2021年人教版七年级数学上册 第1章 有理数 拔高题及易错题精选

合集下载

人教版七年级上册数学 第一章 有理数 全章易错疑难集训

人教版七年级上册数学  第一章  有理数   全章易错疑难集训

人教版七年级上册数学第一章 有理数 全章易错疑难集训一.易错题1 对正数、负数和“0”的认识错误1. 有理数-a 是 ( )A.负数B.正数C.0D.正数或负数或02. 下列说法错误的是 ( )A.0是最小的自然数B. 某地海拔0米表示某地没有高度C. 0既不是正数,也不是负数D.0 ℃是零上温度和零下温度的分界线2 在条件|a|=a 下,误认为a 的值一定是正数3. 若|a-1|=a-1,则a 的取值范围是 ( )A.a ≥1B.a ≤1C. a>1D. a<13 对有理数的有关概念理解不透4. 在数-3,0,5,-312,3.1,12,2 020,π中,整数有( ) A.2个B.3个C.4个D.5个 5. 在-227,π3,0.62,0这四个数中,正有理数有 ( )A.4个B.3个C.2个D.1个4 混淆绝对值符号与括号6. 下列式子中成立的是 ( )A.-|-6|>5B.-8<-(-8)C.-|-7|=7D.|-8.5|<87. 下列化简错误的是 ( )A.-(-5)=5B.-|-45|=45C.-(-3.2)=3.2D.+(+7)=75 对乘方的意义理解不清8. 计算:(-23)2÷12-(-232)+(-2)2= .9. 计算:(-2)4+(-24)×14= . 6 弄错运算顺序或运算律10. 计算(-78)÷(134−78−712).下面是乐乐同学的解答过程:(-78)÷(134−78−712)=(-78)÷134-(-78)÷78-(-78)÷712=-12+1+32=2.老师看后,说他的解答错误,你知道错在哪里吗?请你把正确的解题过程写出来.11. 计算:-8÷23×32.下面是东东同学的解答过程:-8÷23×32=-8÷1=-8.你认为东东同学的解答是否正确?若不正确,请指出错在哪里,并给出正确的解题过程;若正确,请写出计算过程中每步的依据.二.疑难题1 有理数的大小比较1. 若-1<x<0,则x,1|x |,-x 的大小关系是( ) A.x>1|x |>-x B.1|x |>x>-x C.1|x |>-x>x D.-x>1|x |>x2 数轴上的点与有理数的关系2. 下列说法正确的是 ( )A.数轴上的每一个点都表示一个整数B.数轴上的每一个点都表示一个分数C.数轴上的每一个点都表示一个有理数D.每一个有理数都可以用数轴上的点表示3 绝对值问题中数形结合思想的应用3. 点A,B在数轴上分别表示有理数a,b,A,B两点之间的距离AB=|a-b|,所以|x-3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.(1) 若|x-3|=|x+1|,则x= .(2) 若|x-3|=5,则x= ;4 有理数的混合运算与绝对值的综合运用4. 若a,b,c为有理数,且a|a|+b|b|+c|c|=-1,求abc|abc|的值.5 含字母的乘方运算问题5. -a n与(-a)n是否相等(n为正整数)?6 数轴与有理数加减运算的综合6. 已知a,b是有理数,|a+b|=-(a+b),|a-b|=a-b,若将a,b在数轴上表示出来,则下图可能正确的是 ( )7 有计数单位的近似数的精确度7. 近似数2.89万精确到哪一位?。

七年级上册第一章有理数易错题(含答案)

七年级上册第一章有理数易错题(含答案)

有理数易错题(1)一.选择题(共5小题)1.下列说法正确的是()A.|x|<xB.若|x﹣1|+2取最小值,则x=0C.若x>1>y>﹣1,则|x|<|y|D.若|x+1|≤0,则x=﹣12.如图,一个不完整的数轴(单位长度为1)上有A,B,C三个点,若点A,B表示的数互为相反数,则图中点C表示的数是()A.﹣2B.0 C.1 D.43.如图所示,则|a﹣b|=()A.a+b B.﹣a﹣bC.a﹣b D.b﹣a4.有理数a,b在数轴上的对应点的位置如图所示.把﹣a,b,0按照从小到大的顺序排列,正确的是()A.0<﹣a<b B.﹣a<0<bC.b<0<﹣a D.b<﹣a<05.已知a、b是不为0的有理数,且|a|=﹣a,|b|=b,|a|>|b|,那么用数轴上的点来表示a、b,正确的是()A.B.C.D.二.填空题(共8小题)6.一个数的相反数等于它本身,这个数是;比其相反数大的数是.7.数轴上A点表示﹣3,B、C两点表示的数互为相反数,且点B到点A的距离是2,则点C表示的数应该是.8.已知m与n互为相反数,且m与n之间的距离为6,且m<n,则m=,n=.9.若m,n互为相反数,m<n,且m与n在数轴上所对应的点之间的距离是5.8,则m=.10.一个数a在数轴上的对应点在原点左边,且|a|=9,则a的值为.11.相反数等于它本身的数是,倒数等于它本身的数是,绝对值等于它本身的数是,绝对值最小的有理数是,平方等于它本身的数是,立方等于它本身的数是.12.有理数a,b,c对应的点在数轴上的位置如下图:那么1a−b,1c−b,1a−c中,其中最大的是,最小的是.13.点A在数轴上距离原点3个单位长度,将A向右移动4个单位长度,再向左移动7个单位长度,此时点A表示的数是.三.解答题(共2小题)14.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.请用上面的知识解答下面的问题:(1)数轴上表示1和5的两点之间的距离是,数轴上表示﹣2和﹣4的两点之间的距离是,数轴上表示1和﹣3的两点之间的距离是;(2)数轴上表示x和﹣1的两点A和B之间的距离是,如果|AB|=2,那么x为;(3)|x+1|+|x﹣2|取最小值是.15.化简下列各式的符号,并回答问题:①﹣(﹣2);②+(−15);③﹣[﹣(﹣4)];④﹣[﹣(+3.5)];⑤﹣{﹣[﹣(﹣5)]};⑥﹣{﹣[﹣(+5)]}.(1)当+5前面有1000个负号,化简后结果是多少?(2)当﹣5前面有999个负号,化简后结果是多少?(3)你能总结出什么规律?有理数易错题(1)参考答案与试题解析一.选择题(共5小题)1.下列说法正确的是()A.|x|<xB.若|x﹣1|+2取最小值,则x=0C.若x>1>y>﹣1,则|x|<|y|D.若|x+1|≤0,则x=﹣1【解答】解:A、当x=0时,|x|=x,故此选项错误,不符合题意;B、∵|x﹣1|≥0,∴当x=1时,|x﹣1|+2取最小值,故此选项错误,不符合题意;C、∵x>1>y>﹣1,∴|x|>1,|y|<1,∴|x|>|y|,故此选项错误,不符合题意;D、∵|x+1|≤0,|x+1|≥0,∴x+1=0,∴x=﹣1,故此选项正确,符合题意.故选:D.2.如图,一个不完整的数轴(单位长度为1)上有A,B,C三个点,若点A,B表示的数互为相反数,则图中点C表示的数是()A.﹣2B.0C.1D.4【解答】解:∵点A,B表示的数互为相反数,∴原点在图中所示位置:∴点C表示的数1.故选:C.3.如图所示,则|a﹣b|=()A.a+b B.﹣a﹣b C.a﹣b D.b﹣a【解答】解:通过数轴可判断a<0,b>0,所以﹣b<0,所以a﹣b<0,所以|a﹣b|=b﹣a,故选:D.4.有理数a,b在数轴上的对应点的位置如图所示.把﹣a,b,0按照从小到大的顺序排列,正确的是()A.0<﹣a<b B.﹣a<0<b C.b<0<﹣a D.b<﹣a<0【解答】解:由数轴可知,a<0<b,|a|<|b|,∴0<﹣a<b,故选:A.5.已知a、b是不为0的有理数,且|a|=﹣a,|b|=b,|a|>|b|,那么用数轴上的点来表示a、b,正确的是()A.B.C.D.【解答】解:∵|a|=﹣a,|b|=b,∴a≤0,b≥0,∵|a|>|b|,∴表示数a的点到原点的距离比b到原点的距离大,故选:C.二.填空题(共8小题)6.一个数的相反数等于它本身,这个数是0;比其相反数大的数是正数.【解答】解:0的相反数是0;正数大于它的相反数.故答案为:0;正数.7.数轴上A点表示﹣3,B、C两点表示的数互为相反数,且点B到点A的距离是2,则点C表示的数应该是1或5.【解答】解:∵点B到点A的距离是2,∴点B表示的数为﹣1或﹣5,∵B、C两点表示的数互为相反数,∴点C表示的数应该是1或5.故答案为1或5.8.已知m与n互为相反数,且m与n之间的距离为6,且m<n,则m=﹣3,n=3.【解答】解:∵m与n互为相反数,∴n=﹣m,∵m<n,且m与n之间的距离为6,∴n﹣m=6,∴﹣m﹣m=6,∴﹣2m=6,解得m=﹣3,∴n=3.故答案为:﹣3,3.9.若m,n互为相反数,m<n,且m与n在数轴上所对应的点之间的距离是5.8,则m=﹣2.9.【解答】解:∵m,n互为相反数,∴n=﹣m,∵m<n,且m与n在数轴上所对应的点之间的距离是5.8,∴n﹣m=5.8,∴﹣m﹣m=5.8,∴﹣2m=5.8,解得m=﹣2.9.故答案为:﹣2.9.10.一个数a在数轴上的对应点在原点左边,且|a|=9,则a的值为﹣9.【解答】解:∵|a|=9,∴a=±9,∵数a在数轴上的对应点在原点左边,∴a=﹣9.故答案为:﹣9.11.相反数等于它本身的数是0,倒数等于它本身的数是±1,绝对值等于它本身的数是非负数,绝对值最小的有理数是0,平方等于它本身的数是0、1,立方等于它本身的数是±1、0.【解答】解:相反数等于它本身的数是0,倒数等于它本身的数是±1,绝对值等于它本身的数是0、1,绝对值最小的有理数是0,平方等于它本身的数是非负数,立方等于它本身的数是±1、0.故:答案是:0;±1,非负数;0;0、1;±1、0.12.有理数a,b,c对应的点在数轴上的位置如下图:那么1a−b,1c−b,1a−c中,其中最大的是1c−b,最小的是1a−b.【解答】解:∵a<b<c,∴a﹣b<0,c﹣b>0,a﹣c<0,∴a﹣b<a﹣c<0,∴1a−b<1a−c<1c−b,故答案为1c−b,1a−b.13.点A在数轴上距离原点3个单位长度,将A向右移动4个单位长度,再向左移动7个单位长度,此时点A表示的数是﹣6或0.【解答】解:点A在数轴上距离原点3个单位长度,当点A在原点左边时,点A表示的数是﹣3,将A向右移动4个单位长度,再向左移动7个单位长度,此时点A表示的数是﹣3+4﹣7=﹣6;当点A在原点右边时,点A表示的数是3,将A向右移动4个单位,再向左移动7个单位长度得3+4﹣7=0.故答案为:﹣6 或0.三.解答题(共2小题)14.点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a﹣b|.请用上面的知识解答下面的问题:(1)数轴上表示1和5的两点之间的距离是4,数轴上表示﹣2和﹣4的两点之间的距离是2,数轴上表示1和﹣3的两点之间的距离是4;(2)数轴上表示x和﹣1的两点A和B之间的距离是|x+1|,如果|AB|=2,那么x为1或﹣3;(3)|x+1|+|x﹣2|取最小值是3.【解答】解:(1)数轴上表示1和5的两点之间的距离是=|5﹣1|=4;数轴上表示﹣2和﹣4的两点之间的距离=|﹣2﹣(﹣4)|=2;数轴上表示1和﹣3的两点之间的距离是=|﹣3﹣1|=4;故答案为:4;2;4;(2)数轴上表示x和﹣1的两点A和B之间的距离=|x﹣(﹣1)|=|x+1|;∵|AB|=2,∴x+1=±2.解得:x=1或x=﹣3.故答案为:|x+1|;1或﹣3;(3)|x+1|+|x﹣2|表示数轴上某点到﹣1和2的距离之和.∴当﹣1≤x≤2时,|x+1|+|x﹣2|有最小值,最小值为3.故答案为:3.15.化简下列各式的符号,并回答问题:①﹣(﹣2);②+(−15);③﹣[﹣(﹣4)];④﹣[﹣(+3.5)];⑤﹣{﹣[﹣(﹣5)]};⑥﹣{﹣[﹣(+5)]}.(1)当+5前面有1000个负号,化简后结果是多少?(2)当﹣5前面有999个负号,化简后结果是多少?(3)你能总结出什么规律?【解答】解:①﹣(﹣2)=2;②+(−15)=−15;③﹣[﹣(﹣4)]=﹣4;④﹣[﹣(+3.5)]=+3.5;⑤﹣{﹣[﹣(﹣5)]}=5;⑥﹣{﹣[﹣(+5)]}=﹣5.(1)当+5前面有1000个负号,化简后结果是+5;(2)当﹣5前面有999个负号,化简后结果是+5,规律:在一个数的前面有偶数个负号,化简结果是本身;在一个数的前面有奇数个负号,化简结果是这个数的相反数.。

