,分段函数和隐函数(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,把握极限的四则运算法则。
(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。
(4)把握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。
(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。
(6)熟练把握用两个重要极限求极限的方法。
重点:会用左、右极限求解分段函数的极限,把握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限。
(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的中断点及其分类。
(2)把握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的中断点及确定其类型。
(3)把握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。
(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。
重点:理解函数(左、右连续)性的概念,会判别函数的中断点。
2019—2019年江苏专转本高数真题(打印版)共18页
2019—2019年江苏专转本⾼数真题(打印版)共18页第 1 页2005年江苏省普通⾼校“专转本”统⼀考试⾼等数学⼀、选择题(本⼤题共6⼩题,每⼩题4分,满分24分.)1、0=x 是xx x f 1sin )(=的A 、可去间断点B 、跳跃间断点C 、第⼆类间断点D 、连续点2、若2=x 是函数)21ln(ax x y +-=的可导极值点,则常数=aA 、1-B 、21C 、21- D 、13、若?+=C x F dx x f )()(,则?=dx x xf )(cos sinA 、C x F +)(sinB 、C x F +-)(sin C 、C F +(cos)D 、C x F +-)(cos 4、设区域D 是xoy 平⾯上以点)1,1(A 、)1,1(-B 、)1,1(--C 为顶点的三⾓形区域,区域1D 是D 在第⼀象限的部分,则:=+??dxdy y x xy D)sin cos (A 、??1)sin (cos 2D dxdy y xB 、??12D xydxdyC 、??+1)sin cos (4D dxdy y x xy D 、05、设yxy x u arctan ),(=,22ln ),(y x y x v +=,则下列等式成⽴的是v x u ??=?? B 、xvx u ??=C 、x v y u ??=??D 、yv y u ??=??6、正项级数(1) ∑∞=1n n u 、(2) ∑∞=13n n u ,则下列说法正确的是A 、若(1)发散、则(2)必发散B 、若(2)收敛、则(1)必收敛C 、若(1)发散、则(2)不定D 、若(1)、(2)敛散性相同⼆、填空题(本⼤题共6⼩题,每⼩题4分,满分24分)第 2 页7、=----→x x xe e x x x sin 2lim; 8、函数x x f ln )(=在区间[]e ,1上满⾜拉格郎⽇中值定理的=ξ;9、=++?-11211x x π;10、设向量{}2,4,3-=α、{}k ,1,2=β;α、β互相垂直,则=k ;11、交换⼆次积分的次序=?-+-dy y x f dx x x 2111),( ;12、幂级数∑∞=-1)12(n n x n 的收敛区间为;13、设函数+=a xx x f x F sin 2)()( 00=≠x x 在R 内连续,并满⾜:0)0(=f 、6)0('=f ,求a .14、设函数)(x y y =由⽅程?-==t t t y t x cos sin cos 所确定,求dx dy、22dx y d .15、计算?xdx x sec tan 3.16、计算?10arctan xdx17、已知函数),(sin 2y x f z =,其中),(v u f 有⼆阶连续偏导数,求xz、y x z2 18、求过点)2,1,3(-A 且通过直线12354:zy x L =+=-的平⾯⽅程. 19、把函数222)(xx x x f --=展开为x 的幂级数,并写出它的收敛区间.20、求微分⽅程0'=-+x e y xy 满⾜e y x ==1的特解.四、证明题(本题8分)21、证明⽅程:0133=+-x x 在[]1,1-上有且仅有⼀根.第 3 页五、综合题(本⼤题共4⼩题,每⼩题10分,满分30分) 22、设函数)(x f y =的图形上有⼀拐点)4,2(P ,在拐点处的切线斜率为3-,⼜知该函数的⼆阶导数a x y +=6'',求)(x f .23、已知曲边三⾓形由x y 22=、0=x 、1=y 所围成,求:(1)、曲边三⾓形的⾯积;(2)、曲边三⾓形饶X 轴旋转⼀周的旋转体体积.24、设)(x f 为连续函数,且1)2(=f ,dx x f dy u F uyu=)()(1,)1(>u(1)、交换)(u F 的积分次序;(2)、求)2('F .⾼等数学参考答案1、A2、C3、D4、B5、A6、C7、2 8、1-e 9、2π10、5 11、dx y x f dy y y ??---11102),( 12、)1,1(-13、因为)(x F 在0=x 处连续,所以)0()(lim 0F x F x =→,8262)0(2)0()(sin 2)()('0lim limlim =+=+=+-=+=→→→f x f x f x x x f x F x x x a F =)0(,故8=a .14、t t t t t t dtdx dt dydx dy -=-+-==sin sin cos cos ,t t x y dx y d t t csc sin 1)('''22=--==. 