2016年青岛市数学中考试题
2023年山东省青岛市中考数学试卷(无答案)
2023年山东省青岛市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.生活中有许多对称美的图形,下列是中心对称图形但不是轴对称图形的是()A.B.C.D.2.的相反数是()A.﹣B.C.﹣7D.73.一个正方体截去四分之一,得到如图所示的几何体,其左视图是()A.B.C.D.4.中欧班列是共建“一带一路”的旗舰项目和明星品牌,是亚欧各国深化务实合作的重要载体.中欧班列“青岛号”自胶州开往哈萨克斯坦,全程7900公里.将7900用科学记数法表示为()A.0.79×103B.7.9×102C.7.9×103D.79×1025.如图,将线段AB先向左平移,使点B与原点O重合,再将所得线段绕原点旋转180°得到线段A′B′,则点A的对应点A′的坐标是()A.(2,﹣3)B.(﹣2,3)C.(3,﹣2)D.(﹣3,2)6.如图,直线a∥b,∠1=63°,∠B=45°,则∠2的度数为()A.105°B.108°C.117°D.135°7.下列计算正确的是()A.B.C.D.8.如图,四边形ABCD是⊙O的内接四边形,∠B=58°,∠ACD=40°.若⊙O的半径为5,则的长为()A.B.C.πD.9.如图,在正方形ABCD中,点E,F分别是AB,CD的中点,AF,DE相交于点M,G为BC上一点,N 为EG的中点.若BG=3,CG=1,则线段MN的长度为()A.B.C.2D.10.一个不透明小立方块的六个面上分别标有数字1,2,3,4,5,6,其展开图如图①所示.在一张不透明的桌子上,按图②方式将三个这样的小立方块搭成一个几何体,则该几何体能看得到的面上数字之和最小是()A.31B.32C.33D.34二、填空题(本大题共6小题,每小题3分,共18分)11.计算:8x 3y ÷(2x )2=.12.小颖参加“歌唱祖国”歌咏比赛,六位评委对小颖的打分(单位:分)如下:7,8,7,9,8,10.这六个分数的极差是分.13.反比例函数y =的图象经过点A (m ,),则反比例函数的表达式为.14.某校组织学生进行劳动实践活动,用1000元购进甲种劳动工具,用2400元购进乙种劳动工具,乙种劳动工具购买数量是甲种的2倍,但单价贵了4元.设甲种劳动工具单价为x 元,则x 满足的分式方程为.15.如图,在平面直角坐标系中,已知点A (1,0),P (﹣1,0),⊙P 过原点O ,且与x 轴交于另一点D ,AB 为⊙P 的切线,B 为切点,BC 是⊙P 的直径,则∠BCD 的度数为°.16.如图,二次函数y =ax 2+bx +c 的图象与正比例函数y =kx 的图象相交于A ,B 两点,已知点A 的横坐标为﹣3,点B 的横坐标为2,二次函数图象的对称轴是直线x =﹣1.下列结论:①abc <0;②3b +2c >0;③关于x 的方程ax 2+bx +c =kx 的两根为x 1=﹣3,x 2=2;④k =a .其中正确的是.(只填写序号)三、作图题(本大题满分4分)17.请用直尺、圆规作图,不写作法,但要保留作图痕迹.已知:△ABC .求作:点P ,使PA =PC ,且点P 在△ABC 边AB 的高上.四、解答题(本大题共9小题,共68分)18.(1)解不等式组:;(2)计算:(m﹣)•.19.今年4月15日是我国第八个“全民国家安全教育日”.为增强学生国家安全意识,夯实国家安全教育基础、某市举行国家安全知识竞赛.竞赛结束后,发现所有参赛学生的成绩(满分100分)均不低于60分.小明将自己所在班级学生的成绩(用x表示)分为四组:A组(60≤x<70),B 组(70≤x<80),C组(80≤x<90),D组(90≤x≤100),绘制了如图不完整的频数分布直方图和扇形统计图.根据以上信息,解答下列问题:(1)补全频数分布直方图;(2)扇形统计图中A组所对应的圆心角的度数为°;(3)把每组中各个同学的成绩用这组数据的中间值(如A组:60≤x<70的中间值为65)来代替,试估计小明班级的平均成绩;(4)小明根据本班成绩,估计全市参加竞赛的所有8000名学生中会有800名学生成绩低于70分,实际只有446名学生的成绩低于70分.请你分析小明估计不准确的原因.20.为了解我国的数学文化,小明和小红从《九章算术》《孙子算经》《海岛算经》(依次用A 、B 、C 表示)三本书中随机抽取一本进行阅读,小明先随机抽取一本,小红再从剩下的两本中随机抽取一本.请用列表或画树状图的方法表示所有可能出现的结果.并求抽取两本书中有《九章算术》的概率.21.太阳能路灯的使用,既方便了人们夜间出行,又有利于节能减排.某校组织学生进行综合实践活动——测量太阳能路灯电池板的宽度.如图,太阳能电池板宽为AB ,点O 是AB 的中点,OC 是灯杆.地面上三点D ,E 与C 在一条直线上,DE =1.5m ,EC =5m .该校学生在D 处测得电池板边缘点B 的仰角为37°,在E 处测得电池板边缘点B 的仰角为45°.此时点A 、B 与E 在一条直线上.求太阳能电池板宽AB 的长度.(结果精确到0.1m .参考数据:sin37°≈,cos37°≈,tan37°≈,≈1.41)22.如图①,正方形ABCD 的面积为1.(1)如图②,延长AB 到A 1,使A 1B =BA ,延长BC 到B 1,使B 1C =CB ,则四边形AA 1B 1D 的面积为;(2)如图③,延长AB 到A 2,使A 2B =2BA ,延长BC 到B 2,使B 2C =2CB ,则四边形AA 2B 2D 的面积为;(3)延长AB 到A n ,使A n B =nBA ,延长BC 到B n ,使B n C =nCB ,则四边形AA n B n D 的面积为.23.某服装店经销A,B两种T恤衫,进价和售价如下表所示:品名A B进价(元/件)4560售价(元/件)6690(1)第一次进货时,服装店用6000元购进A,B两种T恤衫共120件,全部售完获利多少元?(2)受市场因素影响,第二次进货时,A种T恤衫进价每件上涨了5元,B种T恤衫进价每件上涨了10元,但两种T恤衫的售价不变.服装店计划购进A,B两种T恤衫共150件,且B种T恤衫的购进量不超过A种T恤衫购进量的2倍.设此次购进A种T恤衫m件,两种T恤衫全部售完可获利W元.①请求出W与m的函数关系式;②服装店第二次获利能否超过第一次获利?请说明理由.24.如图,在▱ABCD中,∠BAD的平分线交BC于点E,∠DCB的平分线交AD于点F,点G,H分别是AE和CF的中点.(1)求证:△ABE≌△CDF;(2)连接EF.若EF=AF,请判断四边形GEHF的形状,并证明你的结论.25.许多数学问题源于生活.雨伞是生活中的常用物品,我们用数学的眼光观察撑开后的雨伞(如图①)、可以发现数学研究的对象——抛物线.