2019—2020高二期末统考数学试卷及答案(理科)
2019-2020年高二下学期期末考试试卷 数学(理) 含答案
俯视图侧(左)视图正(主)视图秘密★启用前2019-2020年高二下学期期末考试试卷 数学(理) 含答案第I 卷一.选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则( )A .B .C .D . 2. “”是“函数在区间内单调递减”的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既不充分也必要条件3. 下列说法中正确的是 ( )A .“” 是“函数是奇函数” 的充要条件B .若,则C .若为假命题,则均为假命题D .“若,则” 的否命题是“若,则” 4.函数的定义域为( )A. B. C. D.5.二项式的展开式中的系数为,则( )A. B. C. D.26. 已知是周期为4的偶函数,当时,则( )A.0B.1C.2D.37. 某三棱锥的三视图如图所示,则该三棱锥四个面的面积中最大的是( ) A. B. 3 C. D.8. PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物),为了探究车流量与PM2.5的浓度是否相关,现采集到某城市周一至周五某时间段车流量与PM2.5浓度的数据如下表:根据上表数据,用最小二乘法求出与的线性回归方程是( )A. B. C. D.参考公式:121()()()nii i nii xx y y b x x ==--=-∑∑,;参考数据:,;9.某次联欢会要安排3个歌舞类节目,2个小品类节目和一个相声类节目的演出顺序,则同类节目不相邻的排法种数是( )A.72B. 120C. 144D. 16810. 已知椭圆与双曲线222222222:1(0,0)y x C a b a b -=>>有相同的焦点,点是曲线与的一个公共点,,分别是和的离心率,若,则的最小值为( )A .B .4C .D .911.设函数21228()log (1)31f x x x =+++,则不等式的解集为( )A. B. C. D.12.(原创)已知是定义在上的奇函数,对任意的,均有.当时,2()(),()1(1)5x f f x f x f x ==--,则290291()()2016201314315()()201620166f f f f +-+-+-+-=( )A.B. C. D.第II 卷(非选择题,共90分)本卷包括必考题和选考题两部分。
2019-2020学年高二下学期期末考试数学试题(理科)含解析
2019-2020学年高二下学期期末考试数学试题(理科)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下面结论正确的是①“所有2的倍数都是4的倍数,某数是2的倍数,则一定是4的倍数”,这是三段论推理,但其结论是错误的.②在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适. ③由平面三角形的性质推测空间四面体的性质,这是一种合情推理. ④一个数列的前三项是1,2,3,那么这个数列的通项公式必为. A .①③ B .②③ C .③④ D .②④ 2.下面关于复数21iz =--的四个命题: 1:2p z =2:p z 的共轭复数z 在复平面内对应的点的坐标为()1,1--3:p z 的虚部为-1 24:2i p z =-其中的真命题是A .23,p pB .12,p pC .24,p pD .34,p p 3.已知某批零件的长度误差(单位:毫米)服从正态分布()203N ,,从中随机取一件,其长度误差落在区间()36,内的概率为( ).(附:若随机变量服从正态分()2N μσ,,则()68.26%P μσξμσ-<<+=,()2295.44%P μσξμσ-<<+=)A .4.56%B .13.59%C .27.18%D .31.74%4.请考生在第(1),(2)两题中任选一题作答,(1)圆半径是1,圆心的极坐标是(1,)π,则这个圆的极坐标方程是A .αρcos -=B .αρsin =C .αρcos 2-=D .αρsin 2= (2)如果a x x >+++|9||1|对任意实数x 总成立,则a 的取值范围是A .}8|{≥a aB .}8|{>a aC .}8|{<a aD .}8|{≤a a5.()()612x x -+的展开式中4x 的系数为A .100B .15C .-35D .-220 6.随机变量ξ服从二项分布ξ~B(16,p), 且D(ξ)=3, 则E(ξ)等于A .4B .12 C. 3 D . 4或127.直线45325x t y t⎧=⎪⎪⎨⎪=-+⎪⎩错误!未找到引用源。
2019-2020学年高二下学期期末考试数学试卷(理科)附解答
2019-2020学年高二下学期期末考试数学试卷(理科)一.选择题(60分)(在每小题给出的四个选项中,只有一项是符合要求)1. 已知(x+i )(1-i )=y ,则实数x ,y 分别为( )A. x=-1,y=1B. x=-1,y=2C. x=1,y=1D. x=1,y=2 2. 8名学生和2位老师站成一排合影,2位老师不相邻的排法种数为( )A.8289A AB.8289A CC. 8287A AD.8287A C3. 在对我市高中学生某项身体素质的测试中,测试结果ξ服从正态分布2,1(σN ))0(>σ,若ξ在(0,2)内取值的概率为0.8,则ξ在(0,1)内取值的概率为( ) A. 0.2 B. 0.4 C. 0.6D.0.34.43(1)(1x --的展开式 2x 的系数是( )A .-6B .-3C .0D .35. 函数13)(3+-=x x x f 在闭区间[-3,0]上的最大值、最小值分别是( ) A .1,-1B .1,-17C .3,-17D .9,-196. =---⎰dx x x ))1(1(21( )A. 22π+B. 12+πC. 212-πD. 142π-7. 由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( ) A.72B.96C.108D.1448. 从5张100元,3张200元,2张300元的奥运预赛门票中任取3张,则所取3张中至少有2张价格相同的概率为( ) A.14B.79120C.34D.23249. 设'()f x 是函数()f x 的导函数,将y =()f x 和y ='()f x 的图像画在同一个直角坐标系中,不可能的是( )10. 某展览会一周(七天)内要接待三所学校学生参观,每天只安排一所学校,其中甲学校要连续参观两天,其余学校均参观一天,则不同的安排方法有( ) A .210种B .50种C .60种D .120种11. 观察下列各式:则234749,7343,72401===,…,则20117的末两位数字为( ) A.01 B.43 C.07 D.4912. 若在曲线(,)0f x y =(或()y f x =)上两个不同点处的切线重合,则称这条切线为曲线(,)0f x y =(或()y f x =)的自公切线,下列方程的曲线:①221x y -= ②2||y x x =-③||1x +=④3sin 4cos y x x =+ 存在自公切线的是( )A .①③B .①④C .②③D .②④ 二.填空题(20分)13. 某射手射击所得环数ξ的分布列如下: 已知ξ的期望E ξ=8.9,则y 的值为 .14. 将6位志愿者分成4组,其中两个各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有 种(用数字作答)。