15、原式C x x x x xd x d x +-=-=-=??sec sec 31sec sec sec sec )1(sec 322.16、原式??++-=+-=102210211)1(2141arctan x x d dx x x x x π 102)1ln(214x +-=π2ln 214-=π 17、'z ?=??,''12''122cos 2)2(cos xf y y f x y x z =?= 18、{}1,2,5=l ,{}0,3,4-=B ,{}2,4,1-= {}22,9,8241125--=-=?=kj il π平⾯点法式⽅程为:0)2(22)1(9)3(8=+----z y x ,即592298=--z y x .19、x x x x x x x x f -?++?=-++=1132116)1121(3)(222nn n n x x ∑∞=+??+-=01212)1(3,收敛域为11<<-x . 20、xe y x y x=?+1',通解为第 5 页x e x C C dx e x e e y x dx x x dx x +=+=-11 因为e y =)1(,C e e +=,所以0=C ,故特解为xey x=.21、证明:令13)(3+-=x x x f ,[]1,1-∈x ,且03)1(>=-f ,01)1(<-=f ,0)1()1(由连续函数零点定理知,)(x f 在)1,1(-上⾄少有⼀实根. (提醒:本题亦可⽤反证法证明)22、设所求函数为)(x f y =,则有4)2(=f ,3)2('-=f ,0)2(''=f .因为126''-=x y ,故12'123C x x y +-=,由3)2('-=y ,解得91=C . 故22396C x x x y ++-=,由4)2(=y ,解得22=C . 所求函数为:29623++-=x x x y . 23、(1)61612113102===?y dy y S (2)4021)()21(2212πππ=-=-=?x x dx x V x24、解:积分区域D 为:u y ≤≤1,u x y ≤≤(1)-===uxuDdx x f x dy x f dx d x f u F 111)()1()()()(σ;(2))()1()('u f u u F -=,1)2()2()12()2('==-=f f F .2006年江苏省普通⾼校“专转本”统⼀考试⾼等数学参考答案1、C2、B3、C4、C5、C6、A7、2 8、)(0x f 9、1- 10、1 11、)cos sin (x x y e xy + 12、113、原式3221==--→x xx 14、21211122''t t t t x y dx dy tt =++-==,t t t t x dx dy dx y d t 411221)(22''22+=+== 15、原式C x x d x ++=++=?23 )ln 1(32)ln 1(ln 1第 6 页16、原式x d x dx x x xx x d x cos 24sin 2sin sin 20220202202+=-==πππππ24cos 2cos 24220202-=-+=πππx17、⽅程变形为2'-=x y x y y ,令x y p =则''xp p y +=,代⼊得:2'p xp -=,分离变量得:dx x dp p ??=-112,故C x p +=ln 1,C x x y +=ln . 18、令)1ln()(x x g +=,0)0(=g ,200'1)1()1()(+∞=∞=∑∑+-=-=n n n n nn x n dx x x g ,故201)1()(+∞=∑+-=n n n x n x f ,11<<-x . 19、{}1,1,11-n 、{}1,3,42-n ,k j i kj i n n l ++=--=?=3213411321直线⽅程为123123+=-=-z y x . 20、'22f x yz=??, ''222''213'2''22''212'2222)2(2yf x f x xf y f x f x xf xy z ++=?+?+=. 21、令33)(x x x f -=,[]2,2-∈x ,033)(2'=-=x x f ,1±=x ,2)1(-=-f ,2)1(=f ,2)2(-=f ,2)2(=-f ;所以2min -=f ,2max =f ,故2)(2≤≤-x f ,即233≤-x x .22、y x y +=2',0)0(=y通解为x Ce x y +--=)22(,由0)0(=y 得2=C ,故x e x y 222+--=. 23、(1)364)8(2222=--=?-dx x x S (2)πππ16)8()(284240=-+=??dy y dy y V 24、dx x f t dy x f dx dxdy x f tt t D t==000)()()(=≠=?00)()(0t a(1)0)(lim )(lim 00==?→→dx x f t g tt t ,由)(t g 的连续性可知0)(lim )0(0===→t g g a t (2)当0≠t 时,)()('t f t g =,第 7 页当0=t 时,)0()(lim )(lim )0()(lim )0(000'f h f hdx x f hg h g g h hh h ===-=→→→?