在如图②所示的直角坐标系中,伞柄在y轴上,坐标原点O为伞骨OA,OB的交点.点C为抛物线的顶点,点A,B在抛物线上,OA、OB关于y轴对称.OC =1分米,点A到x轴的距离是0.6分米,A,B两点之间的距离是4分米.(1)求抛物线的表达式;(2)分别延长AO,BO交抛物线于点F,E,求E,F两点之间的距离;(3)以抛物线与坐标轴的三个交点为顶点的三角形面积为S1,将抛物线向右平移m(m>0)个单位,得到一条新抛物线,以新抛物线与坐标轴的三个交点为顶点的三角形面积为S2.若S2=S1,求m的值.26.如图,在菱形ABCD中,对角线AC,BD相交于点O,AB=10cm,BD=4cm.动点P从点A出发,沿AB方向匀速运动,速度为1cm/s;同时,动点Q从点A出发,沿AD方向匀速运动,速度为2cm/s.以AP,AQ为邻边的平行四边形APMQ的边PM与AC交于点E.设运动时间为t(s)(0<t≤5),解答下列问题:(1)当点M在BD上时,求t的值;(2)连接BE.设△PEB的面积为S(cm2),求S与t的函数关系式和S的最大值;(3)是否存在某一时刻t,使点B在∠PEC的平分线上?若存在,求出t的值;若不存在,请说明理由.。
2024年山东省青岛市中考数学模拟试题
2024年山东省青岛市中考数学模拟试题一、单选题1.12-的倒数是( )A .-2B .2C .12- D .122.下列图形是轴对称图形的是( )A .B .C .D . 3.一种病毒的直径约为0.0000001m ,将0.0000001m 用科学记数法表示为( ) A .1×107m B .1×10-6m C .1×10-7m D .10×10-8m 4.如图是一个空心圆柱体,其俯视图是( )A .B .C .D . 5.下列运算正确的是( )A .(﹣a 2)3=﹣a 5B .a 3•a 5=a 15C .(﹣a 2b 3)2=a 4b 6D .3a 2﹣2a 2=1 6.在如图所示的网格中,每个小正方形的边长均为1,ABC V 的三个顶点都是网格线的交点.已知(22)A -,,()12C --,,将ABC V 绕着点C 顺时针旋转90︒,则点B 对应点的坐标为()A .()2,2-B .()5,3--C .()2,2D .()0,07.如图,直线//a b ,一块含60°角的直角三角板ABC (60A ∠=︒)按如图所示放置.若155∠=︒,则∠2的度数为( )A .105°B .110°C .115°D .95°8.如图所示,在Rt △ABC 中∠A=25°,∠ACB=90°,以点C 为圆心,BC 为半径的圆交AB 于一点D,交AC 于点E,则∠DCE 的度数为( )A .30°B .25°C .40°D .50°9.如图,抛物线y =ax 2+bx +c 经过点(﹣1,0),与y 轴交于(0,2),抛物线的对称轴为直线x =1,则下列结论中:①a +c =b ;②方程ax 2+bx +c =0的解为﹣1和3;③2a +b =0;④c ﹣a >2,其中正确的结论有( )A .1个B .2个C .3个D .4个10.已知:如图,四边形AOBC 是矩形,以O 为坐标原点,OB OA 、分别在x 轴、y 轴上,点A 的坐标为 0,3 ,60OAB ∠=︒,以AB 为轴对折后,C 点落在D 点处,则D 点的坐标为( )A .32⎫-⎪⎭B .32⎛⎫- ⎪⎝⎭C .3,2⎛ ⎝D .(3,-二、填空题11.将代数式1235x y a b--化为只含有正整数指数幂的形式是. 12.不透明袋子中装有11个球,其中有6个红球,3个黄球,2个绿球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是红球的概率是.13.如图,A 、B 是函数12y x=上两点,P 为一动点,作PB y ∥轴,PA x ∥轴.若 3.6BOP S =V ,则ABP S =△.14.为了解我市城区居民日常出行方式的情况.某学习小组进行了问卷调查,共收回600份调查问卷,结果统计如下:根据以上调查结果,在制作扇形统计图时,以“骑自行车、电动车”为出行方式所在扇形的圆心角的度数为 .15.如图,已知正方形ABCD ,点E 在BC 上延长线上,连接AE 交CD 于点F ,△CEF 与四边形ABCF 的面积分别为1和8,则△ADF 的面积为.16.下列图形都是由相同的小正方形按照一定规律摆放而成的,照此规律排列下去,则第20个图中小正方形的个数是三、解答题17.如图,已知线段a 和∠α,求作△ABC ,使AB =a ,∠A =12∠α,∠B =∠α(使用直尺和圆规,并保留作图痕迹).18.(1)计算:(a ﹣2b a )÷222a ab b a++. (2)解不等式组:6241213x x x -≥⎧⎪+⎨>-⎪⎩. 19.将一枚六个面分别标有1,2,3,4,5,6的质地均匀的正方体骰子先后投掷两次,记第一次掷出的点数为a ,第二次掷出的点数为b .(1)求点(),a b 落在直线21y x =-上的概率;(2)求以点()0,0O ,()4,3A -,(),B a b 为顶点能构成等腰三角形的概率.20.为了深化课程改革,某校积极开展校本课程建设,计划成立“文学鉴赏”、“科学实验”、“音乐舞蹈”和“手工编织”等多个社团,要求每位学生都自主选择其中一个社团.为此,随机调查了本校各年级部分学生选择社团的意向,并将调查结果绘制成如下统计图表(不完整):根据统计图表中的信息,解答下列问题: (1)本次调查的学生总人数为;(2)补全条形统计图; (3)将调查结果绘成扇形统计图,则“音乐舞蹈”社团所在扇形所对应的圆心角为; (4)若该校共有1200名学生,试估计全校选择“科学实验”社团的学生人数为. 21.如图,C 地在A 地的正东方向,因有大山阻隔,由A 地到C 地需要绕行B 地,已知B 位于A 地北偏东67°方向,距离A 地520 km ,C 地位于B 地南偏东30°方向,若打通穿山隧道,建成两地直达高铁,求A 地到C 地之间高铁线路的长.(结果保留整数)参考数据:(sin67°≈1213;cos67°≈513;tan67°≈125)22.如图,四边形ABCD 是O e 的内接四边形,四边形ABCD 两组对边的延长线分别相交于点E ,F ,且40E ∠=︒,50F ∠=︒,连接BD .(1)求A ∠的度数;(2)当O e 的半径等于2时,请直接写出弧BD 的长(结果保留π)23.如图,二次函数y=12x 2+bx+c 的图象交x 轴于A 、D 两点并经过B 点,已知A 点坐标是(2,0),B 点的坐标是(8,6).(1)求二次函数的解析式;(2)求函数图象的顶点坐标及D 点的坐标;(3)该二次函数的对称轴交x 轴于C 点,连接BC ,并延长BC 交抛物线于E 点,连接BD ,DE ,求△BDE 的面积.24.