脉冲编码调制PCM原理
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脉冲编码调制
科技名词定义
中文名称:脉冲编码调制
英文名称:pulse-code modulation;PCM
定义:对信号进行抽样和量化时,将所得的量化值序列进行编码,变换为数字信号的调制过程。
应用学科:通信科技(一级学科);通信原理与基本技术(二级学科)
本内容由全国科学技术名词审定委员会审定公布
百科名片
脉冲编码调制(PulseCodeModulation),简称PCM。
是数字信号是对连续变化的模拟信号进行抽样、量化和编码产生。
PCM的优点就是音质好,缺点就是体积大。
PCM可以提供用户从2M到155M速率的数字数据专线业务,也可以提供话音、图象传送、远程教学等其他业务。
PCM有两个标准(表现形式):E1和T1。
目录
简介
历史
原理
编码
1标准PCME1形式结构
1PCME1形式接口
1使用PCME1形式有三种方法
1PCME1形式使用注意事项
1PCME1形式和PCME2形式区别
展开
编辑本段简介
脉冲编码调制(Pulse Code Modulation)是一种对模拟信号数字化的取样技术,将模拟语音信号变换为数字信号的编码方式,特别是对于音频信号。
PCM 对信号每秒钟取样8000 次;每次取样为8 个位,总共64
脉冲编码调制
kbps。
取样等级的编码有二种标准。
北美洲及日本使用Mu-Law 标准,而其它大多数国家使用A-Law 标准。
脉冲编码调制主要经过3个过程:抽样、量化和编码。
抽样过程将连续时间模拟信号变为离散时间、连续幅度的抽样信号,量化过程将抽样信号变为离散时间、离散幅度的数字信号,编码过程将量化后的信号编码成为一个二进制码组输出。
所谓量化,就是把经过抽样得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的所谓编码,就是用一组二进制码组来表示每一个有固定电平的量化值。
编辑本段历史
Claude E. Shannon于1948年发表的“通信的数学理论”奠定了现代通信的基础。
同年贝尔实验室的工程人员开发了PCM技术,虽然在当时是革命性的,但今天脉冲编码调制被视为是一种非常单纯的无损耗编码
脉冲编码调制
格式,音频在固定间隔内进行采集并量化为频带值,其它采用这种编码方法的应用包括电话和CD。
PCM主要有三种方式:标准PCM、差分脉冲编码调制(DPCM)和自适应DPCM。
在标准PCM中,频带被量化为线性步长的频带,用于存储绝对量值。
在DPCM中存储的是前后电流值之差,因而存储量减少了约25%。
自适应DPCM改变了DPCM的量化步长,在给定的信造比(SNR)下可压缩更多的信息。
脉冲编码调制是20世纪70年代末发展起来的,记录媒体之一的CD,80年代初由飞利浦和索尼公司共同推出。
脉码调制的音频格式也被DVD-A所采用,它支持立体声和5.1环绕声,1999年由DVD讨论会发布和推出的。
脉冲编码调制的比特率,从14-bit发展到16-bit、18-bit、20-bit直到24-bit;采样频率从44.1kHz发展到192kHz。
PCM脉码调制这项技术可以改善和提高的方面则越来越来小。
只是简单的增加PCM脉码调制比特率和采样率,不能根本的改善它的根本问题。
其原因是PCM的主要问题在于:
(1)任何脉冲编码调制数字音频系统需要在其输入端设置急剧升降的滤波器,仅让20Hz-22.05kHz的频率通过(高端22.05kHz是由于CD44.1kHz的一半频率而确定)。
(2)在录音时采用多级或者串联抽选的数字滤波器(减低采样频率),在重放时采用多级的内插的数字滤波器(提高采样频率),为了控制小信号在编码时的失真,两者又都需要加入重复定量噪声。