综上,)()('t f t g =.2006年江苏省普通⾼校“专转本”统⼀考试⾼等数学⼀、选择题(本⼤题共6⼩题,每⼩题4分,满分24分.)1、若21)2(lim 0=→x x f x ,则=→)3(lim0x f x x A 、21 B 、2 C 、3 D 、312、函数=≠=001sin)(2x x xx x f 在0=x 处A 、连续但不可导B 、连续且可导C 、不连续也不可导D 、可导但不连续3、下列函数在[]1,1-上满⾜罗尔定理条件的是A 、x e y =C 、21x y -=D 、xy 11-= 4、已知C e dx x f x +=?2)(,则=-?dx x f )('A 、C e x +-22B 、C e x +-221C 、C e x +--22D 、C e x +--2215、设∑∞=1n n u 为正项级数,如下说法正确的是A 、如果0lim 0=→n n u ,则∑∞=1n n u 必收敛B 、如果l u u nn n =+∞→1lim)0(∞≤≤l ,则∑∞=1n n u 必收敛 C 、如果∑∞=1n n u ,则∑∞=12n nu 必定收敛 D 、如果∑∞=-1)1(n n nu ,则∑∞=1n n u 必定收敛=1D }0,0,1|),{(22≥≥≤+y x y x y x ,则??=Ddxdy y x f ),(A 、0B 、??1),(D dxdy y x f C 、2??1),(D dxdy y x f D 、4??1),(D dxdy y x f⼆、填空题(本⼤题共6⼩题,每⼩题4分,满分24分)第 8 页7、已知0→x 时,)cos 1(x a -与x x sin 是等级⽆穷⼩,则=a 8、若A x f x x =→)(lim 0,且)(x f 在0x x =处有定义,则当=A 时,)(x f 在0x x =处连续.9、设)(x f 在[]1,0上有连续的导数且2)1(=f ,?=103)(dx x f ,则=1')(dx x xf10、设1=,⊥,则=+?)(b a a11、设x e u xysin =,=??xu12、=??Ddxdy . 其中D 为以点)0,0(O 、)0,1(A 、)2,0(B 为顶点的三⾓形区域.三、解答题(本⼤题共8⼩题,每⼩题8分,满分64分)13、计算11lim31--→x x x . 14、若函数)(x y y =是由参数⽅程-=+=tt y t x arctan )1ln(2所确定,求dx dy 、22dx y d .15、计算?+dx xxln 1. 16、计算dx x x ?20.17、求微分⽅程2'2y xy y x -=的通解.18、将函数)1ln()(x x f +=展开为x 的幂函数(要求指出收敛区间). 19、求过点)2,1,3(-M 且与⼆平⾯07=-+-z y x 、0634=-+-z y x 都平⾏的直线⽅程.20、设),(2xy x xf z =其中),(v u f 的⼆阶偏导数存在,求y z ??、x y z 2.四、证明题(本题满分8分).21、证明:当2≤x 时,233≤-x x .五、综合题(本⼤题共3⼩题,每⼩题10分,满分30分)22、已知曲线)(x f y =过原点且在点),(y x 处的切线斜率等于y x +2,求此曲线⽅程.第 9 页23、已知⼀平⾯图形由抛物线2x y =、82+-=x y 围成. (1)求此平⾯图形的⾯积;(2)求此平⾯图形绕y 轴旋转⼀周所得的旋转体的体积.24、设??=≠=??00)(1)(t a t dxdy x f t t g t D ,其中t D 是由t x =、t y =以及坐标轴围成的正⽅形区域,函数)(x f 连续. (1)求a 的值使得)(t g 连续;(2)求)('t g .2007年江苏省普通⾼校“专转本”统⼀考试⾼等数学⼀、单项选择题(本⼤题共6⼩题,每⼩题4分,满分24分.)1、若2)2(lim0=→x x f x ,则=∞→)21(lim x xf xA 、41B 、21C 、2D 、42、已知当0→x 时,)1ln(22x x +是x n sin 的⾼阶⽆穷⼩,⽽x n sin ⼜是x cos 1-的⾼阶⽆穷⼩,则正整数=nA 、1B 、2C 、3D 、43、设函数)3)(2)(1()(---=x x x x x f ,则⽅程0)('=x f 的实根个数为B 、2C 、3D 、4 4、设函数)(x f 的⼀个原函数为x 2sin ,则=?dx x f )2('A 、C x +4cosB 、C x +4cos 21C 、C x +4cos 2D 、C x +4sin5、设dt t x f x ?=212sin )(,则=)('x fA 、4sin xB 、2sin 2x xC 、2cos 2x xD 、4sin 2x x 6、下列级数收敛的是A 、∑∞=122n n n B 、∑∞=+11n n nC 、∑∞=-+1)1(1n n nD 、∑∞=-1)1(n n n。
2018年普通高等学校招生全国统一考试 数学 (江苏卷) 精校版(含答案)
2018年普通高等学校招生全国统一考试数 学(江苏卷)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
数学I 试题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上.1.已知集合{}0,1,2,8A =,{}1,1,6,8B =-,那么A B =________. 2.若复数z 满足i 12i z ⋅=+,其中i 是虚数单位,则z 的实部为________.3.已知5位裁判给某运动员打出的分数的茎叶图如图所示,那么这5位裁判打出的分数的平均数为________.4.一个算法的伪代码如图所示,执行此算法,最后输出的S 的值为________.5.函数()f x =________.6.某兴趣小组有2名男生和3名女生,现从中任选2名学生去参加活动,则恰好选中2名女生的概率为________.7.已知函数()s i n 22π2πy x ϕϕ⎛⎫=+-<< ⎪⎝⎭的图象关于直线π3x =对称,则ϕ的值是________.8.在平面直角坐标系xOy 中,若双曲线()222210,0x y a b a b-=>>的右焦点(),0F c 到一条,则其离心率的值是________. 9.函数()f x 满足()()()4f x f x x +=∈R ,且在区间(]2,2-上,()πcos ,0221,202x x f x x x ⎧<≤⎪⎪=⎨⎪+-<≤⎪⎩,则()()15f f 的值为________.10.