总复习 统计与概率 可能性

合集下载

2022版中考数学总复习第一部分考点知识梳理 第八章 统计与概率 概率

2022版中考数学总复习第一部分考点知识梳理 第八章 统计与概率 概率

8.2 概 率◎能通过列表、画树状图等方法列出简单随机事件所有可能的结果,以及指定事件发生的所有可能结果,了解事件的概率.◎知道通过大量地重复试验,可以用频率来估计概率.概率问题是安徽中考近几年必考内容之一,以填空题和解答题为主.2021年单独考查了概率计算(2021年第9题),2017~2020年概率与统计相结合在解答题中考查(2020年第21题,2019年第21题,2018年第21题,2017年第21题),一般都是两步概率,难度在中等或中等以上.解答此类问题一般要先用画树状图或列表法分析所有等可能出现的结果.十年真题再现命题点1 概率的计算[10年6考] 1.(2021·安徽第9题)如图,在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以围成一个矩形,从这些矩形中任选一个,则所选矩形含点A 的概率是( D )A.14 B.13 C.38 D.49【解析】根据题意,图中共可围成9个矩形,而含点A 的矩形有4个,∴P (所选矩形含点A )=49. 2.(2013·安徽第8题)如图,若随机闭合开关K 1,K 2,K 3中的两个,则能让两盏灯泡同时发光的概率为( B )A.16 B.13 C.12 D.23【解析】用画树状图或列表法可知,共有3种等可能的情况为K 1K 2,K 1K 3,K 2K 3,其中让两盏灯泡同时发光的只有K 1K 3这1种情况,即让两盏灯泡同时发光的概率为13.3.(2012·安徽第8题)给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打给甲的概率为( B ) A.16 B.13 C.12 D.23【解析】第一个打电话给甲、乙、丙(因为次序是任意的)的可能性是相同的,∴第一个打电话给甲的概率是13.4.(2016·安徽第21题)一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,4,7,8.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于4且小于7的概率.解:(1)用树状图表示所有可能结果:∴得到所有可能的两位数为11,14,17,18,41,44,47,48,71,74,77,78,81,84,87,88.(2)共有16个两位数,其中算术平方根大于4且小于7的有6个,分别为17,18,41,44,47,48,所求概率P=616=38.5.(2014·安徽第21题)如图,管中放置着三根同样的绳子AA1,BB1,CC1.(1)小明从这三根绳子中随机选一根,恰好选中绳子AA1的概率是多少?(2)小明先从左端A,B,C三个绳头中随机选两个打一个结,再从右端A1,B1,C1三个绳头中随机选两个打一个结,求这三根绳子连接成一根长绳的概率.解:(1)共有3种等可能情况,其中恰好选中绳子AA1的情况为1种,∴小明恰好选中绳子AA1的概率P=13.(2)依题意,分别在两端随机任选两个绳头打结,总共有三类9种等可能情况,列表或画树状图表示如下:或其中左、右打结是相同字母(不考虑下标)的情况,不可能连接成为一根长绳,所以能连接成为一根长绳的情况有6种:①左端连AB,右端连A1C1或B1C1;②左端连BC,右端连A1B1或A1C1;③左端连AC,右端连A1B1或B1C1.故这三根绳子连接成为一根长绳的概率P=69=23.命题点2统计与概率相结合的问题[10年4考]6.(2020·安徽第21题)某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐(必选且只选一种)”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)在抽取的240人中最喜欢A套餐的人数为60,扇形统计图中“C”对应扇形的圆心角的大小为108°;(2)依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;(3)现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.解:(2)由图可知被抽取的240人中最喜欢B套餐的人数为84,∴最喜欢B套餐的频率为84240=0.35, ∴估计全体960名职工中最喜欢B套餐的人数为960×0.35=336.(3)由题意,从甲、乙、丙、丁四人中任选两人,总共有6种等可能的不同结果,列举如下:甲乙、甲丙、甲丁、乙丙、乙丁、丙丁.其中甲被选到的结果有甲乙、甲丙、甲丁,共3种,故所求概率P=36=12.7.(2019·安徽第21题)为监控某条生产线上产品的质量,检测员每隔相同时间抽取一件产品,并测量其尺寸.个数据按从小到大的顺序整理成如下表格:按照生产标准,注:在统计优等品个数时,)计算在内.(1)已知此次抽检的合格率为80%,请判断编号为的产品是否为合格品,并说明理由.(2)已知此次抽检出的优等品尺寸的中位数为9 cm.(ⅰ)求a的值;(ⅱ)将这些优等品分成两组,一组尺寸大于9 cm,另一组尺寸不大于9 cm.从这两组中各随机抽取1件进行复检,求抽取到的2件产品都是特等品的概率.解:(1)∵抽检的合格率为80%,∴合格产品有15×80%=12个,即非合格品有3个.∵编号①至编号对应的产品中,只有编号①与编号②对应的产品为非合格品,∴编号为的产品不是合格品.(2)(ⅰ)∵从编号⑥到编号对应的6个产品为优等品,中间两个产品的尺寸数据分别为8.98和a ,∴中位数为8.98+a 2=9,则a =9.02.(ⅱ)优等品当中,编号⑥、编号⑦、编号⑧对应的产品尺寸不大于9 cm,分别记为A 1,A 2,A 3,编号⑨、编号、编号对应的产品尺寸大于9 cm,分别记为B 1,B 2,B 3,其中的特等品为A 2,A 3,B 1,B 2.从两组产品中各随机抽取1件,有如下9种不同的等可能结果:A 1B 1,A 1B 2,A 1B 3,A 2B 1,A 2B 2,A 2B 3,A 3B 1,A 3B 2,A 3B 3,其中2件产品都是特等品的有如下4种不同的等可能结果:A 2B 1,A 2B 2,A 3B 1,A 3B 2,∴抽到的2件产品都是特等品的概率P =49.8.(2017·安徽第21题)甲、乙、丙三位运动员在相同条件下各射靶10次,每次射靶的成绩如下: 甲:9,10,8,5,7,8,10,8,8,7; 乙:5,7,8,7,8,9,7,9,10,10; 丙:7,6,8,5,4,7,6,3,9,5.(1)(2)依据表中数据分析,(3)比赛时三人依次出场,顺序由抽签方式决定.求甲、乙相邻出场的概率.解:(1)提示:甲的方差:110×[(9−8)2+2×(10−8)2+4×(8−8)2+2×(7−8)2+(5−8)2]=2.把丙运动员的射靶成绩从小到大排列:3,4,5,5,6,6,7,7,8,9,则中位数是6+62=6.(2)∵甲的方差是2,乙的方差是2.2,丙的方差是3,∴s 甲2<s 乙2<s 丙2,∴甲运动员的成绩最稳定.(3)三人的出场顺序有(甲乙丙),(甲丙乙),(乙丙甲),(乙甲丙),(丙甲乙),(丙乙甲). ∵共有6种情况,甲、乙相邻出场的有4种情况, ∴甲、乙相邻出场的概率=46=23.教材知识网络重难考点突破考点1确定性事件与随机事件典例1(2021·湖南怀化)“成语”是中华文化的瑰宝,是中华文化的微缩景观.下列成语:①“水中捞月”,②“守株待兔”,③“百步穿杨”,④“瓮中捉鳖”描述的事件是不可能事件的是() A.① B.② C.③ D.④【解析】①“水中捞月”是不可能事件;②“守株待兔”是随机事件;③“百步穿杨”是随机事件;④“瓮中捉鳖”是必然事件.【答案】A提分1(2021·广西玉林)一个不透明的盒子中装有2个黑球和4个白球,这些球除颜色外其他均相同,从中任意摸出3个球,下列事件为必然事件的是( A )A.至少有1个白球B.至少有2个白球C.至少有1个黑球D.至少有2个黑球考点2频率与概率典例2(2021·江苏盐城)圆周率π是无限不循环小数.历史上,祖冲之、刘徽、韦达、欧拉等数学家都对π有过深入的研究.目前,超级计算机已计算出π的小数部分超过31.4万亿位.有学者发现,随着π小数部分位数的增加,0~9这10个数字出现的频率趋于稳定,接近相同.(1)从π的小数部分随机取出一个数字,估计数字是6的概率为;(2)某校进行校园文化建设,拟从以上4位科学家的画像中随机选用2幅,求其中有一幅是祖冲之的概率.(用画树状图或列表法求解) 【答案】(1)110.(2),列表如下:∵共有12种等可能的结果,612=12.(1)当试验中存在两个元素且出现的所有可能的结果较多时,我们常用列表的方式,列出所有等可能的结果,再求出概率.(2)当一个事件涉及三个或更多元素时,为了不重不漏地列出所有等可能的结果,通常采用画树状图法求概率.的概率是 0.8 .数点后一位)【解析】根据表格数据可知频率稳定在0.8,所以估计这名运动员射击一次时“射中9环以上”的概率是0.8. 提分3 (2021·河北)某博物馆展厅的俯视示意图如图1所示.嘉淇进入展厅后开始自由参观,每走到一个十字道口,她自己可能直行,也可能向左转或向右转,且这三种可能性均相同. (1)求嘉淇走到十字道口A 向北走的概率;(2)补全图2的树状图,并分析嘉淇经过两个十字道口后向哪个方向参观的概率较大.解:(1)嘉淇走到十字道口A向北走的概率为13.(2)补全树状图如下:共有9种等可能的结果,嘉淇经过两个十字道口后向西参观的结果有3种,向南参观的结果有2种,向北参观的结果有2种,向东参观的结果有2种,∴向西参观的概率为39=13,向南参观的概率=向北参观的概率=向东参观的概率=29,∴嘉淇经过两个十字道口后向西参观的概率较大.。

