向心加速度,向心力

合集下载

向心力,向心加速度说课稿

向心力,向心加速度说课稿

向心力,向心加速度说课稿向心力,向心加速度说课稿作为一位优秀的人民教师,时常需要用到说课稿,借助说课稿可以让教学工作更科学化。

怎样写说课稿才更能起到其作用呢?下面是小编帮大家整理的向心力,向心加速度说课稿,希望能够帮助到大家。

向心力,向心加速度说课稿篇1一、教材分析本节内容是高中物理教材第五章匀速圆周运动中的一节,在此之前,学生已经学习过匀速圆周运动的概念以及描述匀速圆周运动的物理量。

本节是本章的重点,学好这一节可以为学好本章应用部分以及万有引力知识作必要准备。

二、教学目标1.知识目标:理解什么是向心力,什么是向心加速度。

能运用向心力和向心加速度的公式解答有关问题。

2.能力目标:懂得用控制变量法研究物理问题,培养学生的实验能力、分析能力、解决实际问题的能力。

3.情感目标:学习科学研究方法和科学研究态度。

三、教学重点与难点1.重点:向心力大小与m、r、ω的关系2.难点:①理解向心力的概念②理解公式a=rw2和a=v2/r四、教学方法:由于学生刚刚步入高中,对高中物理学习还缺乏方法,习惯于硬套公式,而本节内容涉及公式较多,会给学生带来较大的困难,所以需要教师引导学生主动探究,自己归纳结论,理解记忆公式,从而达到能灵活运用的目的。

因此本课采用“引导探究”式教学法,该教学法以解决问题为中心,注重学生的独立钻研,着眼于创造思维的培养,充分发挥学生的主动性。

其主要程序是:提出问题→科学猜想→设计实验→探索研究→得出结论→指导实践。

它不仅重视知识的获得,而且更重视学生获取知识的过程及方法,更加突出了学生的主动学习。

学生活动约占课时的1/2,课堂气氛将比较活跃,能真正体现“以教为主导,以学为主体”的教学思想。

五、教学用具1.多媒体、录象短片、课件2.学生分组实验器材:弹簧秤,绳子,小球(若干个),圆珠笔杆套六、教学过程(一)向心力概念:复习上节内容,播放几个匀速圆周运动实例的录象短片,引导学生逐一进行受力分析,让学生发现,做匀速圆周运动的物体受到的合力总是指向轨迹圆心,从而得出向心力的`概念,理解向心力是做匀速圆周运动物体所受的合力,是按效果命名的,并理解它的方向和作用。

第4章:第2节 向心力与向心加速度

第4章:第2节 向心力与向心加速度

第2节向心力与向心加速度一、向心力及其方向阅读教材第71~73页“向心力”部分,知道向心力的概念及方向。

1.定义:做圆周运动的物体,受到的始终指向的效果力。

2.方向:始终指向,总是与运动方向。

3.作用效果:向心力只改变速度,不改变速度,因此向心力不做功。

4.来源:可能是、、或是它们的或分力。

做匀速圆周运动的物体,向心力就是物体受到的,做非匀速圆周运动的物体,向心力不是物体所受到的合外力。

二、向心力的大小阅读教材第72~73页“向心力的大小”部分,知道向心力的表达式,并会简单应用。

1.实验探究2.公式:F=或F=。

思考判断(1)探究向心力大小与哪些因素有关应采用控制变量法。

()(2)做匀速圆周运动的物体线速度越大,所需向心力越大。

()(3)做匀速圆周运动的物体运动半径越大,所需向心力越大。

()三、向心加速度阅读教材第70页“向心加速度”部分,知道向心加速度的概念,知道向心加速度方向的变化特点。

了解向心加速度与线速度、角速度及半径的几个关系表达式。

1.定义:做圆周运动的物体受到向心力的作用,存在一个由产生的加速度。

2.大小:a=或a=。

3.方向:与的方向一致,始终指向。

4.匀速圆周运动的性质:匀速圆周运动是加速度大小、方向的变加速运动。

思维拓展(1)有人说:根据a=v2r可知,向心加速度与半径成反比,根据a=ω2r可知,向心加速度与半径成正比,这是矛盾的。

你认为呢?(2)试分析做变速圆周运动的物体,其加速度的方向是否指向圆心。

答案(1)不矛盾。

说向心加速度与半径成反比是在线速度一定的情况下;说向心加速度与半径成正比是在角速度一定的情况下,所以二者并不矛盾。

(2)做变速圆周运动的物体,加速度的方向并不指向圆心。

对匀速圆周运动向心力的理解与应用[要点归纳]1.向心力的特点(1)方向:方向时刻在变化,始终指向圆心,与线速度的方向垂直。

(2)大小:F=m v2r=mrω2=mωv=m4π2T2r。

在匀速圆周运动中,向心力大小不变;在非匀速圆周运动中,其大小随速率v的变化而变化。

向心力与向心加速度

向心力与向心加速度

手 推 档 板
向心力演示仪
保持r、ω一定 保持r、m一定 F与r的关系 保持m、ω一定 r越大,F越大
1、F与m的关系
M越大,F越大 —— 控制变量法
2、F与ω的关系
ω越大,F越大
Fn=mrω2
结论:精ቤተ መጻሕፍቲ ባይዱ的实验表明:物体做圆周运动需要的向心力与物体的质量成正比,与半径成正比,与角速度的二次方成正比。即:
ω
O
A、B两球都做匀速圆周运动,A球质量为B球的3倍,A球在半径25cm的圆周上运动,B球在半径16cm的圆周上运动,A球转速为30r/min,B球转速为75r/min,求A球所受向心力与B球所受向心力之比?
线的一端系一个重物,手执线的另一端,使重物在光滑水平桌面上做匀速圆周运动。当转速(角速度)相同时,线长易断,还是线短易断?为什么?
关于匀速圆周运动,下列说法正确的是( ) 匀速圆周运动是一种匀速运动 匀速圆周运动是一种匀变速运动 匀速圆周运动是一种变加速运动 物体做圆周运动时其向心力不改变线速度的大小
C D
课堂练习:
课堂练习:
2、质量为m=1kg的物体相对转盘静止,随盘做匀速圆周运动的角速度ω=2rad/s,如果物体到转盘圆心的距离为R=0.5m,求物体做圆周运动的向心加速度及其受到的静摩擦力大小?
或:F=m
v2
r
F=mω2r
二、 向心加速度: ⑴ 大小: a =ω2r 或 a = V2/r ⑵ 方向: 沿半径指向圆心,方向不断 变化,是变加速运动。 ⑶ 物理意义: 表示速度方向变化快慢的物理量。
1、定义:
向心力
1
N
2
G
T
4
G
T
6
N

