厌氧水解酸化原理课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当有机物负荷率很高时,由于供给产酸菌的食物相当充 分,致使作为其代谢产物的有机物酸产量很大,超过 了甲烷细菌的吸收利用能力,导致有机酸在消化液中 的积累和pH值(以下均指大气压条件下的实测值)下 降,其结果是使消化液显酸性(pH<7)。这种在酸性 条件下进行的厌氧消化过程称为酸性发酵状态,它是
一种低效而又不稳定的发酵状态,应尽量避免。
10~30gVSS/L之间。
为了保持反应器生物量不致因流失而减少,可采用多种措施 ,如安装三相分离器、设置挂膜介质、降低水流速度和回 流污泥量等。
厌氧生物处理——原理
(2)负荷率 负荷率是表示消化装置处理能力的一个参 数。负荷率有三种表示方法:容积负荷率、污泥负荷 率、投配率。
• 反应器单位有效容积在单位时间内接纳的有机物量, 称为容积负荷率,单位为kg/m3·d或g/L·d。有机物量 可用COD、BOD、SS和VSS表示。
厌氧生物处理——概述
在断绝与空气接触的条件下,依赖兼性厌氧菌和专性 厌氧菌的生物化学作用,对有机物进行生物降解的过 程,称为厌氧生物处理法或厌氧消化法。
厌氧生物处理法的处理对象是:高浓度有机工业废水 、城镇污水的污泥、动植物残体及粪便等。
厌氧生物处理——概述
厌氧生物处理的方法和基本功能有二: (1)酸发酵的目的是为进一步进行生物处理提供易生
甲烷发酵
发酵工

酸发酵
——
厌氧生物处理——原理
二、发酵的控制条件 (以下重点讨论甲烷发酵的控制条件。) (一)营养与环境条件
废水、污泥及废料中的有机物种类繁多,只要未达到 抑制浓度,都可连续进行厌氧生物处理。对生物可降 解性有机物的浓度并无严格限制,但若浓度太低,比 耗热量高,经济上不合算;水力停留时间短,生物污 泥易流失,难以实现稳定的运行。一般要求COD大于 1000mg/L。 COD∶N∶P=200∶5∶1
当有机负荷率适中时,产酸细菌代谢产物中的有机酸基 本上能被甲烷细菌及时地吸收利用,并转化为沼气, 溶液中残存的有机酸量一般为每升数百毫克。此时消 化液中pH值维持在7~7.5之间,溶液呈弱碱性。这种 在弱碱性条件下进行的厌氧消化过程称之为弱碱性发 酵状态,它是一种高效而又稳定的发酵状态,最佳负 荷率应达此状态。
厌氧生物处理——原理
(1)氧化还原电位(ORP或Eh) 厌氧环境是厌氧消化过程赖以正常进行的最重要的条件
。厌氧环境,主要以体系中的氧化还原电位来反来自百度文库。
一般情况下,氧的溶入无疑是引起发酵系统的氧化还原 电位升高的最主要和最直接的原因。但是,除氧以外 ,其它一些氧化剂或氧化态物质的存在(如某些工业 废水中含有的Fe3+、Cr2O72-、NO3-、SO42-以及酸性废 水中的H+等),同样能使体系中的氧化还原电位升高 。当其浓度达到一定程度时,同样会危害厌氧消化过 程的进行。
厌氧生物处理——原理
高温厌氧消化系统适宜的氧化还原电位为-500~-600mV; 中温厌氧消化系统及浮动温度厌氧消化系统要求的氧化
还原电位应低于-300~-380mV。
产酸细菌对氧化还原电位的要求不甚严格,甚至可在 +100~-100mV的兼性条件下生长繁殖;
甲烷细菌最适宜的氧化还原电位为-350mV或更低。
厌氧生物处理——原理
(2)温度 温度是影响微生物生命活动过程的重要因素 之一。温度主要影响微生物的生化反应速度,因而与 有机物的分解速率有关。
工程上: 中温消化温度为30~38℃(以33~35℃为多); 高温消化温度为50~55℃。
厌氧消化对温度的突变也十分敏感,要求日变化小于 ±2℃。温度突变幅度太大,会招致系统的停止产气 。
物降解的基质; (2)甲烷发酵的目的是进一步降解有机物和生产气体
燃料。
厌氧生物处理——概述
• 完全的厌氧生物处理工艺因兼有降解有机物和生产气 体燃料的双重功能,因而得到了广泛的发展和应用。
厌氧生物处理——原理
一、厌氧消化的生化阶段 复杂有机物的厌氧消化过程要经历数个阶段,由不同 的细菌群接替完成。根据复杂有机物在此过程中的物 态及物性变化,可分三个阶段(表9-1)。
厌氧生物处理——原理
表9-1 有机物厌氧消化过程
生化阶段 物态变化
生化过程

液化(水解)
大分子不溶态 有机物转化为 小分子溶解态
有机物

酸化(1)
酸化(2)
小分子溶解态 有机物转化为 (H2+CO2)及 A、B两类产物
B类产物转化为 (H2+CO2)及
乙酸等
Ⅲ 气化
CH4、CO2等
菌群
发酵细菌
产氢产乙酸细菌 甲烷细菌
厌氧生物处理——原理
• 厌氧消化装置的负荷率是怎样确定的呢? 一个重要的原则是:在两个转化(酸化和气化) 速率保持稳定平衡的条件下,求得最大的处理目 标(最大处理量或最大产气量)。 一般而言,厌氧消化微生物进行酸化转化的能力 强,速率快,对环境条件的适应能力也强;而进 行气化转化的能力相对较弱,速率也较慢,对环 境的适应能力也较脆弱。这种前强后弱的特征使 两个转化速率保持稳定平衡颇为困难,因而形成 了三种发酵状态。
当有机物负荷率偏小时,供给产酸细菌的食物不足,产
酸量偏少,不能满足甲烷细菌的需要。此时,消化液 中的有机酸残存量很少,pH值偏高,在pH值偏高(大 于7.5)的条件下进行的厌氧消化过程,称为碱性发酵 状态。如前所述,由于负荷偏低,因而是一种虽稳定 但低效的厌氧消化状态。
厌氧生物处理——原理
(3)pH值及酸碱度 由于发酵系统中的CO2分压很高( 20.3~40.5kPa),发酵液的实际pH值比在大气条件下 的实测值为低。一般认为,实测值应在7.2~7.4之间为 好。
(4)毒物 凡对厌氧处理过程起抑制或毒害作用的物质 ,都可称为毒物。
厌氧生物处理——原理
(1)生物量 各种反应器要求的污泥浓度不尽相同,一般介于
• 反应器内单位重量的污泥在单位时间内接纳的有机物 量,称为污泥负荷率,单位为kg/kg·d或g/g·d。
• 每天向单位有效容积投加的新料的体积,称为投配率 ,单位为m3/m3·d。投配率的倒数为平均停留时间或 消化时间,单位为d。投配率有时也用百分数表示, 例如,0.07m3/m3·d的投配率也可表示为7%。
相关文档
最新文档