2019-2020年高二下学期期末考试数学(理)试题含答案
试卷类型:A2019-2020年高二下学期期末考试数学(理)试题含答案注意事项:1.本试卷分为第Ⅰ卷和第Ⅱ卷两部分,第Ⅰ卷为选择题,用2B铅笔将答案涂在答题卡上。
第Ⅱ卷为非选择题,用0.5mm黑色签字笔将答案答在答题纸上。
考试结束后,只收答题卡和答题纸。
2.答第Ⅰ、Ⅱ卷时,先将答题卡首和答题纸首有关项目填写清楚。
3.全卷满分150分,考试时间120分钟。
附:独立性检验临界值表第Ⅰ卷(选择题共50分)一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数的平方是实数等价于()A.B.且C.D.2.一个书包内装有5本不同的小说,另一书包内有6本不同学科的教材,从两个书包中各取一本书的取法共有()A.5种B.6种C.11种D.30种3.右边所示的三角形数组是我国古代数学家杨辉发现的,称为杨辉三角形,根据图中的数构成的规律,所表示的数是()A.2B.4C.6D.84.用反证法证明:“a>b”.应假设()A.a>b B.a<b C.a=b D.a≤b 5.设f0(x)=sinx,f1 (x)=f0′(x),f2(x)=f1′(x),…,f n+1(x)=f n′(x),n∈N,则f xx(x)=( ) A .sinx B .-sinx C .cos xD .-cosx6.实验测得四组(x,y)的值是(1,2),(2,3),(3,4),(4,5),则y 与x 之间的回归直线的方程是( ) A .=x +1 B .=x+2C .=2x+1D .=x -17.若函数,且是函数的导函数,则( ) A .24B .﹣24C .10D .﹣108.设两个变量x 和y 之间具有线性相关关系,它们的相关系数是r ,y 关于x 的回归直线的斜率是b ,纵截距是a ,那么必有( )A .b 与r 的符号相同B .a 与r 的符号相同C .b 与r 的相反D .a 与r 的符号相反9.下列命题中不正确的是( )A .若ξ ~B(n,p),则E ξ = np ,D ξ = np(1-p)B .E(a ξ + b) = aE ξ + bC .D(a ξ + b) = aD ξ D .D ξ =E ξ 2-(E ξ )210.将个不同的球放入个不同的盒中,每个盒内至少有个球,则不同的放法种数为( )A .B .36C .48D .96第Ⅱ卷(非选择题 共100分)二、填空题(本题共5小题,每题5分,共25分) 11.= .12.设离散型随机变量的概率分布如下:则的值为 .13.从1,2,3,4,5中任取2个不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(B ︱A)= .14.若52345012345(1)x a a x a x a x a x a x -=+++++,则=.15.由三角形的性质通过类比推理,得到四面体的如下性质:四面体的六个二面角的平分面交于一点,且这个点是四面体内切球的球心,那么原来三角形的性质为.三、解答题(本大题共6小题,满分75分,解答须写出文字说明、证明过程或演算步骤) 16.(本小题满分12分)(1)设i 是虚数单位,将表示为a+bi 的形式(a ,b ∈R ),求a+b;(2)二项式(-)n展开式中第五项的二项式系数是第三项系数的4倍,求n.17.(本小题满分12分)在调查男女乘客是否晕机的情况中,已知男乘客晕机为28人,不会晕机的也是28人,而女乘客晕机为28人,不会晕机的为56人,(1)根据以上数据建立一个2×2的列联表;(2)试判断是否晕机与性别有关?18.(本小题满分12分)从名男同学中选出人,名女同学中选出人,并将选出的人排成一排.(1)共有多少种不同的排法?(2)若选出的名男同学不相邻,共有多少种不同的排法?19.(本小题满分13分)已知数列{a n}满足S n+a n=2n+1.(1)写出a1, a2, a3,并推测a n的表达式;(2)用数学归纳法证明所得的结论.20.(本小题满分13分)在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值ξ (元)的概率分布列和期望Eξ.21.(本小题满分13分)设函数y=x3+ax2+bx+c的图象如图所示,且与y=0在原点相切,若函数的极小值为-4.(1)求a、b、c的值;(2)求函数的递减区间.富平县xx年高二质量检测试题理科数学参考答案及评分标准一、选择题(本大题共10小题,每小题5分,共50分。
2019-2020年高二下学期期末考试数学(理)试题 含答案
2019-2020年高二下学期期末考试数学(理)试题 含答案一. 选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求,将正确答案填涂在答题卡上。
1.在复平面内,复数对应的点位于( )A 第一象限B 第二象限C 第三象限D 第四象限 2.设随机变量ξ服从正态分布,若=,则c 的值是( )A. 1B. 2C. 3D. 4 3.命题“∈R ,-x +1≥0”的否定是( )A .∈R ,lnx +x +1<0B .∈R ,-x +1<0C .∈R ,-x +1>0D .∈R ,-x +1≥04. 如果方程表示双曲线,则实数的取值范围是( ) A. B. C. D.5. 已知函数 则 是 成立的 ( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 6.已知的最小值为n , 则的展开式中常数项为( ) A. 20 B. 160 C. -160 D. -207.在各项均为正数的等比数列中,若,数列的前项积为,若,则的值为( )A .4B .5C .6D .78.若实数x,满足不等式组⎩⎪⎨⎪⎧y ≤52x -y +3≤0x +y -1≥0,则z=|x |+2的最大值是( )A. 10B. 11C. 13D. 149.若函数的图象在处的切线与圆相切,则的最大值是( ) A.4 B. C.2 D.10.已知抛物线,过其焦点且斜率为-1的直线交抛物线于两点,若线段的中点的横坐标为3,则该抛物线的准线方程为( )A .B .C .D . 11.四面体ABCD 中,已知AB=CD=29,AC=BD=34,AD=BC=37,则四面体ABCD 的外接球的表面( )A .25πB .45πC .50πD .100π 12. 定义域为R 的函数满足,当[0,2)时,若时,有解,则实数t 的取值范围是A.[-2,0)(0,l)B.[-2,0) [l ,+∞)C.[-2,l]D.(,-2] (0,l]第Ⅱ卷 非选择题(共90分)二.填空题:本大题共4小题,每小题5分,共20分,将答案填在答题卡上相应位置。