人教版七年级数学易错题讲解及答案_人教版七年级数学上册

人教版七年级数学易错题讲解及答案_人教版七年级数学上册

人教版七年级数学易错题讲解及答案_人教版七年级数学上册第一章有理数易错题练习一.推断⑴ a与-a 必有一个是负数 .⑵在数轴上,与原点0相距5个单位长度的点所表示的数是5.⑶在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是4.⑷在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的肯定值是-6. ⑸肯定值小于4. 5而大于3的整数是3、4. ⑺假如-x =- (-11),那么x = -11.⑻假如四个有理数相乘,积为负数,那么负因数个数是1个. ⑼若a =0, 则a=0. b⑽肯定值等于本身的数是1. 二.填空题⑴若-a =a -1,则a 的取值范围是: .⑵式子3-5│x │的最值是 .⑶在数轴上的A 、B 两点分别表示的数为-1和-15,则线段AB 的中点表示的数是 . ⑷水平数轴上的一个数表示的点向右平移6个单位长度得到它的相反数,这个数是________. ⑸在数轴上的A 、B 两点分别表示的数为5和7,将A 、B 两点同时向左平移相同的单位长度,得到的两个新的点表示的数互为相反数,则需向左平移个单位长度.⑹已知│a │=5,│b │=3,│a +b │= a +b ,则a -b 的值为;假如│a +b │= -a -b ,则a -b 的值为 .⑺化简-│π-3│= . ⑻假如a <b <0,那么11. a b⑼在数轴上表示数-1的点和表示-5的点之间的距离为:13121=-1,则a 、b 的关系是________. b a b ⑾若<0,<0,则ac 0.b c⑽a ⋅⑿一个数的倒数的肯定值等于这个数的相反数,这个数是 . 三. 解答题⑴已知a 、b 互为倒数,- c 与⑵数a 、b 在数轴上的对应点如图,化简:│a -b │+│b -a │+│b │-│a -│a ││.x d互为相反数,且│x │=4,求2ab -2c +d +的值.32⑶已知│a +5│=1,│b -2│=3,求a -b 的值. ⑷若|a |=4,|b |=2,且|a +b |=a +b ,求a - b 的值.⑸把下列各式先改写成省略括号的和的形式,再求出各式的值.①(-7)- (-4)- (+9) +(+2)- (-5);②(-5) - (+7)- (-6)+4.⑹改错(用红笔,只改动横线上的部分) :⑺比较4a 和-4a 的大小①已知5. 0362=25. 36,那么50. 3620. 050362 ②已知7. 4273=409. 7,那么74. 2730. 074273 ③已知3. 412=11. 63,那么2=116300;④近似数2. 40×104精确到百分位,它的有效数字是2,4;⑤已知5. 4953=165. 9,x 3=0. 0001659,则x ⑻在交换季节之际,商家将两种商品同时售出,甲商品售价1500元,盈利25%,乙商品售价1500元,但亏损25%,问:商家是盈利还是亏本? 盈利, 盈了多少? 亏本,亏了多少元? ⑼若x 、y 是有理数,且|x |-x =0,|y |+y =0,|y ||x |,化简|x |-|y |-|x +y |. ⑽已知abcd ≠0,试说明ac 、-ad 、bc 、bd 中至少有一个取正值,并且至少有一个取负值. ⑾已知a 0,推断(a +b )(c -b ) 和(a +b )(b -c ) 的大小. ⑿已知:1+2+3……+33=17×33,计算1-3+2-6+3-9+4-12+……+31-93+32-96+33-99的值.四.计算下列各题:1⎛2⎛137⑴(-42.75)×(-27.36)-(-72.64)×(+42.75) ⑵--- +⎛---- ⑶-7÷(35+)3⎛3⎛4495⎛2⎛3⎛1⎛226⑷-2000+ -1999⎛+4000+ -1⎛⑸⨯1.43-0.57⨯(-) ⑹(-5) ÷(-6) ÷(-)6⎛3⎛4⎛2⎛335221144 42⎛-2-(-3) ⑺9×18 ⑻-15×12÷6×5 ⑼-1-(1-0.5) ⨯÷⎛⑽-2-(-2)⎛3⎛18⑾(-3⨯2) 3+3⨯23有理数·易错题练习一.多种状况的问题(考虑问题要全面)(1)已知一个数的肯定值是3,这个数为_______;此题用符号表示:已知x =3, 则x=_______;-x =5, 则x=_______;(2)肯定值不大于4的负整数是________; (3)肯定值小于4.5而大于3的整数是________.(4)在数轴上,与原点相距5个单位长度的点所表示的数是________;(5)在数轴上,A 点表示+1,与A 点距离3个单位长度的点所表示的数是________;21(6) 平方得2的数是____;此题用符号表示:已知x = 412, 则x=_______; 4(7)若|a|=|b|,则a,b 的关系是________;(8)若|a|=4,|b|=2,且|a+b|=a+b ,求a -b 的值.二.特值法帮你解决含字母的问题(此方法只适用于选择、填空)正数有理数中的字母表示,从三类数中各取1——2个特值代入检验,做出正确的选择负数(1)若a 是负数,则a________-a ;-(2)已知-a 是一个________数;x =-x , 则x 满意________;若x =x , 则x 满意________;若x=-x,x 满意________;若a=____ ;(3)有理数a 、b 在数轴上的对应的位置如图所示:则()A.a + b<0 B.a + b>0; C.a -b = 0 D.a -b >0 (4)假如a 、b 互为倒数,c 、d 互为相反数,且,则代数式2ab-(c+d)m =3,+m2=_______。