2-2向心力和向心加速度

2-2向心力和向心加速度

分析向心力的步骤是首先确定圆周运动的圆周所在的平面, 其次找出圆心的位置,然后分析圆周运动物体所受的力, 并作出受力图,最后找出这些力在指向圆心方向的合力就 是向心力.
自主学习
名师解疑
分类例析
课堂对点演练
活页规范训练
需要的向心力和提供的向心力的关系
(1)利用公式 Fn=mvr2=mω2r 得到的向心力是该条件下物 体做圆周运动需要的向心力. (2)对物体受力分析得到的指向圆心的力将提供向心力. (3)只有提供的向心力和需要的向心力相等时,物体才能 不脱离圆周轨道.
即 a1∶a2=nn122·rr12=64052×34=4∶3. 答案 4∶3
自主学习
名师解疑
分类例析
课堂对点演练
活页规范训练
匀速圆周运动与变速圆周运动有何不同?
1.变速圆周运动的物体的受力特点
物体做变加速圆周运动时,合外力
方 向 与 速 度 方 向 的 夹 角 小 于 90° ,
自主学习
名师解疑
分类例析
课堂对点演练
活页规范训练
(3)大小:an=mF=vr2= ω2r
4π2 = T2 r = 4π2f2r
= ωv .
(4)方向:总是沿着圆周的半径指向圆心,即方向始终与运动
方向垂直,方向时刻改变,所以匀速圆周运动一定是变加速
运动.
自主学习
名师解疑
分类例析
课堂对点演练
活页规范训练
自主学习
名师解疑
分类例析
课堂对点演练
活页规范训练
向心力和向心加速度的瞬时性 在向心力和向心加速度的公式中,Fn、an、v、ω分别指 做匀速圆周运动物体某一时刻或通过某位置时的向心力的 大小、向心加速度大小及线速度和角速度大小.公式中r 则为圆半径. 物体做变速圆周运动时,向心力和向心加速度的大小也是 变化的,以上有关向心力和向心加速度的公式虽然是从匀 速圆周运动中得出的,但它们对变速圆周运动仍然适 用.应用时要注意Fn、an、ω、v必须是同一时刻的瞬时 值. 在变速圆周运动中,求物体在某一点受到的向心力时,应 该使用该点的瞬时速度.

向心力与向心加速度

向心力与向心加速度

向心力与向心加速度引言在物理学中,向心力和向心加速度是研究物体在圆周运动中的重要概念。

它们直接关系到物体在环绕着某一中心点旋转时所受的力和加速度的大小与方向。

本文将对向心力和向心加速度进行详细的介绍和解释,并探讨它们在实际生活中的应用。

向心力向心力是指物体在圆周运动过程中受到的指向圆心的力。

也就是说,向心力是使物体沿着圆周运动的力。

在这种运动中,物体会不断改变方向,而向心力则起到了引导物体方向的作用。

向心力的大小可以通过以下公式来计算:其中,Fc是向心力,m是物体的质量,v是物体的速度,r是物体离中心的距离。

从上面的公式可以看出,向心力的大小与物体的质量、速度和离中心距离的平方成正比。

当物体的速度增大或者离中心距离减小时,向心力也会增大。

向心加速度向心加速度是指物体在圆周运动中产生的与向心力相对应的加速度。

它表示了物体在圆周运动过程中改变速度方向所需要的加速度大小。

向心加速度可以通过以下公式计算:其中,ac是向心加速度,v是物体的速度,r是物体离中心的距离。

根据这个公式,我们可以看到向心加速度的大小只与物体的速度和离中心距离有关。

当物体的速度增大或者离中心距离减小时,向心加速度也会增大。

应用实例向心力和向心加速度在实际生活中有着广泛的应用。

下面我们将介绍一些常见的应用实例。

1. 汽车在拐弯时的向心力当汽车在转弯时,会产生一个向心力,使车辆沿着转弯弯道运动。

这个向心力的大小取决于车辆的速度和转弯的半径。

如果车辆速度过快或者转弯半径过小,向心力就会增大,容易导致车辆失控。

因此,在驾驶汽车时,司机需要根据道路情况和速度合理选择转弯半径,以保证安全行驶。

2. 旋转式摩天轮的向心力旋转式摩天轮是一个经典的游乐项目,乘客可以坐在摩天轮的车厢中,沿着一个巨大的轮盘旋转。

在旋转过程中,乘客会感受到一种向心力的作用,使他们始终保持在轮盘上。

这种向心力是通过车厢沿着圆周运动所产生的,为乘客提供了一种垂直向内的加速度体验。

第四章 第2节 向心力与向心加速度

第四章  第2节  向心力与向心加速度
2 2π2 v 2 (5)在 x 轴方向,选用向心力公式 F2r 列方程求解,必要时再在 y 轴方向按 F 合 y=0 求解。
1.未来的星际航行中,宇航员长期处于零重力 状态,为缓解这种状态带来的不适,有人 设想在未来的航天器上加装一段圆柱形 “旋转舱”,如图 424 所示。当旋转舱绕其
4.方向 总是指向 圆心。所以,不论 a 的大小是否变化,它都是一 个变化的量。
1.自主思考——判一判 (1)做匀速圆周运动的物体所受到的向心力是恒力。 (2)向心力和重力、弹力、摩擦力一样,是性质力。 (3)向心力可以由某种性质的力来充当,是效果力。 (4)匀速圆周运动是加速度不变的运动。 (5)向心加速度描述线速度大小变化的快慢。 (6)匀速圆周运动的物体所受合外力一定指向圆心。 (× ) (× ) (√ ) ( ×) ( ×) ( √)
用细线拴住的小球 在竖直面内转动至 最高点时


向心力 线的拉力提供向心 力,F=T 转盘对物体的静摩 擦力提供向心力, F=f
示意图
用细线拴住小球在 光滑水平面内做匀 速圆周运动 物体随转盘做匀速 圆周运动,且相对 转盘静止
小球在细线作用下, 重力和细线的拉力 在水平面内做圆周 的合力提供向心力, 运动 F=F合
图 425
解析:(1)木马受骑在木马上的儿童和钢杆对它的作用力做匀 速圆周运动。木马受到的向心力由钢杆提供;儿童受到木马 对他的作用力和重力作用,向心力由木马提供。 (2)儿童所受向心力由木马提供且指向圆心,由 v2 F= m r 得 62 F=40× 3 N=480 N。 答案:(1)钢杆 木马 (2)480 N
[典例]
(多选)关于北京和广州随地球自转的向心加速度, ( )
下列说法中正确的是 A.它们的方向都是沿半径指向地心 B.它们的方向都在平行于赤道的平面内指向地轴 C.北京的向心加速度比广州的向心加速度大 D.北京的向心加速度比广州的向心加速度小

圆周运动向心加速度与向心力

圆周运动向心加速度与向心力

向心力与向心加速度的关系
总结词
向心力的大小与向心加速度的大小成正比,方向始终指向圆心。
详细描述
在圆周运动中,向心力的大小与向心加速度的大小成正比,方向始终指向圆心。当物体 受到的向心力增大或减小时,其向心加速度也相应增大或减小,使物体始终沿着圆周路
径运动。
04 圆周运动的实例分析
匀速圆周运动的向心力
物体沿着圆周轨迹运动,速度大小保持不变, 方向时刻变化。例如:旋转木马、钟表指针 等。
在匀速圆周运动中,向心加速度的大小恒定, 方向始终指向圆心,向心力的大小也恒定, 方向始终指向圆心。
变速圆周运动的实例
要点一
变速圆周运动
物体沿着圆周轨迹运动,速度大小或方向发生变化。例如 :过山车、赛车等。
详细描述
向心加速度的大小与线速度的平方成正比,与圆周运动的半 径成反比。当线速度一定时,半径越小,向心加速度越大; 当半径一定时,线速度越大,向心加速度越大。
向心加速度的方向判断
总结词
向心加速度的方向始终指向圆心,可以通过右手定则或左手定则来判断。
详细描述
右手定则:将右手手掌伸直,四指并拢且与线速度方向一致,大拇指与四指垂直,此时若手掌心向下,则向心加 速度方向垂直于掌心指向上;左手定则:将左手手掌伸直,四指并拢且与线速度方向一致,大拇指与四指垂直, 此时若手掌心向下,则向心加速度方向垂直于掌心指向下。
感谢您的观看
向心加速度的求解方法
求解向心加速度的方法有多种,可以通过牛顿第二定律、 运动学公式等求解。
05 圆周运动的应用与拓展
圆周运动在生活中的应用
车辆转弯
车辆在转弯时,由于向心 力的作用,外侧车轮的轮 缘会受到向内的挤压力, 使车辆顺利转弯。