高中数学统计与概率知识点归纳

高中数学统计与概率知识点归纳

高中数学统计与概率知识点归纳高中数学中的统计与概率是两个非常重要的知识点,它们在日常生活和工作中也具有广泛的应用价值。

本文将对这些知识点进行归纳和总结,以便读者更好地理解和掌握。

首先,让我们来看看统计。

统计是研究如何从数据中获取有用信息的学科。

在高中数学中,统计的主要内容包括以下三个方面:1、概率分布:这是统计的基础知识,它描述了各种可能结果出现的概率。

例如,投掷一枚硬币,正面朝上的概率为0.5,反面朝上的概率为0.5。

2、参数估计:参数估计是通过样本数据来估计总体参数的方法。

例如,通过样本的平均值来估计总体的平均值。

3、假设检验:假设检验是用来检验一个假设是否成立的统计学方法。

例如,我们想要检验某种新药的疗效是否优于安慰剂,可以通过比较实验组和对照组的数据来进行假设检验。

接下来,让我们来看看概率。

概率是描述事件发生可能性大小的数学工具。

在高中数学中,概率的主要内容包括以下三个方面:1、事件的关系和运算:事件的关系包括互斥、独立、不独立等,事件之间的运算包括并、交、差等。

2、概率的性质和计算:概率的性质包括加法定理、乘法定理、全概率公式等,概率的计算方法包括直接计算、利用公式计算等。

3、概率分布:概率分布描述了随机变量的取值概率,例如伯努利分布、二项分布、正态分布等。

在应用方面,统计与概率的知识点可以应用于很多领域,例如金融、医学、工业、农业等。

例如,在金融领域,可以通过统计方法来分析股票数据的规律和趋势;在医学领域,可以通过概率方法来预测疾病的发病率和死亡率。

总之,统计与概率是高中数学中非常重要的知识点,它们在日常生活和工作中也具有广泛的应用价值。

通过对这些知识点的归纳和总结,我们可以更好地理解和掌握它们,从而更好地应用于实际问题的解决中。

高中数学概率与统计知识点总结高中数学:概率与统计知识点总结一、前言在现实生活中,我们经常需要处理各种与概率和统计相关的问题。

例如,在掷骰子时计算点数、在班级中选取学生、或者在评估天气预报的准确性。

小学六年级数学总复习统计与概率

小学六年级数学总复习统计与概率

小学六年级数学总复习统计与概率Revised by BETTY on December 25,2020小学六年级数学总复习统计与概率复习建议一、统计统计知识在生产和生活中,特别是进行科学研究时,应用非常广泛。

小学阶段,学习内容是统计学中最初步的知识,它包括单式、复式统计表和条形、折线、扇形统计图的用途、结构及绘制方法等问题。

在这里我谈谈自己对统计与概率的认识。

复习内容:1、数据的收集、整理、统计图表。

2、对图表进行分析,解决问题。

3、条形(单式,复式),折线(单式,复式),扇形统计图的特点及选择方法。

4、统计图的选用与制作。

复习目标:1、通过复习已学过的统计的初步知识,加深学生对统计的意义及其应用的理解。

2、培养学生会看、会分析、会制作简单统计图表的能力和综合运用统计知识解决实际问题的能力。

3、通过复习使学生进一步感受、了解数学在生活中的实际应用,以提高学生学数学、用数学的意识。

复习重难点:重点:1、体会统计在实际生活中的应用,发展统计观念。

2、用自己的语言描各种统计图的特点。

难点:用自己的语言描述各种统计图的特点。

复习要点:1、统计表:把统计数据填写在一定的表格内,用来反映情况说明问题。

种类:单式统计表、复式统计表、百分数统计表。

2、统计图:用点、线、面积等来表示相关的量之间的数量关系的图形。

分类:(1)、条形统计图:用一个单位长度表示一定的数量,根据数量的多少画成长短不同的直条,然后把这些直条按照一定的顺序排列起来。

优点:很容易看出来各种数量的多少。

注意:画条形统计图时,直条的宽窄必须相同。

复式条形统计图中表示不同项目的直条,要用不同的线条或颜色区分开,并在制图日期下面注明图列。

(2)、折线统计图:用一个单位长度表示一定的数量,根据数量的多少描出各点,然后把各点用线段顺次联系起来。

优点:不但可以表示数量的多少而且能够清楚表示出数量增减变化的情况。

注意:折线统计图的横轴表示不同的年份、月份等时间,不同时间之间的距离要根据年份或月份的间隔来确定。

高考复习概率与统计知识点归纳总结

高考复习概率与统计知识点归纳总结

概率与统计知识点总结(一)知识点思维导图(二)常用定理、公式及其变形1.用样本的数字特征估计总体的数字特征(1)样本本均值:nx x x x n +++= 21 (2)样本标准差:nx x x x x x s s n 222212)()()(-++-+-== (3)频率分布直方图估算样本众数、中位数、平均数①众数:最高小矩形中点值;②中位数:先确定中位数所在小组,设中位数为m ,由直线x=m 两侧小矩形面积之和等于0.5列方程求m . ③平均数:各小矩形中点值与其面积的积的和.2.随机事件的概率及概率的意义(1)随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件;(2)概率定义:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例f n (A)=n n A为事件A 出现的频率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率.3.概率的基本性质(1)事件的包含、并事件、交事件、相等事件(2)若A∩B 为不可能事件,即A∩B=ф,那么称事件A 与事件B 互斥;(3)若A∩B 为不可能事件,A∪B 为必然事件,那么称事件A 与事件B 互为对立事件;(4)当事件A 与B 互斥时,满足加法公式:P(A∪B)= P(A)+ P(B);若事件A 与B 为对立事件,则A∪B 为必然事件,所以P(A∪B)= P(A)+ P(B)=1,于是有P(A)=1—P(B)4.古典概型及随机数的产生(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性.(2)公式P (A )=总的基本事件个数包含的基本事件数A 5.几何概型及均匀随机数的产生(1)几何概率模型:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型;(2)公式:P (A )=积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A . 6.随机变量:如果随机试验可能出现的结果可以用一个变量X 来表示,并且X 是随着试验的结果的不同而变化,那么这样的变量叫做随机变量. 随机变量常用大写字母X 、Y 等或希腊字母 ξ、η等表示.7.离散型随机变量的分布列:一般的,设离散型随机变量X 可能取的值为x 1,x 2,..... ,x i ,......,x n .X 取每一个值 x i (i=1,2,......)的概率P(ξ=x i )=P i ,则称表为离散型随机变量X 的概率分布,简称分布列分布列性质:∪ p i ≥0, i =1,2, … ;∪ p 1 + p 2 +…+p n = 1.9.条件概率:对任意事件A 和事件B ,在已知事件A 发生的条件下事件B 发生的概率,叫做条件概率.记作P(B|A),读作A 发生的条件下B 的概率公式:.0)(,)()()|(>=A P A P AB P A B P 10.相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件,)()()(B P A P B A P ⋅=⋅12.数学期望:一般地,若离散型随机变量ξ的概率分布为 则称 Eξ=x 1p 1+x 2p 2+…+x n p n 为ξ的数学期望或平均数、均值,数学期望又简称为期望.是离散型随机变量.13.方差:D(ξ)=(x 1-Eξ)2·P 1+(x 2-Eξ)2·P 2 +......+(x n -Eξ)2·P n 叫随机变量ξ的均方差,简称方差.14.正态分布:(1)定义:若概率密度曲线就是或近似地是函数 的图象,其中解析式中的实数0)μσσ>、(是参数,分别表示总体的平均数与标准差.则其分布叫正态分布(,)N μσ记作:,f( x )的图象称为正态曲线;(2)基本性质:∪曲线在x 轴的上方,与x 轴不相交;∪曲线关于直线x=对称,且在x=时位于最高点;∪当一定时,曲线的形状由确定.越大,曲线越“矮胖”;表示总体的分布越分散;越小,曲线越“瘦高”,表示总体的分布越集中;∪正态曲线下的总面积等于1.15.3原则:从上表看到,正态总体在 以外取值的概率只有4.6%,在 以外取值的概率只有0.3% 由于这些概率很小,通常称这些情况发生为小概率事件.也就是说,通常认为这些情况在一次试验中几乎是不可能发生的.),(,21)(222)(+∞-∞∈=--x e x f x σμσπμμμσσσσ)2,2(σμσμ+-)3,3(σμσμ+-17.回归分析。

