伺服电机编码器调零对位方法

合集下载

伺服电机旋转编码器与三相UVW怎么调零,

伺服电机旋转编码器与三相UVW怎么调零,

增量式编码器的相位对齐方式在此讨论中,增量式编码器的输出信号为方波信号,又可以分为带换相信号的增量式编码器和普通的增量式编码器,普通的增量式编码器具备两相正交方波脉冲输出信号A和B,以及零位信号Z;带换相信号的增量式编码器除具备ABZ输出信号外,还具备互差120度的电子换相信号UVW,UVW各自的每转周期数与电机转子的磁极对数一致。

带换相信号的增量式编码器的UVW电子换相信号的相位与转子磁极相位,或曰电角度相位之间的对齐方法如下:1.用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V出,将电机轴定向至一个平衡位置;2.用示波器观察编码器的U相信号和Z信号;3.调整编码器转轴与电机轴的相对位置;4.一边调整,一边观察编码器U相信号跳变沿,和Z信号,直到Z信号稳定在高电平上(在此默认Z信号的常态为低电平),锁定编码器与电机的相对位置关系;5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,Z信号都能稳定在高电平上,则对齐有效。

撤掉直流电源后,验证如下:1.用示波器观察编码器的U相信号和电机的UV线反电势波形;2.转动电机轴,编码器的U相信号上升沿与电机的UV线反电势波形由低到高的过零点重合,编码器的Z 信号也出现在这个过零点上。

上述验证方法,也可以用作对齐方法。

需要注意的是,此时增量式编码器的U相信号的相位零点即与电机UV线反电势的相位零点对齐,由于电机的U相反电势,与UV线反电势之间相差30度,因而这样对齐后,增量式编码器的U相信号的相位零点与电机U相反电势的-30度相位点对齐,而电机电角度相位与U相反电势波形的相位一致,所以此时增量式编码器的U相信号的相位零点与电机电角度相位的-30度点对齐。

有些伺服企业习惯于将编码器的U相信号零点与电机电角度的零点直接对齐,为达到此目的,可以:1.用3个阻值相等的电阻接成星型,然后将星型连接的3个电阻分别接入电机的UVW三相绕组引线;2.以示波器观察电机U相输入与星型电阻的中点,就可以近似得到电机的U相反电势波形;3.依据操作的方便程度,调整编码器转轴与电机轴的相对位置,或者编码器外壳与电机外壳的相对位置;4.一边调整,一边观察编码器的U相信号上升沿和电机U相反电势波形由低到高的过零点,最终使上升沿和过零点重合,锁定编码器与电机的相对位置关系,完成对齐。

伺服电机编码器调零对位方法

伺服电机编码器调零对位方法

伺服电机编码器调零对位方法伺服电机编码器调零对位是一项重要的操作,它确保了伺服系统运行的准确性和稳定性。

在对伺服电机编码器进行调零对位时,首先需要明确编码器的作用和原理。

编码器是用来测量旋转角度和位置的装置,通过编码器可以准确地监测电机的位置,实现精准控制。

一、调零对位的原理伺服电机编码器的调零对位是通过将电机控制系统中的位置反馈信号归零来实现的。

在电机停止运动的时候,通过调整编码器信号,使得当前位置被定义为零点位置,从而实现对位。

这样可以确保电机在后续的运动过程中,能够准确地控制位置和角度。

二、调零对位的步骤1.停止电机运动:在进行编码器调零对位之前,必须先停止电机的运动,确保安全性和操作的准确性。

2.进入编码器调零模式:根据具体的伺服系统和编码器类型,进入编码器调零的设置界面或模式。

3.调整位置:根据系统的要求,调整编码器信号,使当前位置被定义为零点位置。

4.确认对位:确认调零后的位置是否准确,可以通过系统的显示界面或其他功能进行验证。

5.保存设置:对于一些系统来说,调零对位是一次性的操作,需要保存设置以确保后续操作的准确性。

三、注意事项1.在进行编码器调零对位时,需要谨慎操作,以避免对系统造成不必要的损坏。

2.在调零对位的过程中,要确保环境安全,避免因误操作导致事故发生。

3.对于初次进行编码器调零对位的操作者,建议在有经验的人员的指导下进行操作。

4.在进行编码器调零对位之前,需要确保系统处于正常工作状态,避免出现意外情况。

四、总结伺服电机编码器调零对位是伺服系统中重要的操作之一,它确保了电机位置控制的准确性和稳定性。

通过本文介绍的调零对位原理、步骤和注意事项,希望可以帮助操作者正确地进行编码器调零对位操作,保证系统的正常运行和工作效率。

永磁交流伺服电机的工作原理与更换新编码器后的常规零位校正方法

永磁交流伺服电机的工作原理与更换新编码器后的常规零位校正方法

永磁交流伺服电机的工作原理与更换新编码器后的常规零位校正方法其唯一目的就是要达成矢量控制的目标,使d轴励磁分量和q轴出力分量解耦,令永磁交流伺服电机定子绕组产生的电磁场始终正交于转子永磁场,从而获得最佳的出力效果,即“类直流特性”,这种控制方法也被称为磁场定向控制(FOC),达成FOC控制目标的外在表现就是永磁交流伺服电机的“相电流”波形始终与“相反电势”波形保持一致,如下图所示:图1因此反推可知,只要想办法令永磁交流伺服电机的“相电流”波形始终与“相反电势”波形保持一致,就可以达成FOC控制目标,使永磁交流伺服电机的初级电磁场与磁极永磁场正交,即波形间互差90度电角度,如下图所示:图2如何想办法使永磁交流伺服电机的“相电流”波形始终与“相反电势”波形保持一致呢?由图1可知,只要能够随时检测到正弦型反电势波形的电角度相位,然后就可以相对容易地根据电角度相位生成与反电势波形一致的正弦型相电流波形了。

