Moldflow模流分析报告范例
注塑模流分析报告格式范例
此方案满足成型
备注
/ / Z方向收缩量
图示变形比例 不包括缩水变形量
1 -4.5~9.3mm
翘曲
结论及建议
评估项目 进胶方案
成型
外观 翘曲 最终结论
分析结果
成型采用.5点针阀热嘴转斜顶进胶 充填顺畅,无明显滞流 压力,98.12MPa 锁模力,105t
熔接线:表面熔接线见P16 气穴:注意筋位、扣位、boss柱及分型面排气
产品表面熔接线上图颜色线所示,均由孔位导致,无法避免。
达到顶出温度的时间
达到顶出温度的时间说明 大部分区域14s左右达到顶出温度。
体积收缩率
体积收缩分布说明
充填末端收缩较大,注意加强保压。
缩痕估算
体积收缩分布说明
0.07mm,有缩痕风险;
翘曲
测量产品变形的基准 (三个基准点构成)
变形说明
图示变形比例 总变形量
产品3D图片
数据版本号(数据路径)
零件编号 模具编号 零件名称 CAD模型版本 Moldflow版本 Moldflow工程师
日期
/
/ / 亮饰条 UG9.0 Moldflow 2016
2022.02.01
分析信息说明
产品/注塑机信息
功能纹
说明产品外观面及要求
结构要求
说明产品安装位置
变形要求
说明产品匹配面的位置
流动前沿温差 材料推荐成型温度范围 流前温度判断说明
19℃
产品外观面温差 13℃
230℃ ~ 270℃
产品流动前沿温度分布均匀,且不超过熔融温度±20℃。
注射压力
喷嘴压力最大时刻 保压时间 压力曲线说明
模流分析报告模板
模具温度热点,稍微优化前模水路
模具温度
Temperature mold
温度:零件(正面)Temperature Nhomakorabea part
稍微调整前模水路
温度:零件(反面)
Temperature , part
产品热点
整体变形
Deflection
X向变形
Deflection of X axis
利于排气
气穴位置在两股料流汇合处和充填末端,气穴位置加强排气
熔接线 Weld lines
熔接线位置加强排气
缩痕估算
Sink marks
有缩痕风险
SHIFT+F5可自动播放
冻结层因子
Frozen layer fraction
网孔位置壁厚较厚,不能有效保压
顶出时体积收缩率
Volumetric shrinkage at ejection
以上分析是用相似材料替代分析的结果: 1、分析方案充填平衡,无短射滞留; 2、最大射压50.14MPA,锁模力979.8T; 3、流前温度低点有色差风险,生产时注意工艺调整; 4、产品浇口采用侧浇口,浇口位置及修剪后的装配需产品工程师确认; 5、气穴位置、熔接线位置、充填末端及筋位需加强排气; 6、稍微调整冷却水路,前模凹槽适当增加隔水片,后模两端侧水管稍微远离 产品面; 7、变形结果仅供参考变形方向趋势,收缩不均为变形主因。在实际中由于现 实环境和工艺调整等多种因素相作用,理论变形数值(包含收缩值)与实际 变形数值有差异,不能直接等同;
分析网格
分析材料
Material Data-PP
基本描述 粘度曲线
推荐工艺
流变属性
PVT 曲线
Moldflow模流分析报告
Moldflow模流分析报告→↓←↓1.网格划分(如右图)节点3880柱体0连通区域 1网格体积269.066 cm^3网格面积1874.25 cm^2 边详细信息----------------------------------- 自由边0共用边11634交叉边0配向详细信息--------------------------------- 配向不正确的单元0相交详细信息---------------------------------完全重叠单元0复制柱体0三角形纵横比--------------------------------- 最小纵横比 1.161000最大纵横比14.951000平均纵横比 1.933000匹配百分比----------------------------------- 匹配百分比94.2%相互百分比91.5%2.最佳浇口的选定分析结果如下:流动正在使用存储的网格匹配和厚度数据匹配数据是使用最大球体算法计算的最大设计锁模力 = 5600.18 tonne 最大设计注射压力 = 144.00 MPa 建议的浇口位置有:靠近节点 = 31060由图看出最佳浇口选在底面蓝色部分,可信度较高,用侧浇口注射3.填充选择材料PP+40%talc)以及注塑机250t锁模力,以及250g当量注射量,螺杆直径42mm进行填充,分析结果如下:充填阶段结果摘要 :最大注射压力 (在 1.463 s) = 20.2729 MPa充填阶段结束的结果摘要 :充填结束时间 = 1.5034 s总重量(制品 + 流道) = 217.8620 g最大锁模力 - 在充填期间 = 33.6416 tonne制品的充填阶段结束的结果摘要 :制品总重量(不包括流道) = 217.8620 g体积温度 - 最大值 = 231.2270 C体积温度 - 第 95 个百分数 = 229.7820 C体积温度 - 第 5 个百分数 = 216.7120 C体积温度 - 最小值 = 209.1650 C体积温度 - 平均值 = 225.1160 C体积温度 - 标准差 = 3.7478 C剪切应力 - 最大值 = 0.2002 MPa 剪切应力 - 第 95 个百分数 = 0.0766 MPa 剪切应力 - 平均值 = 0.0444 MPa 剪切应力 - 标准差 = 0.0223 MPa冻结层因子 - 最大值 = 0.2441冻结层因子 - 第 95 个百分数 = 0.1954冻结层因子 - 第 5 个百分数 = 0.0464冻结层因子 - 最小值 = 0.0000冻结层因子 - 平均值 = 0.1267冻结层因子 - 标准差 = 0.0480剪切速率 - 最大值 = 7059.0698 1/s 剪切速率 - 第 95 个百分数 = 473.1520 1/s 剪切速率 - 平均值 = 158.8660 1/s 剪切速率 - 标准差 = 209.9460 1/s4.冷却分析分析结果如图:水道布置可从图中看出冷却介质温度进水口冷却介质温度冷却介质温度升高节点范围在回路上128 25.0 - 25.5 0.5 C288 25.0 - 26.3 1.3 C162 25.0 - 25.4 0.4 C426 25.0 - 25.6 0.6 C最后的回路温度残余: 0.00000E+00型腔温度结果摘要=====================================型腔表面温度 - 最大值 = 84.9090 C 型腔表面温度 - 最小值 = 31.8350 C 型腔表面温度 - 平均值 = 50.0860 C 平均模具外部温度 = 30.0670 C 循环时间 = 35.0000 s。
模流分析报告-样板.