如图所示,正方体的棱长为2,以其所有面的中心为顶点的多面体的体积为________.11.若函数()()3221f x x ax a =-+∈R 在()0,+∞内有且只有一个零点,则()f x 在[]1,1-上的最大值与最小值的和为________.12.在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,()5,0B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为________. 13.在ABC △中,角A ,B ,C 所对的边分别为a ,b ,c ,120ABC ∠=︒,ABC ∠的平分线交AC 于点D ,且1BD =,则4a c +的最小值为________.14.已知集合{}*21,A x x n n ==-∈N ,{}*2,n B x x n ==∈N .将A B 的所有元素从小到大依次排列构成一个数列{}n a .记n S 为数{}n a 列的前n 项和,则使得112n n S a +>成立的n 的最小值为________.二、解答题:本大题共6小题,共计90分.请在答题卡的指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)在平行六面体1111ABCD A B C D -中,1AA AB =,111AB B C ⊥.此卷只装订不密封班级 姓名 准考证号 考场号 座位号求证:(1)AB ∥平面11A B C ; (2)平面11ABB A ⊥平面1A BC .16.(14分)已知α,β为锐角,4tan 3α=,()cos αβ+=(1)求cos2α的值; (2)求()tan αβ-的值.17.(14分)某农场有一块农田,如图所示,它的边界由圆O 的一段圆弧MPN (P 为此圆弧的中点)和线段MN 构成.已知圆O 的半径为40米,点P 到MN 的距离为50米.现规划在此农田上修建两个温室大棚,大棚Ⅰ内的地块形状为矩形ABCD ,大棚Ⅱ内的地块形状为CDP △,要求A ,B 均在线段MN 上,C ,D 均在圆弧上.设OC 与MN 所成的角为θ.(1)用θ分别表示矩形ABCD 和CDP △的面积,并确定sin θ的取值范围;(2)若大棚Ⅰ内种植甲种蔬菜,大棚Ⅱ内种植乙种蔬菜,且甲、乙两种蔬菜的单位面积年产值之比为4:3.求当θ为何值时,能使甲、乙两种蔬菜的年总产值最大.18.(16分)如图,在平面直角坐标系xOy中,椭圆C过点12⎫⎪⎭,焦点()1F,)2F,圆O的直径为12F F.(1)求椭圆C及圆O的方程;(2)设直线l与圆O相切于第一象限内的点P.①若直线l与椭圆C有且只有一个公共点,求点P的坐标;②直线l与椭圆C交于A,B两点.若OAB△的面积为7,求直线l的方程.19.(16分)记()f x',()g x'分别为函数()f x,()g x的导函数.若存在x∈R,满足()()00f xg x=且()()00f xg x''=,则称x为函数()f x与()g x的一个“S点”.(1)证明:函数()f x x=与()222g x x x=+-不存在“S点”;(2)若函数()21f x ax=-与()lng x x=存在“S点”,求实数a的值;(3)已知函数()2f x x a=-+,()exbg xx=.对任意0a>,判断是否存在0b>,使函数()f x与()g x在区间()0,+∞内存在“S点”,并说明理由.20.(16分)设{}n a 是首项为1a ,公差为d 的等差数列,{}n b 是首项为1b ,公比为q 的等比数列.(1)设10a =,11b =,2q =,若1n n a b b -≤对1n =,2,3,4均成立,求d 的取值范围;(2)若110a b =>,*m ∈N,(q ∈,证明:存在d ∈R ,使得1n n a b b -≤对2n =,3,,1m +均成立,并求d 的取值范围(用1b ,m ,q 表示).数学II (附加题)21.[选做题]本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4—1:几何证明选讲]如图,圆O 的半径为2,AB 为圆O 的直径,P 为AB 延长线上一点,过P 作圆O 的切线,切点为C.若PC =BC 的长.B .[选修4—2:矩阵与变换]已知矩阵2312A ⎡⎤=⎢⎥⎣⎦. (1)求A 的逆矩阵1A -;(2)若点P 在矩阵A 对应的变换作用下得到点()3,1P ',求点P 的坐标.C .[选修4—4:坐标系与参数方程]在极坐标系中,直线l 的方程为sin 2π6ρθ⎛⎫-= ⎪⎝⎭,曲线C 的方程为4cos ρθ=,求直线l被曲线C 截得的弦长.D .[选修4—5:不等式选讲]若x ,y ,z 为实数,且226x y z ++=,求222x y z ++的最小值.[必做题]第22题、第23题,每题10分,共计20分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.22.(10分)如图,在正三棱柱111ABC A B C -中,12AB AA ==,点P ,Q 分别为11A B ,BC 的中点.(1)求异面直线BP 与1AC 所成角的余弦值; (2)求直线1CC 与平面1AQC 所成角的正弦值.23.(10分)设*n ∈N ,对1,2,···,n 的一个排列12n i i i ,如果当s t <时,有s t i i >,则称(),s t i i 是排列12n i i i 的一个逆序,排列12n i i i 的所有逆序的总个数称为其逆序数.例如:对1,2,3的一个排列231,只有两个逆序()2,1,()3,1,则排列231的逆序数为2.记()n f k 为1,2,···,n 的所有排列中逆序数为k 的全部排列的个数. (1)求()32f ,()42f 的值;(2)求()()25n f n ≥的表达式(用n 表示).2018年普通高等学校招生全国统一考试数 学 答 案(江苏卷)数学I 试题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上. 1.