在此需要明示的是,永磁交流伺服电机的所谓电角度就是a相(U 相)相反电势波形的正弦(Sin)相位,因此相位对齐就可以转化为编码器相位与反电势波形相位的对齐关系;另一方面,电角度也是转子坐标系的d轴(直轴)与定子坐标系的a轴(U轴)或α轴之间的夹角,这一点有助于图形化分析。

在实际操作中,欧美厂商习惯于采用给电机的绕组通以小于额定电流的直流电流使电机转子定向的方法来对齐编码器和转子磁极的相位。

当电机的绕组通入小于额定电流的直流电流时,在无外力条件下,初级电磁场与磁极永磁场相互作用,会相互吸引并定位至互差0度相位的平衡位置上,如下图所示:图3对比上面的图3和图2可见,虽然a相(U相)绕组(红色)的位置同处于电磁场波形的峰值中心(特定角度),但FOC控制下,a 相(U相)中心与永磁体的q轴对齐;而空载定向时,a相(U相)中心却与d轴对齐。

也就是说相对于初级(定子)绕组而言,次级(转子)磁体坐标系的d轴在空载定向时有会左移90度电角度,与FOC 控制下q轴的原有位置重合,这样就实现了转子空载定向时a轴(U 轴)或α轴与d轴间的对齐关系。

伺服电机编码器的调整方法

伺服电机编码器的调整方法

伺服电机编码器的调整方法增量式编码器的相位对齐方式在此讨论中,增量式编码器的输出信号为方波信号,又可以分为带换相信号的增量式编码器和普通的增量式编码器,普通的增量式编码器具备两相正交方波脉冲输出信号A和B,以及零位信号Z;带换相信号的增量式编码器除具备ABZ输出信号外,还具备互差120度的电子换相信号UVW, UVW各自的每转周期数与电机转子的磁极对数一致。

带换相信号的增量式编码器的UVW电子换相信号的相位与转子磁极相位,或曰电角度相位之间的对齐方法如下:1. 用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U入,V 出,将电机轴定向至一个平衡位置;2•用示波器观察编码器的U相信号和Z信号;3. 调整编码器转轴与电机轴的相对位置;4•一边调整,一边观察编码器U相信号跳变沿,和Z信号,直到Z信号稳定在高电平上(在此默认Z 信号的常态为低电平),锁定编码器与电机的相对位置关系;5•来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,Z信号都能稳定在高电平上,则对齐有效。

撤掉直流电源后,验证如下:1. 用示波器观察编码器的U相信号和电机的UV线反电势波形;2•转动电机轴,编码器的U相信号上升沿与电机的UV线反电势波形由低到高的过零点重合,编码器的Z信号也出现在这个过零点上。

上述验证方法,也可以用作对齐方法。

需要注意的是,此时增量式编码器的U相信号的相位零点即与电机UV线反电势的相位零点对齐,由于电机的U相反电势,与UV线反电势之间相差30 度,因而这样对齐后,增量式编码器的U 相信号的相位零点与电机U 相反电势的-30 度相位点对齐,而电机电角度相位与U 相反电势波形的相位一致,所以此时增量式编码器的U相信号的相位零点与电机电角度相位的-30度点对齐。

有些伺服企业习惯于将编码器的U 相信号零点与电机电角度的零点直接对齐,为达到此目的,可以:1. 用3 个阻值相等的电阻接成星型,然后将星型连接的3 个电阻分别接入电机的UVW 三相绕组引线;2. 以示波器观察电机U 相输入与星型电阻的中点,就可以近似得到电机的U 相反电势波形;3. 依据操作的方便程度,调整编码器转轴与电机轴的相对位置,或者编码器外壳与电机外壳的相对位置;4. 一边调整,一边观察编码器的U 相信号上升沿和电机U 相反电势波形由低到高的过零点,最终使上升沿和过零点重合,锁定编码器与电机的相对位置关系,完成对齐。

编码器确定零位的七种方法

编码器确定零位的七种方法

编码器确定零位的七种方法1、编码器轴转动找零,编码器在安装时,旋转转轴对应零位,一般增量值与单圈绝对值会用这种方法,而轴套型的编码器也用这种方法。

缺点,零点不太好找,精度较低。

2、与上面方法相当,只是编码器外壳旋转找零,这主要是对于一些紧凑型安装的同步法兰(也有叫伺服法兰)外壳所用,3、通电移动安装机械对零,通电将安装的机械移动到对应的编码器零位对应位置安装。

4、偏置计算,机械和编码器都不需要找零,根据编码器读数与实际位置的偏差计算,获得偏置量,以后编码器读数后减去这个偏置量。

例如编码器的读数为100,而实际位置是90,计算下在实际位置0位时,编码器的读数应该是10,而这个“10”就是偏置量,以后编码器读到的数,减去这个偏置量就是位置值。