Page 14
Moldflow Analysis Report
流动前沿溫度分佈
上圖表示產品流动波前溫度分佈,從圖中可知,产品大部分波前温度较均匀,均在280 度左右。但绿色区域因产品肉厚较薄,塑膠因發生嚴重滯流,流動波前溫度急劇下降至 276度左右。但还是高于顶出温度很多,所以不易发生短射、缺胶等,
Moldflow Analysis Report
分 析 說 明 一
如下圖的產品,為手机上的零件,對尺寸及外观要求較高。采用三板模成型。產品結 構與進澆位置均已確定,在此流道系统上,藉以Moldflow模流分析验证是否可行。(因Mol dflow系统 推荐的 进浇 点位置一般是在 产品的中心 处,即所 谓 注射 压力最小 处 ,所以不采 用推荐的。)分析结果數值上會与實際試模有差異,但趨勢是一致的。
Page 11
Moldflow Analysis Report
冷 却 水 温 变 化
Page 12
Moldflow Analysis Report
产 品 表 面 温 度 分 布
Page 13
Moldflow Analysis Report
充
填
时
间
:
充填时间约为0.95秒,红色区域为最后充填处,产品大部分区域充填流动状况较好。
7.推荐最小料温 8.推荐最大料温 9.推荐最小模温 10.推荐最大模温 11.最大剪切率 12.最大剪切应力
293 316 71 104 40000 0.5
deg.C deg.C deg.C deg.C 1/s MPa
Page 4
Moldflow Analysis Report
產 品 模 型 簡 介
88.0deg.C 255.0deg.C 0.5sec
Moldflow模流分析报告
体积收缩示意图
从上图可以看出此产品的收缩趋势明显,并且收缩的一致性较差. 因此推荐采用较大的保压压力及较长的保压时间
气孔
可能出现的气孔位置如上图所示的紫色区域
熔接线
图上可能看出熔接线的位置,但深度不足以影响产品的机械性能
翘曲变形, 所有的方向
可能发生的翘曲变形如 右图所示 X方向的变形 此变形结果包括了收缩 变形 可以根据图上数值进行 判断
Back ground
1. 2. 3. 4. 5. 6. 7. 使用软件: Moldflow plastics insight 6.1. 网格类型: fusion(表面网格). 塑胶材料: Zytel EMX 505A (PA66+20%GF, DuPont Engineering Polymers (Moldflow Verified)). 分析序列: 冷却->填充->-饱和->变形. 分析目的: a). 预测成型缺陷 b)预测变形趋势.
由上表可以看出,此材料较容易充填,并且对温度的变化不敏感..
有限元模型分析
Entity counts-------------------------------Surface triangles 28290 Nodes Connectivity regions 7 Mesh volume 19.8781 cm^3 Mesh area 1549.36 cm^2
注塑参数设置(参考)
Temperature Settings -----------------------------------------------------------------------------Melt temperature: 280.0000 C Mold cavity_side temperature: 75.0000 C Mold core-side temperature: 75.0000 C -----------------------------------------------------------------------------Injection Settings -----------------------------------------------------------------------------Injection control method: Injection Time Injection Time: 1.5000 s Nominal Flow rate: 285.2910 cm^3/s Packing pressure profile Duration Pressure (s) (MPa) 0.0000 80.0000 5.0000 80.0000 1.9094 0.0000 Cooling time: 33.4732 s -----------------------------------------------------------------------------Results from Flow Analysis -----------------------------------------------------------------------------Total volume of the part and cold runners: 427.9370 cm^3 Switch-over Pressure: 53.0071 MPa Maximum clamp force required: 164.9420 tonne
Moldflow模流分析报告范例
14
Shear Stress at Wall 最大剪切应力
流道系统上最大剪切应力: 2.8MPa 产品上最大剪切应力:0.4MPa
一般产品上的最大剪切应力,不要超过成型材料所允许的数值(如第8页所示, 该材料允许最大剪切应力为0.5MPa )。剪切应力太大,产品易开裂。
通过加大最大剪切应处壁厚,降低注塑速度,采用低粘度的材料,提高料温,可 减小剪切速率。
一般,脱模时相邻区域的体积收缩值相差>2%,产品表面易出现缩水。
可通过优化产品壁厚、浇口放置在壁厚区域、加大保压等措施,来降低 体积收缩。
DESIGN SOLUTIONS
18
Frozen Layer Fraction 凝固层因子
6.3s 12.2s 30.9s
Frozen Layer Fraction反映的是产品的凝固顺序。该产品在6.3秒时,红色区 域已凝固,导致安装孔位保压不足,故体积收缩较大,易出现表面缩水。 当产品100%凝固,冷流道系统凝固50%以上。产品可脱模。从而确定该产 品成型周期31s(不包括开合模时间)。 可通过优化冷却水路排布、降低局部壁厚区域的厚度、优化冷流道尺寸,来 缩短成型周期。
DESIGN SOLUTIONS
19
Sink Mark Estimate 凹痕深度
一般,凹痕数值>0.03mm,表面缩水较明显。 可通过加大基本壁厚、减小加强筋和螺栓柱等壁厚、加大保压等方式,来降 低凹痕深度。
DESIGN SOLUTIONS
20
Sink Mark Shaded 凹痕阴影显示
阴影显示凹痕的分析结果。圈示区域,肉眼看起来较明显。
22
Temperature, Part 冷却结束时产品表面温度
moldflow_分析报告
2022/1/12
Pressure at injection location:XY plot
第一射
第二射
Page - 16
injection pressure are acceptable. 注塑压力是可以接受的.