2019-2020年高二下学期期末考试数学试卷(理) 含答案
2019-2020年高二下学期期末考试数学试卷(理) 含答案数 学 (理)刘世荣 候永红注意:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分。
考试时间:120分钟答卷前,考生务必将自己的姓名和考号填写或填涂在答题卷指定的位置,将条形码张贴在指定位置。
2、选择题答案用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试题卷上。
3、主观题必须用黑色字迹的钢笔或签字笔在答题卷上作答,答案必须写在答题卷各题目指定区域内的相应位置上,超出指定区域的答案无效;如需改动,先划掉原来的答案,然后再写上新的答案。
第Ⅰ卷 选择题一.选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,有且只有一项是符合题目要求的.{}{}{}{}{}{}{}|15,1,2,3,1,2.3.1,3.1,2.1,2,3u U x Z x A C B A B A B C D ∈≤≤==1.已知全集==,则121122.,=1+,=A.2B 2 C.2D 2z z z i z z i i⋅--设复数在复平面内的对应点关于实轴对称,则 . .33.1.ln ..3.x A y x B y C y D y x x x ==-==+下列函数中,在定义域内既是奇函数又是增函数的是333334.:2,80,A.2,80 B.2,80C.2,80D.2,80p x x p x x x x x x x x ∀>->⌝∀≤-≤∃>-≤∀>-≤∃≤-≤已知命题那么是{}323305.9,3,111A.1B.C.1D.1222n a a S x dx q ===⎰等比数列中,前三项和则公比或-或6.83648A.B.C.D.7799n S =执行如图所示的程序框图,若输入,则输出的=(第6题)俯视图侧视图{}{}7.3(|)1111A.B C.D 104312P B A =一个口袋中装有大小相同的1个红球和个黑球,现在有三个人依次去摸球,每个人摸出1个球,然后放回,若有两个人摸出的球为红色,则称这两个人是“好朋友”,记A=有两个人是好朋友,B=三个人都是好朋友,则 . .8. A.8+8 B.6+8C.4+8D.2+8ππππ如图所示是一个几何体的三视图,则该几何体的体积为9.(11)(12)(21)(13)(22)(31)(14)(23)(32)(41)60A.(7,5)B (5,7)C.(2,10)D (10,1)⋅⋅⋅已知“整数对”按如下规律排成一列:,,,,,,,,,,,,,,,,,,,,,则第个“整数对”是. .222210.2(0)1(B D 1x y y px p F a bF 2=>-=设抛物线的焦点恰好是双曲线连线过点,则该双曲线的离心率为11.0A.36B 64 C.144D 256S ABC M SC SB AM SA S ABC ππππ-•==-正三棱锥中,是的中点,,若侧棱的外接球的表面积为. .1112()()(1)1,()(),()()22A.(0,+)B.(1,+)C.(,0)D.(,1)x xe f x x R f f x R f x f e e +'∈=><∞∞-∞-∞.函数满足且在上的导函数则不等式为自然对数的底数的解集为第II 卷 非选择题二、填空题:本大题共4小题,每小题5分,共20分.()()13.2,3,1,32,//,a b t t a b t ==+-=已知若则5214.(1)(1)5.ax x x a ++=已知的展开式中的系数为,则37015,11x y x y x y x y +-≤⎧⎪≥-⎨⎪≥⎩.已知实数满足约束条件,则的最大值是{}*20151.,2(),n n n n na n S a n N S a =+∈=16已知正项数列的前项和S 若则 三、解答题:本大题共6小题,共70分.解答应给出文字说明、证明过程及演算步骤.22217.(12)1,,,,.,.42(I)tan (II)3ABC A B C a b c A b a c C ABC b π∆=-=∆本小题满分分 在中,内角所对的边分别为已知求的值;若的面积为,求的值.xx 第三季度,国家电网决定对城镇居民用电计费标准做出调整,并根据用电情况将居民分为三类: 第一类的用电区间在,第二类在,第三类在(单位:千瓦时). 某小区共有1000户居民,现对他们的用电情况进行调查,得到频率分布直方图如图所示.(I) 求该小区居民用电量的平均数;(II) 用分层抽样的方法从该小区内选出10位居民代表,若从该10户居民代表中任选两户居民,求这两户居民用电资费属于不同类型的概率;(III) 若该小区长期保持着这一用电消耗水平,电力部门为鼓励其节约用电,连续10个月,每个月从该小区居民中随机抽取1户,若取到的是第一类居民,则发放礼品一份,设为获奖户数,求的数学期望与方差.19.(12)-//II 1,P ABCD ABCD PA ABCD E PD PB AEC E PD AP AD E ACD D AE C ⊥==---本小题满分分如图,四棱锥中,底面为矩形,平面,为侧棱上的一点,且平面.(I )证明:为的中点;()设且三棱锥的大小.D()()()()222220122C:10F A B M .MF FB 2 1.I II ,P Q F PQM .x y a b e a b +=>>=⋅=∆本小题满分分已知椭圆的离心率点为椭圆的右焦点,点、分别是椭圆的左、右顶点,点为椭圆的上顶点,且满足求椭圆方程;是否存在直线使得直线与椭圆交于、两点,且恰为的垂心.若存在,求出直线方程;若不存在,说明理由21.(12)1()ln(1).(I)()(1,(1))(II),()ln()()ln .x f x x xf x f x y x y x y x y x my m +=+++≤++本小题满分分已知求在点处的切线方程;若存在正实数使不等式成立,求实数的取值范围请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分。
2019-2020年高二期末考试试卷 数学(理) 含答案
C. D.
9.若函数在是增函数,则的取值范围( )
A. B. C. D.
10.函数的图象大致为( )
11. (a,bR,且a-2),则的取值范围是( )
A.B.C.D.