可重复多次,修正偏置量。

对于增量值编码器,是读取原始机械零位到第一个Z点的读数,作为偏置量。

精度较高的编码器,或者量程较大的绝对值多圈编码器,多用这种方法。

5、智能化外部置零,有些带智能化功能的编码器,可提供外部置位功能,例如通过编码器附带的按键,或外带的软件设置功能置零。

6、需要说明的是,绝对值编码器的零位再往下就是编码的循环最大值,无论是单圈绝对值,还是多圈绝对值,如果置零位,那么再往下(下滑、移动,惯性过冲等),就可能数据一下子跳到最大了,对于高位数的绝对值多圈,可能数据会溢出原来的设定范围。

另外,绝对值编码器还有一个旋转方向的问题,置零后,如果方向不对,是从0跳到最大,然后由大变小的。

一些进口的编码器尽管带有外部置零功能,但建议还是不要用此功能。

(我们碰到很多用进口绝对值编码器会碰到这样的困惑,不要就迷信进口的)。

7、最好的置位方法,预置一个非零位(留下下滑、过冲的余量)并预置旋转方向偏置计算的方法。

另外一种方法是置“中”,偏置量就是中点值,置位线与电源正相触后,编码器输出的就是中点位置,这样的行程是/-半全程,在这样的行程范围内,无论旋转方向,确保不会经过零点跳变1/ 1。

伺服电机编码器的调整方法

伺服电机编码器的调整方法

伺服电机编码器的调整方法增量式编码器的相位对齐方式在此谈论中,增量式编码器的输出信号为方波信号,又可以分为带换相信号的增量式编码器和一般的增量式编码器,一般的增量式编码用具备两相正交方波脉冲输出信号 A 和 B,以及零位信号 Z;带换相信号的增量式编码器除具备ABZ输出信号外,还具备互差 120 度的电子换相信号 UVW,UVW 各自的每转周期数与电机转子的磁极对数一致。

带换相信号的增量式编码器的 UVW 电子换相信号的相位与转子磁极相位,或曰电角度相位之间的对齐方法以下:1.用一个直流电源给电机的 UV 绕组通以小于额定电流的直流电, U 入, V 出,将电机轴定向至一个均衡地点;2.用示波器观察编码器的U 相信号和 Z 信号;3.调整编码器转轴与电机轴的相对地点;4.一边调整,一边观察编码器 U 相信号跳变沿,和 Z 信号,直到 Z 信号稳固在高电平上(在此默认 Z 信号的常态为低电平),锁定编码器与电机的相对地点关系;5.往返扭转电机轴,松手后,若电机轴每次自由回复到均衡地点时,Z 信号都能稳固在高电平上,则对齐有效。

撤掉直流电源后,考据以下:1.用示波器观察编码器的U 相信号和电机的UV 线反电势波形;2.转动电机轴,编码器的 U 相信号上涨沿与电机的 UV 线反电势波形由低到高的过零点重合,编码器的 Z 信号也出此刻这个过零点上。

上述考据方法,也可以用作对齐方法。

需要注意的是,此时增量式编码器的 U 相信号的相位零点即与电机 UV 线反电势的相位零点对齐,因为电机的U 相反电势,与UV 线反电势之间相差30 度,因此这样对齐后,增量式编码器的 U 相信号的相位零点与电机 U 相反电势的-30 度相位点对齐,而电机电角度相位与 U 相反电势波形的相位一致,所以此时增量式编码器的 U 相信号的相位零点与电机电角度相位的 -30 度点对齐。

有些伺服企业习惯于将编码器的 U 相信号零点与电机电角度的零点直接对齐,为达到此目的,可以:1.用 3 个阻值相等的电阻接成星型,而后将星型连接的 3 个电阻分别接入电机的 UVW 三相绕组引线;2.以示波器观察电机 U 相输入与星型电阻的中点,就可以近似获取电机的 U 相反电势波形;3.依照操作的方便程度,调整编码器转轴与电机轴的相对地点,或许编码器外壳与电机外壳的相对地点;4.一边调整,一边观察编码器的U 相信号上涨沿和电机U 相反电势波形由低到高的过零点,最后使上涨沿和过零点重合,锁定编码器与电机的相对地点关系,完成对齐。