如图,在平面直角坐标系xOy 中,已知()90A ,、()912B ,,点M 、N 分别是线段OB 、AB 上的动点,速度分别是每秒53个单位、2个单位,作MH OA ⊥于H .现点M 、N 分别从点O 、A 同时出发,当其中一点到达端点时,另一个点也随之停止运动,设运动时间为t 秒(0t ≥).(1)是否存在t的值,使四边形BMHN为平行四边形?若存在,求出t的值;若不存在,说明理由;(2)是否存在t的值,使△OMH与以点A、N、H为顶点的三角形相似?若存在,求出t 的值;若不存在,说明理由;(3)是否存在t的值,使四边形BMHN为菱形?若存在,求出t的值;若不存在,请探究将点N的速度改变为何值时(匀速运动),能使四边形BMHN在某一时刻为菱形.25.某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B 货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A 货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?。
2016年中考数学真题试题及答案(word版)
(2)共12种情况,有6种情况两次摸到相同颜色棋子,所以概率为 . 24. 解:(1)设第一批购进水果x千克,则第二批购进水果2.5千克,依
据题意得: ,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700, 答:这两批水果功够进700千克; (2)设售价为每千克a元,则: , 630a≥7500×1.26,∴ ,∴a≥15,答:售价至少为每千克15元. 25. (1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD, ∠EAB=90°+∠EAD, ∴∠GAD=∠EAB,又∵AG=AE,AB=AD,∴△GAD≌△EAB, ∴EB=GD; (2)EB⊥GD,理由如下:连接BD,由(1)得:∠ADG=∠ABE,则 在△BDH中, ∠DHB=180°-(∠HDB+∠HBD)=180°-90°=90°,∴EB⊥GD; (3)设BD与AC交于点O,∵AB=AD=2在Rt△ABD中,DB= , ∴EB=GD= . 26. 解:(1)由y=0得,ax2-2ax-3a=0,∵a≠0,∴x2-2x-3=0,解得 x1=-1,x2=3, ∴点A的坐标(-1,0),点B的坐标(3,0); (2)由y=ax2-2ax-3a,令x=0,得y=-3a,∴C(0,-3a),又 ∵y=ax2-2ax-3a=a(x-1)2-4a,得D(1,-4a),∴DH=1,CH=-4a(-3a)=-a,∴-a=1,∴a=-1,∴C(0,3),D(1,4), 设直线CD的解析式为y=kx+b,把C、D两点的坐标代入得, ,解得 , ∴直线CD的解析式为y=x+3; (3)存在.由(2)得,E(-3,0),N(-
保密 ★ 启用前
2016年中考真题数学试卷
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的 四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题 卡内相应的位置上) 1、计算的结果是( ) A、 B、 C、1 D、22、若∠α的余角是30°,则cosα的值是( ) A、 B、 C、 D、 3、下列运算正确的是( ) A、 B、 C、 D、4、下列图形是轴对称图形,又是中心对称 图形的有( )
2016年山东省菏泽市中考数学试卷(含答案解析)
2016年山东省菏泽市中考数学试卷一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项涂在答题卡相应位置)1.(3分)下列各对数是互为倒数的是()A.4和﹣4 B.﹣3和C.﹣2和 D.0和02.(3分)以下微信图标不是轴对称图形的是()A.B.C.D.3.(3分)如图所示,该几何体的俯视图是()A.B.C.D.4.(3分)当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣35.(3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.56.(3分)在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论正确的有()①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④7.(3分)如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为()A.25:9 B.5:3 C.:D.5:38.(3分)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为()A.36 B.12 C.6 D.3二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内)9.(3分)2016年春节期间,在网络上用“百度”搜索引擎搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为.10.(3分)如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是.11.(3分)某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是岁.12.(3分)已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m=.13.(3分)如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC=.14.(3分)如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x 轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=.三、解答题(本题共78分,把解答和证明过程写在答题卡的相应区域内)15.(6分)计算:2﹣2﹣2cos60°+|﹣|+(π﹣3.14)0.16.(6分)已知4x=3y,求代数式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2的值.17.