总复习统计与概率(课件)北师大版四年级数学上册

总复习统计与概率(课件)北师大版四年级数学上册

我和小明下一盘棋用的 时间是不确定的。
任意找一个班里的同学, 他的生日在哪个月是不 确定的。
知识梳理
在一个不透明的盒子里放着4红1蓝5个大小、质地相同的棋子, 摸出1个棋子,再放回去,重复20次,摸出哪种颜色棋子的可能 性大?
摸出红色棋子的可能性大。
知识梳理
连一连。从下面6个盒子中分别摸出1个球,会有怎样的结果?
四年级上册
9.4 统计与概率
学习目标
1.对统计与概率中的重点和难点问题进行回顾和整理。 2.通过相互交流自己对已学知识和方法的理解,到达复习巩固、 加深拓展知识的目的。 3.提升运用知识分析、解决实际问题的能力,同时感受数学与现 实的密切联系。 4.养成回顾、反思、梳理的良好习惯,逐步学会总复习的方法。
一定是黄球
可能是黄球
不可能是黄球
知识梳理
从8张扑克牌中任意抽出1张,可能抽到哪种扑克牌?抽到哪种扑克 牌的可能性最大?
可能抽到
抽到
扑克牌的可能性最大。
难点突破
下面的柜子里,每格都有1顶帽子,共有2顶红帽子、3顶黄帽子、8 顶白帽子和3顶黑帽子,任意打开一格。
(1)取出哪种颜色帽子的可能性最大? 白帽子 (2)取出哪种颜色帽子的可能性最小? 红帽子 (3)取出哪两种颜色帽子的可能性相等? 黄帽子和黑帽子
知识梳理
考点 可能性
确定现象和 不确定现象 可能性
可能性的大小
在生活中,有些事件的产生是可能的, 即不确定现象;有些事件则是一定产生 或不可能产生的,即确定现象。 可能产生的事件,可能性有大有小。在 总数中所占数量越多,产生的可能性就 越大;所占数量越少,产生的可能性就 越小。
知识梳理
关于“不确定性”,你能举出 示 单 击 输 入 您 的 封 面副 标题

小升初数学总复习归类精讲-第三章统计与概率(二)可能性 全国通用

小升初数学总复习归类精讲-第三章统计与概率(二)可能性 全国通用

可能性课标要求1.知道简单的随机事件,能列出简单的随机事件中所有可能发生的结果。

2.明确随机事件发生的可能性是有大小的,能对一些简单随机事件发生的可能性大小做出判断。

3.能判断游戏是否公平,并能设计简单公平的游戏规则。

考点1 现象发生的结果1.选择。

(1)某足球评论员预测世界杯德国队有80%的机会战胜意大利队。

与横线部分最接近的意思是()。

A.德国队肯定会赢得这场比赛B.德国队肯定会输这场比赛C.假如这两支球队进行10场比赛,德国队会赢8场左右D.假如这两支球队进行了10场比赛,德国队恰好会赢8场(2)盒子里有大小相同的三个红球和三个绿球,从中任意摸出两个球,以下说法错误的是()。

A.可能摸出两个红球B.可能摸出一个红球和一个绿球C.可能摸出两个绿球D.一定摸到一个红球和一个绿球2.袋子中装有红、白两种颜色的球,这些球除颜色外完全相同。

两组同学通过摸球估计袋中两种颜色球的多少。

他们每次摸之前都把球摇匀,摸后再把球放回去,摇匀后再摸。

(1)第一组摸了5次,结果是“红、白、红、红、白”,他们估计袋子中红球多。

他们估计得结果可能是真的吗(在你认为正确的后面画“√”)?可能()不可能()(2)第二组摸了120次,结果是98次白球,22次红球,他们估计袋子中白球多。

他们估计得结果可能是真的吗(在你认为正确的后面画“√”)?可能()不可能()(3)你认为哪个组的实验估测方法更科学,为什么?考点2 可能性的大小及比较3. 判断。

(1)盒子里有99个红球和一个绿球,摸到绿球的可能性是 。

( )(2)连续抛一枚硬币10次,其中7次正面朝上,3次反面朝上,那么再抛一次正面朝上的可能性大。

( )(3)小芳和小红做“石头、剪子、布”的游戏,两人获胜的可能性相等。

( )4. 选择。

(1)下面每一个转盘中,任意转动指针,停留在涂色区域的可能性最大的是( )。

(2)盒子里有大小、材质完全相同的红球、黄球、绿球各5个。

小芳每次摸出一个球,然后放回再摸,前三次摸球的情况如下表:小芳第4次摸球下面说法正确的是( )。

2023-2024学年四年级下学期数学总复习统计与概率(教案)

2023-2024学年四年级下学期数学总复习统计与概率(教案)

2023-2024学年四年级下学期数学总复习统计与概率(教案)一、教学目标1. 让学生理解和掌握统计与概率的基本概念和原理,提高学生的数据分析能力。

2. 培养学生运用统计与概率知识解决实际问题的能力,增强学生的数学应用意识。

3. 通过对统计与概率知识的复习,提高学生对数学学科的兴趣,培养学生的自主学习能力。

二、教学内容1. 统计与概率的基本概念:数据、统计表、统计图、概率等。

2. 统计方法:平均数、中位数、众数、极差、方差等。

3. 概率计算:可能性、不可能性、必然性、随机事件等。

4. 统计与概率在实际生活中的应用。

三、教学重点与难点1. 教学重点:统计与概率的基本概念和原理,统计方法的应用,概率计算。

2. 教学难点:统计方法的灵活运用,概率计算公式的理解和应用。

四、教学方法1. 讲授法:讲解统计与概率的基本概念和原理,分析统计方法的应用,解释概率计算公式。

2. 案例分析法:通过具体案例,让学生了解统计与概率在实际生活中的应用。

3. 练习法:布置相关练习题,让学生巩固所学知识,提高解决问题的能力。

4. 小组讨论法:分组讨论,培养学生的合作意识和团队精神。

五、教学步骤1. 导入:简要回顾上学期所学内容,引入本节课的主题——统计与概率。

2. 讲解:讲解统计与概率的基本概念和原理,如数据、统计表、统计图、概率等。

3. 分析:分析统计方法的应用,如平均数、中位数、众数、极差、方差等。

4. 计算:讲解概率计算公式,如可能性、不可能性、必然性、随机事件等。

5. 应用:通过具体案例,让学生了解统计与概率在实际生活中的应用。

6. 练习:布置相关练习题,让学生巩固所学知识,提高解决问题的能力。

7. 小组讨论:分组讨论,培养学生的合作意识和团队精神。

8. 总结:对本节课的内容进行总结,强调重点知识。

9. 作业:布置课后作业,让学生进一步巩固所学知识。

六、教学评价1. 课堂表现:观察学生在课堂上的参与程度、积极性和合作意识。

河南省中考数学总复习第一部分考点全解第八章统计与概率第27讲概率(35分)课件

河南省中考数学总复习第一部分考点全解第八章统计与概率第27讲概率(35分)课件

10.(2018·开封一模)随着科技的迅猛发展,人与人之间的沟通方式更多样,便捷, 某校数学兴趣小组设计了“你最喜欢的沟通方式”的调查问卷(每人必选且只选一 种),在全校范围内随机调查了部分学生,并将调查结果绘制了如下两幅尚不完整的 统计图.
请结合图中所给的信息解答下列问题. (1)这次统计共抽查了_________名学生;在扇形统计图中,“Q Q ”所对应的扇形圆 心角的度数为_________; (2)请将条形统计图补充完整; (3)若该校共有 2 500 名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少 人?
4.频率与概率的区别和联系 (1)区别:概率是一个确定的数,客观存在的,只要有事件存在,就有一个概率存 在,与试验次数无关;频率是随机变化的,具有随机性,试验前不能确定. (2)联系:一般地,在大量重复试验时,如果事件 A 发生的频率mn 稳定于某个常数 P 附近,那么事件 A 发生的概率 P(A)=P(0≤P(A)≤1). 5.几何概型的概率公式: P(A)=全部构结成果事所件构A的成区的域区长域度长度面积面或积体或积体积.
3,把卡片背面朝上洗匀,然后从中随机抽取两张,则这两张卡片正面数字之和为正
数的概率是( D ) A .12
B .59
C .49
D .23
4.(2018·省实验四模)某商店进行“迎五一,大促销”摸奖活动,凡是有购物小
票的顾客均可摸球一次,摸到白球即可获奖.规则如下:一个不透明的袋子中装有
10 个黑球和若干白球,它们除颜色不同外,其余均相同,从袋子中随机摸出一个球,
(4)某天甲,乙两名同学都想从“微信”“QQ”“电话”三种沟通方式中选一种方 式与对方联系,请用列表或画树状图的方法求出甲,乙两名同学恰好选择同一种沟通 方式的概率.