人教版七年级数学第一章《有理数》易错题训练 (4)含答案解析

人教版七年级数学第一章《有理数》易错题训练 (4)含答案解析

第一章《有理数》易错题训练 (4)一、选择题(本大题共14小题,共42.0分)1.有理数a,b在数轴上的位置如图所示,则下列各式成立的是()A. b−a>0B. −b>0C. a>−bD. −ab<02.一个数的相反数是−2020,则这个数是()A. 2020B. −2020C. 12020D. −120203.下列说法正确的是()A. 互为相反数的两个数一定不相等B. 绝对值等于它相反数的数是负数C. 一个有理数不是整数就是分数D. π3是分数4.下列各组数中,互为相反数的是()A. −(+3)与+(−3)B. −(−4)与|−4|C. −32与(−3)2D. −23与(−2)35.若两个数的和为正数,则这两个数()A. 至少有一个为正数B. 只有一个是正数C. 有一个必为零D. 都是正数6.在1:50000000的地图上量得两地间的距离是1.3cm,这两地间的实际距离(单位:m)用科学记数法表示是()A. 6.5×108B. 1.3×108C. 6.5×105D. 1.3×1057.下面一组数+7,−3.1,+15,−317,0.33,+5.8,其中非负分数共有()A. 3个B. 4个C. 5个D. 6个8.已知a、b互为相反数,则下列结论:①a、b在数轴上对应的点关于原点对称;②a+b=0;③|a|=|b|;④ab≤0.一定正确的有()个.A. 1B. 2C. 3D. 49.下列各组量中,互为相反意义的量是()A. 上升与减少B. 增产10吨与减产−10吨C. 篮球比赛胜5场与负3场D. 向东走3米与向南走3米10.下列叙述正确的个数是()①−5是5的相反数;②最小的负有理数是−1;③绝对值小于3的有理数有5个;④数轴上每一个点都对应一个有理数.A. 1个B. 2个C. 3个D. 4个 11. 在−2,0,3.14,102,π3,−|−13| ,100%中,非负整数的个数是( )A. 2个B. 3个C. 4个D. 5个12. 如图所示,点A 、B 、C 在数轴上的位置如图所示,O 为原点,C 表示的数为m ,BC =3,AO =3OB ,则A 表示的数为A. 3m −9B. 9−3mC. 2m −6D. m −3 13. 计算(−12)2012+(−12)2013的结果是 ( ) A. (1+12)2013 B. −(12)2013 C. −(12)2012 D. (12)201314. 每天供给地球光和热的太阳与我们的距离非常遥远,它距地球的距离约为1.5亿千米,将1.5亿千米用科学计数法表示为( )A. 15×107千米B. 1.5×1011米C. 1.5×107千米D. 1.5×1012米二、填空题(本大题共9小题,共27.0分)15. 一个数的倒数就是它本身,这个数是_____________.16. 平方得1625的数是________ ;17. 计算:(+1)+(−2)+(+3)+(−4)+⋯⋯+(−2018)+(+2019)=_______.18. 用“>”“<”或“=”填空:−56___________−67.19. 立方等于它本身的数是______;平方等于它本身的数是_____。

人教版 七年级上 第一章有理数 知识点总结及易错题

人教版 七年级上  第一章有理数  知识点总结及易错题

新课标人教版数学七年级(上)知识要点概括第一章有理数1.(1)正数:大于零的数;(2)负数:小于零的数(在正数前面加上负号“—”的数);注意:①0既不是正数也不是负数,它是正负数的分界点;②对于正数和负数,不能简单理解为带“+”号的数是正数,带“—”号的数是负数;③字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。

④正数有时也可以在前面加“+”,有时“+”省略不写。

所以省略“+”的正数的符号是正号。

2.有理数的概念⑴正整数、0、负整数统称为整数;⑵正分数和负分数统称为分数;⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。

理解:只有能化成分数的数才是有理数。

①π是无限不循环小数,不能写成分数形式,不是有理数;②有限小数和无限循环小数都可化成分数,都是有理数;③-a不一定是负数,+a也不一定是正数;3.有理数的分类⑴按有理数的定义分类⑵按性质符号来分正整数正整数整数 0 正有理数负整数正分数有理数有理数 0 (0不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、0统称为非负整数(也叫自然数)②负整数、0统称为非正整数③正有理数、0统称为非负有理数④负有理数、0统称为非正有理数⑤0是整数不是分数。

4. 规定了原点,正方向,单位长度的直线叫做数轴。

注意:⑴数轴是一条向两端无限延伸的直线;⑵原点、正方向、单位长度是数轴的三要素,三者缺一不可;⑶同一数轴上的单位长度要统一。

(4)数轴一般取右(或向上)为正方向,数轴的原点的选定,正方向的取向,单位长度大小的确定都是根据实际需要规定的。

5.数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右侧的点表示,负有理数可用原点左侧的点表示,0用原点表示。

⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上的点不是一一对应关系。

人教版七年级上期末复习计划《第一章有理数》知识点易错题含答案

人教版七年级上期末复习计划《第一章有理数》知识点易错题含答案

2021年七年级数学上册期末复习有理数知识点+易错题有理数习知识点复习1、有理数的定义: ________和________统称为有理数。

2、有理数的分类:按照符号分类,可以分为________、________和________;按照定义分类,可以分为________和________:整数分为________、________和________;分数分为________和________。

3、数轴的定义:规定了________、________和________的________叫数轴。

4、数轴的三要素:数轴的三要素是指________、________和________,缺一不可。

5、用数轴比较有理数的大小:在数轴上,________的点表示的数总比________的点表示的数大。

6、绝对值的定义:数轴上____________与________的________,叫做这个数的绝对值。

7、绝对值的表示方法如下:-2的绝对值是 2,记作________;3的绝对值是3,记作________;0的绝对值是________。

8、相反数的定义: __________、__________的两个数互为相反数,其中一个数是另一个数的________。

9、表示一个数的相反数就是在这个数的前面添一个________号,如2的相反数可表示为________。

10、有理数加法法那么:①同号两数相加,取________的符号,并把________相加;②异号两数相加,________相等时,和为________;绝对值不等时,取__________符号,并用________________。

③一个数与0相加,________。

11、有理数减法法那么:减去一个数,等于____________。

12、有理数加法运算律:加法交换律:a+b=________;加法结合律:(a+b)+c=________。

13、有理数乘法法那么:两数相乘,同号________,异号________,并把________相乘;任何数与0相乘都得________。

人教七年级上册数学《有理数》易错题和好题评析精选

人教七年级上册数学《有理数》易错题和好题评析精选

人教七年级上册数学《有理数》易错题及好题评析精选一、知识点再辨析二、易错题精选例1分析:我们知道,绝对值的几何意义表示的是点与点之间的距离,因此,必然有最小值是0,相应的,当式子在不断变化中,我们只要抓住其中的绝对值形式最小值为0,即可解决许多问题.解答:例2分析:我们知道,平方表示两个相同的因数的积,因此,同号得正,可知其必然有最小值是0,相应的,当式子在不断变化中,我们只要抓住其中的平方形式最小值为0,即可解决许多问题.解答:例3有理数混合运算错误辨析分析:(1)错因:看到-(-4),习惯性得到4,但这里应该看作减去-4的平方.(2)错因:先算了减法,顺序出错.(3)错因:求带分数的平方,因化成假分数,分子分母分别平方,平方时,也不是将底数指数相乘.(4)错因:看到有互为倒数的项,立刻先乘,其实应该从左往右.(5)错因:除法没有分配律,应该先算括号内的.解答:例4科学记数法易错精选分析:科学记数法,即把一个数写成a×10n(1≤a<10,n为正整数)的形式,其中,n 是原数的整数位减去1,反之,将科学记数法写成原数,则整数位比n多1.至于千,万,亿与科学记数法的关系,详见知识点4.解答:三、好题评析例1分析:本题中,我们要结合已知条件与乘方的意义一起分析,显然,21的三次方表示3个21相乘,我们可以将其中一个与119相乘,看作整体,问题转化为2499×21²-2498×21²,再用一次乘法分配律,问题迎刃而解.解答:例2分析:本题中,出现了绝对值化简,我们要考虑每个数的正负性,显然,这里有两正,两负,一正一负三种情况,注意,a正b负与a负b正,对式子结果无影响,算作一种情况.解答:(1)a,b均为正,原式=1+1=2(2)a,b均为负,原式=-1-1=-2(3)a,b一负一正,原式=-1+1=0综上,原式=0或±2.变式分析:由三个数的积为正,可知负因数的个数为偶数个,则a,b,c的正负性只可能为三个均为正或一正两负.解答:(1)a,b,c均为正,原式=1+1+1=3(2)a,b,c一正两负,原式=1-1-1=-1综上,原式=3或-1.例3分析:(1)通过计算可得①,③属于两数异号,②属于两数同号,分别计算可以比较大小.(2)根据(1)的结果可以归纳.(3)由(2)的结论,可知a+b与c+d异号.解答:。