(6分)南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+)海里的C处,为了防止某国海巡警干扰,就请求我A处的渔监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求A、C 之间的距离.18.(6分)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)19.(7分)如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.20.(7分)如图,在平面直角坐标系xOy中,双曲线y=与直线y=﹣2x+2交于点A(﹣1,a).(1)求a,m的值;(2)求该双曲线与直线y=﹣2x+2另一个交点B的坐标.21.(10分)如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.(1)求证:PC是⊙O的切线;(2)若PC=3,PF=1,求AB的长.22.(10分)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是.(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是.(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.23.(10分)如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE中AE边上的高,试证明:AE=2CM+BN.24.(10分)在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.2016年山东省菏泽市中考数学试卷参考答案与试题解析一、选择题(本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项A、B、C、D中,只有一个选项是正确的,请把正确的选项涂在答题卡相应位置)1.(3分)下列各对数是互为倒数的是()A.4和﹣4 B.﹣3和C.﹣2和 D.0和0【分析】根据倒数的定义可知,乘积是1的两个数互为倒数,据此求解即可.【解答】解:A、4×(﹣4)≠1,选项错误;B、﹣3×≠1,选项错误;C、﹣2×(﹣)=1,选项正确;D、0×0≠1,选项错误.故选C.【点评】主要考查了倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.要求掌握并熟练运用.2.(3分)以下微信图标不是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解,看图形是不是关于直线对称.【解答】解:A、是轴对称图形;B、是轴对称图形;C、是轴对称图形;D、不是轴对称图形.故选D.【点评】本题主要考查了轴对称的概念,轴对称的关键是寻找对称轴,两边图象折叠后可重合.3.(3分)如图所示,该几何体的俯视图是()A.B.C.D.【分析】根据俯视图是从物体的上面看得到的视图进行解答即可.【解答】解:从上往下看,可以看到选项C所示的图形.故选:C.【点评】本题考查了三视图的知识,掌握俯视图是从物体的上面看得到的视图是解题的关键.4.(3分)当1<a<2时,代数式|a﹣2|+|1﹣a|的值是()A.﹣1 B.1 C.3 D.﹣3【分析】根据a的取值范围,先去绝对值符号,再计算求值.【解答】解:当1<a<2时,|a﹣2|+|1﹣a|=2﹣a+a﹣1=1.故选:B.【点评】此题考查的知识点是代数式求值及绝对值,关键是根据a的取值,先去绝对值符号.5.(3分)如图,A,B的坐标为(2,0),(0,1),若将线段AB平移至A1B1,则a+b的值为()A.2 B.3 C.4 D.5【分析】直接利用平移中点的变化规律求解即可.【解答】解:由B点平移前后的纵坐标分别为1、2,可得B点向上平移了1个单位,由A点平移前后的横坐标分别是为2、3,可得A点向右平移了1个单位,由此得线段AB的平移的过程是:向上平移1个单位,再向右平移1个单位,所以点A、B均按此规律平移,由此可得a=0+1=1,b=0+1=1,故a+b=2.故选:A.【点评】本题考查了坐标系中点、线段的平移规律,在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.6.(3分)在▱ABCD中,AB=3,BC=4,当▱ABCD的面积最大时,下列结论正确的有()①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.A.①②③B.①②④C.②③④D.①③④【分析】当▱ABCD的面积最大时,四边形ABCD为矩形,得出∠A=∠B=∠C=∠D=90°,AC=BD,根据勾股定理求出AC,即可得出结论.【解答】解:根据题意得:当▱ABCD的面积最大时,四边形ABCD为矩形,∴∠A=∠B=∠C=∠D=90°,AC=BD,∴AC==5,①正确,②正确,④正确;③不正确;故选:B.【点评】本题考查了平行四边形的性质、矩形的性质以及勾股定理;得出▱ABCD的面积最大时,四边形ABCD为矩形是解决问题的关键.7.(3分)如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为()A.25:9 B.5:3 C.:D.5:3【分析】先根据等腰三角形的性质得到∠B=∠C,∠B′=∠C′,根据三角函数的定义得到AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,然后根据三角形面积公式即可得到结论.【解答】解:过A 作AD⊥BC于D,过A′作A′D′⊥B′C′于D′,∵△ABC与△A′B′C′都是等腰三角形,∴∠B=∠C,∠B′=∠C′,BC=2BD,B′C′=2B′D′,∴AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,∵∠B+∠B′=90°,∴sinB=cosB′,sinB′=cosB,∵S△BAC=AD•BC=AB•sinB•2AB•cosB=25sinB•cosB,S△A′B′C′=A′D′•B′C′=A′B′•cosB′•2A′B′•sinB′=9sinB′•cosB′,∴S△BAC :S△A′B′C′=25:9.故选A.【点评】本题考查了互余两角的关系,解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰三角形的性质和三角形面积公式.8.(3分)如图,△OAC和△BAD都是等腰直角三角形,∠ACO=∠ADB=90°,反比例函数y=在第一象限的图象经过点B,则△OAC与△BAD的面积之差S△OAC﹣S△BAD为()A.36 B.12 C.6 D.3【分析】设△OAC和△BAD的直角边长分别为a、b,结合等腰直角三角形的性质及图象可得出点B的坐标,根据三角形的面积公式结合反比例函数系数k的几何意义以及点B的坐标即可得出结论.