六年级下学期数学总复习专项训练:统计和概率(一)(人教版,含答案)

六年级下学期数学总复习专项训练:统计和概率(一)(人教版,含答案)

六年级下学期数学总复习专项训练统计和概率(一)一、填空题(共24分)1.(本题1分)甲、乙、丙三种糖果每千克的价格分别是9元,7.5元,7元。

现把甲种糖果5千克,乙种糖果4千克,丙种糖果3千克混合在一起,那么用10元可买( )千克这种混合糖果。

2.(本题2分)任意从装有10枚白棋子和12枚黑棋子的箱子里摸出1枚棋子,那么摸到( )的可能性大,摸到( )的可能性小.3.(本题1分)箱子里有10个球,要使箱子里摸出蓝色球的可能性是710,箱子里应该有________ 个蓝色球.4.(本题1分)甲数是120,乙数是甲数的54,甲、乙两数的平均数是________。

5.(本题2分)盒子里有3个红球,2个黄球。

至少摸出______个球,才能确保摸出的球中有2种不同颜色的球;任意摸一个球,摸出_______球的可能性最大。

6.(本题2分)支付宝在月度账单中想要呈现消费者餐饮、服装、通信等项目费用各占当月总消费比重,应选用( )统计图最合适。

张晓这个月在餐饮方面的花费是800元,占了本月总消费的32%,这个月她一共消费了( )元。

7.(本题1分)如图,任摸一个球,要使摸到黄球的可能性比白球大,盒子中至少应增加( )个黄球。

8.(本题10分)看统计图,回答问题。

(1)________年果园收入最低,是________万元。

(2)________年果园收入最高,是________万元。

(3)5年间,果园的平均收入是________万元。

(4)5年中,低于平均收入的年份有________年、________年。

高于平均收入的年份有________年、________年、________年。

(按年份的先后顺序来填写)9.(本题4分)下图是一个家禽养殖场情况统计图。

(1)鹅的只数占家禽总数的( )%。

(2)表示鹅只数的扇形的圆心角是( )度。

(3)若鸡有450只,则鸭有( )只,鹅有( )只。

二、判断题(共10分)10.(本题2分)折线统计图不但能清楚地看出各种数量的多少,而且还能够看出数量的增减变化情况。

北师大版数学五年级上册总复习 统计与概率——可能性 教案

北师大版数学五年级上册总复习 统计与概率——可能性 教案

第5课时统计与概率——可能性课时目标导航一、复习内容可能性。

教材第106~112页二、复习目标1.进一步根据可能性判断游戏规则的公平性,巩固加深对所学知识的理解,了解知识间的内在联系。

2.培养善于观察、思考、总结的习惯,提高解决问题的能力。

3.培养实践能力、分析能力与合作意识。

三、重点难点重点:正确判断游戏规则的公平性。

难点:会根据实验结果判断物体数量的多少。

四、教学准备教师准备:课件PPT、盒子、白球和黄球若干。

教学过程一、回顾整理【回顾1】游戏的公平性。

师:如何判断游戏规则是否公平?学生分小组交流。

教师指名学生回答,其余学生补充教师归纳:要判断游戏是否公平,关键是看它们的可能性是否相等。

可能性大,赢的机会就大;可能性小,输的机会大;只有当可能性相等,输赢的机会一样时,游戏才是公平的。

所以设计公平的游戏规则,就是要使可能性相等。

课件出示练习:小美、小雅玩扑克游戏,从A到9共9张扑克牌,分别代表数字1~9,如果摸到的是2的倍数,小美贏;不是2的倍数,小雅赢。

1这个游戏公平吗?2小雅一定能赢吗?为什么?3你能设计一个公平的游戏规则吗?学生小组合作完成,组内交流得出统一的结论。

指名学生汇报,集体订正。

【回顾2】可能性的大小。

师:下面我们来复习一下摸球游戏。

1教学教材第107页“回顾与交流——统计与概率”第2题。

指名学生进行判断,并说说判断的原因。

组织学生借助教具进行摸球游戏。

教师引导学生归纳总结:我们可以从摸球游戏中判断可能性的大小。

可能性大的物体数量多,可能性小的物体数量少。

2课件出示练习:前几天,老师在大街上发现了这样一个游戏:一人手里拿着一个布袋,布袋里有红、绿两种颜色的球各8个,只需1元就能玩一次,谁能在布袋里摸7次,连续摸出7个红球或7个绿球就奖励10元钱。

如果你在现场,你会不会去玩?为什么?学生讨论,教师指名学生回答。

教师点评并讲解。

二、知识应用1.教学教材第112页“练习——统计与概率”第1题。

2024秋四年级数学上册总复习第4课时统计与概率教案北师大版

2024秋四年级数学上册总复习第4课时统计与概率教案北师大版

第4课时统计与概率教材第100,105页相关内容。

学问与技能1.使学生进一步驾驭统计学问。

2.娴熟地运用所学学问解决一些实际问题;过程与方法1.通过探讨与练习使学生进一步驾驭与统计有关的学问。

2.经验合作学习、解决实际问题的过程。

情感看法与价值观1.培育学生整理所学学问的习惯。

2.体验合作学习的乐趣,激发学习数学的热忱。

进一步驾驭统计的有关学问:突破方法:引导复习,指导练习。

教法:引导复习,巡察指导。

学法:独立思索,练习反馈。

多媒体课件。

一、回顾导入老师:我们知道生活中有许多事情是肯定会发生的,有许多事情是不行能会发生的,也有许多事情是可能会发生的。

大家能举出一些生活中的例子吗?学生可能会举出许多:今日是星期一,明天肯定是星期二。

太阳不行能从西边升起。

明天可能会下雨。

……老师:生活中有许多“不确定性”事务,同学们都会推断一个事务的可能性以及可能性的大小吗?这就是我们本节课所要复习回顾的学问——统计与概率。

二、自主构建,系统复习老师:请各小组选择其中的一个单元内容进行归纳整理,比一比看哪个小组整理的学问又具体又清晰。

1.组织各小组归纳整理(1)选择其中一个单元的内容:(2)回顾这一单元教材中的主要内容。

(3)进行归纳整理。

2.组织各小组汇报归纳整理的内容。

(1)汇报时要求各小组将自己归纳整理的内容展示出来。

老师可依据各小组汇报的状况,作适当的补充和强调。

(2)老师对各小组的汇报进行评价。

三、课后小结本节课我们复习回顾了事务的可能性及可能性的大小,同学们都驾驭了吗?本节课是关于统计与概率的一节复习课。

在教学中,我强调学生自主学习,注意合作沟通,让学生的合作沟通在探究过程中进行,使我们在自主探究的过程中驾驭学问并获得阅历。

在习题的设置上,我也特殊强调与生活实际的联系,让学生感受数学在实际生活中是特别有用的,从而进一步激发学生的学习爱好。

五年级上册数学教案-总复习——统计与概率-北师大版

五年级上册数学教案-总复习——统计与概率-北师大版

五年级上册数学教案总复习——统计与概率北师大版一、教学内容今天我们要复习的是五年级上册的统计与概率单元。

我们将回顾和巩固收集、整理、描述数据以及简单的概率计算。

教材的章节包括:2.1统计表,2.2统计图,2.3平均数,2.4概率。

二、教学目标通过复习,使学生能熟练地运用不同的方法收集和整理数据,并能用图表的形式来展示数据。

理解平均数的含义,并能计算平均数。

学生能通过实例体验概率的意义,并能计算简单事件的概率。

三、教学难点与重点重点:学生能独立完成数据的收集、整理和描述工作,能理解并计算平均数和简单事件的概率。

难点:学生能理解概率的含义,并能在实际问题中运用概率知识。

四、教具与学具准备为了更好地进行复习,我准备了一些统计表和统计图的样例,以及一些关于平均数和概率的练习题。

学生需要准备笔记本和笔,以便记录复习的内容。

五、教学过程我会用一个实际情景引入统计与概率的概念,例如,我们可以讨论班级同学的年龄分布。

然后,我会带领学生复习统计表和统计图的绘制方法,让学生通过实际操作来理解和掌握这些方法。

接着,我会讲解平均数的含义和计算方法,并用一些例题来帮助学生理解和掌握。

我会讲解概率的基本概念,并用一些练习题来帮助学生理解和掌握。

六、板书设计板书设计将包括统计表、统计图的绘制方法,平均数的计算公式,以及概率的计算方法。

七、作业设计作业将包括绘制统计表和统计图,计算平均数和概率的练习题。

作业题目如下:1. 根据班级同学的身高数据,绘制统计表和统计图。

2. 计算班级同学的平均身高。

3. 掷两次骰子,计算出现偶数的概率。

八、课后反思及拓展延伸课后,我会反思今天的复习是否达到了预期的效果,学生们是否掌握了统计与概率的基本概念和方法。

同时,我会鼓励学生在日常生活中运用所学的统计与概率知识,例如,在家庭购物时,计算商品的折扣概率等。

重点和难点解析在今天的复习课中,我发现有几个重点和难点需要学生们特别关注。

统计表和统计图的绘制方法是本节课的重要内容,学生需要掌握如何有效地整理和展示数据。

总复习 第5课时 统计与概率(Word教案)2023-2024学年六年级数学上册同步备课(北师大版)

总复习 第5课时 统计与概率(Word教案)2023-2024学年六年级数学上册同步备课(北师大版)