交流伺服电机编码器调零方法

交流伺服电机编码器调零方法

交流伺服电机编码器调零方法有以下几种:
1. 用一个直流电源给电机的UV绕组通以小于额定电流的直流电,U 入V出,将电机轴定向至一个平衡位置。

2. 用示波器观察绝对编码器的最高技术位电平信号。

3. 调整编码器转轴与电机轴的相对位置。

4. 一边调整,一边观察最高计数位信号的跳变沿,直到跳变沿准确出现在电机轴的定向平衡位置处,锁定编码器与电机的相对位置关系。

5. 来回扭转编码器电机轴,撒手后,若电机轴每次自由恢复到平衡位置时,跳变沿都能准确复现,则调零有效。

这些步骤完成后就能对交流伺服电机编码器进行调零了。

伺服电机编码器如何调零

伺服电机编码器如何调零

伺服电机编码器如何调零伺服电机编码器是一种重要的传感器,用于检测电机的位置。

调零是在安装和维护过程中必须经常进行的操作,它可以确保电机在正常运行时保持准确的位置信息。

本文将介绍如何调零伺服电机编码器。

第一步:准备工作在调零之前,需要确保电机系统处于关闭状态,并且没有通电。

另外,请查阅设备的技术手册以了解调零过程的具体步骤和要求。

第二步:进入调零模式启动电机控制器,进入编码器调零模式。

具体的操作方式因不同控制器而有所不同,通常需要通过按动某个特定的按钮或者输入特定的命令来进入调零模式。

第三步:调零操作在调零模式下,根据设备手册的指导,选择调零操作。

通常有两种调零方式:软件调零和手动调零。

•软件调零:通过电脑或者控制器的设置界面来实现调零操作。

在程序中指定一个位置作为零点,系统会将这个位置对应的编码器值设为零点。

•手动调零:在调零模式下,手动将电机旋转到一个已知的零点位置,然后按下确认按钮进行保存。

第四步:测试与验证完成调零后,需要进行测试和验证以确保调零操作正确无误。

可以通过手动操作电机或者运行预设的程序来检查调零效果,确保电机能够准确地返回到零点位置。

注意事项•在调零过程中,务必小心操作,避免误操作导致错误。

•调零前要确保所有相关设备处于安全状态,避免发生意外。

•如遇到问题或调零失败,应及时查阅设备技术手册或联系技术人员进行处理。

通过以上步骤,您可以成功地调零伺服电机编码器,确保电机系统正常运行并保持准确的位置信息。

希望本文对您有所帮助!。

伺服电机转子与编码器位置对准校正

伺服电机转子与编码器位置对准校正
伺服电机转子与编码器位置对准校正
———————————————————————————————— 作者:
———————————————————————————————— 日期:
论坛中总是有人问及伺服电机编码器相位与转子磁极相位零点如何对齐的问题,这样的问题论坛中多有回答,本人也曾在多个帖子有所回复,鉴于本人的回复较为零散,早就想整理集中一下,只是一直未能如愿,今借十一长假之际,将自己对这一问题的经验和体会整理汇总一下,以供大家参考,或者有个全面的了解。
5.来回扭转电机轴,撒手后,若电机轴每次自由回复到平衡位置时,Z信号都能稳定在高电平上,则对齐有效。
撤掉直流电源后,验证如下:
1.用示波器观察编码器的U相信号和电机的UV线反电势波形;
2.逆时针转动电机轴,编码器的U相信号上升沿与电机的UV线反电势波形由低到高的过零点重合,编码器的Z信号也出现在这个过零点上。
图3
对比上面的图3和图2可见,虽然a相(U相)绕组(红色)的位置同处于电磁场波形的峰值中心(特定角度),但FOC控制下,a相(U相)中心与永磁体的q轴对齐;而空载定向时,a相(U相)中心却与d轴对齐。也就是说相对于初级(定子)绕组而言,次级(转子)磁体坐标系的d轴在空载定向时有会左移90度电角度,与FOC控制下q轴的原有位置重合,这样就实现了转子空载定向时a轴(U轴)或α轴与d轴间的对齐关系。
永磁交流伺服电机的编码器相位为何要与转子磁极相位对齐
其唯一目的就是要达成矢量控制的目标,使d轴励磁分量和q轴出力分量解耦,令永磁交流伺服电机定子绕组产生的电磁场始终正交于转子永磁场,从而获得最佳的出力效果,即“类直流特性”,这种控制方法也被称为磁场定向控制(FOC),达成FOC控制目标的外在表现就是永磁交流伺服电机的“相电流”波形始终与“相反电势”波形保持一致,如下图所示:

西门子伺服电机维修之编码器调零对位

西门子伺服电机维修之编码器调零对位

关于西门子伺服电机内置编码器的正确安装方法一、工作内容1、这项技术适用于对德国西门子伺服电机(型号为1FT603-1FT613,1FK604-1FK610)内置编码器损坏后的安装、调试,配置的增量型编码器为德国海德汉公司的ERN1387.001/020,绝对值编码器为海德汉公司EQN1325.001。

2、使用工具公制内六方扳手一套,自制专用工具一个,十字改锥及一字改锥各一把,梅花改锥6件套。

3、可解决的问题对有故障的西门子伺服电机进行修理或更换损坏的伺服电机内置编码器,做到修旧利废,节约维修费用。

二、操作方法1、该操作方法和一般操作方法的区别在数控机床配置的西门子数控系统中,驱动电机分主轴电机和伺服电机两种。

当电机定子、转子、轴承有故障或其电机内置编码器损坏时,我们都需要对编码器拆卸进行修理或更换。

对主轴电机来说,更换或安装编码器只要用专用工具将其安装到相应位置就可以试车了,不需要调整电机轴或编码器的角度及位置。

但对伺服电机来说,则必须按照编码器的安装要求,严格执行安装步骤。

只要安装过程中出一点差错,就会出现编码器方面的报警而不能起动机床或出现飞车事故,导致电机报废或机械部件损坏。

因此正确安装非常重要。

2、该项技术的操作步骤2.1拆卸损坏的编码器关掉机床电源,解掉伺服电机的电源电缆及反馈电缆,把电机从机床上拆下来放到工作台案上,用内六方扳手去掉电机端盖上的四条螺栓,打开端盖,先卸下编码器盖,拔下编码器上的插接电缆,用十字改锥卸下支持盘上的两条小螺丝,用内六方扳手卸出编码器中心孔内的螺栓,然后用自制专用工具把编码器从电机轴上顶出来。