【解答】解:设△OAC和△BAD的直角边长分别为a、b,则点B的坐标为(a+b,a﹣b).∵点B在反比例函数y=的第一象限图象上,∴(a+b)×(a﹣b)=a2﹣b2=6.∴S△OAC ﹣S△BAD=a2﹣b2=(a2﹣b2)=×6=3.故选D.【点评】本题考查了反比例函数系数k的几何意义、等腰三角形的性质以及面积公式,解题的关键是找出a2﹣b2的值.本题属于基础题,难度不大,解决该题型题目时,设出等腰直角三角形的直角边,用其表示出反比例函数上点的坐标是关键.二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后结果填写在答题卡的相应区域内)9.(3分)2016年春节期间,在网络上用“百度”搜索引擎搜索“开放二孩”,能搜索到与之相关的结果个数约为45100000,这个数用科学记数法表示为 4.51×107.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于45100000有8位,所以可以确定n=8﹣1=7.【解答】解:45100000这个数用科学记数法表示为4.51×107.故答案为:4.51×107.【点评】此题考查科学记数法表示较大的数的方法,准确确定a与n值是关键.10.(3分)如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是15°.【分析】过A点作AB∥a,利用平行线的性质得AB∥b,所以∠1=∠2,∠3=∠4=30°,加上∠2+∠3=45°,易得∠1=15°.【解答】解:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故答案为15°.【点评】本题考查了平行线的性质:两直线平行,内错角相等.11.(3分)某校九年级(1)班40名同学中,14岁的有1人,15岁的有21人,16岁的有16人,17岁的有2人,则这个班同学年龄的中位数是15岁.【分析】根据中位数的定义找出第20和21个数的平均数,即可得出答案.【解答】解:∵该班有40名同学,∴这个班同学年龄的中位数是第20和21个数的平均数,∵15岁的有21人,∴这个班同学年龄的中位数是15岁;故答案为:15.【点评】此题考查了中位数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),熟练掌握中位数的定义是本题的关键.12.(3分)已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m= 6.【分析】根据m是关于x的方程x2﹣2x﹣3=0的一个根,通过变形可以得到2m2﹣4m值,本题得以解决.【解答】解:∵m是关于x的方程x2﹣2x﹣3=0的一个根,∴m2﹣2m﹣3=0,∴m2﹣2m=3,∴2m2﹣4m=6,故答案为:6.【点评】本题考查一元二次方程的解,解题的关键是明确题意,找出所求问题需要的条件.13.(3分)如图,在正方形ABCD外作等腰直角△CDE,DE=CE,连接BE,则tan∠EBC=.【分析】作EF⊥BC于F,如图,设DE=CE=a,根据等腰直角三角形的性质得CD=CE=a,∠DCE=45°,再利用正方形的性质得CB=CD=a,∠BCD=90°,接着判断△CEF为等腰直角三角形得到CF=EF=CE=a,然后在Rt△BEF中根据正切的定义求解.【解答】解:作EF⊥BC于F,如图,设DE=CE=a,∵△CDE为等腰直角三角形,∴CD=CE=a,∠DCE=45°,∵四边形ABCD为正方形,∴CB=CD=a,∠BCD=90°,∴∠ECF=45°,∴△CEF为等腰直角三角形,∴CF=EF=CE=a,在Rt△BEF中,tan∠EBF===,即tan∠EBC=.故答案为.【点评】本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.也考查了等腰直角三角形的性质.14.(3分)如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x 轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=﹣1.【分析】将这段抛物线C1通过配方法求出顶点坐标及抛物线与x轴的交点,由旋转的性质可以知道C1与C2的顶点到x轴的距离相等,且OA1=A1A2,照此类推可以推导知道点P(11,m)为抛物线C6的顶点,从而得到结果.【解答】解:∵y=﹣x(x﹣2)(0≤x≤2),∴配方可得y=﹣(x﹣1)2+1(0≤x≤2),∴顶点坐标为(1,1),∴A1坐标为(2,0)∵C2由C1旋转得到,∴OA1=A1A2,即C2顶点坐标为(3,﹣1),A2(4,0);照此类推可得,C3顶点坐标为(5,1),A3(6,0);C4顶点坐标为(7,﹣1),A4(8,0);C5顶点坐标为(9,1),A5(10,0);C6顶点坐标为(11,﹣1),A6(12,0);∴m=﹣1.故答案为:﹣1.【点评】本题考查了二次函数的性质及旋转的性质,解题的关键是求出抛物线的顶点坐标.三、解答题(本题共78分,把解答和证明过程写在答题卡的相应区域内)15.(6分)计算:2﹣2﹣2cos60°+|﹣|+(π﹣3.14)0.【分析】原式利用负整数指数幂法则,特殊角的三角函数值,绝对值的代数意义,以及零指数幂法则计算即可得到结果.【解答】解:原式=﹣2×+2+1=+2.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.16.(6分)已知4x=3y,求代数式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2的值.【分析】首先利用平方差公式和完全平方公式计算,进一步合并,最后代入求得答案即可.【解答】解:(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2=x2﹣4xy+4y2﹣(x2﹣y2)﹣2y2=﹣4xy+3y2=﹣y(4x﹣3y).∵4x=3y,∴原式=0.【点评】此题考查整式的化简求值,注意先化简,再代入求得数值即可.17.(6分)南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+)海里的C处,为了防止某国海巡警干扰,就请求我A处的渔监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求A、C 之间的距离.