人教版七年级数学上册《有理数》易错题练习-有答案

人教版七年级数学上册《有理数》易错题练习-有答案

人教版七年级数学上册《有理数》易错题练习-有答案【易错1例题】正数和负数1.(2021·四川中考真题)如果规定收入为正那么支出为负收入2元记作2+支出5元记作().A.5元B.5-元C.3-元D.7元【答案】B【分析】结合题意根据正负数的性质分析即可得到答案.【详解】根据题意得:支出5元记作5-元故选:B.【点睛】本题考查了正数和负数的知识解题的关键是熟练掌握正负数的性质从而完成求解.【易错2例题】有理数2.(2021·广西三美学校)已知下列各数:5-1340 1.5-513312-.把上述各数填在相应的集合里:正有理数集合:{}负有理数集合:{}分数集合:{}【答案】正有理数集合:11,4,5,333⎧⎫⎨⎬⎩⎭负有理数集合:15, 1.5,2⎧⎫---⎨⎬⎩⎭分数集合:111, 1.5,3,332⎧⎫--⎨⎬⎩⎭【分析】正有理数指的是除了负数0无理数的数字负有理数指小于0的有理数正分数负分数小数统称为分数.【详解】解:正有理数集合:11,4,5,3 33⎧⎫⎨⎬⎩⎭负有理数集合:15, 1.5,2⎧⎫---⎨⎬⎩⎭分数集合:111, 1.5,3,332⎧⎫--⎨⎬⎩⎭.【点睛】本题考查了有理数的分类熟练掌握各类数的属性和特点是解题的关键.【易错3例题】数轴3.(2021·广东七年级月考)已知下列有理数:-42-3.50-231-0.52(1)在数轴上标出这些有理数表示的点(2)设表示-0.5的点为A那么与A点的距离相差4个单位长度的点所表示的数是多少?【答案】(1)答案见解析(2)3.5或−4.5.【分析】(1)根据所给有理数画出数轴标出各数据即可.(2)直接利用数轴结合与A点的距离相差4个单位长度即可得出答案.【详解】(1)如图所示:(2)设表示−0.5的点为A则与A点的距离相差4个单位长度的点所表示的数是:−0.5+4=3.5或−0.5−4=−4.5.【点睛】本题考查数轴根据题意正确的在数轴上表示出各数据是解题关键.【易错4例题】相反数4.(2021·江苏七年级专题练习)2021的相反数为__________.-【答案】2021【分析】利用相反数的定义即可求解.【详解】-解:2021的相反数为2021-.故答案为:2021【点睛】本题考查相反数掌握相反数的定义是解题的关键.【易错5例题】绝对值5.(2021·浙江九年级三模)2021的绝对值是()A.12021B.﹣12021C.2021D.﹣2021【答案】C【分析】根据绝对值的定义即可得出正确选项.【详解】解:2021的绝对值是2021故选:C.【点睛】本题考查求绝对值.正数的绝对值是它本身0的绝对值是0负数的绝对值是它的相反数.【专题训练】一、选择题1.(2021·江苏苏州市·九年级二模)π的相反数是()A.π-B.πC.1π-D.1π【答案】A【分析】根据相反数的定义即可求解.【详解】解:π的相反数是π-故选:A【点睛】此题考查的是相反数的概念是:只有符号不同的两个数互为相反数掌握相反数的概念是解题的关键.2.(【新东方】初中数学20210625-022【初一上】)下列各对量中不具有相反意义的是()A.胜2局与负3局B.盈利3万元与亏损3万元C.气温升高4℃与气温降低10℃D.转盘逆时针转3圈与向右转5圈【答案】D【分析】首先审清题意明确“正”和“负”所表示的意义再根据题意作答.【详解】解:A胜2局与负3局具有相反意义不符合题意B盈利3万元与亏损3万元具有相反意义不符合题意C气温升高4℃与气温降低10℃具有相反意义不符合题意D转盘逆时针转3圈与向右转5圈不具有相反意义符合题意故选D.【点睛】本题主要考查了正数和负数的意义解题关键是理解“正”和“负”的相对性明确什么是一对具有相反意义的量.在一对具有相反意义的量中先规定其中一个为正则另一个就用负表示.3.(【新东方】DY试卷解析初一下数学【00017】)下列关于数轴的图示画法不正确的有()A.4个B.3个C.2个D.1个【答案】B【分析】根据数轴的定义逐一判断即可得到答案.【详解】(1)中数轴的单位长度不一致画法不正确符合题意(2)中数轴没有原点画法不正确符合题意(3)中数轴画法正确不符合题意(4)中数轴没有正方向画法不正确符合题意℃画法不正确的有3个故选B.【点睛】本题主要考查数轴的画法掌握画数轴的三要素:正方向单位长度原点是解题的关键.4.(2021·上海期中)在-125% 23250-0.30.67-4257-中非负数有()A.2个B.3个C.4个D.5个【答案】C【分析】根据非负数的范围即非负数是大于等于零的数即可求解.【详解】解:非负数有:232500.67负数有:-125% -0.32 57 -非负数有4个.故选:C【点睛】本题主要考查了有理数的分类解题的关键是熟练掌握有理数的分类情况.5.(2021·江苏南京一中七年级月考)一个数的绝对值是7这个数是()A.7B.﹣7C.7或﹣7D.不能确定【答案】C【分析】根据绝对值的定义即可求解.【详解】解:℃一个数的绝对值是7℃这个数是7或﹣7.故选:C.【点睛】此题主要考查绝对值的求解解题的关键是熟知绝对值的性质.二填空题6.(2021·福建七年级期末)﹣2的相反数是___.【答案】2【分析】根据一个数的相反数就是在这个数前面添上“-”号 求解即可. 【详解】解:-2的相反数是:-(-2)=2故答案为:2. 【点睛】本题考查了相反数的意义 一个数的相反数就是在这个数前面添上“-”号:一个正数的相反数是负数 一个负数的相反数是正数 0的相反数是0.不要把相反数的意义与倒数的意义混淆.7.(1.有理数(题型篇))如果节约20元钱 记作“+20”元 那么浪费15元钱 记作_______元.【答案】-15 【分析】根据节约20元钱 记作“+20”元 可知浪费记为负 可得结果. 【详解】解:根据题意 节约记为正 浪费记为负 那么浪费15元钱 记作-15元故答案为:-15. 【点睛】本题考查了正负数的意义 解题关键是明确正负数代表意义相反的两个量 节约记为正 浪费记为负. 8.(2021·江苏七年级期末)下列各数:﹣1 2 1.01001…(每两个1之间依次多一个0) 0 227 3.14 其中有理数有_____个.【答案】4.【分析】 根据有理数的定义逐一判断即可.【详解】解:在所列实数中 有理数有﹣1 0227 3.14 故答案为:4.【点睛】本题考查了有理数 掌握有理数的概念是解题的关键.9.(1.有理数(题型篇))如果若|x -2|=1 则x =________.【答案】3或1根据绝对值的性质可得x-2=±1再求出x即可.【详解】解:℃|x-2|=1℃x-2=±1则x-2=1或x-2=-1解得:x=3或1故答案为:3或1.【点睛】此题主要考查了绝对值关键是掌握绝对值等于一个正数的数有两个它们互为相反数.10.(2021·湖南七年级期末)已知A B是数轴上的两点且AB=4.5点B表示的数为1则点A表示的数为___________.【答案】﹣3.5或5.5【分析】根据AB=4.5点B表示的数为1进行分类讨论A可以在B的左边或右边求得点A表示的数.【详解】解:℃AB=4.5B表示1℃A表示的数为1﹣4.5=﹣3.5或1+4.5=5.5.故答案为:﹣3.5或5.5.【点睛】本题考查了数轴上两点之间的距离解题的关键是分类讨论借助数轴来分析.三解答题11.(2021·河北七年级期中)把下列各数填在相应的表示集合的大括号里:﹣2312﹣(﹣96)﹣|﹣3| ﹣4.50|﹣2.5|13.(1)正有理数集合{…} (2)非负整数集合{…} (3)负分数集合{…}.【答案】(1)12﹣(﹣96)|﹣2.5| 13(2)12﹣(﹣96)0|﹣2.5| (3)﹣23﹣4.5化简各数 进而分别利用正有理数 非负整数 负分数分析 再分类填写. 【详解】解:﹣(﹣96)=96 ﹣|﹣3|=﹣3 |﹣2.5|=2.5(1)正有理数集合{12 ﹣(﹣96) |﹣2.5| 13…} (2)非负整数集合{12 ﹣(﹣96) 0 …}(3)负分数集合{﹣23 ﹣4.5 …}. 【点睛】本题主要考查了有理数的相关定义 正确化简各数是解题关键.12.(【新东方】初中数学1283-初一上)把下面的数填入它所属于的集合的大括号内(填序号) ① 5.3- ②5+ ③20% ④0 ⑤27- ⑥7- ⑦3--∣∣ ⑧( 1.8)-- 正数集合{ }整数集合{ }分数集合{ }有理数集合{ }【答案】见解析【分析】根据有理数的分类填空.【详解】解:-|-3|=-3 -(-1.8)=1.8.正数集合{②③⑧}整数集合{②④⑥⑦}分数集合{①③⑤⑧}有理数集合{①②③④⑤⑥⑦⑧}.【点睛】本题考查了有理数 认真掌握正数 负数 整数 分数 正有理数 负有理数 非负数的定义与特点.注意整数和正数的区别 注意0是整数 但不是正数.13.(2020·贵阳市清镇养正学校七年级期中)已知下列各有理数 2.5- 0 3- ()2-- 0.5 1-.(1)画出数轴 在数轴上标出表示这些数的点(2)用>符号把这些数连接起来.【答案】(1)见解析 (2)3->-(-2)>0.5>0>-1>-2.5【分析】(1)求出|-3|=3 -(-2)=2 在数轴上把各个数表示出来(2)根据数轴上右边的数总比左边的数大比较即可.【详解】解:(1)如图(2)3->-(-2)>0.5>0>-1>-2.5.【点睛】本题考查了有理数的大小比较和数轴的应用 关键是求出各个数的大小和在数轴上把各个数表示出来 注意:在数轴上右边的数总比左边的数大.14.(【新东方】初中数学20210625-022【初一上】)在数轴上 A B 两点的数分别用a b 表示 如果2a =- 2b a = 请你在给定的数轴上(1)画出B 点可能的位置 并标上字母(2)计算A B 两点的距离为多少?【答案】(1)见解析 (2)2或6【分析】(1)根据绝对值的意义求出b 值 在数轴上画出即可(2)根据b 值 利用两点间的距离计算方法计算即可.【详解】解:(1)℃a =-2℃2=a℃2224b a ==⨯=b=±℃4画图如下:(2)如图可知:当b=-4时AB=2即A B两点距离为2当b=4时AB=6即A B两点距离为6℃A B两点的距离为2或6.【点睛】本题考查了绝对值的意义数轴上两点之间的距离解题的关键是要进行分类讨论.15.(2021·河南七年级期末)点A B在数轴上所表示的数如图所示回答下列问题:(1)将A在数轴上向左移动1个单位长度再向右移动9个单位长度得到点C求出B C两点间的距离是多少个单位长度?(2)若点B在数轴上移动了m个单位长度到点D且A D两点间的距离是3求m的值.【答案】(1)B C两点间的距离是3个单位长度(2)m的值为2或8.【分析】(1)利用数轴上平移左移减右移加可求点C所表示的数为﹣3﹣1+9=5利用绝对值求两点距离BC=|2﹣5|=3(2)分类考虑当点D在点A的左侧与右侧利用AD=3求出点D所表示的数再利用BD=m求出m的值即可.【详解】解:(1)点C所表示的数为﹣3﹣1+9=5℃BC=|2﹣5|=3.(2)当点D在点A的右侧时点D所表示的数为﹣3+3=0所以点B移动到点D的距离为m=|2﹣0|=2。