总复习第5课时统计与概率(Word教案)2023-2024学年六年级数学上册同步备课(北师大版)教学目标:1. 让学生理解并掌握统计与概率的基本概念、原理和方法,能运用统计与概率知识解决实际问题。

2. 培养学生的数据分析和处理能力,提高学生的逻辑思维和判断推理能力。

3. 培养学生运用统计与概率知识进行决策和预测的能力,增强学生的应用意识。

教学内容:1. 统计与概率的基本概念:统计、总体、个体、样本、样本容量、概率、随机事件等。

2. 数据的收集、整理和描述:调查、实验、图表、平均数、中位数、众数、方差等。

3. 概率的计算:等可能事件、组合、排列、古典概型、几何概型等。

4. 统计与概率在实际问题中的应用:天气预报、彩票、股票、评价与决策等。

教学重点与难点:1. 教学重点:统计与概率的基本概念、原理和方法,数据的收集、整理和描述,概率的计算。

2. 教学难点:概率的计算,统计与概率在实际问题中的应用。

教具与学具准备:1. 教具:PPT、黑板、粉笔、教学挂图等。

2. 学具:练习本、草稿纸、计算器等。

教学过程:1. 导入:通过生活中的实例,引导学生回顾统计与概率的基本概念,激发学生的学习兴趣。

2. 新课:讲解统计与概率的基本原理和方法,通过实例演示数据的收集、整理和描述,以及概率的计算。

3. 练习:布置练习题,让学生独立完成,巩固所学知识。

4. 讲解:针对学生练习中的问题,进行讲解和指导,帮助学生理解和掌握难点知识。

5. 应用:通过实例分析,让学生运用统计与概率知识解决实际问题,提高学生的应用能力。

6. 总结:对本节课所学知识进行总结,强调重点和难点,布置作业。

板书设计:1. 板书总复习第5课时统计与概率2. 板书内容:统计与概率的基本概念、原理和方法,数据的收集、整理和描述,概率的计算,统计与概率在实际问题中的应用。

作业设计:1. 基础题:让学生完成教材中的练习题,巩固所学知识。

2. 提高题:设计一些综合性的题目,让学生运用统计与概率知识解决实际问题,提高学生的应用能力。

新高考数学二轮总复习第三部分专题六.3统计与概率小题专项练课件

新高考数学二轮总复习第三部分专题六.3统计与概率小题专项练课件
种不同的
C 15 C 110
取法,所求概率为 2
C 15
=
50
105
=
10
.
21
4.(2021江西萍乡高三检测,8)算盘是中国传统的计算工具,其形长方,周为
木框,内贯直柱,俗称“档〞,档中横以梁,梁上两珠,每珠作数五,梁下五珠,每
珠作数一.算珠梁上局部叫上珠,梁下局部叫下珠.例如:在十位档拨上一颗
=
4
4
P(B|A2)= ,P(B|A3)= ,而
11
11
1
3
,P(A3)= ;P(B|A1)=
5
10
=
5
,由此知选项
11
B 正确.
P(B)=P(A1B)+P(A2B)+P(A3B)
1
=P(A1)P(B|A1)+P(A2)P(B|A2)+P(A3)P(B|A3)=2
此知选项 AC 不正确.
1 5
×
2 11
1
2
×
5
11
1
+5
×
4
11
+
3
10
×
4
11
=
9
.由
22
考向四
相互独立事件及二项分布
10.(2021天津,13)甲、乙两球落入盒子的概率分别为
落入盒子互不影响,那么甲、乙两球都落入盒子的概率为
乙两球至少有一个落入盒子的概率为
答案
1
6
1 1
.假定两球是否

2 3
;甲、
.
2
3
解析 两球都落入
1
p1=2
1
2 2

2020年小升初数学专题复习训练—统计与概率:可能性(2)(知识点总结 同步测试) 通用版(含答案)

2020年小升初数学专题复习训练—统计与概率:可能性(2)(知识点总结 同步测试) 通用版(含答案)