【分析】作AD⊥BC,垂足为D,设CD=x,利用解直角三角形的知识,可得出AD,继而可得出BD,结合题意BC=CD+BD可得出方程,解出x的值后即可得出答案.【解答】解:如图,作AD⊥BC,垂足为D,由题意得,∠ACD=45°,∠ABD=30°.设CD=x,在Rt△ACD中,可得AD=x,在Rt△ABD中,可得BD=x,又∵BC=20(1+),CD+BD=BC,即x+x=20(1+),解得:x=20,∴AC=x=20(海里).答:A、C之间的距离为20海里.【点评】此题考查了解直角三角形的应用,解答本题的关键是根据题意构造直角三角形,将实际问题转化为数学模型进行求解,难度一般.18.(6分)列方程或方程组解应用题:为了响应“十三五”规划中提出的绿色环保的倡议,某校文印室提出了每个人都践行“双面打印,节约用纸”.已知打印一份资料,如果用A4厚型纸单面打印,总质量为400克,将其全部改成双面打印,用纸将减少一半;如果用A4薄型纸双面打印,这份资料的总质量为160克,已知每页薄型纸比厚型纸轻0.8克,求A4薄型纸每页的质量.(墨的质量忽略不计)【分析】设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,然后根据“双面打印,用纸将减少一半”列方程,然后解方程即可.【解答】解:设A4薄型纸每页的质量为x克,则A4厚型纸每页的质量为(x+0.8)克,根据题意,得:=2×,解得:x=3.2,经检验:x=3.2是原分式方程的解,且符合题意,答:A4薄型纸每页的质量为3.2克.【点评】本题主要考查分式方程的应用,根据题意准确找到相等关系并据此列出方程是解题的关键.19.(7分)如图,点O是△ABC内一点,连结OB、OC,并将AB、OB、OC、AC的中点D、E、F、G依次连结,得到四边形DEFG.(1)求证:四边形DEFG是平行四边形;(2)若M为EF的中点,OM=3,∠OBC和∠OCB互余,求DG的长度.【分析】(1)根据三角形的中位线平行于第三边并且等于第三边的一半可得EF∥BC且EF=BC,DG∥BC且DG=BC,从而得到DE=EF,DG∥EF,再利用一组对边平行且相等的四边形是平行四边形证明即可;(2)先判断出∠BOC=90°,再利用直角三角形斜边的中线等于斜边的一半,求出EF即可.【解答】解:(1)∵D、G分别是AB、AC的中点,∴DG∥BC,DG=BC,∵E、F分别是OB、OC的中点,∴EF∥BC,EF=BC,∴DG=EF,DG∥EF,∴四边形DEFG是平行四边形;(2)∵∠OBC和∠OCB互余,∴∠OBC+∠OCB=90°,∴∠BOC=90°,∵M为EF的中点,OM=3,∴EF=2OM=6.由(1)有四边形DEFG是平行四边形,∴DG=EF=6.【点评】此题是平行四边形的判定与性质题,主要考查了平行四边形的判定和性质,三角形的中位线,直角三角形的性质,解本题的关键是判定四边形DEFG 是平行四边形.20.(7分)如图,在平面直角坐标系xOy中,双曲线y=与直线y=﹣2x+2交于点A(﹣1,a).(1)求a,m的值;(2)求该双曲线与直线y=﹣2x+2另一个交点B的坐标.【分析】(1)将A坐标代入一次函数解析式中即可求得a的值,将A(﹣1,4)坐标代入反比例解析式中即可求得m的值;(2)解方程组,即可解答.【解答】解:(1)∵点A的坐标是(﹣1,a),在直线y=﹣2x+2上,∴a=﹣2×(﹣1)+2=4,∴点A的坐标是(﹣1,4),代入反比例函数y=,∴m=﹣4.(2)解方程组解得:或,∴该双曲线与直线y=﹣2x+2另一个交点B的坐标为(2,﹣2).【点评】此题考查了一次函数与反比例函数的交点问题,涉及的知识有:反比例函数的图象上点的坐标特征,待定系数法确定函数解析式,熟练掌握待定系数法是解本题的关键.21.(10分)如图,直角△ABC内接于⊙O,点D是直角△ABC斜边AB上的一点,过点D作AB的垂线交AC于E,过点C作∠ECP=∠AED,CP交DE的延长线于点P,连结PO交⊙O于点F.(1)求证:PC是⊙O的切线;(2)若PC=3,PF=1,求AB的长.【分析】(1)连接OC,欲证明PC是⊙O的切线,只要证明PC⊥OC即可.(2)延长PO交圆于G点,由切割线定理求出PG即可解决问题.【解答】解:(1)如图,连接OC,∵PD⊥AB,∴∠ADE=90°,∵∠ECP=∠AED,又∵∠EAD=∠ACO,∴∠PCO=∠ECP+∠ACO=∠AED+∠EAD=90°,∴PC⊥OC,∴PC是⊙O切线.(2)解法一:延长PO交圆于G点,∵PF×PG=PC2,PC=3,PF=1,∴PG=9,∴FG=9﹣1=8,∴AB=FG=8.解法二:设⊙O的半径为x,则OC=x,OP=1+x∵PC=3,且OC⊥PC∴32+x2=(1+x)2解得x=4∴AB=2x=8【点评】本题考查切线的判定、切割线定理、等角的余角相等等知识,解题的关键是熟练运用这些知识解决问题,学会添加常用辅助线,属于中考常考题型.22.(10分)锐锐参加我市电视台组织的“牡丹杯”智力竞答节目,答对最后两道单选题就顺利通关,第一道单选题有3个选项,第二道单选题有4个选项,这两道题锐锐都不会,不过锐锐还有两个“求助”可以用(使用“求助”一次可以让主持人去掉其中一题的一个错误选项).(1)如果锐锐两次“求助”都在第一道题中使用,那么锐锐通关的概率是.(2)如果锐锐两次“求助”都在第二道题中使用,那么锐锐通关的概率是.(3)如果锐锐将每道题各用一次“求助”,请用树状图或者列表来分析他顺利通关的概率.【分析】(1)锐锐两次“求助”都在第一道题中使用,第一道肯定能对,第二道对的概率为,即可得出结果;(2)由题意得出第一道题对的概率为,第二道题对的概率为,即可得出结果;(3)用树状图得出共有6种等可能的结果,锐锐顺利通关的只有1种情况,即可得出结果.【解答】解:(1)第一道肯定能对,第二道对的概率为,所以锐锐通关的概率为;故答案为:;(2)锐锐两次“求助”都在第二道题中使用,则第一道题对的概率为,第二道题对的概率为,所以锐锐能通关的概率为×=;故答案为:;(3)锐锐将每道题各用一次“求助”,分别用A,B表示剩下的第一道单选题的2个选项,a,b,c表示剩下的第二道单选题的3个选项,树状图如图所示:共有6种等可能的结果,锐锐顺利通关的只有1种情况,∴锐锐顺利通关的概率为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.(10分)如图,△ACB和△DCE均为等腰三角形,点A,D,E在同一直线上,连接BE.(1)如图1,若∠CAB=∠CBA=∠CDE=∠CED=50°①求证:AD=BE;②求∠AEB的度数.(2)如图2,若∠ACB=∠DCE=120°,CM为△DCE中DE边上的高,BN为△ABE中AE边上的高,试证明:AE=2CM+BN.