这样就限制了PCM技术在音频还原时的保真度。
为了全面改善脉冲编码调制数字音频技术,获得更好的声音质量,就需要有新的技术来替换。
飞利浦和索尼公司再次联手,共同推出一种称为直接流数字编码技术DSD 的格式,其记录媒体为超级音频CD即SACD,支持立体声和5.1环绕声。
DSD是PCM 脉冲编码调制的进化版。
编辑本段原理
脉冲编码调制
脉冲编码调制就是把一个时间连续,取值连续的模拟信号变换成时间离散,取值离散的数字信号后在信道中传输。
脉冲编码调制就是对模拟信号先抽样,再对样值幅度量化,编码的过程。
抽样,就是对模拟信号进行周期性扫描,把时间上连续的信号变成时间上离散的信号。
该模拟信号经过抽样后还应当包含原信号中所有信息,也就是说能无失真的恢复原模拟信号。
它的抽样速率的下限是由抽样定理确定的。
抽样速率采用8Kbit/s。
量化,就是把经过抽样得到的瞬时值将其幅度离散,即用一组规定的电平,把瞬时抽样值用最接近的电平值来表示。
一个模拟信号经过抽样量化后,得到已量化的脉冲幅度调制信号,它仅为有限个数值。
编码,就是用一组二进制码组来表示每一个有固定电平的量化值。
然而,实际上量化是在编码过程中同时
脉冲编码调制工作原理
完成的,故编码过程也称为模/数变换,可记作A/D。
话音信号先经防混叠低通滤波器,进行脉冲抽样,变成8KHz重复频率的抽样信号(即离散的脉冲调幅PAM信号),然后将幅度连续的PAM信号用“四舍五入”办法量化为有限个幅度取值的信号,再经编码后转换成二进制码。
对于电话,CCITT规定抽样率为8KHz,每抽样值编8位码,即共有28=256个量化值,因而每话路PCM编码后的标准数码率是64kb/s。
为解决均匀量化时小信号量化误差大,音质差的问题,在实际中采用不均匀选取量化间隔的非线性量化方法,即量化特性在小信号时分层密,量化间隔小,而在大信号时分层疏,量化间隔大。
在实际中使用的是两种对数形式的压缩特性:A律和U律,A律编码主要用于30/32路一次群系统,U律编码主要用于24路一次群系统。
A律PCM 用于欧洲和中国,U律PCM用于北美和日本。
编辑本段编码
脉冲编码调制编码
脉冲编码调制编码原理与规则:PCM数字接口是G.703标准,通过75Ω同轴电缆或120Ω双绞线进行非对称或对称传输,传输码型为含有定时关系的HDB3码,接收端通过译码可以恢复定时,实现时钟同步。
Fb为帧同步信号,C2为时钟信号,速率为2.048Mbps,数据在时钟下降沿有效,E1接口具有PCM帧结构,一个复帧包括16个帧,一个帧为125μs,分为32个时隙,其中偶帧的零时隙传输同步信息码0011011,奇帧的零时隙传输对告码,16时隙传输信令信息,其它各时隙传输数据,每个时隙传输8比特数据。
编辑本段标准
E1是PCM其中一个标准(表现形式)。
由PCM脉码调制编码中E1的时隙特征可知,E1共分32个时隙TS0-TS31。
每个时隙为64K,其中TS0为被帧同步码,Si,Sa4,Sa5,Sa6,Sa7,A比特占用,若系统运用了CRC校验,则Si比特位置改传CRC校验码。
TS16为信令时隙,当使用到信令(共路信令或随路信令)时,该时隙用来传输信令,用户不可用来传输数据。
所以2M的PCM码型有1、PCM30:PCM30用户可用时隙为30个,TS1-TS15,TS17-TS31。
TS16传送信令,无CRC校验。
2、PCM31:PCM30用户可用时隙为31个,S1-TS15,TS16-TS31。
TS16不传送信令,无CRC校验。
3、PCM30C:PCM30用户可用时隙为30个,TS1-TS15,TS17-TS31。
TS16传送信令,有CRC校验。