2022/1/12
Clamp force:XY plot(锁模力曲线)
Page - 17
2022/1/12 1/12/2022
Material Data(材料信息) 第二射
TPV Elastron V Grade V250.A64.B:Generic Default
01. 熔融密度
0.82366
g/cm^3
02. 固体密度
0.95654
g/cm^3
03. 建议模温 04. 建议料温
35
Press Shift+F5 to play the fill time animation,Flow behavior are umbalance, has short shot occur. (按shift+F5可播放动画,产品流动不平衡,没有短射发生)
2022/1/12
Fill time(充填时间)
50
℃
10. 最小料溫
210
℃
11. 最大料溫
05. 裂解温度
290
℃
12. 最大剪切力
06. 顶出温度
119
℃
13. 最大剪切率
07.粘度指数
VI(209)0089
14.熔体流动速率
PVT曲线图
40 60 190 230 0.25 100000
11.4
粘度曲线图
Page - 3
moldflow模流分析报告
材料成型CAE论文(Moldflow注塑工艺分析)姓名:郭玲玲学号:20060330332在Moldflow Plastic Insight 6.0环境中,运用MPI的各项菜单及其基本操作,来实现对所选制件在注塑成型过程中的填充、流动、冷却以及翘曲分析,以此来确定制件的最佳成型工艺方案,为工程实际生产提供合理的工艺设置依据,减少因工艺引起的制件缺陷,有助于降低实际生产成本,提高生产效率。
一、导入零件导入文件guolingling.stp。
选择【Fusion】方式。
二、划分网格【网格】—【生成网格】—【立即划分】三、网格诊断【网格】—【网格诊断】,诊断结果如下:图1、网格诊断对诊断结果进行检查,发现连通区域为1,交叉边为0,最大纵横比为7.218616<8,均符合要求,网格划分合理。
四、选择分析类型1、浇口位置1)双击任务栏下的【充填】—【浇口位置】;2)选择材料:双击任务栏下的【材料……】—【搜索】—输入“ABS”—搜索—在结果中任选一种材料,点击【选择】即可;3)双击任务栏下的【立即分析】。
在分析结果中勾选:Best gate location,查看最佳浇口位置,如下图:图2、最佳浇口由最佳浇口位置分析结果可以知道,浇口设在零件上表面的中间部位,零件的注塑工艺效果好。
可采用直接浇口。
2、流动分析1)设置注射位置:设置之前,先将方案备份。
【文件】—【另存方案为】。
双击任务栏下的【设置注射位置】—鼠标变成一个十字光标和一漏斗形状,然后在上一步分析中的最佳浇口位置处单击,即可完成注射点的设置;2)选择分析类型:双击任务栏下【浇口位置】—【流动】;3)设置浇注系统:【建模】—【浇注系统向导】,设定直浇道、横浇道、内浇道的尺寸,各浇道尺寸均采取的默认值。
根据制件的形状特征以及最佳浇口位置,采用直接浇口。
4)双击任务栏下的【立即分析】。
查看分析结果中的“pressure at V/P swithover”项,发现出现了浇不足的现象,经分析是由于注射压力过小所引起的,只需增大注射压力即可。
模流分析实验报告(3篇)
第1篇一、实验目的1. 了解模流分析的基本原理和方法。
2. 通过模流分析实验,掌握熔融塑料在模具中的流动规律。
3. 优化模具设计,提高塑料制品的成型质量。
二、实验原理模流分析是一种模拟熔融塑料在模具中流动过程的数值模拟方法。
通过建立熔融塑料在模具中的流动模型,分析熔融塑料的流动特性,为模具设计提供理论依据。
三、实验设备与材料1. 实验设备:模流分析软件、计算机、打印机等。
2. 实验材料:聚丙烯(PP)颗粒。
四、实验步骤1. 模具设计:根据实验要求,设计合适的模具结构,包括浇注系统、流道、冷却系统等。
2. 模具建立:利用模流分析软件建立模具的三维模型。
3. 材料属性设置:根据实验材料(PP)的特性,设置材料的热物理参数,如密度、比热容、导热系数、粘度等。
4. 浇注系统设置:设置浇注系统参数,如浇口类型、浇口位置、浇口尺寸等。
5. 冷却系统设置:设置冷却水道参数,如水道位置、水道尺寸、水道流量等。
6. 模流分析:运行模流分析软件,模拟熔融塑料在模具中的流动过程。
7. 结果分析:分析模拟结果,如熔融塑料的流动速度、压力分布、温度分布等。
8. 优化模具设计:根据模拟结果,对模具设计进行优化。
五、实验结果与分析1. 熔融塑料的流动速度:在模具入口处,熔融塑料的流动速度较大,随着流动距离的增加,流动速度逐渐减小。
在模具的狭窄部位,流动速度较大,而在宽大部位,流动速度较小。
2. 压力分布:在模具的狭窄部位,压力较大,而在宽大部位,压力较小。
在浇口处,压力最大。
3. 温度分布:在模具的冷却水道附近,温度较低,而在模具的加热部位,温度较高。
4. 优化模具设计:根据模拟结果,对模具设计进行优化,如调整浇口位置、改变冷却水道尺寸等。
六、实验结论1. 模流分析实验能够有效地模拟熔融塑料在模具中的流动过程,为模具设计提供理论依据。
2. 通过对模拟结果的分析,可以优化模具设计,提高塑料制品的成型质量。
3. 模流分析实验有助于缩短新产品开发周期,降低产品开发成本。
moldflow分析
我们采用MPI/FILL、MPI/PACK来进行分析计算。预测充填状 况、型腔压力分布、温度分布、锁模力大小、体积收缩率、熔接痕、 困气位置。
Jul 2001
Page 2
Moldflow China
制品材料