12.已知函数,实数满足,若实数是的根,那么下列不等式中不可能成立的是( )
A.B.C.D.
第II卷
二、填空题
13.复数的虚部为________.
(1)写出曲线C1与直线l的直角坐标方程;
(2)设Q为曲线C1上一动点,求Q点到直线l距离的最小值。
18.(12分)在中,分别为内角所对的边,且满足.
(1)求的大小;
(2)现给出三个条件:①; ②;③.试从中选出两个可以确定的条件,写出你的选择并以此为依据求的面积 (只需写出一个选定方案即可,选多种方案以第一种方案记分) .
B.命题(是自然对数的底数),命题 ,则为真
C.“”是“”成立的必要不充分条件
D.若为假命题,则均为假命题
5.设,,,则()
A.B.C.D.
6.已知函数关于直线对称,且周期为2,当时,,则 ( )
A.0 B. C. D.1
7.由曲线,直线及轴所围成的平面图形的面积为( )
A. B. C. D.
8.函数 的部分图象如图所示,则的解析式可以为( )
14.若,则=.
15.已知函数满足,且的导数,则不等式的解为.
16.已知为定义在上的偶函数,当时,有,且当时,,给出下列命题:①;②函数在定义域上是周期为2的函数;③直线与函数的图象有2个交点;④函数的值域为.
其中正确的是
三、解答题
17.(10分)在直角坐标系xOy中,以原点O为极点,x轴的正半轴为极轴建立极坐标系。已知曲线C1的极坐标方程为,直线l的极坐标方程为。
2019-2020年高二下学期期末考试理数试题 含解析
2019-2020年高二下学期期末考试理数试题 含解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数,则在复平面上表示的点位于 ( ) A.第一象限B.第二象限C.第三象限D.第四象限2.已知()(){}3,3,,202y M x y N x y ax y a x ⎧-⎫===++=⎨⎬-⎩⎭且,则 ( )A .-6或-2B .-6C .2或-6D .2【答案】 【解析】试题分析:,若,则两直线平行,或直线过点两种情况,当平行时,,当过点时,代入,解得:,故先A.考点:1.集合的运算;直线的位置关系.3.已知具有线性相关的两个变量x,y 之间的一组数据如下:且回归方程是,则t= ( ) A .2.5 B .3.5 C .4.5 D .5.54.设是两个单位向量,其夹角为,则“”是“”的 ( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.设集合,,从集合中任取一个元素,则这个元素也是集合中元素的概率是( )A. B. C. D.【答案】【解析】试题分析:,,,所以考点:1.解不等式;2.几何概型.6.下列四个结论:①若,则恒成立;②命题“若”的逆命题为“若”;③“命题为真”是“命题为真”的充分不必要条件;④命题“”的否定是“”.其中正确结论的个数是 ( )A.1个B.2个C.3个 D.4个7.已知函数,且,则函数的图象的一条对称轴是( ) A. B. C. D.8.设随机变量X服从正态分布,则成立的一个必要不充分条件是()A.或2 B.或2 C. D.【答案】【解析】试题分析:若等式成立,那么,解得,解得或,所以必要不充分条件是.考点:1.正态分布;2.必要不充分条件.9.用数学归纳法证明“(n+1)(n+2)·…·(n+n)=2n·1·3·…·(2n-1)”,从“k到k+1”左端需增乘的代数式为()A.2k+1B.2(2k+1)C.D.10.设,则的最小值为()A. 2B.3C.4D.11.从0,1,2,3,4,5,6,7,8,9这10个数字中任取3个不同的数字构成空间直角坐标系中的点的坐标,若是3的倍数,则满足条件的点的个数为()A.252 B.216 C.72 D.42【答案】【解析】试题分析:将集合分为:,,,若是3的倍数,那么3个集合各取3个数,共有,或各取1个,共,所以考点:排列12.设函数,则函数的零点的个数为( )A. 4B. 5C. 6D. 7第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.的展开式中,含项的系数为_________.(用数字作答)14.已知函数是上的奇函数,且为偶函数.若,则__________ 【答案】 【解析】试题分析:因为是偶函数,所以,所以函数关于对称,那么,所以函数满足,所以函数是的周期函数,所以 考点:函数的性质15.函数的图象存在与直线平行的切线,则实数的取值范围是______.据此规律,第个等式可为____________________________________. 【答案】nn n n n 212111211214131211+++++=--++-+- 【解析】试题分析:根据归纳推理,观察所得,等号左边,第行有个数字加减,等号有边,第行有个数字相加,并且是后个,所以,猜想第个等式是nn n n n 212111211214131211+++++=--++-+-.考点:归纳推理三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题共10分)已知函数 (1)解关于的不等式;(2)若的解集非空,求实数的取值范围.考点:1.含绝对值不等式的解法;2.含绝对值不等式的性质.18.(本小题共12分)在极坐标系中,曲线23)3cos(:),0(cos 2=->=πθρθρl a a C :,曲线C 与有且仅有一个公共点. (1)求的值;(2)为极点,A ,B 为C 上的两点,且,求的最大值.1 9.(本题满分12分)某中学一名数学老师对全班名学生某次考试成绩分男女生进行了统计(满分分),其中分(含分)以上为优秀,绘制了如下的两个频率分布直方图:(I)根据以上两个直方图完成下面的列联表:(II)根据中表格的数据计算,你有多大把握认为学生的数学成绩与性别之间有关系?(Ⅲ)若从成绩在的学生中任取人,求取到的人中至少有名女生的概率.【答案】(Ⅰ)详见解析;(Ⅱ)详见解析;(Ⅲ)【解析】试题分析:(Ⅰ)每一个小矩形的面积,表示此分数段的频率,频率=人数,将不同等级的燃烧,填入表格;(Ⅱ)根据表格,计算相关系数,根据表,得到结论;(Ⅲ)根据频率分布直方图得到成绩在的学生共有男生4人,女生2人,取到2人至少有1名女生的对立事件是2人都是男生,所以可以先按对立事件计算概率,然后用1减.