4、PCM31C:PCM30用户可用时隙为31个,TS1-TS15,TS16-TS31。
TS16不传送信令,有CRC校验。
CE1,就是把2M的传输分成了30个64K的时隙,一般写成N*64,CE1----最多可有31个信道承载数据timeslots1----31timeslots0传同步
PCME1形式结构
在PCME1形式信道中,8bit组成一个时隙(TS),由32个时隙组成了一个帧(F),16个帧组成一个复帧(MF)。
在一个帧中,TS0主要用于传送帧。
定位信号(FAS):CRC-4(循环冗余校验)和对端告警指示,TS16主要传送随路信令(CAS)、复帧定位信号和复帧对端告警指示,TS1至TS15和TS17至TS31共30个时隙传送话音或数据等信息。
称TS1至TS15和TS17至TS31为净荷,TS0和TS16为开销。
如果采用带外公共信道信令(CCS),TS16就失去了传送信令的用途,该时隙也可用来传送信息信号,这时帧结构的净荷为TS1至TS31,开销只有TS0。
PCME1形式接口
G703非平衡的75ohm,平衡的120ohm2种接口
使用PCME1形式有三种方法
1、将整个2M用作一条链路,如DDN2M;
2、将2M用作若干个64k及其组合,如128K,256K等,这就是CE1;
3、在用作语音交换机的数字中继时,这也是E1最本来的用途,是把一条E1作为32个64K来用,但是时隙0和时隙15是用作signaling即信令的,所以一条E1可以传30路话音。
PRI就是其中的最常用的一种接入方式,标准叫PRA信令。
用2611等的广域网接口卡,经V.35-G.703转换器接E1线。
这样的成本比E1卡低,DDN的2M速率线路是经HDSL线路拉至用户侧。
E1可由传输设备出的光纤拉至用户侧的光端机提供E1服务。
PCME1形式使用注意事项
PCME1形式接口对接时,双方的E1不能有信号丢失/帧失步/复帧失步/滑码告警,但是双方在E1接口参数上必须完全一致,因为个别特性参数的不一致,不会在指示灯或者告警台上有任何告警,但是会造成数据通道的不通/误码/滑码/失步等情况。
这些特性参数主要有;阻抗/帧结构/CRC4校验PCME1形式阻值有75ohm和
120ohm两种,PCME1形式帧结构有PCM31/PCM30/不成帧三种。
PCME1形式和PCME2形式区别
1、PCMT1形式是高速传输的另一种标准。
一条PCMT1形式可以同时有多个并发信道,每个信道都是一个独立的连接。
在美国的标准PCMT1形式服务提供24个信道,每个信道的速率是56K。
PCMT1形式服务与其相应的设备ISDN和普通电话相比都更加昂贵。
而PCME2形式相对费却较少。
2、PCMT1形式通常用于需要在远程站点间进高带宽高速率传输的大型组织。
64K专用数据线(DDL)作为T1服务的一个变种或一个分支服务,也提供此类服务。
而一条PCME1形式线,只要有ProxyServer提供的缓冲功能,在同等传输下,比PCMT1形式可以有效地节省带宽。
3、PCMT1形式提供23个B信道和一个D信道,即23B+D.1.544Mbps;PCME1形式提供30个B信道和一个D信道,即30B+D.2.048Mbps
4、PCMT1形式表示具有高质量的通话和数据传送界面,北美使用T1标准,能够支持Max的24位用户同时拔号,而欧洲使用E1标准,可以支持30位用户,PCMT1形式仅是MAX的简单接口。
脉冲编码调制PCM原理
2009-04-02 18:28:40来自: •
脉冲编码调制PCM原理
PCM是实现语音信号数字化的一种方法
一语音信号的数字化
语音信号是连续变化的模拟信号,实现语音信号的数字化必须经过抽样、量化和编码三个过程。
1 抽样
把连续信号变为时间轴上离散的信号的过程称为抽样