这样第一步工作即告完成。

图1自制专用工具尺寸图2.2安装海德汉公司ERN1387.001/020或EQN1325.001编码器2.2.1先安装支持盘不同型号的电机,其支持盘的外形也不一样,如图2和图3,这由购买的备件提供。

用4条M2.5*6的小螺丝将支持盘安装到编码器的轴端。

伺服电机转子与编码器位置对准校正

伺服电机转子与编码器位置对准校正

伺服电机转子与编码器位置对准校正论坛中总是有人问及伺服电机编码器相位与转子磁极相位零点如何对齐的问题,这样的问题论坛中多有答复,本人也曾在多个帖子有所回复,鉴于本人的回复较为零散,早就想整理集中一下,只是一直未能如愿,今借十一长假之际,将自己对这一问题的经验和体会整理汇总一下,以供大家参考,或者有个全面的了解。

永磁交流伺服电机的编码器相位为何要与转子磁极相位对齐其唯一目的就是要达成矢量控制的目标,使d轴励磁分量和q轴出力分量解耦,令永磁交流伺服电机定子绕组产生的电磁场始终正交于转子永磁场,从而获得最正确的出力效果,即“类直流特性〞,这种控制方法也被称为磁场定向控制〔FOC〕,达成FOC控制目标的外在表现就是永磁交流伺服电机的“相电流〞波形始终与“相反电势〞波形保持一致,如下列图所示:图1因此反推可知,只要想方法令永磁交流伺服电机的“相电流〞波形始终与“相反电势〞波形保持一致,就可以达成FOC控制目标,使永磁交流伺服电机的初级电磁场与磁极永磁场正交,即波形间互差90度电角度,如下列图所示:图2如何想方法使永磁交流伺服电机的“相电流〞波形始终与“相反电势〞波形保持一致呢?由图1可知,只要能够随时检测到正弦型反电势波形的电角度相位,然后就可以相对容易地根据电角度相位生成与反电势波形一致的正弦型相电流波形了。

在此需要明示的是,永磁交流伺服电机的所谓电角度就是a相〔U相〕相反电势波形的正弦〔Sin〕相位,因此相位对齐就可以转化为编码器相位与反电势波形相位的对齐关系;另一方面,电角度也是转子坐标系的d轴〔直轴〕与定子坐标系的a轴〔U轴〕或α轴之间的夹角,这一点有助于图形化分析。

在实际操作中,欧美厂商习惯于采用给电机的绕组通以小于额定电流的直流电流使电机转子定向的方法来对齐编码器和转子磁极的相位。

当电机的绕组通入小于额定电流的直流电流时,在无外力条件下,初级电磁场与磁极永磁场相互作用,会相互吸引并定位至互差0度相位的平衡位置上,如下列图所示:图3比照上面的图3和图2可见,虽然a相〔U相〕绕组〔红色〕的位置同处于电磁场波形的峰值中心〔特定角度〕,但FOC控制下,a相〔U相〕中心与永磁体的q轴对齐;而空载定向时,a相〔U相〕中心却与d轴对齐。

AB伺服电机维修之编码器调零对位

AB伺服电机维修之编码器调零对位

一台AB伺服电机(MPL-B640F-MJ24AA),拆开检查刹车时由于客户无知,连装在电机尾部固定的编码器也拆了下来(没做标记),编码器是sick的SRM50-HFA0-K01。