EE188AI(PP+T16) 1. 推荐注射温度 4. 推荐模具温度 240.0 degC 40.0 degC 5. 6. 7. 8. 顶出温度 不流动温度 许可剪切应力 许可剪切速率 108.0 deg.C 200.0 deg.C 0. 25Mpa 100,000 1/s
Jul 2001
Page 13
Moldflow China
小结
1. 2. 3. 4. 此方案注射较为均衡,成型压力适中,型腔压力分布较为均衡,体积收缩较 为均匀。 受投影面积影响及保压压力影响,锁模力较大,可通过调整保压压力降低锁 模力。 在制品边角处形成困气,熔料包合容易烧焦或熔接痕明显,需调整浇口位置 及顺序阀开关时间。 可采用6点顺序阀式热流道方案,建议调整下面两点喷嘴及浇口位置,减小两 喷嘴间距,调整开阀注射时间,以改善充填状况及困气情况,优化保压工艺。
剪切速率—黏度曲线
Jul 2001
PVT曲线
Page 3
Moldflow China
பைடு நூலகம்方案1
浇注系统
该模具一模一腔,采 用顺序阀式热流道系 统,6点顺序阀。
Jul 2001
Page 4
Moldflow China
工艺参数
1. 2. 3. 4. 模温 熔体温度 注射时间 保压压力 50 MPa 40 MPa 0 Mpa : 40.0 deg.C : 230.0 deg.C : 6.8sec 保压时间 6s 4s 4s
Moldflow模流分析报告
Original2在相同區域發生較嚴重的滯流現象,該處塑膠熔接性极差。大 部分縫合綫熔接溫度較高,應不會影響其使用強度。局部區域包風包在 塑膠内難以排除,可能會受高壓急劇升溫而燒焦產品。注入口尺寸太小 ,冷卻太快,成品將得不到有效保壓而發生縮水,有可見凹陷出現,而 試模時用105MPa的壓力持續保壓了5s之久,其實此時注入口早已凝固, 再加額外的壓力只能使產品出現負收縮(即膨脹),導致拉模現象。澆口設 計得太薄,凝固太快,即使注入口不先行凝固,產品也會有較嚴重的保 壓不良現象。另外循環周期過長,造成生産成本的浪費。
3. 產品模型介紹
-------------------------------------------------------------------------- 5
4. 原始方案澆注系統設計
-------------------------------------------------------------------------- 6
13. 最終改善方案基本成型條件 ----------------------------------------------------------------------- 29
14. 最終改善方案分析結果 --------------------------------------------------------------------30~43
冷卻凝固過程
Original2
這六個圖表示的是產品和流道的冷卻凝固過程,紅色區域表示最先凝固的區域,一般最薄處最先凝固。從 圖三可知,注入口已先行凝固(箭頭指示處),而此時產品大部分都沒凝固,説明注入口尺寸太小,成品將 得不到有效保壓而發生縮水現象。此外分析中也發現澆口亦太薄,凝固太快。
Moldflow模流分析报告样本
18.结论与建议 3
------------------------------------------------------------------------- 3 -------------------------------------------------------------------------- 4 -------------------------------------------------------------------------- 5 -------------------------------------------------------------------------- 6 -------------------------------------------------------------------------- 7 -------------------------------------------------------------------------- 8 -------------------------------------------------------------------------- 9 -------------------------------------------------------------------- 10~30 ------------------------------------------------------------------------ 31 ------------------------------------------------------------------------ 32 11. 12. 13. 14. ------------------------------------------------------------------------ 56 ------------------------------------------------------------------------ 57 14. 15. 16. 17. ------------------------------------------------------------------------ 81