人教版七年级数学第一章有理数·易错题整理

人教版七年级数学第一章有理数·易错题整理

人教版七年级数学第一章有理数·易错题整理1.填空:(1)当a________时,a与-a必有一个是负数;(2)在数轴上,与原点0相距5个单位长度的点所表示的数是________;(3)在数轴上,A点表示+1,与A点距离3个单位长度的点所表示的数是________;(4)在数轴的原点左侧且到原点的距离等于6个单位长度的点所表示的数的绝对值是________.2.用“有”、“没有”填空:在有理数集合里,________最大的负数,________最小的正数,________绝对值最小的有理数.3.用“都是”、“都不是”、“不都是”填空:(1)所有的整数________负整数;(2)小学里学过的数________正数;(3)带有“+”号的数________正数;(4)有理数的绝对值________正数;(5)若|a|+|b|=0,则a,b________零;(6)比负数大的数________正数.4.用“一定”、“不一定”、“一定不”填空:(1)-a________是负数;(2)当a>b时,________有|a|>|b|;(3)在数轴上的任意两点,距原点较近的点所表示的数________大于距原点较远的点所表示的数;(4)|x|+|y|________是正数;(5)一个数________大于它的相反数;(6)一个数________小于或等于它的绝对值;5.把下列各数从小到大,用“<”号连接:6.并用“>”连接起来.17.填空:(1)如果-x=-(-11),那么x=________;(2)绝对值不大于4的负整数是________;(3)绝对值小于4.5而大于3的整数是________.8.根据所给的条件列出代数式:(1)a,b两数之和除a,b两数绝对值之和;(2)a与b的相反数的和乘以a,b两数差的绝对值;(3)一个分数的分母是x,分子比分母的相反数大6;(4)x,y两数和的相反数乘以x,y两数和的绝对值.9.代数式-|x|的意义是什么?10.用适当的符号(>、<、≥、≤)填空:(1)若a是负数,则a________-a;(2)若a是负数,则-a_______0;(3)如果a>0,且|a|>|b|,那么a________b.11.写出绝对值不大于2的整数.12.由|x|=a能推出x=±a吗?13.由|a|=|b|一定能得出a=b吗?14.绝对值小于5的偶数是几?15.用代数式表示:比a的相反数大11的数.16.用语言叙述代数式:-a-3.17.算式-3+5-7+2-9如何读?18.把下列各式先改写成省略括号的和的形式,再求出各式的值.(1)(-7)-(-4)-(+9)+(+2)-(-5);(2)(-5)-(+7)-(-6)+4.19.判断下列各题是否计算正确:如有错误请加以改正;2(2)5-|-5|=10;20.用适当的符号(>、<、≥、≤)填空:(1)若b为负数,则a+b________a;(2)若a>0,b<0,则a-b________0;(3)若a为负数,则3-a________3.21.若a为有理数,求a的相反数与a的绝对值的和.22.若|a|=4,|b|=2,且|a+b|=a+b,求a-b的值.23.列式并计算:-7与-15的绝对值的和.24.用简便方法计算:25.用“都”、“不都”、“都不”填空:(1)如果ab≠0,那么a,b________为零;(2)如果ab>0,且a+b>0,那么a,b________为正数;(3)如果ab<0,且a+b<0,那么a,b________为负数;(4)如果ab=0,且a+b=0,那么a,b________为零.26.填空:34(3)a,b 为有理数,则-ab 是_________;(4)a,b 互为相反数,则(a+b)a 是________.27.填空:(1)如果四个有理数相乘,积为负数,那么负因数个数是________;28.用简便方法计算:29.比较4a 和-4a 的大小:30.计算下列各题:(5)-15×12÷6×5.31.32.下列叙述是否正确?若不正确,改正过来.(1)平方等于16的数是(±4)2;(2)(-2)3的相反数是-23;33.计算下列各题;(1)-0.752;(2)2×32.34.已知n为自然数,用“一定”、“不一定”或“一定不”填空:(1)(-1)n+2________是负数;(2)(-1)2n+1________是负数;(3)(-1)n+(-1)n+1________是零.35.下列各题中的横线处所填写的内容是否正确?若有误,改正过来.(1)有理数a的四次幂是正数,那么a的奇数次幂是负数;(2)有理数a与它的立方相等,那么a=1;(3)有理数a的平方与它的立方相等,那么a=0;(4)若|a|=3,那么a3=9;(5)若x2=9,且x<0,那么x3=27.36.用“一定”、“不一定”或“一定不”填空:(1)有理数的平方________是正数;(2)一个负数的偶次幂________大于这个数的相反数;(3)小于1的数的平方________小于原数;(4)一个数的立方________小于它的平方.37.计算下列各题:(1)(-3×2)3+3×23;(2)-24-(-2)÷4;(3)-2÷(-4)-2;5。

经典《有理数》总复习-拔高题及易错题精选附答案

经典《有理数》总复习-拔高题及易错题精选附答案

<七年级上《有理数》拔高题及易错题精选附答案(全卷总分 150 分)姓名得分一、选择题(每小题 3 分,共 30 分)1.如图,数轴上的两个点 A、B 所表示的数分别是 a、b,那么 a,b,—a,—b 的大?小关系是()B0AA. b<—a<—b<aB. b<—b<—a<aC. b<—a<a<—bD. —a<—b<b<a2.如果 a,b 互为相反数,那么下面结论中不一定正确的是(),A. a b0 B.a1C. aba2 D.*a b【)b~ & ;3. 若│a│=│b│,则 a、b 的关系是()。

|A. a=bB. a=-bC. a+b=0 或 a-b=0D. a=0 且b=04.已知数轴上两点 A、B 到原点的距离是 2 和 7,则 A,B 两点间的距离是·A. 5B.9 C. 5 或 9 D. 75.若 a<0,则下列各式不正确的是($)A. a 2 (a)2B. a 2$a2C. a 3(a)3D. a 3(a3) ) (6.-52表示()\ A. 2 个-5 的积B. -5 与 2 的积 C. 2 个-5 的和D. 52的相反数7.-42+ (-4)2的值是()^A. –16B. 0"C. –32D.328.已知 a 为有理数时,a 21]=()、~a 21¥A. 1B. -1C. 1D. 不能确定;9.设n是自然数,(1)n(1)n1的值为()|~则2…;A. 0B. 1C. -1D. 1 或-110. 已知|x|=5,|y|=3,且 x>y,则 x+y 的值为())A. 8B. 2%C. -8 或-2D. 8 或 211.我国西部地区面积约为 640 万平方公里,640 万用科学记数法表示为()A. 640104B. 64105C. 6.4106D. 6.410\12. 京九铁路的全长用四舍五入法得到近似数为×106m,则它精确到()A. 万位B. 十万位C. 百万位D. 千位二、填空题(每小题 3 分,共 48 分) 1. ~ 2. 已知 a 是绝对值最小的负整数,b 是最小正整数,c 是绝对值最小的有理数,则 c+a+b=.2. 数轴上点 A 表示的数为-2,若点 B 到点 A 的距离为 3 个单位,则点 B 表示的数为. (3. 如图所示,数轴上标出了 7 个点,相邻两点之间的距离都相等,已知点 A 表示-4,点 G 表示 8.(1)点 B 表示的有理数是 。