装上后刹车没问题,但出现飞车故障。

驱动器报错E18OVER SPEED或者E24velocity error。

客户找到我们广东容济机电科技有限公司,我们按照以下思路给他们修理这款AB伺服电机。

因为编码器动过位置了,编码器原点漂移了,所以需要重新校正。

具体如下:应急调零方法,简单而且实用.但必须把电机拆离设备并依靠设备来进行调试.试好后再装回设备再可.事实上经过大量的调零试验,每个伺服电机都有一个角度小于10度的零速静止区域,和350度的高速反转区域,如果你是偶而更换一只编码器,这样的做法确实是太麻烦了,这里有一个很简便的应急方法也能很快搞定.第一步:拆下损坏的编码器第二步:装上新的编码器,并与轴固定.而使可调底座悬空并可自由旋转,把电机重新连入电路,把机器速度调为零,通电正常后按启动开关后有几种情况会发生,一是电机高速反转,这是由于编码器与实际零位相差太大所致,不必惊慌,你可以把编码器转过一个角度直到电机能静止下来为止.二是电机在零速指令下处于静止状态,这时你可以小心地先反时针转动编码器,注意:一定要慢,直到电机开始高速反转,记下该位置同时立即往回调至静止区域.这里要求两手同时操作,一手作旋转,另一手拿好记号笔,记住动作一定要快,也不可慌乱失措,完全没必要,这是正常现象.然后按顺时针继续缓慢转动直到又一次高速反转的出现,记下该位置并立即往回调至静止区,通过上述调整,你会发现增量式伺服电机其实有一个较宽的可调区域,而这个区域里的中间位置就是伺服电机最大力矩输出点,如果一个电机力矩不足或正反方向运行时有一个方向上力矩不足往往是因为编码器的Z信号削弱或该位置偏离中心所致,即零位发生了偏离,一般重新调整该零位即可.对于一个新的编码器来说这个静止区域相对较小,如大幅增加则是编码器内部电路出了问题,表现为力矩不足或发热大幅增加.用电流表测量则空载电流明显增加.找到中心位置后并把这个位置擦干净,只要把编码器底座用502胶直接固定于电机侧面对应处即可.待502干了后再在上机涂上一层在硅橡胶即可投入正常运行.实践证明,正常情况下这样处理后的伺服电机使用一年是没有问题的,从上面的调整可以看出,由于编码器的轴与电机轴心是可以随便以任一角度连接的,所以编码器零位与电机的机械位置只是相对位置而已,只有编码器的轴与电机轴固定了,那么编码器的实际零位位置也便固定下来了,如果活动底座位置确定了,那么轴间的柱头镙钉的位置也便固定了.用上述方法最大的问题是偏离了原来的固定镙丝口造成无法固定.但由于502胶可快速定位,硅橡胶的耐温又超过150度,硬度又不像环氧树脂,用了后难以清除,第二次更换时只要用刮刀刮干净即可.如果编码器再次损坏从硅橡胶外表即可看出是轴承的缘故还是电路损坏.一般情况下总是电机的轴承先坏,从而导致电机温度过大进而使编码器的轴承也接着损坏,一旦出现轴承高度磨损的现象,应立即更换轴承,以防编码器也跟着损坏.我们只是稍微改进了点.没用502.找到中心位置后,看下现在编码器的底座固定螺丝口相差了多少角度(假如有20度).按住编码器,朝偏的方向转动电机轴,转过20度.然后电机轴固定不要动,松开编码器和电机轴的固定螺丝,轻轻取出编码器,看准底座固定螺丝口套进去,固定编码器和电机轴,试一下是否在中心位置.如有点偏差,再调整一次.我们调了2次基本对在中心了.客户的选择,从开始就决定了结果工控技服,选强的不择差的广东容济机电科技有限公司携手华南理工大学自动化科学与工程学院,强强联合,共同创建了面向工控自动化行业的研究生工作站与联合培养基地容济公司从事工控技术服务行业多年,被誉为“工控界的黄埔军校”,培养有大量资深的电子电气维修工程师,在工控行业影响深远,目前联合华南理工大学自动化科学与工程学院,进行校企合作,面向工控自动化行业,从芯片级维修到工程项目到技术培训到产品研发,建立了一种长期的战略性伙伴关系,长期有大量的研究生在本基地研究“芯片级工控产品维修”课题,摸索工控产品维修的标准化作业,为下来的连锁维修经营做准备。

永磁交流伺服电机的工作原理与编码器零位校正方法

永磁交流伺服电机的工作原理与编码器零位校正方法

永磁交流伺服电机的工作原理与更换新编码器后的常规零位校正方法永磁交流伺服电机的编码器相位为何要与转子磁极相位对齐其唯一目的就是要达成矢量控制的目标,使d轴励磁分量和q轴出力分量解耦,令永磁交流伺服电机定子绕组产生的电磁场始终正交于转子永磁场,从而获得最佳的出力效果,即“类直流特性”,这种控制方法也被称为磁场定向控制(FOC),达成FOC控制目标的外在表现就是永磁交流伺服电机的“相电流”波形始终与“相反电势”波形保持一致,如下图所示:图1因此反推可知,只要想办法令永磁交流伺服电机的“相电流”波形始终与“相反电势”波形保持一致,就可以达成FOC控制目标,使永磁交流伺服电机的初级电磁场与磁极永磁场正交,即波形间互差90度电角度,如下图所示:图2如何想办法使永磁交流伺服电机的“相电流”波形始终与“相反电势”波形保持一致呢?由图1可知,只要能够随时检测到正弦型反电势波形的电角度相位,然后就可以相对容易地根据电角度相位生成与反电势波形一致的正弦型相电流波形了。

在此需要明示的是,永磁交流伺服电机的所谓电角度就是a相(U相)相反电势波形的正弦(Sin)相位,因此相位对齐就可以转化为编码器相位与反电势波形相位的对齐关系;另一方面,电角度也是转子坐标系的d轴(直轴)与定子坐标系的a轴(U轴)或α轴之间的夹角,这一点有助于图形化分析。

在实际操作中,欧美厂商习惯于采用给电机的绕组通以小于额定电流的直流电流使电机转子定向的方法来对齐编码器和转子磁极的相位。

当电机的绕组通入小于额定电流的直流电流时,在无外力条件下,初级电磁场与磁极永磁场相互作用,会相互吸引并定位至互差0度相位的平衡位置上,如下图所示:图3对比上面的图3和图2可见,虽然a相(U相)绕组(红色)的位置同处于电磁场波形的峰值中心(特定角度),但FOC控制下,a相(U相)中心与永磁体的q轴对齐;而空载定向时,a相(U相)中心却与d轴对齐。

也就是说相对于初级(定子)绕组而言,次级(转子)磁体坐标系的d轴在空载定向时有会左移90度电角度,与FOC 控制下q轴的原有位置重合,这样就实现了转子空载定向时a轴(U轴)或α轴与d轴间的对齐关系。