向心力 向心加速度

向心力 向心加速度

向心力向心加速度1. 引言在物理学中,向心力和向心加速度是描述物体在进行圆周运动时受到的力和加速度。

向心力是一个沿着半径方向的力,使物体向圆心靠拢;向心加速度则是物体在圆周运动中加速度的大小。

本文将从向心力和向心加速度的定义、计算公式以及示例应用等方面进行详细介绍。

2. 向心力向心力是指物体在做圆周运动时受到的沿着半径方向的力。

向心力的大小与物体的质量、圆周运动的角速度以及物体与圆心的距离有关。

根据牛顿第二定律,向心力与物体的质量乘以向心加速度之间存在以下关系:F_c = m * a_c其中 F_c 表示向心力,m 表示物体的质量,a_c 表示向心加速度。

3. 向心加速度向心加速度是物体在圆周运动中加速度的大小。

根据物体在圆周运动中的速度变化情况,可以推导出向心加速度的计算公式。

假设物体以恒定的角速度ω 绕圆心运动,其线速度的大小为 v,根据几何关系可得:v = ω * r其中 v 表示线速度,r 表示物体与圆心的距离。

假设物体的线速度发生了Δv 的变化,由于圆周运动的特性,线速度的变化会导致物体发生向心加速度 a_c,根据加速度的定义可得:a_c = Δv / Δt将Δv替换为ω * Δr,其中Δr 表示物体在Δt 时间内与圆心的距离变化,可得:a_c = (ω * Δr) / Δt当Δt 趋近于 0 时,上式变为微分形式:a_c = (dω * dr) / dt对上式进行进一步推导,可以得到向心加速度的计算公式:a_c = ω^2 * r4. 示例应用4.1 行星绕太阳的向心力和向心加速度行星绕太阳做椭圆轨道运动,其向心力和向心加速度的计算可以通过开普勒第二定律和牛顿定律得到。

根据开普勒第二定律,行星在其椭圆轨道上的扫面面积相等。

根据牛顿定律,向心力使得行星保持在轨道上。

当行星靠近太阳时,向心力增大;当行星离开太阳越远,向心力减小。

根据向心力的定义和计算公式,可以计算出行星绕太阳的向心力和向心加速度。

【高中物理】向心力 向心加速度 课件 高一下学期物理人教版(2019)必修第二册

【高中物理】向心力 向心加速度 课件 高一下学期物理人教版(2019)必修第二册
2.保持绳的长度和小球的质量不变,改变小球转动的速度,感受向心力 的变化。
3.保持小球的质量和小球转动的速度不变,改变绳的长度,感受向心力 的变化。
猜想:向心力大小可能与小球质量、转动速度、转动半径有关。
探究向心力大小的表达式
1、体验向心力的大小 猜想:向心力大小可能与 _物__体__质__量__、_轨__道__半__径__、__运__动__快__慢_____ 有关 2、演示实验:用向心力演示器演示
【例1】 关于向心力的说法正确的是( B )
A.物体由于做圆周运动而产生了向心力 B.向心力不改变圆周运动中物体线速度的大小 C.对做匀速圆周运动的物体进行受力分析时,一定不要漏掉向心力 D.做匀速圆周运动的物体其向心力是不变的
【训练1】 如图所示,一圆盘可绕过圆盘中心O且垂直于 盘面的竖直轴转动,在圆盘上放一小木块A,它随圆盘 一起做匀速圆周运动,则关于木块A的受力,下列说法
【训练1】 (多选)如图所示,质量相等的A、B两物体紧贴 在绕中心轴OO′匀速转动的圆筒的竖直内壁上,随圆筒
一起做匀速圆周运动,则下列关系中正确的是( BC)
A.运动周期TA>TB B.筒壁对物体的弹力FNA>FNB C.线速度vA>vB D.物体受到的摩擦力FfA>FfB
03
变速圆周运动
当沿圆周运动的物体所受的合力指向圆心时,物体做匀速圆周运动。
ω
Ff FN
G
F合=FN = Fn
3.圆锥摆做匀速圆周运动
θ
F
小球绕中心做匀速圆周运动
G=mg
F合O r
小球所受绳子拉力和重力的合力充当向心力
F合=mgtanθ = Fn
4.小球在圆锥筒中做匀速圆周运动

向心加速度和向心力

向心加速度和向心力
思 考
加速度的定义式是什么?
速度的变化量Δv
Δv a = Δt
如何确 定Δv的 方向?
a 的方向与Δv 的方向相同
用 矢 量 图 表 示 速 度 变 化 量
曲线运动中的速度的变化量:
v1
v2
Δv
作法:从同一点作出物体在一段时间的始末两 个速度矢量v1和v2,从初速度v1的末端至末速度 v2的末端所作的矢量就是速度的变化量△v 。
[答案]
3R
2.要注意竖直平面内圆周运动的两种临界的不同: 分类 实例 最高点无支撑 球与绳连接、水流星、翻滚过 山车 最高点有支撑 球与杆连接,车过拱 桥、球过竖直管道、 套在圆环上的物体等
图示 重力、弹力 F 弹向下、 向上或等于零 v2 mg± F 弹=m r
弹向下或等于零 在最高 重力、弹力 F 2 v 点受力 mg+ F 弹 = m r
D
A
3.如图3所示,O1为皮带传动的主动轮的轴心, 轮半径为r1,O2为从动轮的轴心,轮半径为r2,r3 为固定在从动轮上的小轮的半径.已知r2=2r1, r3=1.5r1.A、B、C分别是3个轮边缘上的点,则 质点A、B、C的向心加速度之比是(假设皮带不打 滑)( ) A.1∶2∶3 B.2∶4∶3 C.8∶4∶3 D.3∶6∶2
[答案] (1)
sin θ+μcos θ gr cos θ-μsin θ
9如图 8所示,半径为R、内径很
小的光滑半圆管竖直放置,两个质量 均为m的小球A、B以不同的速度进入 管内。A通过最高点C 时,对管壁上部压力为3 mg,B通过最高 点C时,对管壁下部压力为0.75 mg,求A、B两球落地点间的距
力加速度g取10 m/s2)
(1)为使汽车转弯时不打滑,汽车行驶的最大速度 是多少?

向心力向心加速度公式

向心力向心加速度公式

向心力与向心加速度公式1. 引言在物理学中,我们经常研究物体在圆周运动中所受的力,这个力称为向心力,它的大小与物体的质量和向心加速度有关。

向心力与向心加速度之间存在直接的关系,并且这种关系可以通过一个简单的公式来描述。

本文将介绍向心力的概念及其与向心加速度的关系。

2. 向心力的定义和原理向心力是指物体在做圆周运动时,指向圆心的力的方向。

它是保持物体在圆周运动中向圆心方向运动的力,没有向心力物体就会离开圆周运动,朝向外侧飞出。

向心力的大小与物体的质量、角速度和圆周半径有关。

3. 向心力的公式向心力的大小可以通过以下公式计算:F = m * a_c其中,F表示向心力的大小,m表示物体的质量,a_c表示向心加速度。

4. 向心加速度的定义和计算向心力与向心加速度之间存在直接的关系,向心加速度是指物体在圆周运动过程中向圆心方向的加速度。

向心加速度的大小可以通过以下公式计算:a_c = v^2 / r其中,a_c表示向心加速度,v表示物体的速度,r表示圆周半径。

5. 推导向心力与向心加速度的关系现在我们来推导向心力与向心加速度的关系。

根据牛顿第二定律,向心力可以表示为质量乘以向心加速度:F = m * a_c由上述向心加速度的公式可知a_c = v^2 / r将向心加速度的表达式代入向心力的公式中:F = m * (v^2 / r)化简上式可得:F = m * v^2 / r即为向心力与向心加速度之间的关系式。