七年级数学上册第一章有理数易错题集锦

七年级数学上册第一章有理数易错题集锦

(名师选题)七年级数学上册第一章有理数易错题集锦单选题1、在数轴上表示﹣2.1和3.3两点之间的整数有( )A .4个B .5个C .6个D .7个答案:C分析:在数轴上找出点-2.1和3.3,找出两点之间的整数即可得出结论.解:依照题意,画出图形,如图所示.在﹣2.1和3.3两点之间的整数有:﹣2,﹣1,0,1,2,3,共6个,故选:C .小提示:本题考查了数轴,解题的关键是画出数轴,利用数形结合的方法解答.2、下列互为倒数的是( )A .3和13B .−2和2C .3和−13D .−2和12答案:A分析:根据互为倒数的意义,找出乘积为1的两个数即可.解:A .因为3×13=1,所以3和13是互为倒数,因此选项符合题意; B .因为−2×2=−4,所以−2与2不是互为倒数,因此选项不符合题意;C .因为3×(−13)=−1,所以3和−13不是互为倒数,因此选项不符合题意;D .因为−2×12=−1,所以−2和12不是互为倒数,因此选项不符合题意; 故选:A .小提示:本题考查了倒数,解题的关键是理解互为倒数的意义是正确判断的前提,掌握“乘积为1的两个数互为倒数”.3、如图,已知A ,B (B 在A 的左侧)是数轴上的两点,点A 对应的数为8,且AB =12,动点P 从点A 出发,以每秒2个单位长度的速度沿数轴向左运动,在点P 的运动过程中,M ,N 始终为AP ,BP 的中点,设运动时间为t(t>0)秒,则下列结论中正确的有()①B对应的数是-4;②点P到达点B时,t=6;③BP=2时,t=5;④在点P的运动过程中,线段MN的长度不变A.1个B.2个C.3个D.4个答案:C分析:①根据两点间距离进行计算即可;②利用路程除以速度即可;③分两种情况,点P在点B的右侧,点P在点B的左侧,由题意求出AP的长,再利用路程除以速度即可;④分两种情况,点P在点B的右侧,点P在点B的左侧,利用线段的中点性质进行计算即可.解:设点B对应的数是x,∵点A对应的数为8,且AB=12,∴8-x=12,∴x=-4,∴点B对应的数是-4,故①正确;由题意得:12÷2=6(秒),∴点P到达点B时,t=6,故②正确;分两种情况:当点P在点B的右侧时,∵AB=12,BP=2,∴AP=AB-BP=12-2=10,∴10÷2=5(秒),∴BP =2时,t =5,当点P 在点B 的左侧时,∵AB =12,BP =2,∴AP =AB +BP =12+2=14,∴14÷2=7(秒),∴BP =2时,t =7,综上所述,BP =2时,t =5或7,故③错误;分两种情况:当点P 在点B 的右侧时,∵M ,N 分别为AP ,BP 的中点,∴MP =12AP ,NP =12BP ,∴MN =MP +NP=12AP +12BP =12AB=12×12 =6,当点P 在点B 的左侧时,∵M ,N 分别为AP ,BP 的中点,∴MP =12AP ,NP =12BP ,∴MN =MP -NP=12AP -12BP=12AB=1×122=6,∴在点P的运动过程中,线段MN的长度不变,故④正确;所以,上列结论中正确的有3个,故选:C.小提示:本题考查了数轴,根据题目的已知条件并结合图形分析是解题的关键.4、某玩具商店周年店庆,全场八折促销,持会员卡可在促销活动的基础上再打六折.某电动汽车原价300元,小明持会员卡购买这个电动汽车需要花()元A.240B.180C.160D.144答案:D分析:根据题意,列出算式,即可求解.解:300×0.8×0.6=144(元),故选D.小提示:本题主要考查有理数乘法运算的实际应用,理解题意,列出算式,是解题的关键.5、实数m,n在数轴上的对应点如图所示,则下列各式子正确的是()A.m>n B.−n>|m|C.−m>|n|D.|m|<|n|答案:C分析:从数轴上可以看出m、n都是负数,且m<n,由此逐项分析得出结论即可.解:因为m、n都是负数,且m<n,|m|>|n|,A、m>n是错误的;B、-n>|m|是错误的;C、-m>|n|是正确的;D、|m|<|n|是错误的.小提示:此题考查有理数的大小比较,关键是根据绝对值的意义等知识解答.6、若|m|=5,|n|=2,且mn异号,则|m﹣n|的值为()A.7B.3或﹣3C.3D.7或3答案:A分析:先根据绝对值的性质得出m=±5,n=±2,再结合m、n异号知m=5、n=﹣2或m=﹣5、n=2,继而分别代入计算可得答案.解:∵|m|=5,|n|=2,∴m=±5,n=±2,又∵m、n异号,∴m=5、n=﹣2或m=﹣5、n=2,当m=5、n=﹣2时,|m﹣n|=|5﹣(﹣2)|=7;当m=﹣5、n=2时,|m﹣n|=|﹣5﹣2|=7;综上|m﹣n|的值为7,故选:A.小提示:本题考查了有理数的减法和绝对值,解题的关键是确定m、n的值.7、在计算514+223−314−423时,佳佳的板演过程如下:解:原式=514+223−314−423=514−314+(223−423)=2−2=0.老师问:“佳佳同学在解答过程中运用了哪些运算律?”甲同学回答说:“佳佳在解答过程中运用了加法交换律”;乙同学回答说:“佳佳在解答过程中运用了加法结合律”;丙同学回答说:“佳佳在解答过程中既运用了加法交换律,也运用了加法结合律”.下列对甲、乙、丙三名同学说法判断正确的是()A.甲同学说的对B.乙同学说的对C.丙同学说的对D.甲、乙、丙说的都不对分析:根据加法运算律的定义进行解答即可.解:由514+223−314−423到514−314+(223−423)既运用了加法交换律,也运用了加法结合律,所以丙同学说的对,故C正确.故选:C.小提示:本题主要考查了加法的交换律和结合律,熟记加法交换律和结合律,a+b=b+a,a+b+c= a+(b+c),是解题的关键.8、−2022的倒数是()A.2022B.−2022C.12022D.−12022答案:D分析:乘积为1的两个数叫做互为倒数,根据倒数的定义进行求解即可.解:−2022的倒数是−12022;故选D.小提示:本题主要考查了倒数的定义,准确分析判断是解题的关键.9、如图,圆的直径为1个单位长度,该圆上的点A与数轴上表示﹣1的点重合,将该圆沿数轴滚动1周,点A到达点B的位置,则点B表示的数是()A.π﹣1B.﹣π﹣1C.﹣π+1D.π﹣1或﹣π﹣1答案:D分析:先求出圆的周长为π,从A滚动先向右运动再向左运动,运动的路程为圆的周长,需要分类讨论.解:圆的周长C圆=πd=π,当向右滚动时:设B点坐标为x,x−(−1)=π,x=π−1,∴此时B点表示的数为:π−1.当向左运动时:−1−x=π,x=−π−1,∴B点表示的数为:−π−1.∴B点表示数为π−1或−π−1.故选:D.小提示:本题考查了数轴上两点之间的线段长如何用坐标来表示,即:右边的数减左边的数;一元一次方程的应用,圆的周长公式及分类讨论.10、实数a,b在数轴上对应点的位置如图所示,下列判断正确的是()A.|a|<1B.ab>0C.a+b>0D.1−a>1答案:D分析:直接利用a,b在数轴上位置进而分别分析得出答案.解:由数轴上a与1的位置可知:|a|>1,故选项A错误;因为a<0,b>0,所以ab<0,故选项B错误;因为a<0,b>0,所以a+b<0,故选项C错误;因为a<0,则1−a>1,故选项D正确;故选:D.小提示:此题主要考查了根据点在数轴的位置判断式子的正误,正确结合数轴分析是解题关键.填空题11、把式子(﹣2)×(﹣2)×(﹣2)×(﹣2)写成乘方的形式 __.答案:(−2)4分析:根据乘方的定义运算即可.解:(﹣2)×(﹣2)×(﹣2)×(﹣2)=(﹣2)4,所以答案是:(﹣2)4.小提示:本题考查了乘方的定义:一般地,几个相同的因数a相乘,记作an,这种求n个相同因数的积的运算,叫做乘方,a叫做底数,n叫做指数,读作a的n次幂.12、对于有理数a,b,n,若|a−n|+|b−n|=1,则称b是a关于n的“相关数”,例如,|2−2|+|3−2|=1,则3是2关于2的“相关数”.若x1是x关于1的“相关数”,x2是x1关于2的“相关数”,…,x4是x3关于4的“相关数”.则x1+x2+x3=______.(用含x的式子表示)答案:9﹣3|x﹣1|分析:先读懂“相关数”的定义,列出对应等式,再根据等式分析各个数的取值范围,去绝对值,进而求出结果.解:依题意有:|x1﹣1|+|x﹣1|=1,①|x2﹣2|+|x1﹣2|=1,②|x3﹣3|+|x2﹣3|=1,③|x4﹣4|+|x3﹣4|=1,④由①可知0≤x,x1≤2,若否,则①不成立,由②可知1≤x1,x2≤3,若否,则②不成立,同理可知2≤x2,x3≤4,3≤x3,x4≤5,∴x1﹣1+|x﹣1|=1,⑤x2﹣2+2﹣x1=1,⑥x3﹣3+3﹣x2=1,⑦3×⑤+2×⑥+⑦,得x1+x2+x3﹣3+3|x﹣1|=6,∴x1+x2+x3=9﹣3|x﹣1|.所以答案是:9﹣3|x﹣1|.小提示:本题考查绝对值和新定义问题.解题的关键在于读懂题意,列出等式,根据等式判断出五个数的取值范围,进而去绝对值符号,最后得出结果.注意可以取特殊值,如x=1或x=2,来验证计算的结果是否正确.13、2022年4月16日,神舟十三号载人飞船返回舱成功着陆,某网站关于该新闻的相关搜索结果为52800000条,将52800000用科学记数法表示为______.答案:5.28×107分析:根据科学记数法的表示形式即可求解.解:52800000=5.28×107,故答案为5.28×107. 小提示:本题考查了科学记数法,熟练掌握科学记数法的表示形式是解题的关键.14、一个热气球在200米的空中停留,然后它依次上升了15米,﹣8米,﹣20米,这个热气球此时停留在 __米.答案:187分析:根据题意列出算式,再根据有理数的加减混合运算计算即可.解:200+15﹣8﹣20=187(米),即这个热气球此时停留在187米.所以答案是:187.小提示:本题考查了有理数的混合运算,根据题意正确列出算式是解答本题的关键.15、若|a +b|+(3−b)2=0,则a b =______.答案:−27分析:由非负数的性质可得a +b =0且3−b =0, 再求解a ,b 的值,代入计算即可得到答案. 解:∵|a +b|+(3−b)2=0,∴a +b =0且3−b =0,解得:a =−3,b =3,∴a b =(−3)3=−27.所以答案是:−27.小提示:本题考查的是非负数的性质,乘方的含义,求解a =−3,b =3是解本题的关键.解答题16、计算(1)4×(−12−34+2.5)×3−|−6|(2)(﹣1)3×(﹣12)÷[(﹣4)2+2×(﹣5)](3)−14−(1−0.5)×13−[2−(−3)2](4)(−2)4÷(−4)×(12)2−12 答案:(1)9(2)2(3)356 (4)−2(1)解:4×(−12−34+2.5)×3−|−6|=4×54×3−6 =15−6=9.(2)(﹣1)3×(﹣12)÷[(﹣4)2+2×(﹣5)]=−1×(−12)÷[16+(−10)]=−1×(−12)÷6=12÷6=2.(3)−14−(1−0.5)×13−[2−(−3)2]=−1−12×13−(2−9) =−1−16+7 =6−16=356.(4)(−2)4÷(−4)×(12)2−12=16÷(−4)×14−1 =−4×14−1 =−1−1=−2.小提示:本题考查了有理数的混合运算,正确计算是解题的关键.17、计算:(−81)×49−49÷(−89).______步开始出现错误的;(填写序号即可)(2)请给出正确解答.答案:(1)①;③(2)解答过程见详解分析:(1)根据有理数运算法则判断即可;(2)按照运算法则,先进行乘除运算,再进行加减运算即可.(1)解:解法1,步骤①中“先算加减后算乘除”不符合有理数混合运算法则,故步骤①错误;解法2,−36+12≠−3612,步骤③不符合有理数加法法则,故步骤③错误.所以答案是:①;③.(2)解:原式=(−81)×49−49×(−98)=−36+12=−3512小提示:本题主要考查了有理数的混合运算,解题关键在于熟练掌握有理数混合运算的运算法则.18、“双减”政策实施后,同学们作业负担大大减少,小明记录了本周写家庭作业的时间,情况如下表(以30分钟为标准,时间多于30分钟用正数表示,时间少于30分钟用负数表示):_____________;(2)求小明这一周每天写家庭作业的平均时间.答案:(1)日,五(2)小明这一周每天写家庭作业的平均时间是29分分析:(1)由题意,得正数越大,所用时间越多,负数越小,所用时间越小;(2)计算出一星期完成作业的总时间,再计算平均数即可.(1)解:由题意,得正数越大,所用时间越多,负数越小,所用时间越小,-9<-8<-6<-5<-2<+8<+15∴用时最多的是周日,用时最少的是周五.所以答案是:日,五;(2)解:30+(-5-6-8-2-9+8+15)÷7.=30+(-7)÷7=29(分)答:小明这一周每天写家庭作业的平均时间是29分.小提示:此题考查了利用正负数的意义解决实际问题的能力,解决问题的关键是能根据实际问题准确列式、计算.。