工厂模流分析报告样板资料
锁模力曲线图
CAE最大锁模力:2652T。
差。可用锁模力的经验计算公式相互验证。
推荐机台:2750T
说明: 由于模具和产品结构、注塑机、辅助设备、成型工艺等因素的影响,实际所需的最大锁模力略有误
熔接线
中间和边缘几条熔接线比较明显
熔接线位置如图所示。 说明: 分析显示可能发生熔接线的地方,在模型上沿着流动前沿聚合形成熔接线。熔接线发生在两个或者更
材料 材料对于分析结果影响很大,建议分析材料与实际生产材料牌号一致,并提供材料*.UDB 说明: 档,否则我司将采用该材料相近材料或相同厂商替代。
网格概述
网格信息统计
流道介绍
分流道大小12mm 进胶点大小3mm
网格概述
产品信息描述 1.产品长*宽*高(mm) 2.产品体积( cm³ ) 3.产品投影面积(cm²) 4.产品基本壁厚(mm)
多个流动前沿聚合处。熔接线形成时熔体的温度高,则熔接线的质量就好。
困气
如图所示粉红色处困气较严重请加强排气。 说明: 一般,困气分布在分型面上,可自然排气。困气发生在产品中间,则可通过优化浇口位置、产品结
构、模具结构(顶针、排气槽等),加以解决。
冻结层因子
T=4.35S
T=6.35S
该产品在6.35秒时,红色区域已凝固, 在10S时产品基本完全冻结。 说明: 冻结层因子结果是中间结果,该结 果的默认动画贯穿整个时间。此结 果的默认范围是整个结果范围的最 小值到最大值。
DEMUP®
V/P转换压力
说明: 该结果显示从速率控制到压力控制切换点的压力分布。 V/P转换时间1.4S,产品填充填至99%。切换
压力为116.8MPa。未充填部分在后续保压完成。
流动前沿温度
moldflow 注塑成型分析 模流分析报告
1. 熔体密度 2.实体密度 3.顶出温度 4.推荐模具温度 5.推荐熔料温度 6.材料失效温度
0.88 g/cu.cm 1.06 g/cu.cm
119 deg.C 45 deg.C 225 deg.C 290 deg.C
7. 熔料温度下限 8. 熔料温度上限 9. 模具温度上限 10.模具温度下限 11.最大剪切速率 12.最大剪切应力
Page 8
体积收缩
体积收缩结果用来判断产 品各处的体积收缩情况,收 缩不均匀会造成翘曲变形, 收缩较大则造成缩痕。 由图可见产品内部收缩较小, 且比较均匀。出现缩痕风险 小。
Page 9
困气位置
1
Air traps可提供模具的困气位 置。air traps产生在填充末端包 括高rib和boss柱位置、结合线、 流动包封位置。故而在这些位置 一般需要开设排入槽或排气入子。 另外在熔体温降较大处也应增加 排气,提高流动性。
pagepage1919尾部分子剪切作用较高故而分子取向度高并且分子结晶度高取向诱导结晶在取向方向上收缩较大故而收缩应力导致产品尾部收拉力而张开变形
Moldflow注塑成型分析
For
滨海
Reporter : 孟栋梁 sduan@
2010-07-16
分析描述
▪ 产品描述 此是汽车用产品,使用热浇道系统注射成型。
200.0 deg.C 250.0 deg.C 30.0 deg.C 60.0 deg.C 100000.0 1/s
0.25 Mpa
PVT Plow材料数据库
Page 3
工艺条件
注塑机设定:
最大锁模力:
未限定
最大注塑压力:
未限定
最大注射速度:
结合线
Moldflow模流分析经典报告(简体版)
设置注射压力、注射速度、注射温度等边界条件。
塑化边界条件
设置塑化温度、塑化速度等边界条件。
模拟求解与结果分析
模拟求解
根据设置的边界条件进行模拟求解。
结果分析
对模拟结果进行分析,如压力分布、温度分布、流动行为等。
结果优化
根据分析结果对模型进行优化,提高成型质量和效率。
Moldflow模流分析
Moldflow模流分析是一种计算机模 拟技术,用于预测塑料模具填充、流 动、冷却和翘曲等行为,从而优化模 具设计和产品成型过程。
通过模拟分析,Moldflow可以帮助工 程师预测和解决模具制造和塑料产品 成型过程中可能出现的问题,减少试 模次数和缩短产品上市时间。
Moldflow模流分析的重要性
2. 翘曲变形分析不准确
翘曲变形是塑料成型过程中的常见问题,分析不准确可能导致模具优化措施失效。
3. 解决方案
加强Moldflow模流分析理论学习,深入理解流动前沿、翘曲变形等关键指标的含义和影 响。结合实际案例进行分析和总结,提高模拟结果解读能力。积极参与行业交流和技术培 训,不断更新知识和技能。
Moldflow模流分析的应用领域
汽车行业
01
Moldflow在汽车行业中广泛应用于汽车零部件的模具设计和产
品成型过程优化,如保险杠、仪表盘和座椅等。
电子产品
02
Moldflow模流分析可用于手机、电视、电脑等电子产品的模具
设计和产品成型过程优化。
包装行业
03
Moldflow可以帮助包装企业优化包装盒、瓶盖等产品的模具设
案例三:热流道系统模拟
总结词
热流道系统是塑料加工中常用的技术,通过加热模具流道来控制塑料熔体的温度和流动。 Moldflow模流分析可以用于热流道系统的模拟和优化。
Moldflow模流分析报告样本
Page 3
Moldflow Analysis Report
塑 料 材 料 简 介
PPE+PS+40%GF Xyron X1764 Asahi Kasei Corporation