【答案】{}1,8 2.【答案】2 3.【答案】90 4.【答案】8 5.【答案】[)2,+∞6.【答案】310 7.【答案】π6-8.【答案】2 9.【答案】210.【答案】4311.【答案】3- 12.【答案】3 13.【答案】9 14.【答案】27二、解答题:本大题共6小题,共计90分.请在答题卡的指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.【答案】(1)见解析;(2)见解析.【解析】(1)在平行六面体1111ABCD A B C D -中,11AB A B ∥.因为AB ⊄平面11A B C ,11A B ⊂平面11A B C ,所以AB ∥平面11A B C .(2)在平行六面体1111ABCD A B C D -中,四边形11ABB A 为平行四边形. 又因为1AA AB =,所以四边形11ABB A 为菱形,因此11AB A B ⊥.又因为111AB B C ⊥,11BC B C ∥,所以1AB BC ⊥. 又因为1A BBC B =,1A B ⊂平面1A BC ,BC ⊂平面1A BC ,所以1AB ⊥平面1A BC .因为1AB ⊂平面11ABB A , 所以平面11ABB A ⊥平面1A BC .16.【答案】(1)725-;(2)211-. 【解析】(1)因为4tan 3α=,sin tan cos ααα=,所以4sin cos 3αα=.因为22sin cos 1αα+=,所以29cos 25α=,因此,27cos 22cos 125αα=-=-.(2)因为α,β为锐角,所以()0,παβ+∈. 又因为()cos αβ+=,所以()sin αβ+==, 因此()tan 2αβ+=-.因为4tan 3α=,所以22tan 24tan 21tan 7ααα==--, 因此,()()()()tan 2tan 2tan tan 21tan 2tan 11ααβαβααβααβ-+-=-+==-⎡⎤⎣⎦++. 17.【答案】(1)1,41⎡⎫⎪⎢⎣⎭;(2)当π6θ=时,能使甲、乙两种蔬菜的年总产值最大.【解析】(1)连结PO 并延长交MN 于H ,则PH MN ⊥,所以10OH =. 过O 作OE BC ⊥于E ,则OE MN ∥,所以COE θ∠=, 故40cos OE θ=,40sin EC θ=,则矩形ABCD 的面积为()()240cos 40sin 108004sin cos cos θθθθθ⨯+=+,CDP △的面积为()()1240cos 4040sin 1600cos sin cos 2θθθθθ⨯⨯-=-.过N 作GN MN ⊥,分别交圆弧和OE 的延长线于G 和K ,则10GK KN ==. 令0GOK θ∠=,则01sin 4θ=,0π0,6θ⎛⎫∈ ⎪⎝⎭. 当0π2,θθ⎡⎫∈⎪⎢⎣⎭时,才能作出满足条件的矩形ABCD ,所以sin θ的取值范围是1,41⎡⎫⎪⎢⎣⎭.(2)因为甲、乙两种蔬菜的单位面积年产值之比为4:3,设甲的单位面积的年产值为4k ,乙的单位面积的年产值为()30k k >, 则年总产值为()()48004sin cos cos 31600cos sin cos k k θθθθθθ⨯++⨯-()8000sin cos cos k θθθ=+,0π2,θθ⎡⎫∈⎪⎢⎣⎭.设() sin cos cos f θθθθ=+,0π2,θθ⎡⎫∈⎪⎢⎣⎭,则()()()()222cos sin sin 2sin sin 12sin 1sin 1f θθθθθθθθ'=--=-+-=--+. 令()=0f θ',得π6θ=,当0π6,θθ⎛⎫∈ ⎪⎝⎭时,()>0f θ',所以()f θ为增函数; 当ππ,62θ⎛⎫∈ ⎪⎝⎭时,()<0f θ',所以()f θ为减函数,因此,当π6θ=时,()f θ取到最大值. 18.【答案】(1)椭圆C 的方程为2214x y +=;圆O 的方程为223x y +=;(2)①点P的坐标为);②直线l的方程为y =+.【解析】(1)因为椭圆C的焦点为()1F,)2F ,可设椭圆C 的方程为()222210x y a b a b +=>>.又点12⎫⎪⎭在椭圆C 上,所以222231143a ba b +=-=⎧⎪⎨⎪⎩,解得2241a b ==⎧⎨⎩,因此,椭圆C 的方程为2214x y +=. 因为圆O 的直径为12F F ,所以其方程为223x y +=.(2)①设直线l 与圆O 相切于()()00000,,0P x y x y >>,则22003x y +=, 所以直线l 的方程为()0000x y x x y y =--+,即0003x y x y y =-+.由22000143x y x y x y y ⎧⎪⎪⎨+==-+⎪⎪⎩,消去y ,得()222200004243640x y x x x y +-+-=.(*)因为直线l 与椭圆C 有且只有一个公共点,所以()()()()22222200000024443644820x x y y y x ∆=--+-=-=. 因为0x ,00y >,所以0x =01y =. 因此,点P的坐标为).②因为三角形OAB的面积为7,所以127AB OP ⋅=,从而7AB =. 设()11,A x y ,()22,B x y ,由(*)得120024x x y =+,所以()()()()2222200201212222200048214y x x AB x x y y y x y -⎛⎫=-+-=+⋅ ⎪⎝⎭+. 因为22003x y +=, 所以()()20222016232491x AB x -==+,即42002451000x x -+=, 解得2052x =(2020x =舍去),则2012y =,因此P的坐标为,22⎛⎫ ⎪ ⎪⎝⎭. 综上,直线l的方程为y =+.19.【答案】(1)见解析;(2)a 的值为e2;(3)对任意0a >,存在0b >,使函数()f x 与()g x 在区间()0,+∞内存在“S 点”.