6. 示例假设有一个半径为2米的圆周运动,其质量为3千克,速度为4米/秒,现在我们来计算向心力和向心加速度。

首先,根据向心力的公式,我们可以计算得到:F = m * a_c= 3 * (4^2 / 2)= 24 N接下来,根据向心加速度的公式,我们可以计算得到:a_c = v^2 / r= 4^2 / 2= 8 m/s^2所以该圆周运动下所受的向心力为24牛顿,向心加速度为8米/秒^2。

7. 总结本文介绍了向心力与向心加速度的概念和原理,并给出了它们之间的关系公式。

向心力向心加速

向心力向心加速
匀速圆周运动是一种曲线运动, 由物体做曲线运动的条件可知,物体 必定受到一个与它的速度方向不在同 一条直线上的合外力作用,这个合外 力的方向有何特点呢?
观察并思考: ①小球受力? ②线的拉力方向有何特点? ③一旦线断或松手,结果如何?
第2页/共27页
一、向心力
1.向心力:要使物体做匀速圆周运动,必须使物体受 到与速度方向垂直而指向圆心的力作用,故名向心力。
• A.摆球A受重力、拉力和向心力的作用 • B.摆球A受拉力和向心力的作用 • C.摆球A受拉力和重力的作用 • D.摆球A受重力和向心力的作用
C
第18页/共27页
• 【例3】如下图所示,O1为皮带传动的主动轮 的轴心,轮半径为r1.O2为从动轮的轴心,轮 半径为r2.r3为固定在从动轮上的小轮半径.已 知r2=2rI,r3=1.5rl,A、B、C分别是3个轮边 缘上的点,则质点A、B、C的向心加速度之比 是(皮带不打滑) ( )
第7页/共27页
介绍: 向心力演示仪

FN



G
第8页/共27页
介绍: 向心力演示仪
手 推 档 板
第9页/共27页
介绍: 向心力演示仪
匀 速
FN

F




G
第10页/共27页
第11页/共27页
•精确的实验能表明向心力的大小 :
F mr 2 或 F m v2
r
向心力大小与多个变量有关.因此在 分析问题时,一定要利用控制变量的方法 来处理.即在设定其他量不变的条件下, 来分析所需向心力与某一变量的关系.
1 gtan 2 r lsin
第25页/共27页
• 10.如图所示,在半径为R的半圆形碗