试题解析:解:(1)……………4分20.(本小题满分12分)如图,是半圆的直径,是半圆上除、外的一个动点,垂直于半圆所在的平面,∥,,,.⑴证明:平面平面;⑵当三棱锥体积最大时,求二面角的余弦值.【答案】(1)详见解析;(2).【解析】试题分析:(1)根据面面垂直的判定定理,线面垂直,则面面垂直,,所以证明平面,又可证明,得证;(2)第一步,要先证明点在什么位置时,体积最大,首先根据上一问的垂直关系,和即,可以判断与二面角的平面角互补二面角的余弦值为.…………………12分考点:1.面面垂直的判定定理;2.空间向量求二面角;3.基本不等式求最值.21.已知中心在坐标原点,焦点在轴上的椭圆过点,且它的离心率.(Ⅰ)求椭圆的标准方程;(Ⅱ)与圆相切的直线交椭圆于两点,若椭圆上一点满足,求实数的取值范围.【答案】(Ⅰ);(Ⅱ)(Ⅱ) 因为直线:与圆相切22.(本小题满分12分)已知函数,(Ⅰ)求函数的单调区间;(Ⅱ)若k为正常数,设,求函数的最小值;(Ⅲ)若,证明:.【答案】(Ⅰ)的单调递增区间是,单调递减区间是;(Ⅱ);(Ⅲ)详见解析.【解析】试题分析:利用导数考察函数的综合问题,(Ⅰ)第一步,求函数的导数,定义域,第二步,求函数的极值点,并判断导数的正负区间,即单调区间;(Ⅱ)首先求函数和函数的定义域,然后求函数的导。
2019-2020年高二下学期期末考试数学试卷(理) 含答案
2019-2020年高二下学期期末考试数学试卷(理) 含答案数 学 (理)刘世荣 候永红注意:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分。
考试时间:120分钟答卷前,考生务必将自己的姓名和考号填写或填涂在答题卷指定的位置,将条形码张贴在指定位置。
2、选择题答案用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;不能答在试题卷上。
3、主观题必须用黑色字迹的钢笔或签字笔在答题卷上作答,答案必须写在答题卷各题目指定区域内的相应位置上,超出指定区域的答案无效;如需改动,先划掉原来的答案,然后再写上新的答案。
第Ⅰ卷 选择题一.选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,有且只有一项是符合题目要求的.{}{}{}{}{}{}{}|15,1,2,3,1,2.3.1,3.1,2.1,2,3u U x Z x A C B A B A B C D ∈≤≤==1.已知全集==,则121122.,=1+,=A.2B 2 C.2D 2z z z i z z i i ⋅--设复数在复平面内的对应点关于实轴对称,则 . .33.1.ln ..3.x A y x B y C y D y x x x ==-==+下列函数中,在定义域内既是奇函数又是增函数的是333334.:2,80,A.2,80 B.2,80C.2,80D.2,80p x x p x x x x x x x x ∀>->⌝∀≤-≤∃>-≤∀>-≤∃≤-≤已知命题那么是{}323305.9,3,111A.1B.C.1D.1222n a a S x dx q ===⎰等比数列中,前三项和则公比或-或6.83648A.B.C.D.7799n S =执行如图所示的程序框图,若输入,则输出的=(第6题)正视图俯视图侧视图{}{}7.3(|)1111A.B C.D 104312P B A =一个口袋中装有大小相同的1个红球和个黑球,现在有三个人依次去摸球,每个人摸出1个球,然后放回,若有两个人摸出的球为红色,则称这两个人是“好朋友”,记A=有两个人是好朋友,B=三个人都是好朋友,则 . .8. A.8+8 B.6+8C.4+8D.2+8ππππ如图所示是一个几何体的三视图,则该几何体的体积为9.(11)(12)(21)(13)(22)(31)(14)(23)(32)(41)60A.(7,5)B (5,7)C.(2,10)D (10,1)⋅⋅⋅已知“整数对”按如下规律排成一列:,,,,,,,,,,,,,,,,,,,,,则第个“整数对”是. .222210.2(0)1(,0)B D 1x y y px p F a b a bF 2=>-=>设抛物线的焦点恰好是双曲线的右焦点,且两曲线的交点的连线过点,则该双曲线的离心率为11.0A.36B 64 C.144D 256S ABC M SC SB AM SA S ABC ππππ-∙==-正三棱锥中,是的中点,,若侧棱的外接球的表面积为. .1112()()(1)1,()(),()()22A.(0,+)B.(1,+)C.(,0)D.(,1) x xe f x x R f f x R f x f e e +'∈=><∞∞-∞-∞.函数满足且在上的导函数则不等式为自然对数的底数的解集为第II 卷 非选择题二、填空题:本大题共4小题,每小题5分,共20分.()()13.2,3,1,32,//,a b t t a b t ==+-=已知若则5214.(1)(1)5.ax x x a ++=已知的展开式中的系数为,则37015,11x y x y x y x y +-≤⎧⎪≥-⎨⎪≥⎩.已知实数满足约束条件,则的最大值是{}*20151.,2(),n n n n na n S a n N S a =+∈=16已知正项数列的前项和S 若则三、解答题:本大题共6小题,共70分.解答应给出文字说明、证明过程及演算步骤.22217.(12)1,,,,.,.42(I)tan (II)3ABC A B C a b c A b a c C ABC b π∆=-=∆本小题满分分 在中,内角所对的边分别为已知求的值;若的面积为,求的值.xx 第三季度,国家电网决定对城镇居民用电计费标准做出调整,并根据用电情况将居民分为三类: 第一类的用电区间在,第二类在,第三类在(单位:千瓦时). 某小区共有1000户居民,现对他们的用电情况进行调查,得到频率分布直方图如图所示.