抽样必须遵循奈奎斯特抽样定理,离散信号才可以完全代替连续信号。
低通连续信号抽样定理内容:一个频带限制在赫内的时间连续信号,若以的间隔对它进行等间隔抽样,则将被所得到的抽样值完全确定。
语音信号经过抽样变成一种脉冲幅度调制(PAM)信号。
2 量化
把幅度连续变化的模拟量变成用有限位二进制数字表示的数字量的过程称为量化。
量化误差:量化后的信号和抽样信号的差值。
量化误差在接收端表现为噪声,称为量化噪声。
量化级数越多误差越小,相应的二进制码位数越多,要求传输速率越高,频带越宽。
为使量化噪声尽可能小而所需码位数又不太多,通常采用非均匀量化的方法进行量化。
非均匀量化根据幅度的不同区间来确定量化间隔,幅度小的区间量化间隔取得小,幅度大的区间量化间隔取得大。
非均匀量化的实现方法有两种:一种是北美和日本采用的μ律压扩,一种是欧洲和我国采用的A律压扩。
在PCM-30/32通信设备中,采用A律13折线的分段方法,具体
是:Y轴均匀分为8段,每段均匀分为16份,每份表示一个量化级,则Y轴一共有16×8=128个量化级。
;X轴采用非均匀划分来实现非均匀量化的目的,划分规律是每次按二分之一来进行分段。
13折线示意图如下:
由于分成128个量化级,故有7位二进制码(27=128),又因为Y轴有正值和负值之分,需加一位极性码,故共有8位二进制码。
3 编码
在实际的PCM设备中,量化和编码是一起进行的。
通信中采用高速编码方式。
编码器分为逐次反馈型、折叠级联型和混合型三种,在PCM-30/32通信设备中通常采用逐次反馈型的编码器。
二时分复用
所谓时分复用,是将某一信道按时间加以分割,各路信号的抽样
值依一定的顺序占用某一时间间隔(也成时隙),即多路信号利用同一信道在不同的时间进行各自独立的传输。
时分复用的特点:
1 复用设备内部各通路的部件基本通用
2 要求收、发两端同时工作,要求有良好的同步系统。
时分复用的目的:一个信道传输多路信号,即若干路信号可以采用时分复用方式以一定的结构形式复接成一路高速率的复合数字信号-群路信号。
数字复接包括bit复接和码组复接。
PCM-30/32路通信设备是采用码组复接的时分复用系统。
PCM-30/32路系统的帧结构如下图所示
图中帧周期T=1/8000秒=125us,将其平均分成32个时隙,每个时隙的时间间隔为125/32=3.91us,每一时隙传送8位编码,每个码的时间间隔为3.91us/8=488ns,每帧共传送32×8=256位码字。
在30/32路PCM系统中,帧结构中第一个时隙TS0用于传送帧同步信号,TS16用于传送话路信令,故只有30个时隙用于传送话音信号,所以只能提供30个话路。
当采用共路信令传送方式时,必须将16帧再构成一个更大的帧,称为复帧。
复帧的重复频率为500Hz,周期为2ms。
目前数字电话都采用PCM方式。
对PCM系统,国际上采用PDH(准同步)复接技术。
此技术有两种制式,一种是北美和日本采用的24路话音信号复接成一个基群的T制,速率是1554kbit/s;一种是欧洲和我国采用的30/32路话音信号复接成一个基群的E制,速率为2048kbit/s。
为了进一步提高信道利用率,国际电联规定四个基群复接成一个二次群,四个二次群复接成一个三次群,四个三次群复接成一个四次群。
PDH系列存在诸如传输速率、帧结构和光纤接口等无世界性规范,逐级复用插入分支不灵活等问题,不能适应现代电信网的发展需要。
国际电联于1988-1993年提出并完善了同步数字系列(SDH)。
其复用结构如下图:
在SDH中,其基础传输信号是同步传输模块(STM)。
STM-1的传输速率为155520kbit/s,STM-N的传输速率为N×155520kbit/s,目前N的取值为1、4、16和64。