向心力和向心加速度

向心力和向心加速度

龙文教育一对一个性化辅导教案学生志涛学校育才年级高一次数科目物理教师红日期时段课题向心力和向心加速度教学重点1、理解向心力的概念及其表达式的含义2、.知道向心力的大小与哪些因素有关,并能用来进行计算教学难点掌握向心加速度和线速度、角速度的关系,能够用向心加速度公式求解有关问题.教学目标掌握本节的相关知识判断教学步骤及教学容1、知识点的讲解与分析向心力1.定义:物体做匀速圆周运动时所受合力方向始终指向圆心,这个指向圆心的合力就叫做向心力.2.大小:F=mω2r=mv2r.3.方向:总是沿半径指向圆心,方向时刻改变.2、知识与生活的结合向心加速度1.定义:做匀速圆周运动的物体的加速度指向圆心,这个加速度称为向心加速度.2.大小:a=v2r=ω2r.3、例题讲解如图6所示为A、B两物体做匀速圆周运动的向心加速度随半径变化的图像,其中A为双曲线的一个分支,由图可知( )A.A物体运动的线速度大小不变 B.A物体运动的角速度大小不变C.B物体运动的角速度大小不变 D.B物体运动的角速度与半径成正比管理人员签字:日期:年月日向心力和向心加速度一、向心力1.定义:物体做匀速圆周运动时所受合力方向始终指向圆心,这个指向圆心的合力就叫做向心力.2.大小:F =m ω2r =m v 2r.3.方向:总是沿半径指向圆心,方向时刻改变. 二、向心加速度1.定义:做匀速圆周运动的物体的加速度指向圆心,这个加速度称为向心加速度.2.大小:a =v 2r=ω2r .3.方向:沿半径指向圆心,方向始终与运动方向垂直. [要点提炼]1.向心力的方向:总是沿着半径指向圆心,始终与线速度的方向垂直,方向时刻改变,所以向心力是变力.2.向心力的作用:只改变线速度的方向,不改变线速度的大小.3.向心力是效果力:向心力是根据力的作用效果命名的,不是性质力,它可以是重力、弹力、摩擦力等各种性质的力,也可以是它们的合力,或某个力的分力.注意在分析物体受力时,不能说物体还受一个向心力的作用,向心力可以是某一种性质力,也可以是几个性质力的合力或某一性质力的分力.一、对向心力的理解例1 (多选)关于做匀速圆周运动的物体所受的向心力,下列说确的是( ) A .因向心力总是沿半径指向圆心,且大小不变,故向心力是一个恒力 B .因向心力指向圆心,且与线速度的方向垂直,所以它不能改变线速度的大小 C .它是物体所受的合力D .向心力和向心加速度的方向都是不变的图3例2 如图3所示,有一个水平大圆盘绕过圆心的竖直轴匀速转动,小强站在距圆心为r 处的P 点相对圆盘静止.关于小强的受力,下列说确的是( ) A .小强在P 点不动,因此不受摩擦力作用B .若使圆盘以较小的转速转动时,小强在P 点受到的摩擦力为零C .小强随圆盘做匀速圆周运动,圆盘对他的摩擦力充当向心力D .如果小强随圆盘一起做变速圆周运动,那么其所受摩擦力仍指向圆心二、对向心加速度的理解及计算图4例3 如图4所示,一个大轮通过皮带拉着小轮转动,皮带和两轮之间无相对滑动,大轮的半径是小轮的2倍,大轮上的一点S 到转动轴的距离是大轮半径的13.当大轮边缘上P 点的向心加速度是12 m/s 2时,大轮上的S 点和小轮边缘上的Q 点的向心加速度分别是多少?三、圆周运动的动力学问题图5例4 如图5所示,半径为r 的圆筒绕竖直中心轴OO ′旋转,小物块a 靠在圆筒的壁上,它与圆筒壁间的动摩擦因数为μ,最大静摩擦力等于滑动摩擦力.现要使a 不下落,则圆筒转动的角速度ω至少为( ) A.μgr B.μg C.gr D.g μr1.(多选)(对向心力的理解)下列关于向心力的说法中正确的是( ) A .物体受到向心力的作用才可能做圆周运动B .向心力是指向圆心方向的合力,是根据力的作用效果来命名的,但受力分析时应该画出C .向心力可以是重力、弹力、摩擦力等各种力的合力,也可以是其中某一种力或某几种力的合力D.向心力只改变物体运动的方向,不改变物体运动的快慢2.(多选)(向心力来源分析)在马戏团表演的场地里,表演者骑在大象背上,大象绕着场地走动,若大象是沿着半径为R的圆周匀速走动,则关于大象和表演者的受力情况,下面说确的是( )A.表演者骑在大象背上不动,他受到的力是平衡力B.表演者的向心力是地面摩擦力通过大象作用于他的C.大象和表演者所受向心力大小与两者的质量成正比D.大象与表演者一起做匀速圆周运动的向心力是地面摩擦力提供的图63.(多选)(对向心加速度的理解及计算)如图6所示为A、B两物体做匀速圆周运动的向心加速度随半径变化的图像,其中A为双曲线的一个分支,由图可知( )A.A物体运动的线速度大小不变 B.A物体运动的角速度大小不变C.B物体运动的角速度大小不变 D.B物体运动的角速度与半径成正比图74.(圆周运动中的动力学问题)如图7所示,质量为1 kg的小球用细绳悬挂于O点,将小球拉离竖直位置释放后,到达最低点时的速度为2 m/s,已知球心到悬点的距离为1 m,重力加速度g=10 m/s2,求小球在最低点时对绳的拉力的大小.题组一对向心力的理解及其来源分析1.下列关于向心力的说法中正确的是( )A.物体由于做圆周运动而产生了一个向心力B.向心力会改变做圆周运动物体的速度大小C.做匀速圆周运动的物体其向心力即为其所受的合力D.做匀速圆周运动的物体其向心力是不变的图12.如图1所示,物体A、B随水平圆盘绕轴匀速转动,物体B在水平方向所受的作用力有( )A.圆盘对B及A对B的摩擦力,两力都指向圆心B.圆盘对B的摩擦力指向圆心,A对B的摩擦力背离圆心C.圆盘对B及A对B的摩擦力和向心力D.圆盘对B的摩擦力和向心力3.在水平面上,小猴拉着小滑块做匀速圆周运动,O点为圆心,能正确表示小滑块受到的牵引力F及摩擦力f的图是( )图24.多选)如图2所示,一小球用细绳悬挂于O点,将其拉离竖直位置一个角度后释放,则小球以O点为圆心做圆周运动,运动中小球所需的向心力是( )A.绳的拉力 B.重力和绳的拉力的合力C.重力和绳拉力的合力沿绳方向的分力 D.绳的拉力和重力沿绳方向的分力的合力图35.多选)一个小物块从壁粗糙的半球形碗边下滑,在下滑过程中由于摩擦力的作用,物块的速率恰好保持不变,如图3所示,下列说法中正确的是( )A.物块所受合外力为零 B.物块所受合外力越来越大C.物块所受合外力大小保持不变,但方向时刻改变 D.物块所受摩擦力大小变化题组二对向心力加速度的理解及其计算6.关于向心加速度,下列说法中正确的是( )A.向心加速度越大,物体速率变化得越快 B.向心加速度的大小与轨道半径成反比C.向心加速度的方向始终与线速度方向垂直 D.在匀速圆周运动中向心加速度是恒量图47.如图4所示,一圆环以直径AB为轴做匀速转动,P、Q、R是环上的三点,则下列说确的是( )A.向心加速度的大小a P=a Q=a R B.任意时刻P、Q、R三点向心加速度的方向不同C.线速度v P>v Q>v R D.任意时刻P、Q、R三点的线速度方向均不同图58.多选)如图5所示为摩擦传动装置,B轮转动时带动A轮跟着转动,已知转动过程中轮缘间无打滑现象,下列说法中正确的是( )A.A、B两轮转动的方向相同 B.A与B转动方向相反C.A、B转动的角速度之比为1∶3 D.A、B轮缘上点的向心加速度之比为3∶1图69.如图6所示,质量为m的木块从半径为R的半球形碗口下滑到碗的最低点的过程中,如果由于摩擦力的作用使木块的速率不变,那么( )A.加速度为零 B.加速度大小不变,方向时刻改变,但不一定指向圆心C.加速度恒定 D.加速度大小不变,方向时刻指向圆心图710.多选)一小球质量为m,用长为L的悬绳(不可伸长,质量不计)固定于O点,在O点正下方L2处钉有一颗光滑钉子.如图7所示,将悬线沿水平方向拉直无初速度释放后,当悬线碰到钉子后的瞬间,则( )A .小球的角速度突然增大B .小球的向心加速度突然增大为原来的两倍C .小球的线速度突然减小到零D .细线对小球的拉力突然增大为原来的两倍 题组三 圆周运动中的动力学问题11.多选)在光滑的水平面上,用长为l 的细线拴一质量为m 的小球,使小球以角速度ω做匀速圆周运动.下列说法中正确的是( )A .l 、ω不变,m 越大线越易被拉断B .m 、ω不变,l 越小线越易被拉断C .m 、l 不变,ω越大线越易被拉断D .m 不变,l 减半且角速度加倍时,线的拉力不变图812.如图8所示,在光滑杆上穿着两个小球m 1、m 2,有m 1=2m 2,用细线把两球连起来,当盘架匀速转动时,两小球刚好能与杆保持无相对滑动,此时两小球到转轴的距离r 1与r 2之比为( )A .1∶1B .1∶ 2C .2∶1D .1∶2图913.多选)如图9所示,在水平转台上放一个质量M =2 kg 的木块,它与转台间最大静摩擦力f max =6.0 N ,绳的一端系在木块上,穿过转台的中心孔O (孔光滑,忽略小滑轮的影响),另一端悬挂一个质量m =1.0 kg 的物体,当转台以角速度ω=5 rad/s 匀速转动时,木块相对转台静止,则木块到O 点的距离可能是(g 取10 m/s 2,M 、m 均视为质点)( ) A .0.04 m B .0.08 m C .0.16 m D .0.32 m图1014.如图10所示,水平转盘上放有质量为m 的物体(可视为质点),连接物体和转轴的绳子长为r,物体与转盘间的最大静摩擦力是其压力的μ倍,转盘的角速度由零逐渐增大,求:(1)绳子对物体的拉力为零时的最大角速度;(2)当角速度为3μg2r时,绳子对物体拉力的大小.。

向心加速度与向心力教案

向心加速度与向心力教案

向心加速度与向心力教案一、教学目标1. 让学生了解向心加速度的概念,理解向心加速度与切向加速度的区别。

2. 让学生掌握向心力的定义,了解向心力与质量、速度、半径的关系。

3. 培养学生运用物理知识解决实际问题的能力。

二、教学重点1. 向心加速度的概念及计算公式。

2. 向心力的定义及计算公式。

三、教学难点1. 向心加速度与切向加速度的区分。

2. 向心力与质量、速度、半径的关系。

四、教学方法1. 采用讲授法,讲解向心加速度和向心力的概念及计算公式。

2. 采用示例法,分析向心加速度和向心力的实际应用。

3. 采用讨论法,引导学生探讨向心加速度和向心力在生活中的意义。

五、教学内容1. 向心加速度的概念:物体在做圆周运动时,速度方向发生改变,产生加速度,称为向心加速度。

2. 向心加速度的计算公式:a = v²/r,其中v为速度,r为半径。

3. 向心力的定义:使物体做圆周运动的力,称为向心力。

4. 向心力的计算公式:F = mv²/r,其中m为质量,v为速度,r为半径。

5. 向心加速度与切向加速度的区别:向心加速度改变速度方向,切向加速度改变速度大小。

6. 向心力与质量、速度、半径的关系:质量越大,速度越大,半径越小,向心力越大。

7. 实际应用示例:汽车转弯时,轮胎与地面之间的摩擦力提供向心力,使汽车保持圆周运动。

8. 讨论:向心加速度和向心力在生活中的意义,如行星运动、匀速圆周运动等。

9. 练习题:计算给定条件下物体的向心加速度和向心力。

10. 总结:本节课学习了向心加速度和向心力的概念、计算公式及实际应用,了解了它们在生活中的重要性。

11. 作业:巩固向心加速度和向心力的计算,分析实际生活中的圆周运动现象。

12. 拓展:研究向心加速度和向心力在高级物理中的应用,如圆周运动的周期、角速度等。

13. 反馈:通过练习题和讨论,检查学生对向心加速度和向心力的掌握程度。

14. 教学评价:根据学生课堂表现、作业完成情况和练习题成绩,评价学生对向心加速度和向心力的理解与应用能力。

向心力、向心加速度

向心力、向心加速度

向心力、向心加速度1. 引言在物理学中,向心力与向心加速度是描述物体在圆周运动中受到的力和加速度。

向心力是指沿着半径方向向圆心指向的力,而向心加速度是物体在圆周运动中的加速度,指向圆心。

在本文中,我们将详细讨论向心力和向心加速度的概念、计算方法以及在实际生活和科学研究中的应用。

2. 向心力的概念和计算方法2.1 向心力的概念向心力是指物体在圆周运动中受到的沿着半径方向的力,它的作用方向始终指向圆心。

向心力的存在使得物体保持在圆周运动中,而不会沿半径方向飞出或飞入圆心。

2.2 向心力的计算方法根据牛顿第二定律(F=ma),向心力的计算可以通过以下公式得到:F = m * a_c其中,F表示向心力,m表示物体的质量,a_c表示物体在圆周运动中的向心加速度。