【分析】(1)①通过角的计算找出∠ACD=∠BCE,再结合△ACB和△DCE均为等腰三角形可得出“AC=BC,DC=EC”,利用全等三角形的判定(SAS)即可证出△ACD≌△BCE,由此即可得出结论AD=BE;②结合①中的△ACD≌△BCE可得出∠ADC=∠BEC,再通过角的计算即可算出∠AEB的度数;(2)根据等腰三角形的性质结合顶角的度数,即可得出底角的度数,利用(1)的结论,通过解直角三角形即可求出线段AD、DE的长度,二者相加即可证出结论.【解答】(1)①证明:∵∠CAB=∠CBA=∠CDE=∠CED=50°,∴∠ACB=∠DCE=180°﹣2×50°=80°.∵∠ACB=∠ACD+∠DCB,∠DCE=∠DCB+∠BCE,∴∠ACD=∠BCE.∵△ACB和△DCE均为等腰三角形,∴AC=BC,DC=EC.在△ACD和△BCE中,有,∴△ACD≌△BCE(SAS),∴AD=BE.②解:∵△ACD≌△BCE,∴∠ADC=∠BEC.∵点A,D,E在同一直线上,且∠CDE=50°,∴∠ADC=180°﹣∠CDE=130°,∴∠BEC=130°.∵∠BEC=∠CED+∠AEB,且∠CED=50°,∴∠AEB=∠BEC﹣∠CED=130°﹣50°=80°.(2)证明:∵△ACB和△DCE均为等腰三角形,且∠ACB=∠DCE=120°,∴∠CDM=∠CEM=×(180°﹣120°)=30°.∵CM⊥DE,∴∠CMD=90°,DM=EM.在Rt△CMD中,∠CMD=90°,∠CDM=30°,∴DE=2DM=2×=2CM.∵∠BEC=∠ADC=180°﹣30°=150°,∠BEC=∠CEM+∠AEB,∴∠AEB=∠BEC﹣∠CEM=150°﹣30°=120°,∴∠BEN=180°﹣120°=60°.在Rt△BNE中,∠BNE=90°,∠BEN=60°,∴BE==BN.∵AD=BE,AE=AD+DE,∴AE=BE+DE=BN+2CM.【点评】本题考查了等腰三角形的性质、全等三角形的判定及性质、解直角三角形以及角的计算,解题的关键是:(1)通过角的计算结合等腰三角形的性质证出△ACD≌△BCE;(2)找出线段AD、DE的长.本题属于中档题,难度不大,但稍显繁琐,解决该题型题目时,利用角的计算找出相等的角,再利用等腰三角形的性质找出相等的边或角,最后根据全等三角形的判定定理证出三角形全是关键.24.(10分)在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.【分析】(1)根据待定系数法即可解决问题.(2)求出直线BC与对称轴的交点H,根据S△BDC =S△BDH+S△DHC即可解决问题.(3)由,当方程组只有一组解时求出b的值,当直线y=﹣x+b 经过点C时,求出b的值,当直线y=﹣x+b经过点B时,求出b的值,由此即可解决问题.【解答】解:(1)由题意解得,∴抛物线解析式为y=x2﹣x+2.(2)∵y=x2﹣x+2=(x﹣1)2+.∴顶点坐标(1,),∵直线BC为y=﹣x+4,∴对称轴与BC的交点H(1,3),∴S△BDC =S△BDH+S△DHC=•3+•1=3.(3)由消去y得到x2﹣x+4﹣2b=0,当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0,∴b=,当直线y=﹣x+b经过点C时,b=3,当直线y=﹣x+b经过点B时,b=5,∵直线y=﹣x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,∴<b≤3.【点评】本题考查待定系数法确定二次函数解析式、二次函数性质等知识,解题的关键是求出对称轴与直线BC交点H坐标,学会利用判别式确定两个函数图象的交点问题,属于中考常考题型.。
【真题】青岛市中考数学试题含答案
山东省青岛市中考数学试题第Ⅰ卷(共24分)一、选择题:本大题共8个小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.观察下列四个图形,中心对称图形是()A. B. C. D.2.斑叶兰被列为国家二级保护植物,它的一粒种子重约0.0000005克.将0.0000005用科学记数法表示为()A.7510⨯ B.7510-⨯ C.60.510-⨯ D.6510-⨯3.如图,点A所表示的数的绝对值是()A.3 B.3- C.13D.13-4.计算()32335a a a-⋅的结果是()A.565a a- B.695a a- C.64a- D.64a5.如图,点A B C D、、、在O上,140AOC∠=︒,点B是AC的中点,则D∠的度数是()A.70︒ B.55︒ C.35.5︒ D.35︒6.如图,三角形纸片ABC,,90AB AC BAC=∠=︒,点E为AB中点.沿过点E的直线折叠,使点B与点A重合,折痕现交于点F.已知32EF=,则BC的长是()A 32.32.3 D.7.如图,将线段AB 绕点P 按顺时针方向旋转90︒,得到线段A B '',其中点A B 、的对应点分别是点A B ''、,,则点A '的坐标是( )A .()1,3-B .()4,0C .()3,3-D .()5,1- 8.已知一次函数by x c a=+的图象如图,则二次函数2y ax bx c =++在平面直角坐标系中的图象可能是( ) A .B .C . D .第Ⅱ卷(共96分)二、填空题(每题3分,满分18分,将答案填在答题纸上)9.已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为22S S 甲乙、,则2S 甲 2S 乙(填“>”、“=”、“<”)10.计算:12122cos30-︒= .11.5月份,甲、乙两个工厂用水量共为200吨.进入夏季用水高峰期后,两工厂积极响应国家号召,采取节水措施.6月份,甲工厂用水量比5月份减少了15%,乙工厂用水量比5月份减少了10%,两个工厂6月份用水量共为174吨,求两个工厂5月份的用水量各是多少.设甲工厂5月份用水量为x 吨,乙工厂5月份用水量为y 吨,根据题意列关于,x y 的方程组为 .12.已知正方形ABCD 的边长为5,点E F 、分别在AD DC 、上,2AE DF ==,BE 与AF 相交于点G ,点H 为BF 的中点,连接GH ,则GH 的长为 .13.如图,Rt ABC ∆,90,30B C ∠=︒∠=︒,O 为AC 上一点,2OA =,以O 为圆心,以OA 为半径的圆与CB 相切于点E ,与AB 相交于点F ,连接OE OF 、,则图中阴影部分的面积是 .14.一个由16个完全相同的小立方块搭成的几何体,其最下面一层摆放了 9个小立方块,它的主视图和左视图如图所示,那么这个几何体的搭法共有 种.三、作图题:本大题满分4分.15. 已知:如图,ABC ∠,射线BC 上一点D .