人教版七年级数学上册 第1章 有理数 拔高题及易错题精选

人教版七年级数学上册 第1章 有理数 拔高题及易错题精选

8-4GF E D C BA 人教版七年级数学 第1章 有理数拔高及易错题精选(全卷总分150分) 姓名 得分一、选择题(每小题3分,共30分)1.如图,数轴上的两个点A 、B 所表示的数分别是a 、b ,那么a ,b ,—a ,—b 的大小关系是()A. b<—a<—b<aB. b<—b<—a<aC. b<—a<a<—bD. —a<—b<b<a 2.如果b a ,互为相反数,那么下面结论中不一定正确的是()A. 0=+b aB. 1-=b aC. 2a ab -=D. b a =3.若│a│=│b│,则a 、b 的关系是()A. a=bB. a=-bC. a+b=0或a -b=0D. a=0且b=0 4.已知数轴上两点A 、B 到原点的距离是2和7,则A ,B 两点间的距离是 A. 5 B. 9 C. 5或9 D. 7 5.若a<0,则下列各式不正确的是()A. 22)(a a -=B. 22a a =C. 33)(a a -=D. )(33a a --=6.-52表示()A. 2个-5的积B. -5与2的积C. 2个-5的和D. 52的相反数 7.-42+ (-4) 2的值是()A. –16B. 0C. –32D. 32 8.已知a 为有理数时,1122++a a =()A. 1B. -1C. 1±D. 不能确定9.设n 是自然数, 则n n 1(1)(1)2+-+-的值为()A. 0B. 1C.-1D. 1或-110.已知|x|=5,|y|=3,且x>y ,则x +y 的值为()A . 8B . 2C . -8或-2D .8或211.我国西部地区面积约为640万平方公里,640万用科学记数法表示为()A. 464010⨯B. 56410⨯C. 66410⨯.D. 6410⨯7. 12.京九铁路的全长用四舍五入法得到近似数为2.5×106m ,则它精确到()A. 万位B. 十万位C. 百万位D. 千位二、填空题(每小题3分,共48分) 1.已知a 是绝对值最小的负整数,b 是最小正整数,c 是绝对值最小的有理数,则c+a+b= .2. 数轴上点A 表示的数为-2,若点B 到点A 的距离为3个单位,则点B 表示的数为.3.如图所示,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A 表示-4,点G 表示8. (1)点B 表示的有理数是;表示原点的是点.(2)图中的数轴上另有点M 到点A ,点G 距离之和为13,则这样的点M 表示的有理数是.4.-⎪⎪⎪⎪⎪⎪-23的相反数是.5.如果x 2=9,那么x 3=.6.如果2-=-x ,则x =.7.化简:|π-4|+|3-π|=.8.绝对值小于2.5的所有非负整数的和为,积为. 9.使25++-x x 值最小的所有符合条件的整数x 有.10.若 a 、b 互为相反数,c 、d 互为倒数,则 (a +b )10-(cd )10=.11.若a 、b 互为相反数,c 、d 互为倒数,3=x ,则式子2(a +b )-(-cd )2016+x 的值为 .12.已知()0422=-++y x ,求x y 的值为.13.近似数2.40×104精确到位,它的有效数字是.14. 观察下列算式发现规律:71=7,72=49,73=343,74=2401,75=16807,76=117649,……,用你所发现的规律写出:72017的个位数字是.15.观察等式:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,……猜想:(1)1+3+5+7…+99 =;(2) 1+3+5+7+…+(2n -1)=.(结果用含n 的式子表示,其中n =1,2,3,……).16.一跳蚤在一直线上从O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2个0 Abac单位,第3次向右跳3个单位,第4次向左跳4个单位,…,依此规律跳下去,当它跳第100次落下时,落点处离O 点的距离是个单位. 三、解答题(共82分)1.(12分)计算:(1))49()2115()375()25.4(37153)371012(+---+--++-(2)10.12512(16)(2)2-⨯⨯-⨯-(3)51)716(5)31112(5)31137(51)7111(⨯++÷++÷-+⨯-(4)+-+-+-31412131121…999110001-2.(5分)计算1-3+5-7+9-11+…+97-99.3.(5分)已知数轴上有A 和B 两点,它们之间的距离为1,点A 和原点的距离为2,那么所有满足条件的点B 对应的数有哪些?4.(6分)“*”代表一种新运算,已知a ba b ab+*=,求x y *的值.其中x 和y 满足21()|13|02x y ++-=.5.(6分)已知()0212=-++b a ,求(a +b)2016+a 2017.6.(6分)已知a ,b 互为相反数,c 、d 互为倒数,x 的绝对值为5.试求下式的值:201720162)()()(cd b a cd b a x -+++++-.7.(6分)已知│a│=4,│b│=3,且a>b ,求a 、b 的值. 8.(6分)已知│a│=2,│b│=5,且ab<0,求a +b 的值.9.(6分)探索规律:将连续的偶2,4,6,8,…,排成如下表:2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 … …(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x ,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五位数,其它五个数的和能等于2010吗?如能,写出这五位数,如不能,说明理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版七年级数学 第1章 有理数拔高及易错题精选欧阳光明(2021.03.07)(全卷总分150分) 姓名 得分一、选择题(每小题3分,共30分)1.如图,数轴上的两个点A 、B 所表示的数分别是a 、b ,那么a ,b ,—a ,—b 的大小关系是()A. b<—a<—b<aB. b<—b<—a<aC. b<—a<a<—bD. —a<—b<b<a2.如果b a ,互为相反数,那么下面结论中不一定正确的是()A. 0=+b aB. 1-=b aC. 2a ab -=D. b a =3.若│a│=│b│,则a 、b 的关系是()A.a=bB. a=-bC. a+b=0或a -b=0D. a=0且b=04.已知数轴上两点A 、B 到原点的距离是2和7,则A ,B 两点间的距离是A. 5B. 9C. 5或9D. 7 5.若a<0,则下列各式不正确的是()A. 22)(a a -=B.22a a = C. 33)(a a -= D.)(33a a --= 6.-52表示()A. 2个-5的积B. -5与2的积C. 2个-5的和D. 52的相反数 7.-42+ (-4) 2的值是()A. –16B. 0C. –32D. 328.已知a 为有理数时,1122++a a =()A. 1B. -1C. 1±D. 不能确定9.设n 是自然数, 则n n 1(1)(1)2+-+-的值为()A. 0B. 1C.-1D. 1或-110.已知|x|=5,|y|=3,且x>y ,则x +y 的值为()A. 8B. 2C. -8或-2D.8或211.我国西部地区面积约为640万平方公里,640万用科学记数法表示为()A. 464010⨯ B. 56410⨯ C. 66410⨯.D.6410⨯7. 12.京九铁路的全长用四舍五入法得到近似数为2.5×106m ,则它精确到()A. 万位B. 十万位C. 百万位D. 千位 二、填空题(每小题3分,共48分)1.已知a 是绝对值最小的负整数,b 是最小正整数,c 是绝对值最小的有理数,则c+a+b=.2. 数轴上点A 表示的数为-2,若点B 到点A 的距离为3个单位,则点B 表示的数为 .3.如图所示,数轴上标出了7个点,相邻两点之间的距离都相等,已知点A 表示-4,点G 表示8. (1)点B 表示的有理数是;表示原点的是点.(2)图中的数轴上另有点M 到点A ,点G 距离之和为13,则这样的点M 表示的有理数是.4.-⎪⎪⎪⎪⎪⎪-23的相反数是.5.如果x 2=9,那么x 3=.6.如果2-=-x ,则x =.7.化简:|π-4|+|3-π|=.8.绝对值小于2.5的所有非负整数的和为,积为. 9.使25++-x x 值最小的所有符合条件的整数x 有.10.若 a 、b 互为相反数,c 、d 互为倒数,则 (a +b)10-(cd)10=. 11.若a 、b 互为相反数,c 、d 互为倒数,3=x ,则式子2(a +b)-(-cd)2016+x 的值为.12.已知()0422=-++y x ,求x y 的值为.13.近似数2.40×104精确到位,它的有效数字是.14. 观察下列算式发现规律:71=7,72=49,73=343,74=2401,75=16807,76=117649,……,用你所发现的规律写出:72017的个位数字是.15.观察等式:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…… 猜想:(1)1+3+5+7…+99 =;(2) 1+3+5+7+…+(2n -1)=.(结果用含n 的式子表示,其中n =1,2,3,……).16.一跳蚤在一直线上从O 点开始,第1次向右跳1个单位,紧接着第2次向左跳2个单位,第3次向右跳3个单位,第4次向左跳4个单位,…,依此规律跳下去,当它跳第100次落下时,落点处离O 点的距离是个单位. 三、解答题(共82分) 1.(12分)计算: (1))49()2115()375()25.4(37153)371012(+---+--++-(2)10.12512(16)(2)2-⨯⨯-⨯- (3)51)716(5)31112(5)31137(51)7111(⨯++÷++÷-+⨯- GFE D C BA(4)+-+-+-31412131121 (999)110001-2.(5分)计算1-3+5-7+9-11+…+97-99.3.(5分)已知数轴上有A和B两点,它们之间的距离为1,点A和原点的距离为2,那么所有满足条件的点B对应的数有哪些?4.(6分)“*”代表一种新运算,已知a ba bab+*=,求x y*的值.其中x和y满足21()|13|02x y++-=.5.(6分)已知()0212=-++ba,求(a+b)2016+a2017.6.(6分)已知a,b互为相反数,c、d互为倒数,x的绝对值为5.试求下式的值:201720162)()()(cdbacdbax-+++++-.7.(6分)已知│a│=4,│b│=3,且a>b,求a、b的值.8.(6分)已知│a│=2,│b│=5,且ab<0,求a+b的值.9.(6分)探索规律:将连续的偶2,4,6,8,…,排成如下表:2 4 6 8 1012 14 16 18 2022 24 26 28 3032 34 36 38 40… …(1)十字框中的五个数的和与中间的数16有什么关系?(2)设中间的数为x,用代数式表示十字框中的五个数的和;(3)若将十字框上下左右移动,可框住另外的五位数,其它五个数的和能等于2010吗?如能,写出这五位数,如不能,说明理由。