【解析】(1)函数()f x x =,()222g x x x =+-,则()1f x '=,()22g x x '=+.由()()f x g x =且()()f x g x ''=,得222122x x x x =+-=+⎧⎨⎩,此方程组无解,因此,()f x 与()g x 不存在“S ”点.(2)函数()21f x ax =-,()ln g x x =,则()2f x ax '=,()1g x x'=. 设0x 为()f x 与()g x 的“S ”点,由()0f x 与()0g x 且()0f x '与()0g x ',得2001ln 12ax x ax x ⎧-==⎪⎨⎪⎩,即200201ln 21ax x ax -==⎧⎨⎩,(*) 得01ln 2x =-,即120e x -=,则2121e e 22a -==⎛⎫ ⎪⎝⎭. 当e2a =时,120e x -=满足方程组(*),即0x 为()f x 与()g x 的“S ”点.因此,a 的值为e2.(3)对任意0a >,设()323h x x x ax a =--+.因为()00h a =>,()11320h a a =--+=-<,且()h x 的图象是不间断的,所以存在()00,1x ∈,使得()00h x =,令()03002e 1x x b x =-,则0b >.函数()2f x x a =-+,()e x bg x x=,则()2f x x '=-,()()2e 1x b x g x x -'=.由()()f x g x =且()()f x g x ''=,得()22e e 12x x b x a xb x x x -+⎧⎪⎪⎨=--=⎪⎪⎩,即()()()00320030202e e 1e 122e 1xx x x x x a x x x x x x x -+=⋅---=⋅-⎧⎪⎪⎨⎪⎪⎩(**), 此时,0x 满足方程组(**),即0x 是函数()f x 与()g x 在区间()0,1内的一个“S 点”.因此,对任意0a >,存在0b >,使函数()f x 与()g x 在区间()0,+∞内存在“S 点”.20.【答案】(1)d 的取值范围为75,32⎡⎤⎢⎥⎣⎦;(2)d 的取值范围为()112,m m b q b q m m ⎡⎤-⎢⎥⎢⎥⎣⎦,证明见解析.【解析】(1)由条件知:()1n a n d =-,12n n b -=. 因为1n n a b b -≤对1n =,2,3,4均成立, 即()1121n n d ---≤对1n =,2,3,4均成立,即11≤,13d ≤≤,325d ≤≤,739d ≤≤,得7532d ≤≤.因此,d 的取值范围为75,32⎡⎤⎢⎥⎣⎦.(2)由条件知:()11n a b n d =+-,11n n b b q -=. 若存在d ,使得1n n a b b -≤(2n =,3,,1m +)成立, 即()11111n b n d b q b -+--≤(2n =,3,,1m +),即当2n =,3,,1m +时,d 满足1111211n n q q b d b n n ---≤≤--.因为(q ∈,则112n m q q -<≤≤, 从而11201n q b n --≤-,1101n q b n ->-,对2n =,3,,1m +均成立. 因此,取0d =时,1n n a b b -≤对2n =,3,,1m +均成立.下面讨论数列121n q n -⎧⎫-⎨⎬-⎩⎭的最大值和数列11n q n -⎧⎫⎨⎬-⎩⎭的最小值(2n =,3,,1m +).①当2n m ≤≤时,()()()1112222111n n nn n n n n n q q q q q nq q nq n n n n n n -----+----+-==---, 当112mq <≤时,有2n m q q ≤≤,从而()120n n n n q q q ---+>.因此,当21n m ≤≤+时,数列121n q n -⎧⎫-⎨⎬-⎩⎭单调递增,故数列121n q n -⎧⎫-⎨⎬-⎩⎭的最大值为2m q m -. ②设()()21x f x x =-,当0x >时,()()ln 21ln 220x f x x =--<', 所以()f x 单调递减,从而()()01f x f <=.当2n m ≤≤时,()111112111nn n q q n n f q n n n n --⎛⎫⎛⎫=≤-=< ⎪ ⎪⎝⎭⎝⎭-, 因此,当21n m ≤≤+时,数列11n q n -⎧⎫⎨⎬-⎩⎭单调递减,故数列11n q n -⎧⎫⎨⎬-⎩⎭的最小值为mq m . 因此,d 的取值范围为()112,m m b q b q m m ⎡⎤-⎢⎥⎢⎥⎣⎦.数学II (附加题)21.[选做题]本题包括A 、B 、C 、D 四小题,请选定其中两小题,并在相应的答题区域内作答.若多做,则按作答的前两小题评分.解答时应写出文字说明、证明过程或演算步骤. A .【答案】2【解析】连结OC ,因为PC 与圆O 相切,所以OC PC ⊥.又因为PC =2OC =,所以4OP ==.又因为2OB =,从而B 为Rt OCP △斜边的中点,所以2BC =.B .【答案】(1)12312A --⎡⎤=⎢⎥-⎣⎦;(2)()3,1-. 【解析】(1)因为2312A ⎡⎤=⎢⎥⎣⎦,()det 221310A =⨯-⨯=≠, 所以A 可逆,从而12312A --⎡⎤=⎢⎥-⎣⎦. (2)设(),P x y ,则233121x y ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,所以13311x A y -⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦, 因此点P 的坐标为()3,1-.C .【答案】直线l 被曲线C截得的弦长为 【解析】因为曲线C 的极坐标方程为4cos ρθ=, 所以曲线C 的圆心为()2,0,直径为4的圆.