求作:等腰PBD ∆,使线段BD 为等腰PBD ∆的底边,点P 在ABC ∠内部,且点P 到ABC ∠两边的距离相等.四、解答题 (本大题共9小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.(1)解不等式组:21,321614x x -⎧<⎪⎨⎪+>⎩ (2)化简:22121x x x x ⎛⎫+-⋅ ⎪-⎝⎭.17.小明和小亮计划暑期结伴参加志愿者活动.小明想参加敬老服务活动,小亮想参加文明礼仪宣传活动.他们想通过做游戏来决定参加哪个活动,于是小明设计了一个游戏,游戏规则是:在三张完全相同的卡片上分别标记4、5、6三个数字,一人先从三张卡片中随机抽出一张,记下数字后放回,另一人再从中随机抽出一张,记下数字,若抽出的两张卡片标记的数字之和为偶数,则按照小明的想法参加敬老服务活动,若抽出的两张卡片标记的数字之和为奇数,则按照小亮的想法参加文明礼仪宣传活动.你认为这个游戏公平吗?请说明理由.18.八年级(1 )班研究性学习小组为研究全校同学课外阅读情况,在全校随机邀请了部分同学参与问卷调查,统计同学们一个月阅读课外书的数量,并绘制了以下统计图.请根据图中信息解决下列问题:(1)共有名同学参与问卷调查;(2)补全条形统计图和扇形统计图;(3)全校共有学生1500人,请估计该校学生一个月阅读2本课外书的人数约为多少.19.某区域平面示意图如图,点O在河的一侧,AC和BC表示两条互相垂直的公路.甲勘测员在A处测得点O位于北偏东45︒,乙勘测员在B处测得点O位于南偏西73.7︒,测得840,500AC m BC m==.请求出点O到BC的距离.参考数据:2473.7s25in︒≈,773.7c s25o︒≈,2473.7ta7n︒≈20.已知反比例函数的图象经过三个点()()()124,3,2,,6,A B m y C m y --,其中0m >.(1)当124y y -=时,求m 的值;(2)如图,过点B C 、分别作x 轴、y 轴的垂线,两垂线相交于点D ,点P 在x 轴上, 若三角形PBD 的面积是8,请写出点P 坐标(不需要写解答过程).21.已知:如图,ABCD ,对角线AC 与BD 相交于点E ,点G 为AD 的中点,连接CG ,CG 的延长线交BA 的延长线于点F ,连接FD .(1)求证:AB AF =;(2)若,120AG AB BCD =∠=︒,判断四边形ACDF 的形状,并证明你的结论.22.某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司 按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y (万件)与售价x (元/件)之间满足函数关系式26y x =-+.(1)求这种产品第一年的利润1W (万元)与售价x (元/件)满足的函数关系式; (2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润2W 至少为多少万元.23.问题提出:用若干相同的一个单位长度的细直木棒,按照下图方式搭建一个长方体框架,探究所用木棒条数的规律.问题探究:我们先从简单的问题开始探究,从中找出解决问题的方法. 探究一用若干木棒来搭建横长是m ,纵长是n 的矩形框架(m n 、是正整数),需要木棒的条数. 如图①,当1,1m n ==时,横放木棒为()111⨯+条,纵放木棒为()111+⨯条,共需4条; 如图②,当2,1m n ==时,横放木棒为()211⨯+条,纵放木棒为()211+⨯条,共需7条;如图③,当2,2m n ==时,横放木棒为()221⨯+)条,纵放木棒为()212+⨯条,共需12条; 如图④,当3,1m n ==时,横放木棒为()311⨯+条,纵放木棒为()311+⨯条,共需10条;如图⑤,当3,2m n ==时,横放木棒为()321⨯+条,纵放木棒为()312+⨯条,共需17条.问题(一):当4,2m n ==时,共需木棒 条.问题(二):当矩形框架横长是m ,纵长是n 时,横放的木棒为 条, 纵放的木棒为 条. 探究二用若干木棒来搭建横长是m ,纵长是n ,高是s 的长方体框架(m n s 、、是正整数),需要木 棒的条数. 如图⑥,当3,2,1m n s ===时,横放与纵放木棒之和为()()()32131211=34⨯+++⨯⨯+⎡⎤⎣⎦条,竖放木棒为()()3121112+⨯+⨯=条,共需46条;如图⑦,当3,2,2m n s ===时,横放与纵放木棒之和为()()()3213122151⨯+++⨯⨯+=⎡⎤⎣⎦条,竖放木棒为()()3121224+⨯+⨯=条,共需75条;如图⑧,当3,2,3m n s ===时,横放与纵放木棒之和为()()()32131231=68⨯+++⨯⨯+⎡⎤⎣⎦条,竖放木棒为()()3121336+⨯+⨯=条,共需104条.问题(三):当长方体框架的横长是m ,纵长是n ,高是s 时,横放与纵放木棒条数之和 为 条,竖放木棒条数为 条.实际应用:现在按探究二的搭建方式搭建一个纵长是2、高是4的长方体框架,总共使用了170条木棒,则这个长方体框架的横长是 .拓展应用:若按照如图方式搭建一个底面边长是10,高是5的正三棱柱框架,需要木棒 条.24.已知:如图,四边形ABCD ,//,AB DC CB AB ⊥,16,6,8AB cm BC cm CD cm ===,动点P 从点D 开始沿DA 边匀速运动,动点Q 从点A 开始沿AB 边匀速运动,它们的运动速度均为2/cm s .点P 和点Q 同时出发,以QA QP 、为边作平行四边形AQPE ,设运动的时间为()t s ,05t <<.根据题意解答下列问题: (1)用含t 的代数式表示AP ;(2)设四边形CPQB 的面积为()2S cm ,求S 与t 的函数关系式; (3)当QP BD ⊥时,求t 的值;(4)在运动过程中,是否存在某一时刻t ,使点E 在ABD ∠的平分线上?若存在,求出t 的值;若不存在,请说明理由.11 / 11。
2017年山东省青岛市中考数学试卷(含答案解析版)
2017年山东省青岛市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题3分,共24分)1.(3分)(2017•青岛)﹣的相反数是()A.8 B.﹣8 C.D.﹣【考点】14:相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣的相反数是,故选:C.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(3分)(2017•青岛)下列四个图形中,是轴对称图形,但不是中心对称图形的是()A.B.C.D.【考点】R5:中心对称图形;P3:