7. Melt Temperature Minimum 8. Melt Temperature Maximum 9. Mold Temperature Minimum 10.Mold Temperature Maximum 11.Maximum Shear Rate 12.Maximum Shear Stress 250.000000 deg.C 300.000000 deg.C 50.000000 deg.C 100.000000 deg.C 50000.000000 1/s 0.4500000 Mpa
1. Melt Density 1.2827 g/cu.cm 2. Solid Density 1.3645 g/cu.cm 3. Ejection Temperature 110.000000 deg.C 4. Recommended Mold Temperature 75 deg.C 5. Recommended Melt Temperature 275 deg.C 6. Absolute Max. Melt Temperature 340 deg.C
Page 21
Moldflow Analysis Report
冷却凝固过程
Original1
50% 50%
Page 2
Moldflow Analysis Report
分 析 说 明 一
如下图的产品,为复印机上的零件,对尺寸精度要求较高。采用PPE+PS+40%GF的塑 料以热流道成型,产品结构与进浇位置均已确定,客户希望通过调整冷却水路或冷却条件 将整个周期时间缩短,因此藉以Moldflow模流分析验证是否可行。 因Moldflow材料数据库内暂无客户使用的 GE PPE+PS+40%GF塑料,故在分析中使用 物性较为相似的Asahi Kasei Corporation的PPE+PS+40%GF塑料来代替,在数值上会与 实际试模有差异,但趋势是一致的。此报告中以几种方案进行分析比较,其中 Original n 为客户原始设计方案,Revised n为我们基于Moldflow上的改善方案。
模流分析模板moldflow
Temperature at flow front(流動前沿處溫度) 異常說明及建議
母模面波前溫度圖示
公模面波前溫度圖示
異常溫度區域圖示
波前溫度是熔體流經產品截面時的平均溫度,波前溫度的均勻性是評估產品填充狀況和表面質量的一 個重要指標,一般要求在±10℃內。產品外觀表面區域波前溫度差異在10℃之內均勻一致;筋位處滯流 溫度低但不影響填充。
16
異常說明及建議
Shear rate, bulk(剪切速率 , 體積)
剪切速率動畫
剪切速率最大時刻圖示
此种材料的剪切率最大值允許在12000 1/s,最大剪切速率一般出現在流道截面最小的區域。 此澆口位置剪切速率最大在30000左右,超出最大允許值,故而在成型時需注意注射速度以避免裂解發生。
3
產品要求
1.產品為精密件,肉厚不均,壁厚處防止收縮不均 2.客戶特殊要求,如重點尺寸描述 3.其他信息
分析說明
此方案分析內容如下:
1、充填流動狀況分析: 主要針對充填時間、流動平衡、充填壓力、流動前沿溫度、充填區域進行評估;
2、流動保壓狀況分析: 主要針對外觀品質結合線、縮水痕、體積收縮、鎖模力大小以及熔體溫度隨時間變化
15
異常說明及建議
Bulk temperature(體積溫度)
體積溫度動畫
溫度異常區域 及澆口分型面 兩側溫度圖示
體積溫度為熔體速度的加權溫度可表徵剪切熱量,動畫顯示整個成型周期內的溫度隨時間的變化。可結 合上頁凝固層因子產看壁厚區域對成型周期及翹曲變形的影響。 1.圈示區域的溫度降低速度明顯低於其他區域,這可能會造成產品個方面缺陷。
E*2
冷流道系統,一點點進膠
6
流道系統
(完整版)MOLDFLOW分析报告
Moldflow Analysis Report 塑料材料簡介
PPE+PS+40%GF Xyron X1764 Asahi Kasei Corporation
1. Melt Density 1.2827 g/cu.cm 2. Solid Density 1.3645 g/cu.cm 3. Ejection Temperature 110.000000 deg.C 4. Recommended Mold Temperature 75 deg.C 5. Recommended Melt Temperature 275 deg.C 6. Absolute Max. Melt Temperature 340 deg.C
Moldflow Analysis Report
Moldflow模流分析報告
B039பைடு நூலகம்901
Page 1
Moldflow Analysis Report 内容提要
1. 分析说明一 2. 塑料材料简介 3. 产品模型简介 4. 分析模型简介 5. 原始方案浇注系统设计 6. 原始方案冷却系统设计 7. 原始方案基本成型条件 8. 原始方案分析结果 9. 结论与建议 1 10.分析说明二 11.改善方案1浇注系统设计 12.改善方案1冷却系统设计 13.改善方案1基本成型条件 14.改善方案1分析结果 15.结论与建议 2 16.分析说明三 14.改善方案2浇注系统设计 15.改善方案2冷却系统设计 16.改善方案2基本成型条件 17.改善方案2分析结果 18.结论与建议 3
Page 2
Moldflow Analysis Report 分析说明一