(I) 求该小区居民用电量的平均数;(II) 用分层抽样的方法从该小区内选出10位居民代表,若从该10户居民代表中任选两户居民,求这两户居民用电资费属于不同类型的概率;(III) 若该小区长期保持着这一用电消耗水平,电力部门为鼓励其节约用电,连续10个月,每个月从该小区居民中随机抽取1户,若取到的是第一类居民,则发放礼品一份,设为获奖户数,求的数学期望与方差.19.(12)-//II 1,P ABCD ABCD PA ABCD E PD PB AEC E PD AP AD E ACD D AE C ⊥==---本小题满分分如图,四棱锥中,底面为矩形,平面,为侧棱上的一点,且平面.(I )证明:为的中点;()设且三棱锥的大小.D()()()()22222012C:10F A B 2M .MF FB 2 1.I II ,P Q F PQM .x y a b e a b +=>>=⋅=∆本小题满分分已知椭圆的离心率点为椭圆的右焦点,点、分别是椭圆的左、右顶点,点为椭圆的上顶点,且满足求椭圆方程;是否存在直线使得直线与椭圆交于、两点,且恰为的垂心.若存在,求出直线方程;若不存在,说明理由21.(12)1()ln(1).(I)()(1,(1))(II),()ln()()ln .x f x x xf x f x y x y x y x y x my m +=+++≤++本小题满分分已知求在点处的切线方程;若存在正实数使不等式成立,求实数的取值范围请考生在第22、23、24题中任选一题做答,如果多做,则按所做的第一题记分。
2019—2020高二期末统考数学试卷及答案(理科)
2019—2020学年度第一学期期末统一考试高二数学试卷(理科)本试卷分第I卷(选择题)、第II卷(非选择题)两部分。
共150分,考试时间120 分钟。
第I卷(选择题共40分)注意事项:1、答第I卷前,考生务必将自己的姓名、统考考号、座位号、考试科目用铅笔涂写在答题卡上。
2、每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题上。
3、不可以使用计算器。
4、考试结束,将答题卡交回,试卷不用上交。
一、选择题(本大题共8小题,中,只有一项是符合题目要求的不等式x25x的解集是A. [0,5]B. [5, 每小题5分,共40分.在每小题给出的四个备选项.)1C. (D. ( ,0] U[5,)2. 已知一个数列的前四项为3. A n2n 1A. ( 1)n 2 (2n)2椭圆16x2 25 y22 ,212n(2n)2400的离心率为B. ( 1)C.厶,则它的一个通项公式为16n 2n 1(1)歹1 2n 1(1) 丁4. A. 35函数f(x)的导函数f'(x)的图象如右图所示,则下列说法正确的是A.BC.D函数f(x)在(2,3)内单调递增函数f(x)在(4,0)内单调递减函数f(x)在x 3处取极大值函数f(x)在x 4处取极小值D.5. 等差数列{a n }的前n 项和S & a 2若 S io 31, S 20 122,则 S 40 =A. 182B. 242C. 2736. 长为3.5m 的木棒斜靠在石堤旁,木 的一端在离堤足1.4m 的地面上,另 端在沿堤上2.8m 的地方,堤对地面 倾斜角为,则坡度值tan 等于a n ,D. 484棒A•国 B55• 16 C231 D11 ° 16• 57.已知a 0,b0,且a b 1,贝U 1aA. 2B . 2 2A. (, 2)U[3,)B. ( , 2) U (1,2] U [3,)C. (1,2] U[3,)D. ( , 2)U(1,2]p q 为真,p q 为假,贝U 实数m 的取值范围为第II 卷(非选择题共110分) 二、填空题(本大题共6小题,每小题5分,共30分,把答案填在题中的横线上)9. 等差数列8,5,2,…的第30项是10. 经过点A( 1,3),并且对称轴都在坐标轴上的等轴双曲线的方程为y x11. 当x 、y 满足不等式组y 1时,目标函数t 2x y 的最小值是 .x y 112. ___________________________________________ 圆(x a)2 (y b)2 r 2经过原点的一个充要条件是 ____________________________________ . __13. 正三角形的一个顶点位于原点,另外两个顶点在抛物线 y 2 4x 上,则这个正三 角形的边长为 .8.已知 p :函数 f(x) x 2 mx 1 4,q : x R ,4x 2 4(m 2)x 10 .若14.物体沿直线运动过程中,位移s与时间t的关系式是s(t) 3t2 t .我们计算在t量x 的函数关系为p1 1 225 xx .(2)L (x )最大?最大月利润是多少?时刻的附近区间[t,t t ]内的平均速度vs (t一t ) s (t ),当t 趋近t于0时,平均速度v 趋近于确定的值,即瞬时速度,由此可得到 t 时刻的瞬时速度为 .三、解答题(本大题共6小题,共80分,解答须写出文字说明、证明过程和演算步 骤.)15. (13分)等比数列{%}的公比为q ,第8项是第2项与第5项的等差中项.(1) 求公比q ;(2) 若{a n }的前n 项和为S n ,判断S 3, S 9, S 6是否成等差数列,并说明理由•16. (13分)已知某精密仪器生产总成本 C (单位:万元)与月产量x (单位:台) 的函数关系为C 100 4x ,月最高产量为150台,出厂单价p (单位:万元)与月产(1)求月利润L 与产量x 的函数关系式L (x );17. (13分)第四届中国国际航空航天 博览会于2010年11月在珠海举行,-次飞行表演中,一架直升飞机在海拔800m的高度飞行,从空中A处测出前下方海岛两侧海岸P、Q处的俯角分别是45°和30°(如右图所示).(1试计算这个海岛的宽度PQ.(2)若两观测者甲、乙分别在海岛两侧海岸P、Q处同时测得飞机的仰角为45。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)x 2019—2020学年度第一学期期末统一考试高二数学试卷(理科)本试卷分第I 卷(选择题)、第II 卷(非选择题)两部分。
共150分,考试时间120分钟。