10.(6分)已知有理数a,b,c在数轴上的对应点如图所示,化简:a b b c c a-+---.12.(6分)如果有理数a、b满足0)1(22=-+-bab,试求+++++++)2)(2(1)1)(1(11babaab……()()201720171++ba的值.13. (6分)已知abc|abc|=1,求|a|a+|b|b+|c|c的值.14.(6分)已知cba、、均为非零的有理数,且1-=++ccbbaa,求abcabc的值.有理数找规律专题1.观察下面的每列数,按某种规律在横线上适当的数。

(1)-23,-18,-13,______,________; ;(2)2345,,,8163264--,_______,_________;2.有一组数:1,2,5,10,17,26,.....,请观察这组数的构成规律,用你发现的规律确定第8个数为__________.3.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,通过观察,用你所发现的规律确定22011的个位数字是()cA. 2B. 4C. 6D. 84.一根lm长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次后剩下的绳子的长度为()A.31()2m B.51()2m C.61()2m D.121()2m5.下面一组按规律排列的数:1,2,4,8,16.......,第2011个数应是()A. 22011B. 22011-1C.22010 D.以上答案不对6.观察,寻找规律(1) 0.12=________,12=_________,102=__________,1002=___________;(2)0.13=_________,13=_________,103=__________,1003=___________;观察结果,你发现什么了?7.观察下列三行数:第一行:-1,2,-3,4,-5……第二行:1,4,9,16,25,……第三行:0,3,8,15,24,……(1)第一行数按什么规律排列?(2)第二行、第三行分别与第一行数有什么关系?(3)取每行的第10个数,计算这三个数的和.变式:8.有规律排列的一列数:2,4,6,8,10,12,……它的每一项可用式子2n(n 是正整数)表示.有规律排列的一列数:1,-2,3,-4,5,-6,7,-8......(1)它的每一项你认为可用怎样的式子来表示?(2)它的第100个数是多少?(3)2012是不是这列数中的数?如果是,是第几个数?9.如果对于任意非零有理数a,b定义运算如下:a△b=ab+1,那么(-5)△(+4)△(-3)的值是多少?10.如果规定符号※的意义是a※b=aba b+,求:2※(-3)※4的值.11.先完成下列计算:1×9+2=11;12×9+3=________;123×9 + 4=__________;……你能说出得数的规律吗?请你根据发现的算式的规律求出1234567×9 + 8的值.12.如果1+2-3-4+5+6-7-8 +9+……,是从1开始的连续整数中依次两个取正,两个取负写下去的一串数,则前2012个数的和是多少?依照以上各式成立的规律,使44a ba b+--=2成立,则a+b的值为____________14.观察下列各式:12+1=1×2 22+2=2×3 32+3=3×4请把你猜想到的规律用自然数n表示出来___________________ 15.老师在黑板上写出三个等式:52-32=8×2,92-72=8×4,152-32=8×27王华接着又写了两个具有同样规律的算式:112-52 =8×12,152-72 =8×22(1)请你写出两个(不同于上面算式)具有上述规律的算式;(2)用文字写出反映上述算式的规律.16.观察下列各式:2×4=32-1,3×5 =42-1,4×6 =52-1,……把你发现的规律用含一个字母的等式表示_________17.观察下列各式找规律:12+(1×2)2+22=(1×2+1)2 22+(2×3)2+32 =(2×3+1)2 32+(3×4)2 +42=(3×4+1)2(1)写出第6个式子的值; (2)写出第n个式子.18.研究下列算式,你会发现什么规律?1×3+1=4=22 2×4+1 =9=323×5+1=16=42 4×6+1 =25=52请你找出规律用公式表示出来:___________________1. (2011浙江省)如图,下面是按照一定规律画出的“数形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,……,照此规律,图A6比图A2多出“树枝”()A.28B.56C.60D. 1242.(2011广东肇庆)如图5所示,把同样大小的黑色棋子摆放在正多边形的边上,按照这样的规律摆下去,则第n(n是大于0的整数)个图形需要黑色棋子的个数是.3. (2011内蒙古乌兰察布)将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第 n 个图形有个小圆. (用含 n 的代数式表示)4. (2011湖南常德)先找规律,再填数:5.(2011湖南益阳)观察下列算式:① 1 × 3 - 22 = 3 - 4 = -1② 2 × 4 - 32 = 8 - 9 = -1③ 3 × 5 - 42 = 15 - 16 = -1④……(1)请你按以上规律写出第4个算式;(2)把这个规律用含字母的式子表示出来;第1个图形第 2 个图形第3个图形第 4 个图形(3)你认为(2)中所写出的式子一定成立吗?并说明理由.6.研究下列算式,你会发现什么规律?1×3+1=22; 2×4+1=32; 3×5+1=42; 4×6+1=52…………,(1)请用含n的式子表示你发现的规律:___________________.(2)请你用发现的规律解决下面问题计算11111(1)(1)(1)(1)(1)132********+++++⨯⨯⨯⨯⨯的值。

相关文档
最新文档