3. 向心加速度的概念和计算方法3.1 向心加速度的概念向心加速度是指物体在圆周运动中的加速度,它的方向始终指向圆心。

向心加速度的存在使得物体在圆周运动中加速,因此也被称为“圆周加速度”。

3.2 向心加速度的计算方法向心加速度可以用以下公式来计算:a_c = v^2 / r其中,a_c表示向心加速度,v表示物体的速度,r表示物体运动的半径。

4. 向心力和向心加速度的应用向心力和向心加速度在物理学和工程学中有许多应用。

以下是其中的几个例子:4.1 离心机离心机是一种利用向心力原理进行分离或加工的设备。

通过快速旋转容器,使得物质在向心力的作用下分离,常用于化学、生物等领域的实验和工业生产中。

4.2 路边栅栏的设计在道路旁设置栅栏时,需要考虑到车辆可能发生失控状况。

为了将失控的车辆引导到安全区域,栅栏的设计需要考虑向心力。

合理设置栅栏的形状和倾斜角度可以使失控的车辆受到向心力的作用,使其保持在道路边缘,减少事故发生的风险。

4.3 环形轨道上的列车运行在一些特定的交通工具,如环形轨道上的列车或过山车,向心力是保证乘客安全和行驶稳定的重要因素。

合理计算列车运行速度和曲线半径,确保乘客在运动过程中不会受到过大的向心力,是保证乘客舒适度的关键。

向心力及向心加速度

向心力及向心加速度

◆向心加速度表达式的应用技巧
(1)角速度相等时,研究an与v的关系用an=ωv分析比较。
(2)周期相等时,研究an与r的关系用an=
4 2 T2
r分析比较。
(3)线速度相等时,研究an与r的关系用an= v2 分析比较。
r
(4)线速度相等时,研究an与ω的关系用an=ωv分析比较。
高中物理 必修2 第五章 曲线运动
题8[2019·陕西长安一中高一检测]自
行车的小齿轮A、大齿轮B、后轮C是相
互关联的三个转动部分,且半径
RB=4RA、RC=8RA,如图所示。正常骑
行时三轮边缘的向心加速度之比
aA∶aB∶aC为( C )
A.1∶1∶8 C.4∶1∶32
B.4∶1∶4 D.1∶2∶4
做圆周运动的物体
认真学习总结大本55页
高中物理 必修2 第五章 曲线运动
向心力表达式:
F ma
v2 m
m 2r
m( 2
)2 r
r
T
m(2n)2 r mv
高中物理 必修2 第五章 曲线运动
几种常见模型分析
转 盘
练习:小本116页13
FN
F静 mg
高中物理 必修2 第五章 曲线运动
常考题型
题1 [2019•陕西长安一中高一检测]如图所示,水平转台 上放着一枚硬币,当转台匀速转动时,硬币没有滑动,关于 这种情况下硬币的受力情况,下列说法正确的是( D ) A.受重力和台面的支持力 B.受重力、台面的支持力和向心力 C.受重力、台面的支持力、向心力和静摩擦力 D.受重力、台面的支持力和静摩擦力
Ff
FN mg
O
FN+mg
高中物理 必修2 第五章 曲线运动