2020年小升初数学专题复习训练—统计与概率可能性(2)知识点复习一.游戏规则的公平性【知识点归纳】游戏规则的公平性体现在参与游戏的任何一方的获胜可能性大小一致.【命题方向】【知识点归纳】1.抛钢镚实验、掷骰子实验和转盘实验,能够列出简单实验的所有可能发生的结果,每个结果发生的可能性都相等.2.用列举法求简单事件发生的可能性,可以用数值表示及其表示方法.【命题方向】三.预测简单事件发生的可能性及理由阐述【知识点归纳】用枚举,列表,画树状图等方法,统计简单事件发生的各种可能的结果数.【命题方向】除法解答,进而得出结论.四.生活中的可能性现象【知识点归纳】1.可能性:是指事物发生的概率,是包含在事物之中并预示着事物发展趋势的量化指标.有些事件的发生是确定的,有些是不确定的.用“可能”、“不可能”“一定”等表达事物发生的情况.2.常见方法有:抛骰子、摸球、转盘.【命题方向】一.选择题(共8小题)1.骑单车上斜坡,直骑上斜坡与绕S形上斜坡比较,较省力的是()A.直骑上斜坡B.一样C.绕S形上斜坡2.在一个物体的6个面上分别标上数字,使得“2”朝上的可能性为,怎么在面上标出数字?()A.只标上1个面为2B.标上两个面为2C.标上3个面为2D.标上4个面为23.两人玩扑克牌比大小的游戏,每人每次出一张牌,各出三次赢两次者胜.小红的牌是“9”、“7”、“5”;小芳的牌是“8”、“6”、“3”.当小红出“5”时,小芳出()才可能赢.A.8B.6C.3D.任意一张都行4.天气预报“明天下雨的概率是90%”,下面()这个判断是正确的.A.明天肯定下雨B.明天不大会下雨C.明天下雨的可能性很大5.有红桃2、3、4、5、6和黑桃2、3、4、5、6各一张扑克混合在一起,任意抽一张,抽到红桃的可能性()抽到质数的可能性.A.>B.=C.<6.小明和小华下棋,下列方法决定谁先走,不公平的是()A.抛硬币.正面朝上,小明先走,反面朝上,小华先走B.投骰子.点数大于3,小明先走,点数小于3,小华先走C.做1号和2号两个签,谁抽到1号谁先走D.袋子里装有1红3白4个球,轮流摸球,谁先摸到红球谁先走7.明明和亮亮用转盘做游戏,指针停在黄色区域算明明赢,停在蓝色区域算亮亮赢,停在红色区域重新进行.下面几种方案对游戏双方都公平的是()A.B.C.8.甲、乙两个队进行排球比赛,在一个正方体的6个面上分别写上数字“1~6”,掷到小于4的数甲队先开球,否则乙队先开球.这种游戏规则()A.公平B.不公平C.公平性不确定二.填空题(共8小题)9.袋子里有红球5个,白球3个,没有其他颜色的球,摸出球的可能性大,可能性是,要想使摸出红球的可能性为,应放入个.10.(北京市第一实验小学学业考)桌面上扣着8张数字卡片,分别写着1﹣﹣﹣8各数.如果摸到单数小明赢,摸到双数小芳赢,这个游戏规则.(填“公平”或“不公平”)11.一个正方体骰子六个面的数字分别是1﹣6,掷一次骰子得到质数的可能性是.12.袋子里有5个红球、3个蓝球和4个白球,取到蓝球的可能性大小是.13.在横线里填上“一定”或“可能”或“不可能”.明年有366天下周下雪第三季度两个大月.14.我知道:对圆周率的研究有贡献的数学家有、和.15.多多和真真在一张纸上玩游戏:将一块橡皮任意扔在纸上,橡皮落在■格子上算多多赢,落在□格子上算真真赢.这个游戏规则.(填公平或者不公平)16.用三张分别写着2、6、9的数字卡片,任意摆一个三位数,摆出单数的可能性比摆出双数的可能性.(填“大”或“小”)三.判断题(共5小题)17.擅长游泳的人在河里游泳不可能会发生溺水事故.(判断对错)18.《九章算术》是我国古代最重要的数学著作.(判断对错)19.一个正方体的各个面上分别写着1,2,3,4,5,6,掷出落地后,每个数朝上的可能性相等.(判断对错)20.小明和小华采用“石头、剪刀、布”的方式决定谁先发球,这个游戏规则是公平的.(判断对错)21.把一枚硬币连续抛8次,正反面朝上的次数一定相同..(判断对错)四.操作题(共3小题)22.(北京市第一实验小学学业考)笑笑、淘气、奇思和妙想四个人玩转盘游戏,请你设计一个转盘,并确定一个对每一个参与游戏的人都公平的游戏规则.23.按格子给圆形转盘涂上不同的颜色(用红、黄等文字代替),使指针转动后停在红色区域的可能性是,停在黄色区域的可能性是.24.想一想,连一连.五.应用题(共4小题)25.柜子里有5顶款式、质地、大小都一样的帽子,其中2顶是黑色的,3顶是蓝色的.在停电的情况下,从中随意拿出2顶帽子,1顶蓝色和1顶黑色的可能性是多少?26.思思和妙妙做摸球游戏,每次任意摸一个球,然后放回摇勾,每人摸10次摸到白球思思得1分,摸到红球妙妙得1分,摸到其他颜色的球两人都不得分.你认为从哪几个盒子里摸球是公平的?27.灰太狼在青青草原上看到了喜羊羊和伙伴们在玩游戏,非常兴奋但狡猾的他表面上露出友善的笑脸走过去,对他们说:“小羊们,我们来做个游戏吧!输的一方什么都得听赢的一方的.“小羊们虽然不愿意,但也不敢反抗.于是灰太痕公布了游戏规则:“我拿1、2、3,你们拿4、5、6,我们各自任意出一张牌,两张牌的数字相乘积大于10,就算本大王赢,等于10算平局,小于10算你们赢.”(1)灰太狼制定的游戏规则公平吗?(2)灰大狼一定会赢吗?28.一批奖券,号码是001~125.(1)中二等奖的可能性是多少?(2)中三等奖的可能性是多少?奖别号码一等奖末两位是25二等奖末一位是0三等奖号码中有一个数字是2参考答案与试题解析一.选择题(共8小题)1.【分析】根据数学常识可知,骑单车上斜坡,直骑上斜坡与绕S形上斜坡比较,较省力的是绕S形上斜坡.【解答】解:由数学常识可知,骑单车上斜坡,直骑上斜坡与绕S形上斜坡比较,较省力的是绕S形上斜坡.故选:C.【点评】考查了数学常识,是生活常识,比较简单.2.【分析】要使得“2”朝上的可能性为,那么6个面中标“2”的个数应占所标数字总个数(6个)的,根据一个数乘分数的意义,求出标“2”的个数,然后再进一步解答.【解答】解:6×=2(个)所以标“2”的个数是2个,也就是标上两个面为2.故选:B.【点评】此题属于简单事件的可能性大小语言阐述,根据一个数乘分数的意义,求出标“2”的个数,是解答此题的关键.3.【分析】根据“田忌赛马”的故事,用3对9,输一局;6对5,8对7,胜二局,由此即可能3局2胜获胜.【解答】解:小芳第一次出3,另一人出9,小芳输,第二次小芳出6,对方出5,小芳胜,第三次小芳出8,对方出7小芳胜,所以当小红出“5”时,小芳出6才可能赢.故选:B.【点评】本题主要是根据“田忌赛马”的故事,用最差的和对方最好的比,输一局,用中等的和对方最差的比,用最好的和对方最差的比,这样就可以胜二局,从而获胜.4.【分析】明天的降水概率是90%,说明下雨的可能性很大,它属于可能性中的不确定事件,在一定条件下可能发生,也可能不发生的事件;进而得出答案.【解答】解:由分析知:明天的下雨的概率是90%,说明明天下雨的可能性很大;故选:C.【点评】解答此题应根据可能性的大小,进行分析,进而得出结论.5.【分析】一共十张牌红桃黑桃各5张,抽到红桃的可能性是:.2、3、4、5各两张,其中质数有2张2、2张3、2张5,共6张.抽到质数的可能性是:.按照分数大小的比较方法比较两种的可能性大小即可.【解答】解:抽到红桃的可能性是:.抽到质数的可能性是:..故选:C.【点评】解答此题应根据可能性的求法:即求一个数是另一个数的几分之几用除法解答,进而得出结论.6.【分析】A、硬币只有反、正面,每面朝上的可能性都是,因此,用抛硬币的方法,正面朝上,小明先走,反面朝上,小华先走,游戏规则公平.B、骰子6个面的数字分别是1、2、3、4、5、6,其中小于3的有1、2,小化先走的可能性是2÷6=;大于3的有4、5、6,小明先走的可能性是3÷6=.<,游戏规则不公平.C、做1号和2号两个签,每人抽到1号的可能性都是1÷2=,戏规则公平.D、袋子里装有1红3白4个球,轮流摸球,每人摸到红球的可能性都是1÷(1+3+4)=,游戏规则公平.【解答】解:A、抛硬币.正面朝上,小明先走,反面朝上,小华先走.游戏规则公平.B、投骰子.点数大于3,小明先走,点数小于3,小华先走.游戏规则不公平.C、做1号和2号两个签,谁抽到1号谁先走.游戏规则公平.D、袋子里装有1红3白4个球,轮流摸球,谁先摸到红球谁先走.游戏规则公平.故选:B.【点评】看游戏是否公平,关键看双方是否具有均等的机会,如果机会是均等的,那就公平,否则,则不公平.7.【分析】明明和亮亮用转盘做游戏,指针停在黄色区域算明明赢,停在蓝色区域算亮亮赢,停在红色区域重新进行,要想游戏规则公平,转盘中黄色、蓝色区域的面积大小相同.【解答】解:明明和亮亮用转盘做游戏,指针停在黄色区域算明明赢,停在蓝色区域算亮亮赢,停在红色区域重新进行.下面几种方案对游戏双方都公平的是:故选:B.【点评】判断游戏规则是否公平的关键是看参与游戏的各方出现的可能性是否相同.相同规则公平,否则,游戏规则不公平.8.【分析】在1~6这六个数字中小于4的有1、2、3,其余的有4、5、6,即掷到小于4的数、其他数字都是3个,概率相同,这种游戏规则公平.【解答】解:在1~6这六个数字中小于4的有1、2、3共3个数字其余数字有4、5、6共三个数字因此,数字小于4的和其余数字面向上的概率都是(或),这种游戏规则公平.故选:A.【点评】游戏规则是否公平的关键是看参与游戏的双方出现的概率是否相同.二.填空题(共8小题)9.【分析】(1)分别求出摸出各种颜色球的概率,即可比较出摸出何种颜色球的可能性大.(2)另外放入非红球7个或白球7个,那么共有15个球,红球有5个,所以摸到红球的概率是.【解答】解:(1)摸到红球的可能性为:;摸到白球的可能性为.故摸到红球的概率大;(2)拿7个白球放入袋中,那么共有15个球,红球有5个,则摸出红球的可能性为;故答案为:红、、白球7.【点评】本题考查的是可能性大小的判断,解决这类题目要注意具体情况具体对待.用到的知识点为:可能性等于所求情况数与总情况数之比.10.【分析】根据题意可知,单数有4个:1、3、5、7;双数有4个:2、4、6、8,个数一样,所以,摸到单数和双数的可能性一样,游戏公平.【解答】解:因为1﹣﹣﹣8中,单数和双数的个数是一样的,所以游戏公平.故答案为:公平.【点评】此题考查了游戏的公平性,如果一个事件有可能,而且这些事件的可能性相同,可能性相等就公平,否则就不公平.11.