因为直线l 的极坐标方程为sin 2π6ρθ⎛⎫-= ⎪⎝⎭,则直线l 过()4,0A ,倾斜角为π6,所以A 为直线l 与圆C 的一个交点. 设另一个交点为B ,则π6OAB ∠=. 连结OB ,因为OA 为直径,从而π2OBA ∠=,所以4cos 6πAB ==l 被曲线C截得的弦长为 D .【答案】4【解析】由柯西不等式,得()()()222222212222x y z x y z ++++≥++. 因为22=6x y z ++,所以2224x y z ++≥, 当且仅当122x y z ==时,不等式取等号,此时23x =,43y =,43z =, 所以222x y z ++的最小值为4.[必做题]第22题、第23题,每题10分,共计20分,请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.22.【答案】(1;(2【解析】如图,在正三棱柱111ABC A B C -中,设AC ,11A C 的中点分别为O ,1O ,则OB OC ⊥,1OO OC ⊥,1OO OB ⊥,以{}1,,OB OC OO 为基底,建立空间直角坐标系O xyz -.因为12AB AA ==,所以()01,0A -,,)B,()0,1,0C ,()10,1,2A -,)12B ,()10,1,2C .(1)因为P 为11A B的中点,所以1,22P ⎫-⎪⎪⎝⎭,从而1,22BP ⎛⎫=-- ⎪ ⎪⎝⎭,()10,2,2AC =,故111cos ,205BP AC BPAC BP AC ⋅-<>===⋅. 因此,异面直线BP 与1AC . (2)因为Q 为BC 的中点,所以1,,022Q ⎛⎫⎪ ⎪⎝⎭,因此33,02AQ ⎛⎫= ⎪⎪⎝⎭,()10,2,2AC =,()10,0,2CC =.设(),,x y z =n 为平面1AQC 的一个法向量,则100AQ AC ⎧=⋅=⎨⎪⋅⎪⎩n n即3022220x y y z +=+=⎨⎪⎩,不妨取)1,1=-n ,设直线1CC 与平面1AQC 所成角为θ,则111sin cos ,5CCCC CC θ⋅=<>===⋅n n n, 所以直线1CC 与平面1AQC 所成角的正弦值为5. 23.【答案】(1)2,5;(2)5n ≥时,()2222n n n f --=.【解析】(1)记()abc τ为排列abc 的逆序数,对1,2,3的所有排列,有()123=0τ,()132=1τ,()213=1τ,()231=2τ,()312=2τ,()321=3τ,所以()301f =,()()33122f f ==.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,()()()()433322105f f f f =++=.(2)对一般的()4n n ≥的情形,逆序数为0的排列只有一个:12n ,所以()01n f =.逆序数为1的排列只能是将排列12n 中的任意相邻两个数字调换位置得到的排列,所以()11n f n =-.为计算()12n f +,当1,2,…,n 的排列及其逆序数确定后,将1n +添加进原排列,1n +在新排列中的位置只能是最后三个位置.因此,()()()()()122102n n n n n f f f f f n +=++=+.当5n ≥时,()()()()()()()()11254422222222n n n n n f f f f f f f f ---=-+-++-+⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦()()()24212422n n n n f --=-+-+++=,因此,5n ≥时,()2222n n n f --=.。
江苏省“专转本”《高等数学》试卷分类解析不定积分.
同方专转本高等数学核心教程第三章不定积分本章主要知识点:● 不定积分的意义,基本公式● 不定积分的三种基本方法● 杂例历年考试真题1.(2001)不定积分=( D )A.B. +CC. arcsinxD. arcsinx+C解析: 利用不定积分的定义.2001)计算⎰e2x2. (1+exdx。
解: ⎰e2xe2x+ex-exx1+exdx=⎰1+exdx=e-ln(1+ex)+C3. (2002)设f(x)有连续的导函数,且a≠0,1,则下列命题正确的是(A. ⎰f'(ax)dx=1af(ax)+C B. ⎰f'(ax)dx=f(ax)+CC. (⎰f'(ax)dx)'=af(ax)D. ⎰f'(ax)dx=f(x)+C解析: 由⎰f'(x)dx=f(x)+C⎰f'(ax)dx=1a⎰f'(ax)dax=1af(ax)+C4. (2002)求积分2解: 14arcsin2x2+C5. (2003)若F'(x)=f(x),f(x)连续,则下列说法正确的是( C ) - 78 - A )第三章不定积分A.C. ⎰F(x)dx=f(x)+c B. ⎰⎰dF(x)dx=f(x)dx dx⎰dF(x)dx=f(x) f(x)dx=F(x)+c D. dx⎰解析: 不定积分的定义 6. (2003)xlnxdxx2x2x2=lnx-⎰dlnx 解: 设u=lnx,dv=xdx,则⎰xlnxdx=⎰lnxd222x21=lnx-⎰xdx22 11=x2(lnx-)+C227. (2004)求不定积分3=1arcsin4x+C 4解析: 31dx=⎰arcsin3xdarcsinx=arcsin4x+C 4ex8. (2004)设f(x)的一个原函数为,计算⎰xf'(2x)dx xexex(x-1)ex解: 因为f(x)的一个原函数为,所以f(x)=()'=, xx2x1111⎰xf'(2x)dx=⎰xf'(2x)d(2x)=⎰xdf(2x)=xf(2x)-⎰f(2x)dx 222211x(2x-1)e2xx-12x-+C=e+C =xf(2x)-⎰f(2x)d(2x)=248x28x4x9. (2005)若⎰f(x)dx=F(x)+C,则⎰sinxf(cosx)dx=( D )A. F(sinx)+CB. -F(sinx)+CC. F(cosx)+CD. -F(cosx)+C解析: ⎰sinxf(cosx)dx=-⎰f(cosx)dcosx=-F(cosx)+C⎰310. (2005)计算tanxsecxdx2 解:原式=tanxtanxsecxdx=⎰⎰(secx-1)d- 79 - 22secx=⎰secxdsecx-secx同方专转本高等数学核心教程=secx-secx+C11.