向心力 向心加速度

向心力  向心加速度

向心力向心加速度一、向心力、向心加速度基本概念1、曲线运动物体,合力沿速度方向的分力产生一个加速度改变速度大小,沿垂直速度方向的分力产生另一个加速度改变速度方向;换句话说只要力沿速度方向上就产生一个改变速度大小的加速度,只要力沿垂直速度方向就产生一个改变速度方向的加速度;2、做圆周运动的物体,其合力在速度方向上产生一个加速度改变速度大小,垂直于速度方向上的力产生加速度改变速度方向,由匀速圆周运动的特点可得,其合力在任意时刻都垂直于速度方向,从而在任意时刻产生一个加速度改变速度的方向,而不改变速度大小,而且这个力大小不变,才能保证在任意时间内改变速度方向的程度相同;由此我们可得匀速圆周运动的物体,合外力时刻垂直于速度方向,沿着半径指向圆心产生的加速度也时刻垂直于速度方向,沿着半径指向圆心改变速度方向而不改变速度大小,我们把这样的在在匀速圆周运动中时刻指向圆心改变速度方向的力就叫做向心力,此力产生的加速度只改变速度方向不改变速度大小且沿半径指向圆心叫做向心加速度;3、概念的理解:(1)向心力是个效果力,而不是个性质力,他来源可以是几个力的合力也可以是某个力的分力,还可以是单个力;没有产生它的原因,而是物体在做圆周运动过程中为了描述圆周运动而引进的一个效果力来表述匀速圆周运动的原因;即物体做匀速圆周运动动的原因是,物体受到的向心力就是物体的合外力,其大小恒定,方向时刻垂直于速度方向沿半径指向圆心,产生向心加速度时刻改变速度方向的原因;(2)向心力方向时刻垂直于速度方向,沿着半径指向圆心;所以向心力是个变力,同样向心加速度方向时刻垂直于速度反方向,沿半径指向圆心,时刻在变化;(3)向心力的作用就是产生向心加速度,只改变速度方向不改变速度大小;不是说质点做匀速圆周运动而产生向心力向心加速度,而是由于物体有向心力产生向心加速度而是物体做匀速圆周运动;(4)非匀变速圆周运动的向心力与匀变速运动的一样,大小相等,方向时刻垂直于速度反方向沿半径指向圆心,单飞匀速圆周运动处有个向心力外还有另一个力始终沿着速度方向,改变速度大小的变化,才是的速率不同;4、只要是物体做曲线运动,就一定有个向心力,产生一个向心加速度来改变速度的方向,只是这个向心力大小和方向都时刻在改变,使得在不同时间点对物体速度方向改变强度不同而不能做圆周运动结果做一般的曲线运动;只要已知物体曲线运动在曲线某点处,则向心力一定是指向该点对应圆周的半径;二、向心力和向心加速度计算1、向心加速度a的计算:有前面我们可得,a=△v/△t,由此进一步可得向心加速度得算公式an=v2/r 或an=w2r;2、由牛顿第二定律可得物体的向心力等于其质量和其向心加速度的乘积;即Fn=man=mv2/r=mw2r;3、由向心加速度和向心力计算可得:若已知物体在做圆周运动时的受力情况,就会已知物体做圆周运动的具体情况;进而解决有关圆周运动的问题;4、物体向心力向心加速度与牛二规律的关系:牛顿第二定律是给出物体速度大小的改变与其自身受力的关系;而向心力与向心加速度是给出了物体速度方向的改变与受力的关系;5、对一般的非匀速圆周运动,其合力肯定可以分解为沿垂直去速度方向的分力Fn和沿速度方向的分力Ft,其中Fn的大小不变,方向时刻沿半径指向圆心,提供了圆周运动的的向心力Fn,产生相对的向心加速度an是物体做圆周运动;而沿速度方向的分力Ft 满足牛顿第二定律,产生切向加速度at改变速度的大小;6、对曲线运动而言,曲线运动物体的合力一定可以分解为垂直于该点速度方向的力Fn和沿着速度方向的力Ft,其中Fn就是向心力提供向心加速度at,改变速度方向,只是这个Fn不像圆周运动的那样它的大小是变化的所以物体只能做曲线运动不能做圆周运动;Ft就是切向力产生切向加速度,满足牛顿第二定律改变速度的大小;三、圆周运动的相关问题1、物体在竖直平面圆周运动与轨道作用力间关系(过山车、汽车过桥)(1)当竖直平面上的圆周运动时,在最高处对轨道的压力小于本身重力;因为在圆周运动的最高处重力和轨道对其弹力的合力提供了物体运圆周动的向心力:Fn=mg-N=mv2r,所以N=mg-mv2r,所以对轨道的压力小于自身重力;为什么桥梁建造为拱形的原因;(2)当物体在轨道的最低点运动时,轨道弹力大于自身重力,因为绳子拉力和重力的合力提供向心力,N-mg=mv2r,即N=mg+mv2r;(3)当物体运动速度足够大时,在轨道最上端有N=mg-mv3r=0,此时物体对轨道压力或绳子拉力为0;2、物体在弯道上的圆周运动(汽车、火车转弯)(1)火车转弯:轨道是外高内低,所以理想状态下(轨道对火车轮没有弹力情况),火车自身的重力的一个分力提供了火车圆周运动向心力,一般是Fn=mgsinA,而sinA=tanA;但一般非理想时重力沿水平面分力和轨道弹力的合力共同提供向心力;(2)汽车转弯时轨道是外高内低的所以汽车自身重力沿水平面分力和对地面的摩擦力共同提供了向心力,当轨道是平面时,只有摩擦力提供向心力;3、物体在竖直平面内做圆周运动时零界问题(1)如果物体是由绳子相连做圆周运动,要是物体可以到达最高点,则在最高点处时,速度应该满足,mg=mv2r,当小于这个速度时,物体每到最高处就下落了;因为绳子只有拉力而没有弹力,(2)当物体在有轨道的圆周面运动或由一个杆子支持,只要物体在没有到达最高处时有速度,就一定可以当大最高点,当速度大于(1)中所求的零界速度,杆子或轨道对物体有竖直向下的力,当小于时,对物体有竖直向上的力;(3)在竖直面内运动时,物体在最低点时足有最大的速度,所以此时物体对轨道或绳子杆子的作用力最大,四、向心运动、离心运动1、做圆周运动的物体,由于惯性,物体总是沿着切线放方向飞出,它实际没有飞出,这是因为向心力拉着它,使其改变速度方向,不沿切线飞出;这就是圆周运动的实质,也是曲线运动的实质;但是当向心力消失后,物体一定会由于自身惯性而言切线方向飞出;2、我们知道物体受到的向心力与其线速度和角速度有的定的公式关系;但当其中变化时就会出现不同的运动形式(1)当物体所受向心力突然增大时,由与速度不能满足使其向心力和速度平衡,这是在力的作用下会拉动物体向内部移动,使物体做圆周运动的半径减小,速度增大,从而达到一个新的条件下的向心力和物体速度间的关系,这时物体向圆心靠近的运动称为向心运动;(2)当物体的向心力突然减小时,同样平很打破,由于速度此时大,由于惯性原因,向心力无法拉住它,这时物体远离圆心运动,使物体圆周运动的半径增大,速度减小,达到一个新的圆周运动,满足关系式,这样的物体远离圆心的运动就是离心运动;(3)当向心力不变,物体的速度增大时,由于惯性物体做离心运动;(4)当向心力不变,物体的速度减小时,由于向心力的拉动物体做向心运动;3、有关离心运动在实际中的应用(1)依靠离心运动的应用:①甩衣服脱水远离,衣服上的水由于速度很高,而衣服对其吸附力和摩擦力所提供的向心力远不能满足,而使水做离心运动,脱离衣服②伞上水珠一转就会飞出远离就是离心运动,(2)关于离心运动的防止:公路转弯一般要外高内低目的是增大汽车转弯过程的向心力,司机开车到转弯时要减速的原因;五、航天器失重的原理1、失重是由于物体对其支持力的压力或悬挂物的拉力为零的现象;2、竖直下落物体当期加速度为g时,有牛顿第二定律分析可得其两物体间作用力为零;3、地球上空飞行的航天器人处于完全失重状态为什么:有匀速圆周运动的性质可以得到,航天器做匀速圆周运动对一物体有G-N=mw2r;对而物体同样有G+N=mw2r,所以两式可得N 为零,所以可能(1)航天器(包括内部所有东西及构成元件)都处于完全失重状态,一切有重力原因产生的力都消失;(2)航天器(包括内部元件和所有东西)做匀速圆周运动的向心力都是自身重力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

向心加速度、向心力1.向心加速度:做匀速圆周运动的物体,加速度指向圆心,这个加速度称为向心加速度.2.表达式:a n =r v 2=rω2. 3向心力.牛顿第二定律:物体加速度的大小跟作用力成正比,跟物体的质量成反比,加速度的方向跟作用力的方向相同.表达式:F=ma.向心力和向心加速度具有相同的方向,都指向圆心,而且物体是在向心力的作用下做圆周运动,因此我们根据牛顿第二定律可知向心力的大小为:F n =m a n =m R v 2=m r ω2=mr(T2)2. 实验探究演示实验(验证上面的推导式):研究向心力跟物体质量m 、轨道半径r 、角速度ω的定量关系.实验装置:向心力演示器演示:摇动手柄,小球随之做匀速圆周运动.①向心力与质量的关系:ω、r 一定,取两球使m A =2m B ,观察:F A =2F B ,结论:向心力F ∝m.②向心力与半径的关系:m 、ω一定,取两球使r A =2r B ,观察:F A =2F B ,结论:向心力F ∝r.③向心力与角速度的关系:m 、r 一定,使ωA =2ωB ,观察:(学生读数)F A =4F B , 结论:向心力F ∝ω2.归纳总结:综合上述实验结果可知:物体做匀速圆周运动需要的向心力与物体的质量成正比,与半径成正比,与角速度的二次方成正比.但不能由一个实验、一个测量就得到定论,实际上要进行多次测量,大量实验,但我们不可能一一去做.由刚才所做的实验得出:m 、r 、ω越大,F 越大;若将实验稍加改进,如教材中所介绍的小实验,加一弹簧秤测出F ,可粗略得出结论.我们还可以设计很多实验都能得出这一结论,说明这是一个带有共性的结论.测出m 、r 、ω的值,可知向心力大小为:F=mrω2.二、实验:用圆锥摆粗略验证向心力表达式原理:如图所示,让细绳摆动带动小球做圆周运动,逐渐增大角速度直到绳刚好拉直,用秒表测出n 转的时间t ,计算出周期T ,根据公式计算出小球的角速度ω.用刻度尺测出圆半径r 和小球距悬点的竖直高度h,计算出角θ的正切值.向心力F=mgtan θ,测出数值验证公式mgtan θ=mrω2.课堂训练1.下列关于向心力的说法中,正确的是()A.物体由于做圆周运动产生了一个向心力B.做匀速圆周运动的物体,其向心力为其所受的合外力C.做匀速圆周运动的物体,其向心力不变D.向心加速度决定向心力的大小2.有长短不同、材料相同的同样粗细的绳子,各拴着一个质量相同的小球在光滑水平面上做匀速圆周运动,那么()A.两个小球以相同的线速度运动时,长绳易断B.两个小球以相同的角速度运动时,长绳易断C.两个球以相同的周期运动时,短绳易断D.不论如何,短绳易断3.A、B两质点均做匀速圆周运动,m A∶m B=R A∶R B=1∶2,当A转60转时,B 正好转45转,则两质点所受向心力之比为多少?.讨论交流1.强调:向心力不是像重力、弹力、摩擦力那样作为某种性质的力来命名的.它是从力的作用效果来命名的,凡是产生向心加速度的力,不管是属于哪种性质的力,都是向心力.2.由物体做曲线运动的条件可知,物体必定受到一个与它的速度方向不在同一条直线上的合外力作用,匀速圆周运动是一种曲线运动,匀速圆周运动合外力的方向有何特点呢?匀速圆周运动速率不变,方向始终垂直半径,说明合外力不会使速度大小发生变化,只改变速度方向,匀速圆周运动合外力的方向始终指向圆心.三、变速圆周运动和一般曲线运动问题:前面我们学习了加速度,做直线运动的物体其加速度可以改变物体运动的快慢,现在我们又学习了向心加速度,那么向心加速度是否也改变物体运动速度的大小?例题:如图所示,水平转盘的中心有个竖直小圆筒,质量为m 的物体A 放在转盘上,A 到竖直筒中心的距离为r.物体A 通过轻绳、无摩擦的滑轮与物体B 相连,B 与A 质量相同.物体A 与转盘间的最大静摩擦力是正压力的μ倍,则转盘转动的角速度在什么范围内,物体A 才能随盘转动?解析:由于A 在圆盘上随盘做匀速圆周运动,所以它所受的合外力必然指向圆心,而其中重力、支持力平衡,绳的拉力指向圆心,所以A 所受的摩擦力的方向一定沿着半径或指向圆心或背离圆心.当A 将要沿盘向外滑时,A 所受的最大静摩擦力指向圆心,A 的向心力为绳的拉力与最大静摩擦力的合力,即F+Fm ′=m ω12r ①由于B 静止,故F=mg ②由于最大静摩擦力是压力的μ倍,即Fm ′=μFN=μmg ③由①②③解得ω1=r g /)1(μ+当A 将要沿盘向圆心滑时,A 所受的最大静摩擦力沿半径向外,这时向心力为:F-Fm ′=m ω22r ④由②③④得ω2=r g /)1(μ-.故A 随盘一起转动,其角速度ω应满足r g r g /)1(/)1(μωμ+≤≤-. 答案:r g r g /)1(/)1(μωμ+≤≤-一、概念1、向心力:质点做匀速圆周运动时,受到一个沿着半径指向圆心的合外力,这个力称为向心力。