【分析】首先判断出1、2、3、4、5、6中质数有3个:2、3、5,然后根据求可能性的方法:求一个数是另一个数的百分之几,用除法列式解答,用质数的个数除以数字的总个数6,求出得到质数可能性是多少即可.【解答】解:1、2、3、4、5、6中质数有3个:2、3、5,得到质数的可能性是:3÷6=50%;答:掷一次骰子得到质数的可能性是50%.故答案为:50%.【点评】解决此类问题的关键是分两种情况:(1)需要计算可能性的大小的准确值时,根据求可能性的方法:求一个数是另一个数的几分之几,用除法列式解答即可;(2)不需要计算可能性的大小的准确值时,可以根据各种骰子数量的多少,直接判断可能性的大小.12.【分析】先“3+4+5=12”求出袋子中的球的个数,求摸到蓝球的可能性,根据可能性的求法:即求一个数(3)是另一个数(12)的几分之几用除法解答即可.【解答】解:3÷(3+4+5)=3÷12=答:取到蓝球的可能性大小是.故答案为:【点评】解答此题应根据可能性的求法:即求一个数是另一个数的几分之几用除法解答,进而得出结论.13.【分析】根据事件发生的确定性和不确定性进行分析:(1)明年是2014年,是平年,属于确定事件中的不可能事件;(2)明天可能下雪,属于不确定事件中的可能性事件;(3)第三季度有7、8、9月,其中7月、8月是大月,所以第三季度一定两个大月,属于确定事件中的必然事件.【解答】解:(1)明年不可能有366天;(2)下周可能下雪;(3)第三季度一定两个大月;故答案为:不可能;可能,一定.【点评】解答此题的关键是先确定该事件是随机事件、必然事件还是不可能事件,然后进行分析得出答案.14.【分析】通过查阅资料可了解到,对圆周率的研究有贡献的数学家有祖冲之、阿基米德和刘徽.(合理即可,无固定答案.)【解答】解:我知道:对圆周率的研究有贡献的数学家有祖冲之、阿基米德和刘徽.(无固定答案.)故答案为:祖冲之;阿基米德;刘徽.【点评】本题主要考查数学常识,关键培养学生的积累能力.15.【分析】通过作辅助线不难看出:■格子13个,□格子12个,两种颜色的格子一共是25个,橡皮落在■格子的可能性占,落在□格子上的可能性占,根据两种格子出现的分率大小即可确定规则是否公平.【解答】解:如图橡皮落在■格子的可能性占,落在□格子上的可能性占>不个游戏规则不公平,多多赢的可能性大些.故答案为:不公平.【点评】参与游戏的各方出现的概率相同规则公平,否则不公平.16.【分析】根据单数(奇数)、双数(偶数)的意义,不是2的倍数的数是单数(奇数);是2的倍数的数是双数(偶数).再根据简单的排列组合的方法,用2、6、9三张数字卡片组成的三位数有:269、296、629、692、926、962;其中单数有269、629两个,双数有296、692、926、962四个,由事件发生的可能性得:摆出单数的可能性是,摆出双数的可能性是,据此解答即可.【解答】解:用2、6、9三张数字卡片组成的三位数有:269、296、629、692、926、962共六个;其中单数有269、629两个,双数有296、692、926、962四个,摆出单数的可能性是2÷6=,摆出双数的可能性是4÷6=,答:摆出单数的可能性比摆出双数的可能性小.故答案为:小.【点评】解决此题关键是先写出用2、6、9摆出的所有的三位数,进而根据单数和双数的意义,数出单数和双数的个数,再根据可能性的求解方法:可能性=所求情况数÷总情况数,据此解答即可.三.判断题(共5小题)17.【分析】根据生活经验可知:擅长游泳的人在合理游泳也有可能会发生溺水事故;由此解答即可.【解答】解:擅长游泳的人在合理游泳有可能会发生溺水事故;故答案为:×.【点评】此题考查了生活中的可能性现象,注意平时生活经验的积累.18.【分析】中国古代数学取得了极其辉煌的成就,直到明中叶以前,在数学的许多分支领域里,与世界各国相比,一直处于遥遥领先的地位.中国古代有不少数学名著,其中最重要的当推《九章算术》.据此解答即可.【解答】解:《九章算术》是我国古代最重要的数学著作,所以原题说法正确.故答案为:√.【点评】本题考查了数学知识,注意表述的准确性.19.【分析】因为共6个数字,每个数字都有1个,求掷出每个数字的可能性,根据可能性的求法:即求一个数是另一个数的几分之几,用除法解答即可.【解答】解:掷出每个数字的可能性:1÷6=,即每个数朝上的可能性都是,所以原题说法正确.故答案为:√.【点评】解答此题应根据可能性的求法:即求一个数是另一个数的几分之几用除法解答,进而得出结论.20.【分析】小明和小华采用“石头、剪刀、布”的方式决定谁先发球,可能出现的情况有:“石头﹣石头”(重来)、“石头﹣剪刀”(石头先发球)、“石头﹣布”(布先发球)、“剪刀﹣剪刀”(重来)、“剪刀﹣布”(剪刀先发球)、“布﹣布”(重来)6种情况.每人先发球的可能性都是3÷6=.【解答】解:小明和小华采用“石头、剪刀、布”的方式决定谁先发球,这个游戏规则是公平的原题说法正确.故答案为:√.【点评】此题考查游戏公平性的判断,判断游戏规则是否公平,就要计算每个参与者取胜的可能性,可能性相等就公平,否则就不公平.21.【分析】硬币只有正、反两面,抛出硬币,正面朝上的可能性为,一个硬币抛8次,正面朝上的可能性为,属于不确定事件中的可能性事件,而不是一定为,由此判断即可.【解答】解:根据题干分析可得:一个硬币抛8次,正面朝上的可能性为,所以正面朝上的可能性是4次;这属于不确定事件中的可能性事件,而不是一定为,即不一定一定是4次,原题说法错误.故答案为:×.【点评】此题考查确定事件与不确定事件的意义,用到的知识点为:可能性等于所求情况数与总情况数之比.四.操作题(共3小题)22.【分析】(1)游戏是否公平,关键要看是否游戏双方赢的机会是否相等,即判断双方取胜的可能性是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等,据此判断即可.(2)要使游戏公平就要使每个人先走的概率都相等,根据此知识点设计转盘游戏即可.【解答】解:如图设计:游戏规定:转动转盘时,指针分别指向1,2,3,4时,他们分别获得机会相等;他们赢的可能性都为:1÷4=,所以都公平.【点评】此题考查游戏规则公平性.游戏规则是否公平就要计算每个事件的可能性,可能性相等就公平,否则就不公平.用到的知识点为:可能性=所求情况数与总情况数之比.23.【分析】“转动指针,使指针转动后停在红色区域的可能性是,停在黄色区域的可能性是,=”;需要把转盘平均分成10份,红色区域占其中的5份,黄色区域占其中的4份;据此涂色即可.【解答】解:见下图:【点评】此题主要考查可能性的大小,涂色区域面积占圆面积的几分之几,指针指到这个区域的可能性就是几分之几.24.【分析】因为第一个袋子里,都是黑球,所以任意摸出一个球,一定是黑球,属于确定事件中的必然事件,不可能摸到白球,属于确定事件事件中的不可能事件;第二个袋子里,有白球和黑球,任意摸出一个,可能是黑球也可能是白球,属于不确定事件中的可能性事件;第三个袋子里,都是白球,任意摸出一个球,一定是白球,属于确定事件中的必然事件,不可能摸到黑球,属于确定事件事件中的不可能事件;由此解答即可.【解答】解:【点评】此题应根据事件发生确定性和不确定性进行分析、解答.五.应用题(共4小题)25.【分析】从中随意拿出2顶帽子,出现的结果有:两顶黑色,黑色蓝色、黑色蓝色、黑色蓝色、黑色蓝色、黑色蓝色、黑色蓝色、两顶蓝色、两顶蓝色、两顶蓝色共10种,从2顶是黑色的帽子中选一顶有2种选法,3顶是蓝色的的帽子中选一顶有3种选法;根据乘法原理,可得共有:3×2=6(种);然后根据求可能性的方法:求一个数是另一个数的几分之几,用除法列式解答即可.【解答】解:(3×2)÷10=6÷10=;答:从中随意拿出2顶帽子,1顶蓝色和1顶黑色的可能性是.【点评】解决此类问题的关键是分两种情况:(1)需要计算可能性的大小的准确值时,根据求可能性的方法:求一个数是另一个数的几分之几,用除法列式解答即可;(2)不需要计算可能性的大小的准确值时,可以根据硬币正反面的情况,直接判断可能性的大小.26.【分析】根据题意,若要使游戏公平,则摸到红球和白球的可能性应该是一样的,也就是红球和白球的数量应该是相等的.据此解答.【解答】解:2=2因为第一个盒子中红球和白球的数量相等,所以从第一个盒子里摸球是公平的.5>4所以第二个盒子中摸到红球和白球的可能性不相等,游戏不公平.3>0所以第三个盒子中摸到白球和摸到红球的可能性不相等,游戏规则不公平.3=3所以第四个盒子中的红球和白球个数相等,摸到的可能性也相等,游戏规则公平.答:从第一个和第四个盒子中摸,游戏规则是公平的.【点评】本题主要考查游戏规则的公平性,关键注意各色球的数量多少.27.【分析】(1)在1、2、3与4、5、6和乘积中有1×4=4、1×5=5,1×6=6、2×4=8、2×5=10、2×6=12、3×4=12、3×5=16、3×6=18,其中小于10的只有4可能,等于10的只有1种可能,大于10的有4种可能.小羊们和灰太狼赢(或输入)的可能性相等,这个游戏规则公平.(2)既然游戏规则公平,小羊位、灰太狼赢的可能性相等,因此,灰大狼不一定会赢.【解答】解:(1)1、2、3与4、5、6和乘积中有1×4=4、1×5=5,1×6=6、2×4=8、2×5=10、2×6=12、3×4=12、3×5=16、3×6=18其中小于10的只有4可能,等于10的只有1种可能,大于10的有4种可能小羊们、灰太狼赢的可能性相等,都占游戏规则公平.(2)小羊们、灰太狼赢的可能性相等,都占,戏规则公平,灰大狼不一定会赢.【点评】判断游戏规则公平的关键是看参与游戏的各方出现的可能性是否相等,相等,游戏规则公平,否则,游戏规则不公平.28.【分析】(1)一共有125个数,能中二等奖的数字有:10、20…90、100、110、120,一共有12个.中二等奖的可能性是12÷125.(2)一共有125个数,能中三等奖的数字有:2、12、22、32…92、102、112、122,一共有13个.中二等奖的可能性是13÷125.【解答】解:(1)符合二等奖的数字个数除以总数,就是获得二等奖的可能性:12÷125=.(2)符合三等奖的数字个数除以总数,就是获得三等奖的可能性:13÷125=.【点评】解答此题应根据可能性的求法:即求一个数是另一个数的几分之几用除法解答,进而得出结论.。