第I 卷(选择题 共40分) 注意事项:1、答第I 卷前,考生务必将自己的姓名、统考考号、座位号、考试科目用铅笔涂写在答题卡上。
2、每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题上。
3、不可以使用计算器。
4、考试结束,将答题卡交回,试卷不用上交。
一、选择题(本大题共8小题,每小题5分,共40分. 在每小题给出的四个备选项中,只有一项是符合题目要求的.) 1.不等式25x x ≥的解集是A .[0,5]B .[5,)+∞C .(,0]-∞D .(,0][5,)-∞+∞2.已知一个数列的前四项为22221357,,,24816--,则它的一个通项公式为 A .221(1)(2)nn n -- B .1221(1)(2)n n n --- C .221(1)2nn n -- D .1221(1)2n nn --- 3.椭圆221625400x y +=的离心率为 A .35B .45C .34D .16254.函数f(x)的导函数'()f x 的图象如右图所示,则下列说法正确的是A .函数()f x 在(2,3)-内单调递增B .函数()f x 在(4,0)-内单调递减C .函数()f x 在3x =处取极大值D .函数()f x 在4x =处取极小值5.等差数列{}n a 的前n 项和12...n n S a a a =+++, 若1031S =,20122S =,则40S =A .182B .242C .273D .4846.长为3.5m 的木棒斜靠在石堤旁,木棒的一端在离堤足1.4m 的地面上,另一端在沿堤上2.8m 的地方,堤对地面的倾斜角为α,则坡度值tan α等于 A .2315 B .516 C .23116 D .1157.已知0,0a b >>,且1a b +=,则11ab a b++的最小值是A .2B .22C .174D .88.已知p :函数2()1f x x mx =++有两个零点, q :x R ∀∈,244(2)10x m x +-+>.若p q ∨为真,p q ∧为假,则实数m 的取值范围为A .(,2)[3,)-∞-+∞B .(,2)(1,2][3,)-∞-+∞C .(1,2][3,)+∞D .(,2)(1,2]-∞-第II 卷(非选择题共110分)二、填空题(本大题共6小题,每小题5分,共30分,把答案填在题中的横线上) 9.等差数列8,5,2,…的第30项是 .10.经过点(1,3)A -,并且对称轴都在坐标轴上的等轴双曲线的方程为 .11.当x y 、满足不等式组11y xy x y ≤⎧⎪≥-⎨⎪+≤⎩时,目标函数2t x y =+的最小值是 .12.圆222()()x a y b r -+-=经过原点的一个充要条件是 .13.正三角形的一个顶点位于原点,另外两个顶点在抛物线24y x =上,则这个正三角形的边长为 .14.物体沿直线运动过程中,位移s 与时间t 的关系式是2()3s t t t =+. 我们计算在t时刻的附近区间[,]t t t +∆内的平均速度()()s t t s t v t+∆-==∆ ,当t ∆趋近于0时,平均速度v 趋近于确定的值,即瞬时速度,由此可得到t 时刻的瞬时速度为 .三、解答题(本大题共6小题,共80分,解答须写出文字说明、证明过程和演算步骤.)15.(13分)等比数列{}n a 的公比为q ,第8项是第2项与第5项的等差中项. (1)求公比q ;(2)若{}n a 的前n 项和为n S ,判断396,,S S S 是否成等差数列,并说明理由.16.(13分)已知某精密仪器生产总成本C (单位:万元)与月产量x (单位:台)的函数关系为1004C x =+,月最高产量为150台,出厂单价p (单位:万元)与月产量x 的函数关系为21125801800p x x =+-. (1)求月利润L 与产量x 的函数关系式()L x ;(2)求月产量x 为何值时,月利润()L x 最大?最大月利润是多少?17.(13分)第四届中国国际航空航天博览会于2010年11月在珠海举行,一次飞行表演中,一架直升飞机在海拔800m 的高度飞行,从空中A 处测出前下方海岛两侧海岸P 、Q 处的俯角分别是45°和30°(如右图所示). (1)试计算这个海岛的宽度PQ .(2)若两观测者甲、乙分别在海岛两侧海岸P 、Q 处同时测得飞机的仰角为45和30,他们估计P 、Q 两处距离大约为600m ,由此试估算出观测者甲(在P 处)到飞机的直线距离.18.(14分)如图,四棱锥P ABCD -的底面ABCD 为一直角梯形,其中,BA AD CD AD ⊥⊥,2,CD AD AB PA ==⊥底面ABCD ,E 是PC 的中点.(1)试用,,AD AP AB 表示BE ,并判断直线BE 与平面PAD 的位置关系; (2)若BE ⊥平面PCD ,求异面直线PD 与BC 所成角的余弦值.19.(14分)已知函数3221()(2)3f x x ax a a x =-++,a R ∈.(1)当2a =-时,求()f x 在闭区间[]1,1-上的最大值与最小值;(2)若线段AB :()2302y x x =+≤≤与导函数()y f x '=的图像只有一个交点,且交点在线段AB 的内部,试求a 的取值范围.20.(13分)过直角坐标平面xOy 中的抛物线()220y px p =>的焦点F 作一条倾斜角为4π的直线与抛物线相交于A 、B 两点.(1)求直线AB 的方程;(2)试用p 表示A 、B 之间的距离; (3)证明:AOB ∠的大小是与p 无关的定值.参考公式:()()()2222224A A B B A B A B A B x y x y x x x x p x x p ⎡⎤++=+++⎣⎦2019—2020学年度第一学期期末统一考试 数学试卷(理科)答案一、选择题:DDAB DA C B二、填空题:9. -79; 10. 22188y x -=; 11. -3; 12. 222a b r +=;13. 3 14. 613t t ++∆,61t +.三、解答题:15. 