向心力是一个效果力2、向心加速度的方向:始终沿着半径指向圆心二、向心力的大小:F 向=mr ω2=m ν2/r三、向心加速度的大小:a= r ω2=ν2/r四、匀速圆周运动的特点:⑴ν:大小不变,方向始终沿着各点的切线方向,方向时刻改变 ⑵ F :大小不变,方向始终指向圆心,是变力 作用效果:只改变速度的方向,不改变速度的大小 ⑶ a :大小不变,方向始终指向圆心,是变加速度 它是表示物体速度方向改变快慢的物理量五、注意(1)向心力的来源:做匀速圆周运动的物体所需要的向心力就是物体所受的合力(2)a 的方向不断变化,所以匀速圆周运动是变加速曲线运动(3)向心力是一个效果力,可以是一个力,也可能是几个力的合力或某个力的分力,不能认为作圆周运动的物体受到一个特殊的力叫向心力。

变加速运动一、选择题1、如图所示,半径为r的圆筒,绕竖直中心轴OO′转动,小物块a靠在圆筒的内壁上,它与圆筒的动摩擦因数为μ,现要使a不下滑,则圆筒转动的角速度ω至少为()A. B. C. D.2、下面关于向心力的叙述中,正确的是()A.向心力的方向始终沿着半径指向圆心,所以是一个变力B.做匀速圆周运动的物体,除了受到别的物体对它的作用外,还一定受到一个向心力的作用C.向心力可以是重力、弹力、摩擦力中的某个力,也可以是这些力中某几个力的合力,或者是某一个力的分力D.向心力只改变物体速度的方向,不改变物体速度的大小3、关于向心力的说法,正确的是()A.物体由于做圆周运动而产生了一个向心力B.向心力不改变圆周运动物体速度的大小C.做匀速圆周运动的物体其向心力即为其所受的合外力D.做匀速圆周运动的物体其向心力大小不变4、在光滑水平面上相距20 cm的两点钉上A、B两个钉子,一根长1 m的细绳一端系小球,另一端拴在A钉上,如图所示.已知小球质量为0.4 kg,小球开始以2 m/s的速度做水平匀速圆周运动,若绳所能承受的最大拉力为4 N,则从开始运动到绳拉断历时为()A.2.4π sB.1.4π sC.1.2π sD.0.9π s5、如图所示,质量为m的木块,从半径为r的竖直圆轨道上的A点滑向B点,由于摩擦力的作用,木块的速率保持不变,则在这个过程中A.木块的加速度为零B.木块所受的合外力为零C.木块所受合外力大小不变,方向始终指向圆心D.木块所受合外力的大小和方向均不变6、甲、乙两名溜冰运动员,M甲=80 kg,M乙=40 kg,面对面拉着弹簧秤做圆周运动的溜冰表演,如图所示,两个相距0.9 m,弹簧秤的示数为9.2 N,下列判断正确的是()A.两人的线速度相同,约为40 m/sB.两人的角速度相同,为6 rad/sC.两人的运动半径相同,都是0.45 mD.两人的运动半径不同,甲为0.3 m,乙为0.6 m7、如图所示,在匀速转动的圆筒内壁上有一物体随圆筒一起转动而未滑动.若圆筒和物体以更大的角速度做匀速转动,下列说法正确的是()A.物体所受弹力增大,摩擦力也增B.物体所受弹力增大,摩擦力减小C.物体所受弹力减小,摩擦力也减D.物体所受弹力增大,摩擦力不变8、用细绳拴住一球,在水平面上做匀速圆周运动,下列说法中正确的是()A.当转速不变时,绳短易断B.当角速度不变时,绳短易断C.当线速度不变时,绳长易断D.当周期不变时,绳长易断9、如图,质量为m的木块从半径为R的半球形的碗口下滑到碗的最低点的过程中,如果由于摩擦力的作用使得木块的速率不变A.因为速率不变,所以木块加速度为零C.木块下滑过程中的摩擦力大小不变B.木块下滑的过程中所受的合外力越来越大D.木块下滑过程中的加速度大小不变,方向时刻指向球心10、如图所示,在光滑的以角速度ω旋转的细杆上穿有质量分别为m和M的两球,两球用轻细线连接.若M>m,则()A.当两球离轴距离相等时,两球相对杆不动B.当两球离轴距离之比等于质量之比时,两球相对杆都不动C.若转速为ω时,两球相对杆都不动,那么转速为2ω时两球也不动D.若两球相对杆滑动,一定向同一方向,不会相向滑动11、一物体以4m/s的线速度做匀速圆周运动,转动周期为2s,则物体在运动过程的任一时刻,速度变化率的大小为()A.2m/s2B.4m/s2C.0D.4π m/s212、在水平路面上安全转弯的汽车,向心力是()A.重力和支持力的合力B.重力、支持力和牵引力的合力C 汽车与路面间的静摩擦力 D.汽车与路面间的滑动摩擦力二、非选择题1、汽车沿半径为R的水平圆跑道行驶,路面作用于车的摩擦力的最大值是车重的1/10,要使汽车不致冲出圆跑道,车速最大不能超过多少?。

相关文档
最新文档