2022六年级数学下册第6单元回顾整理__总复习八统计与概率授课课件青岛版六三制

2022六年级数学下册第6单元回顾整理__总复习八统计与概率授课课件青岛版六三制

试一试
二、如图是某校六年级男生最喜欢的球类运动情况统 计图,根据图中信息填空。
1.最喜欢( 排球 )的人最少。 2.若最喜欢乒乓球的有72人,则该校
六年级共有男生( 300 )人,最喜欢 排球的有( 42 )人。 3.最喜欢篮球的占六年级男生总人数的( 26 )%。
试一试
三、下面是某地区2016年上半年月平均气温变化情况 统计表。
A、B两家公司员工工资情况如下表。如果这两家公司招聘 员工,你认为应聘者该到哪家公司?为什么?
A公司员工月工资一览表 职工 总经理 副经理 职员1 职员2 职员3 职员4 平均工资 工资(元) 7000 3000 1500 1500 1500 500 2500
职工 工资(元)
B公司员工月工资一览表
负责人
QD 六年级下册
回顾整理总复习——统计与概率
统计与概率
回顾与梳理 讨论与交流 应用与反思 回顾反思 课后作业
一、回顾与梳理
关于统计与可能性的知识,我们学过哪些?
统计
统计表 条形统计图 统计图 折线统计图 平均数 扇形统计图
认识随机现象 可能性
描述可能性的大小
一、回顾与梳理
统计表:
单式分段统计表
复式分段统计表 复对式比分观段察统,计你表知能道够复更式方分便段地统比计较表两有个什小么队优立点定吗跳?远的成绩。
选择乙产品。因为在其他指标完全相同的情况下,乙 产品的返修率低,说明产品合格率高。购买乙产品出现故 障的可能性小。
三、应用与反思
易错辨析 (选题源于《典中点》)
六、我会判断。
1.小明班上同学的平均体重是35千克,小刚班上同学
的平均体重是40千克,那么小明比小刚轻。 ( × ) 辨析:平均体重并非两人的实际体重,不能直接

1-6年“统计与概率”概念的归纳和整理

1-6年“统计与概率”概念的归纳和整理

1-6年级数学“统计与概率”的知识归纳和整理年级单元内容教学目标教学建议一年级无无无无无无无无二年级二上第11单元:统计与可能性1、统计数量的多少2、事件发生的可能性1、学会简单统计数量的多少2、简单了解事件发生的可能性二下第8单元;数据的收集和整理用分类的方法整理数据学会用分类的(画正字、打对号、画方块、圆圈等)简单整理数据可以多采取小组合作学习的方式进行教学,培养学生的合作意识和解决问题的能力,但同时也要注意引导学生独立思考和解决问题。

三年级三上第9单元:统计与可能性例1:初步认识事件发生的可能性的大小1、使学生初步体验有些事件发生的可能性大或小1、注意创设问题情境,引导学生在数学活动中体验不确定现象和可能性三下第10单元:1、例1:认识单式式条形统计图1、、使学生初步学会简单的数据分析,进一步体会统计在现实生活中的作用,理解数学与生活的紧密联系。

1、充分利用学生已有的知识进行教学。

2、注意让学生进一步认识统计的作用。

四年级四上第9单元:1、学会整理统计表中的数据。

2、根据单式1、使学生体验数据的收集、整理、描述和分析的过程,进一步体会统计在现实生活中的作用,理解1、重视学生已有的知识与生活经验。

统计与可能性条形统计图回答和分析问题。

3、用分数说明游戏规则是否公平。

数学与生活的密切联系。

2、会分析条形统计图那个简单回答一些问题。

2、体验事件发生的等可能性以及游戏规则的公平性,会求简单事方件发生的可能性。

3、能按照指定的要求设计简单的游戏方案。

2、进一步认识统计的现实意义。

四下第12单元:统计例1:认识折线统计图;例2:画折线统计图。

1、认识折线统计图,会根据数据完成折线统计图,并解决问题或做出预测;2、能根据实际需要选择条形或折线统计图。

1、重视学生已有的知识与生活经验。

2、进一步认识统计的现实意义五年级五上第10单元:统计1、认识复式统计表并会画图。

2、认识复式1、使学生体验数据的收集、整理、描述和分析的过程,进一步体会统计在现实生活中的作用,理解数学与生活的密切联系。

新人教版初中数学中考总复习:统计与概率--知识点整理及重点题型梳理

新人教版初中数学中考总复习:统计与概率--知识点整理及重点题型梳理

新人教版初中数学中考总复习重难点突破知识点梳理及重点题型巩固练习中考总复习:统计与概率—知识讲解【考纲要求】1.能根据具体的实际问题或者提供的资料,运用统计的思想收集、整理和处理一些数据,并从中发现有价值的信息,在中考中多以图表阅读题的形式出现;2.了解总体、个体、样本、平均数、加权平均数、中位数、众数、极差、方差、频数、频率等概念,并能进行有效的解答或计算;3.能够对扇形统计图、列频数分布表、画频数分布直方图和频数折线图等几种统计图表进行具体运用,并会根据实际情况对统计图表进行取舍;4.在具体情境中了解概率的意义;能够运用列举法(包括列表、画树状图)求简单事件发生的概率.能够准确区分确定事件与不确定事件;5.加强统计与概率的联系,这方面的题型以综合题为主,将逐渐成为新课标下中考的热点问题.【知识网络】「I 统计图表——।阅读图表提取信息T 集中程度I 怦均数中位教嬴【考点梳理】考点一、数据的收集及整理1 .一般步骤:调查收集数据的过程一般有下列六步:明确调查问题、确定调查对象、选择调查方法、展 开调查、记录结果、得出结论.2 .调查收集数据的方法:普查与抽样调查. 要点诠释:(1)通过调查总体的方式来收集数据的,抽样调查是通过调查样本方式来收集数据的.(2)一般地,当总体中个体数目较多,普查的工作量较大;受客观条件的限制,无法对所有个体进行 普查;或调查具有破坏性时,不允许普查,这时我们往往会用抽样调查来体现估计总体的思想 (3)用抽签的办法决定哪些个体进入样本.统计学家们称这种理想的抽样方法为简单的随机抽样 3 .数据的统计:条形统计图、折线统计图、扇形统计图是三种最常用的统计图. 要点诠释:这三种统计图各具特点:条形统计图可以直观地反映出数据的数量特征;折线统计图可以直观地反映出数据的数量变化规律;扇形统计图可以直观地反映出各部分数量在总量中所占的份额.收集数据媒体查询抽样调查-抽样的基本要求总体个体样本T 整理数据借助统计活动研究概率从概 率角度分析善数据特征离散程度限差方差标准差实验估计概必然事不可能事游戏的 公平与模拟等效实考点二.数据的分析 1 .基本概念:总体:把所要考查的对象的全体叫做总体; 个体:把组成总体的每一个考查对象叫做个体;样本:从总体中取出的一部分个体叫做总体的一个样本; 样本容量:样本中包含的个体的个数叫做样本容量;频数:在记录实验数据时,每个对象出现的次数称为频数;频率:每个对象出现的次数与总次数的比值(或者百分比)称为频率;平均数:在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数;中位数:将一组数据从小到大依次排列,位于正中间位置的数(或正中间两个数据的平均数)叫做这组 数据的中位数;众数:在一组数据中,出现频数最多的数叫做这组数据的众数; 极差:一组数据中的最大值减去最小值所得的差称为极差;方差:我们可以用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的 情况,这个结果通常称为方差.计算方差的公式:设一组数据是/,无是这组数据的平均数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

可能性
文档设计者: 设计时间 : 文档类型:
文库精品文档,欢迎下载使用。

Word 精品文档,可以编辑修改,放心下载
一、认真思考,仔细填写。

把□3□4□5三张卡片任意摆成一个三位数,那么这个三位数:
1、小于450的可能性是 ;
2、大于500的可能性是 ;
3、大于650的可能性是 ;
4、是2的倍数的可能性是 ;
5、既是2的倍数,又是5的倍数的可能性是 。

二、精挑细选,对号入座。

1、有5张卡片,分别画有以下图形,背面朝上任取一张,摸到蝴蝶的可能性是( )。

2、在联欢会上,同学们通过抽签表演节目,其中有15张表演唱歌的签,有12张表演讲故事的签,有3张表演舞蹈的签。

抽一次签,表演讲故事的可能性是( )。

A 、52 B 、21 C 、101 D 、12
1
三、小玲和小红做摸球游戏。

口袋里有白球、红球各1个。

1、小玲前3次都是摸到红球,第4次一定摸到红球吗?
2、小红连摸10次,一定是5次红球、5次白球吗?
四、画一画。

在空白转盘上按要求涂色。

1、指针停了红色和绿色区域的可能性都是
4
1。

2、指针停在白色区域的可能性是
4
3。

3、指针停在红色、绿色和白色的可能性相等。

五、小光和小明下跳棋,他们用掷骰子决定谁先走。

小光用白色骰子,上面的点数是1,
6,8各两面;小明用蓝色骰子,上面的点数是3,5,7各两面。

每掷一次谁的点数大,谁先走。

1、小光掷的点数比小明大的有()次,
小明掷的点数比小光大的有()次。

2、小光先走的可能性是(),小明先走
的可能性是()。

3、你认为这个游戏公平吗?怎样把这个游戏
变得公平呢?
六、右图是一个可以旋转的转盘。

1、当转盘停止转动时,指针指向每个字的可能性是多少?
小光 1 1 1 6 6 6 8 8 8
小明 3 5 7
2、如果转盘转动90次,大约会有多少次指向“学”字?
部分答案:
二、1、C 2、A
可以编辑的试卷(可以删除)。

相关文档
最新文档