AB伺服电机编码器调零对位

AB伺服电机编码器调零对位

AB伺服电机编码器调零对位伺服电机编码器一、前言伺服电机编码器是安装在伺服电机上用来测量磁极位置和伺服电机转角及转速的一种传感器,从物理介质的不同来分,伺服电机编码器可以分为光电编码器和磁电编码器,另外旋转变压器也算一种特殊的伺服编码器,目前市场上使用的基本上是光电编码器,不过磁电编码器作为后起之秀,有可靠,价格便宜,抗污染等特点,有赶超的光电编码器趋势。

二、伺服电机编码器原理伺服编码器这个基本的功能与普通编码器是一样的,比如增量型的有A,A反,B,B反,Z,Z反等信号,除此之外,伺服编码器还有着跟普通编码器不同的地方,那就是伺服电机多数为同步电机,同步电机启动的时候需要知道转子的磁极位置,这样才能够大力矩启动伺服电机,这样需要另外配几路信号来检测转子的当前位置,比如增量型的就有UVW等信号,正因为有了这几路检测转子位置的信号,伺服编码器显得有点复杂了,以致一般人弄不懂它的道理了,加上有些厂家故意掩遮一些信号,相关的资料不齐全,就更加增添了伺服电机编码器的神秘色彩。

由于A、B两相相差90度,可通过比较A相在前还是B相在前,以判别编码器的正转与反转,通过零位脉冲,可获得编码器的零位参考位。

编码器码盘的材料有玻璃、金属、塑料,玻璃码盘是在玻璃上沉积很薄的刻线,其热稳定性好,精度高,金属码盘直接以通和不通刻线,不易碎,但由于金属有一定的厚度,精度就有限制,其热稳定性就要比玻璃的差一个数量级,塑料码盘是经济型的,其成本低,但精度、热稳定性、寿命均要差一些。

分辨率—编码器以每旋转360度提供多少的通或暗刻线称为分辨率,也称解析分度、或直接称多少线,一般在每转分度5~10000线。

三、伺服电机编码器分类1、增量型编码器除了普通编码器的ABZ信号外,增量型伺服编码器还有UVW信号,目前国产和早期的进口伺服大都采用这样的形式,线比较多。

2、绝对值型伺服电机编码器增量式编码器以转动时输出脉冲,通过计数设备来知道其位置,当编码器不动或停电时,依靠计数设备的内部记忆来记住位置。

伺服电机转子与编码器位置对准校正..

伺服电机转子与编码器位置对准校正..

论坛中总是有人问及伺服电机编码器相位与转子磁极相位零点如何对齐的问题,这样的问题论坛中多有回答,本人也曾在多个帖子有所回复,鉴于本人的回复较为零散,早就想整理集中一下,只是一直未能如愿,今借十一长假之际,将自己对这一问题的经验和体会整理汇总一下,以供大家参考,或者有个全面的了解。

永磁交流伺服电机的编码器相位为何要与转子磁极相位对齐其唯一目的就是要达成矢量控制的目标,使d轴励磁分量和q轴出力分量解耦,令永磁交流伺服电机定子绕组产生的电磁场始终正交于转子永磁场,从而获得最佳的出力效果,即“类直流特性”,这种控制方法也被称为磁场定向控制(FOC),达成FOC控制目标的外在表现就是永磁交流伺服电机的“相电流”波形始终与“相反电势”波形保持一致,如下图所示:图1因此反推可知,只要想办法令永磁交流伺服电机的“相电流”波形始终与“相反电势”波形保持一致,就可以达成FOC控制目标,使永磁交流伺服电机的初级电磁场与磁极永磁场正交,即波形间互差90度电角度,如下图所示:图2如何想办法使永磁交流伺服电机的“相电流”波形始终与“相反电势”波形保持一致呢?由图1可知,只要能够随时检测到正弦型反电势波形的电角度相位,然后就可以相对容易地根据电角度相位生成与反电势波形一致的正弦型相电流波形了。

在此需要明示的是,永磁交流伺服电机的所谓电角度就是a相(U相)相反电势波形的正弦(Sin)相位,因此相位对齐就可以转化为编码器相位与反电势波形相位的对齐关系;另一方面,电角度也是转子坐标系的d轴(直轴)与定子坐标系的a轴(U轴)或α轴之间的夹角,这一点有助于图形化分析。

在实际操作中,欧美厂商习惯于采用给电机的绕组通以小于额定电流的直流电流使电机转子定向的方法来对齐编码器和转子磁极的相位。

当电机的绕组通入小于额定电流的直流电流时,在无外力条件下,初级电磁场与磁极永磁场相互作用,会相互吸引并定位至互差0度相位的平衡位置上,如下图所示:图3对比上面的图3和图2可见,虽然a相(U相)绕组(红色)的位置同处于电磁场波形的峰值中心(特定角度),但FOC控制下,a相(U相)中心与永磁体的q轴对齐;而空载定向时,a相(U相)中心却与d轴对齐。