(2006)已知A.2e-2x133⎰f(x)dx=e2x+C,则⎰f'(-x)dx=( C ). 11+CB.e-2x+CC. -2e-2x+CD. -e-2x+C 22解析: 由题意f(x)=2e2x,∴f'(x)=4e2x,f'(-x)=4e-2x所以⎰f'(-x)dx=⎰4e-2x-2xdx=⎰-2e-2xd(-2x)=-2e+C12.(2006)计算⎰dx x解:原式=32(1+lnx)=(1+lnx)2+C 313. (2007) 设函数f(x)的一个原函数为sin2x,则⎰f'(2x)dx=( A )1cos4x+C 2C. 2cos4x+CD. sin4x+C A. cos4x+C B.解析: f(x)=2cos2x,所以f'(x)=4sin2x,⎰f'(2x)dx=⎰4sin4xdx=⎰sin4xd(4x)=cos4x+C2-x14. (2007)求不定积分xedx.⎰2-x2-x 解:xedx=-xd(e) ⎰⎰2-x-x2-x-x =-xe+2xedx=-xe-2xd(e) ⎰⎰2-x-x-x =-xe-2xe+2edx ⎰=-xe单元练习题3 2-x-2xe-x-2e-x+C1.dcos2x=- 80 - ⎰第三章不定积分2.已知f(cosx)=sin2x,则⎰f(x-1)dx=。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省 2018年普通高校专转本选拔考试
高等数学 试题卷
一、单项选择题(本大题共 6 小题,每小题 4 分,共 24 分。
在下列每小题中选出一个正确答案,请在答题卡上将所选项的字母标号涂黑)
(本内容由史老师誊写)
1.当x 0→时,下列无穷小与()sin 2f x x x =同阶的是( )
A. cos 2x 1-
B.
1
C. x 31-
D. ()231x 1+-
2.设函数(),2x a
f x x x b -=++若x 1=为其可去间断点,则常数,a b 的值分别为 ( )
A. ,12-
B. ,12-
C. ,12--
D. ,12
3.设函数()(),1x
f x 1x ϕ-=+其中()x ϕ为可导函数,且()13ϕ'=,则()f 0'等于(
)
A. 6-
B. 6
C. 3-
D. 3
4.设()2x F x e =是函数)(x f 的一个原函数,则()x f x dx '⎰等于( ) A. ()2x 1
e x 1C 2-+ B.
()2x e 2x 1C -+
C. ()2x 1e x 1C 2++
D. ()2x e 2x 1C ++
5.下列反常积分发散的是( )
A.0x
e dx -∞⎰ B. 311dx x +∞⎰ C. 21dx 1x +∞-∞+⎰ D. 01
dx 1x +∞+⎰
6.下列级数中绝对收敛的是( )
A. n
n=1∞() B. n
n=1
121n ∞
+-∑(
)
C. n=1sin 2n n ∞
∑ D. n
n=133n ∞-∑()
二、填空题(本大题共 6 小题,每小题 4 分,共 24 分)
7.设lim()lim sin 1
x x 0x 2
1ax x x →→∞+=,则常数a = .
8.
设函数)y x 0=>,则y '= .
9.设(,)z z x y =是由方程2z xyz 1+=确定的函数,则
z x ∂=∂= . 10.曲线432y 3x 4x 6x 12x =+--的凸区间为 .
11.已知空间三点(,,),(,,),(,,)M 111A 110B 212,则AMB ∠的大小为 .
12.幂级数1(4)5n
n n x n ∞
=+⋅∑的收敛域为 . 三、计算题(本大题共 8 小题,每小题 8 分,共 64 分)
13.求极限lim[]ln()
22x 011x 1x →-+. 14.设()y y x =是由参数方程323x xt t 10y t t 1⎧-+-=⎪⎨=++⎪⎩确定的函数,求t 0
dy dx = . 15.求不定积分
⎰. 16.计算定积分()ln 2
12x 1xdx +⎰.
17.求通过点(,,)M 123及直线x 13t y 14t z 15t =+⎧⎪=+⎨⎪=+⎩
的平面方程.
18.求微分方程()323y 2x y dx 2x dy 0-+=的通解.
19.设(,)x z xf y y
=,其中函数f 具有一阶连续偏导数,求全微分dz 20.计算二重积分D xydxdy ⎰⎰,其中 {(,)()
,}22D x y x 1y 10y x =-+≤≤≤.
四.证明题(本大题共 2 小题,每小题 9 分,共 18 分)
21.证明:当x 0>
时,ln x <
.
22.设函数(), (), x 0f t dt x 0F x x 0x 0
⎧⎪≠=⎨⎪=⎩⎰,其中)(x f 在(,)-∞+∞内连续,且()lim x 0f x 1x →=.证明: ()F x '时在点x 0=处连续.
五、综合题(本大题共 2 题,每小题 10 分,共 20 分)
23.设D 由曲线弧 cos (
)y x x 42ππ=≤≤ 与sin ()y x x 4ππ=≤≤及x 轴所围成的平面图形,试求;
(1)D 的面积;
(2)D 绕x 轴旋转一周所形成的旋转体的体积.
24.设函数()f x 满足方程()()()f x 3f x 2f x 0'''-+=,且在x 0=处取得极值1,试求:
(1)函数)(x f 的表达式;
(2)曲线()()f x y f x '=的渐近线.。