解:(1)由题可知,8252a a a =+, ……(1分) 即741112a q a q a q =+, ……(3分)由于10a q ≠,化简得6321q q =+,即63210q q --=, ……(4分)解得31q =或312q =-. 所以1q =或34q =. ……(6分)(2)当1q =时,3191613,9,6S a S a S a ===.易知396,,S S S 不能构成等差数列. ……(8分)当34q =即312q =-时,31113(1)13(1)11221a q a a S q q q -==+=---, 931119(1)19[1()]11281a q a a S q q q -==--=---,621116(1)13[1()]11241a q a a S q q q-==--=---.(11分)zy易知3692S S S +=,所以396,,S S S 能构成等差数列. ……(13分)16.解:(1)2321111()(25)(1004)21100801800180080L x px C x x x x x x x =-=+--+=-++-, 其中0150x <≤. ……(4分) (2)221111'()21(1512600)(120)(105)60040600600L x x x x x x x =-++=---=--+.…(6分)令'()0L x =,解得120x = (105x =-舍). ……(7分)当(0,120)x ∈时,'()0L x >;当(120,150]x ∈时,'()0L x <. ……(9分) 因此,当120x =时,()L x 取最大值. …(10分)所以,月产量为120台时,月利润()L x 最大,最大月利润为(120)1640L =万元.…(13分)17. 解:(1)在Rt ACP ∆中,tan PCCAP AC=∠, 则800tan45800PC =⨯︒=. ……(3分) 在Rt ACQ ∆中,tan QCCAQ AC=∠, 则800tan 608003QC =⨯︒=……(5分) 所以,8003800PQ QC PC =-=(m ). ……(6分)(2)在APQ ∆中,600PQ =,30AQP ∠=︒,453015PAQ ∠=︒-︒=︒. ……(7分) 根据正弦定理,得600sin30sin15PA =︒︒, ……(9分) 则600sin30600sin30300(62)sin(4530)sin 45cos30cos45sin3062PA ︒︒====︒-︒︒︒-︒︒-.…(13分)18. 解:设,AB a PA b ==,建立如图所示空间直角坐标系,(0,0,0),(,0,0)A B a ,(0,0,)P b ,(2,2,0),(0,2,0)C a a D a ,(,,)2bE a a . ……(2分)(1)(0,,)2b BE a =,(0,2,0),(0,0,)AD a AP b ==, 所以1122BE AD AP =+, ……(5分)BE ⊄平面PAD ,//BE ∴平面PAD . ……(7分)(2)BE ⊥平面PCD ,BE PC ∴⊥,即0BE PC ⋅=.(2,2,)PC a a b =-,22202b BE PC a ∴⋅=-=,即2b a =. ……(10分)(0,2,2),(,2,0)PD a a BC a a =-=, ……(11分)2cos ,PD BC <=,所以异面直线PD 与BC . ……(14分)19. 解:(1)当2a =-时,321()23f x x x =+. ……(1分) 求导得2()4(4)f x x x x x '=+=+. ……(2分) 令()0f x '=,解得:4x =-或0x =. ……(3分)列表如下: ……(6分)所以,()f x 在闭区间[]1,1-上的最大值是73,最小值是0. ……(7分) (2)22()22y f x x ax a a '==-++. ……(8分)联立方程组2222,2 3.y x ax a a y x ⎧=-++⎨=+⎩ ……(9分)得()2221230.x a x a a -+++-= ……(10分)设22()2(1)23g x x a x a a =-+++-,则方程()0g x =在区间()0,2内只有一根, 相当于(0)(2)0g g ⋅<,即()()2223230,a a a a +-⋅--< ……(12分)解得 31a -<<-或13a <<. ……(14分)20.解:(1)焦点(,0)2pF ,过抛物线焦点且倾斜角为4π的直线方程是2p y x =-. …(3分)(2)由222y pxp y x ⎧=⎪⎨=-⎪⎩22304p x px ⇒-+=23,4A B A B p x x p x x ⇒+==4A B AB x x p p ⇒=++=. ……(8分) (3)222222222cos 2AO BO ABx y x y x x y y AOB AO BO+-+++----∠==()22A B A B p p x x x x -++===……(12分) ∴AOB ∠的大小是与p 无关的定值. ……(13分)1题:教材《必修⑤》 P76 预备题 改编,考查一元二次不等式求解. 2题:教材《必修⑤》 P67 2(2)改编,考查写数列通项公式. 3题:教材《选修1-1》 P40 例4 改编,考查椭圆几何性质.4题:教材《选修1-1》 P98 第4题改编,考查利用导数研究函数性质. 5题:教材《必修⑤》 P44 例2改编,考查等差数列性质及前n 项和 6题:教材《必修⑤》 P16 习题改编,考查利用余弦定理解三角形 9题:教材《必修⑤》 P38 例1(1)改编,考查等差数列通项公式 10题:教材《选修1-1》 P54 A 组第6题改编,考查双曲线方程与性质 11题:教材《必修⑤》 P91 第1(1)题改编,考查线性规划问题 12题:教材《选修1-1》 P12 第4题改编,考查充要条件.13题:教材《选修1-1》 P64 B 组第2题改编,考查抛物线方程及性质 14题:教材《选修1-1》 P74 导数概念的预备题 改编,考查导数概念15题:教材《必修⑤》 P61 第6题 改编,考查等差数列、等比数列的通项与前n项和.16题:教材《选修1-1》 P104 第6题改编,考查导数的应用. 17题:教材《必修⑤》 P19 第4题改编,考查解三角形.。