西门子伺服电机维修编码器安装调零对位

西门子伺服电机维修编码器安装调零对位

西门子伺服电机维修编码器安装调零对位关于西门子伺服电机内置编码器的正确安装方法一、工作内容1、这项技术适用于对德国西门子伺服电机(型号为1FT603-1FT613,1FK604-1FK610)内置编码器损坏后的安装、调试,配置的增量型编码器为德国海德汉公司的ERN1387.001/020,绝对值编码器为海德汉公司EQN1325.001。

2、使用工具公制内六方扳手一套,自制专用工具一个,十字改锥及一字改锥各一把,梅花改锥6件套。

3、可解决的问题对有故障的西门子伺服电机进行修理或更换损坏的伺服电机内置编码器,做到修旧利废,节约维修费用。

二、操作方法1、该操作方法和一般操作方法的区别在数控机床配置的西门子数控系统中,驱动电机分主轴电机和伺服电机两种。

当电机定子、转子、轴承有故障或其电机内置编码器损坏时,我们都需要对编码器拆卸进行修理或更换。

对主轴电机来说,更换或安装编码器只要用专用工具将其安装到相应位置就可以试车了,不需要调整电机轴或编码器的角度及位置。

但对伺服电机来说,则必须按照编码器的安装要求,严格执行安装步骤。

只要安装过程中出一点差错,就会出现编码器方面的报警而不能起动机床或出现飞车事故,导致电机报废或机械部件损坏。

因此正确安装非常重要。

2、该项技术的操作步骤2.1拆卸损坏的编码器关掉机床电源,解掉伺服电机的电源电缆及反馈电缆,把电机从机床上拆下来放到工作台案上,用内六方扳手去掉电机端盖上的四条螺栓,打开端盖,先卸下编码器盖,拔下编码器上的插接电缆,用十字改锥卸下支持盘上的两条小螺丝,用内六方扳手卸出编码器中心孔内的螺栓,然后用自制专用工具把编码器从电机轴上顶出来。

这样第一步工作即告完成。

图1自制专用工具尺寸图2.2安装海德汉公司ERN1387.001/020或EQN1325.001编码器2.2.1先安装支持盘不同型号的电机,其支持盘的外形也不一样,如图2和图3,这由购买的备件提供。

用4条M2.5*6的小螺丝将支持盘安装到编码器的轴端。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以上转载深圳兴丰元机电技术资料中心,此公司专业生产和销售步进电机、步进电机驱动器、伺服电机、伺服驱动器,代理日本多摩川伺服、东元伺服、德科斯(TKS)行星减速机以及运动控制产品。
本信息来源于网络,不代表本站观点
如若转载请注明来源:中国自动化网
通过上述调整,你会发现增量式伺服电机其实有一个较宽的可调区域,而这个区域里的中间位置就是伺服电机最大力矩输出点,如果一个电机力矩不足或正反方向运行时有一个方向上力矩不足往往是因为编码器的Z信号削弱或该位置偏离中心所致,即零位发生了偏离,一般重新调整该零位即可.
对于一个新的编码器来说这个静止区域相对较小,如大幅增加则是编码器内部电路出了问题,表现为力矩不足或发热大幅增加.用电流表测量则空载电流明显增加.
伺服电机编码器调零对位方法
2013-1-9 10:24:00 来源:
[闭][打印]
一台AB伺服电机(MPL-B640F-MJ24AA),拆开检查刹车时由于客户无知,连装在电机尾部固定的编码器也拆了下来(没做标记),编码器是sick的SRM50-HFA0-K01。装上后刹车没问题,但出现飞车故障。伺服驱动器报错E18OVERSPEED或者E24velocityerror。
找到中心位置后并把这个位置擦干净,只要把编码器底座用502胶直接固定于电机侧面对应处即可.待502干了后再在上机涂上一层在硅橡胶即可投入正常运行.实践证明,正常情况下这样处理后的伺服电机使用一年是没有问题的,
从上面的调整可以看出,由于编码器的轴与电机轴心是可以随便以任一角度连接的,所以编码器零位与电机的机械位置只是相对位置而已,只有编码器的轴与电机轴固定了,那么编码器的实际零位位置也便固定下来了,如果活动底座位置确定了,那么轴间的柱头镙钉的位置也便固定了.
1、是电机高速反转,这是由于编码器与实际零位相差太大所致,不必惊慌,你可以把编码器转过一个角度直到电机能静止下来为止.、是电机在零速指令下处于静止状态,这时你可以小心地先反时针转动编码器,注意:一定要慢,直到电机开始高速反转,记下该位置同时立即往回调至静止区域.这里要求两手同时操作,一手作旋转,另一手拿好记号笔,记住动作一定要快,也不可慌乱失措,完全没必要,这是正常现象.然后按顺时针继续缓慢转动直到又一次高速反转的出现,记下该位置并立即往回调至静止区,
应急调零方法,简单而且实用.但必须把电机拆离设备并依靠设备来进行调试.试好后再装回设备再可.事实上经过大量的调零试验,每个伺服电机都有一个角度小于10度的零速静止区域,和350度的高速反转区域,如果你是偶而更换一只编码器,这样的做法确实是太麻烦了,这里有一个很简便的应急方法也能很快搞定.
拆下损坏的编码器,装上新的编码器,并与轴固定.而使可调底座悬空并可自由旋转,把电机重新连入电路,把机器速度调为零,通电正常后按启动开关后有几种情况会发生,
相关文档
最新文档