➢如下图的产品,为复印机上的零件,对尺寸精度要求较高。采用PPE+PS+40%GF的塑 料以热流道成型,产品结构与进浇位置均已确定,客户希望通过调整冷却水路或冷却条件 将整个周期时间缩短,因此藉以Moldflow模流分析验证是否可行。 ➢因Moldflow材料数据库内暂无客户使用的GE PPE+PS+40%GF塑料,故在分析中使用 物性较为相似的Asahi Kasei Corporation的PPE+PS+40%GF塑料来代替,在数值上会与 实际试模有差异,但趋势是一致的。此报告中以几种方案进行分析比较,其中Original n 为客户原始设计方案,Revised n为我们基于Moldflow上的改善方案。
模流分析报告-2
Pressure at V/P switchover(V/P转换及其压力分布) 方案一 方案二
V/P control V/P控制方式 Specification: V/P转换说明
体积控制
Volume % at V/P V/P时刻填充量
99%
方案一注射压力88mpa,方案二注射压力61mpa. 备注:点数越多压力越小
Specification: 流动说明
通过动态填充的动画,比较清楚地反映了模具的各个区域充胶的时刻。
Fill time - Contour(充填等值线) 方案一 方案二
Short shot 短射 Specification: 流动说明
No 填充时间的等值线显示了流动前沿在模具中的充填规律,线条颜色相应地表现模塑 部分是哪个时间点被填充完成的。
190℃ -230℃ 为防止成型出的产品表面有阴影,建议料温升高十度,模温升高十度成型。
Clamp Force(锁模力) 方案一 方案二
Max. clamp force CAE最大锁模力
56.74/82.96ton
Clamp force limit 注塑机最大锁模力
Specification: 锁模说明
1、 二种方案进浇充填状态,压力、锁模力都OK 2、结合线方面:方案一的结合线要少于方案二; 3、收缩方面:方案二的收缩较方案一均匀些; 4、变形
变形方向 X变形 Y变形
方案一
1.3mm 0.44mm
方案二
1.0mm 0.46mm
Z变形
1.1mm
1.0mm
Suggestions 解决办法及建议
建议: 若结合线为首要考量因素,则建议选择方案一; 若整体的收缩为首要考量因素,则建议选择方案二;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
DESIGN SOLUTIONS
4
产品信息
DESIGN SOLUTIONS
产品体积 (cm^3) 产品尺寸 (mm) 投影面积 (cm^2) 基本壁厚 (mm)
5
810.2 592 ×492×74 1757.7 2.0
模具信息
DESIGN SOLUTIONS
两板模,四个侧浇口。 定模侧一条水路,动模侧两条水路。
DESIGN SOLUTIONS
13
Maximum Shear Rate 最大剪切速率
最大剪切速率: 43054 1/s
一般不要超过成型材料所允许的最大剪切速度(如第8页所示,该材料允许最大 剪切速度为60000 1/s。 非透明件可放宽至三倍。透明件最大剪切速率越小外观 质量越好)。剪切速度太大,材料易降解,产品易出现冲击纹等表面缺陷。
DESIGN SOLUTIONS
30
平衡 均匀 74.3 373.2 43.54 2.8 产品上0.4MPa 有,请加强排气 局部区域收缩较大 31s (不包括开合模时间) 2.6/均匀收缩/8.5
DESIGN SOLUTIONS
31
知识回顾 Knowledge Review
DESIGN SOLUTIONS
DESIGN SOLUTIONS
16
Air Traps 困气
困在型腔内气体不能被及时排出,易导致出现表面起泡,产品内部夹气,注塑不 满等现象。
请加强紫色小球区域的排气。如果困气发生在分型面处,可通过增开排气槽加强 排气;如果困气发生在产品中间,可通过顶针或滑块的间隙逃气。
DESIGN SOLUTIONS
通过加大浇口尺寸,降低通过浇口处的注塑速度,可减小剪切速率。
DESIGN SOLUTIONS
14
Shear Stress at Wall 最大剪切应力
流道系统上最大剪切应力: 2.8MPa 产品上最大剪切应力:0.4MPa
一般产品上的最大剪切应力,不要超过成型材料所允许的数值(如第8页所示, 该材料允许最大剪切应力为0.5MPa )。剪切应力太大,产品易开裂。
纤维取向对产品收缩变形的影响 角落效应对产品收缩变形的影响
实例报告阐述主要分析结果及优化方案 Moldflow 分析报告
Project number Part name Date
DESIGN SOLUTIONS
QFZ1343 汽车风扇罩 xxxx.xx.xx
3
Moldflow REV Company name Moldflow analyst
最大锁模力
每个浇口填充区域
注塑压力 剪切应力
DESIGN SOLUTIONS
凹痕深度
凹痕阴影显示
2 熔接痕
冷却液温度 冷却管壁温度
冷却系统散热效率 冷却结束后模具表面温度 冷却结束后产品表面温度 产品整体收缩变形 产品X向收缩变形 产品Y向收缩变形 产品Z向收缩变形 冷却对产品收缩变形的影响 收缩对产品收缩变形的影响
DESIGN SOLUTIONS
25
Deflection, X, Different Cooling、Shrinkage、Orientation & Corner Effects
DESIGN SOLUTIONS
该产品X向变形最主要原因,是收缩不均匀和纤维取向。 可通过优化浇口位置和产品结构,来降低X向变形。
通过加大最大剪切应处壁厚,降低注塑速度,采用低粘度的材料,提高料温,可 减小剪切速率。
DESIGN SOLUTIONS
15
Weld Lines 熔接纹
每两个肋条之间,都会形成熔接纹。
一般,熔接纹对接角度<75度,波前温度低,熔接纹区域有明显困气,则熔 接纹较明显。影响产品的外观和强度。
可通过优化浇口位置、产品结构和壁厚,从而消除熔接纹或减淡熔接纹。
该产品Z向变形最主要原因,是纤维取向。 可通过优化浇口位置和产品结构,来降低变形。
29
分析结果列示
充填模式 波前温度 (℃) 最大注射压力 (MPa) 最大锁模力 (T) 最大剪切速率 (1/s) 最大剪切应力 (MPa) 熔接纹 & 困气 体积收缩 (%Volume) 成型周期 (s) 变形X/Y/Z (mm)
阴影显示凹痕的分析结果。圈示区域,肉眼看起来较明显。
DESIGN SOLUTIONS
21
Circuit Coolant Temperature 冷却液温度
一般,冷却液入水口和出水口的温度差控制在2~3℃以内,表明冷却 水路排布较合理。
可通过合理排布冷却系统、将长的串联水路优化成多条并联的水路,
可降低出入水口的温度差。
6.3s
12.2s
30.9s
Frozen Layer Fraction反映的是产品的凝固顺序。该产品在6.3秒时,红色区 域已凝固,导致安装孔位保压不足,故体积收缩较大,易出现表面缩水。
当产品100%凝固,冷流道系统凝固50%以上。产品可脱模。从而确定该产 品成型周期31s(不包括开合模时间)。
可通过优化冷却水路排布、降低局部壁厚区域的厚度、优化冷流道尺寸,来
17
Volumetric Shrinkage at Ejection 脱模时刻体积收缩
一般,脱模时相邻区域的体积收缩值相差>2%,产品表面易出现缩水。
可通过优化产品壁厚、浇口放置在壁厚区域、加大保压等措施,来降低 体积收缩。
DESIGN SOLUTIONS
18
Frozen Layer Fraction 凝固层因子
冷却液温度
•
Temperature Part at the End of Cooling 冷却结束时产品表面温度
•
Deflection (X/Y/Z/all deflection cause) 产品变形(X/Y/Z/变形原因)
DESIGN SOLUTIONS
9
Fill Time (F5 Animation) 充填模式
可通过调整充填速度、浇口位置和速度、产品壁厚、换用低粘度的材料、
提高模温和料温,来降低注射压力。
DESIGN SOLUTIONS
12
Clamp Force 锁模力
最大锁模力: 373.2T。请选择合适规格的注塑机。
通过调整充填速度、浇口位置和速度、产品壁厚、换用低粘度的材料、减少
型腔数量、提高模温和料温,来降低锁模力的需求。
DESIGN SOLUTIONS
23
Deflection, all effects: Deflection 整体变形
该产品整体变形情况如上图,放大3倍。
DESIGN SOLUTIONS
24
Deflection, all effects: X Component X向变形
2.6mm
1.9mm
该产品X向最大变形量:2.6mm。请确认是否符合装配要求。
AMI 2011 CAD-IT xxxxxxxx
分析目标
产品外观要求 强度要求 变形要求(mm) 成型周期 (s) 成型材料 注塑机最大锁模力 (T) Moldflow 分析模块
非外观件 一般 4 40 BASF: Ultramid B3GM35 Q641 GF15%M25%(PA6) 1000 AMI 2011 Performance
1.27 g/cm^3
1.50 g/cm^3 185 ℃ 85 ℃ 280 ℃ 310 ℃
7. 最低料温 8. 最高料温 9. 最低模温 10. 最高模温
11.最大剪切速率 12.最大剪切应力
270 ℃ 290 ℃ 80 ℃ 90 ℃
60000 1/s
0.5 MPa
粘度曲线
P-V-T曲线
DESIGN SOLUTIONS
该产品Z向整体变形量:8.5mm。不符合装配要求。
图中可看出,有筋条的角落无乎没有变形。可考虑在其它角落增加 筋条。
DESIGN SOLUTIONS
28
Deflection, Z, Different Cooling、Shrinkage、Orientation & Corner Effects
DESIGN SOLUTIONS
32
6
成型工艺参数
料温 (℃)
成型机参数:
海天
1000T
螺杆直径: 100mm
最大行程: 48cm
最大注射压力:211Mpa
最大注射速率:700cm^3/s
280
模温 (℃)
85
冷却水路进水口温度 (℃) 70
充填时间 (S)
2.8
V/P切换 (mm螺杆位置) 15
保压时间 (S)
5
3
2
保压压力 (MPa)
缩短成型周期。
DESIGN SOLUTIONS
19
Sink Mark Estimate 凹痕深度
一般,凹痕数值>0.03mm,表面缩水较明显。
可通过加大基本壁厚、减小加强筋和螺栓柱等壁厚、加大保压等方式,来降 低凹痕深度。
DESIGN SOLUTIONS
20
Sink Mark Shaded 凹痕阴影显示
Moldflow分析结果及优化方案
CAD-IT Consultants (Shanghai) Co., Ltd Jason Qiu
Bring you tomorrow's technology today...
DESIGN SOLUTIONS
1
AMI主要分析结果
充填模式 V/P时刻注塑压力 料流前锋温度 剪切速率 脱模时刻体积收缩 产品凝固时间 凝固层因子 困气
26
Deflection, all effects: Y Component Y向变形
该产品Y向均匀收缩。请在模具设计时,设置合理的收缩率。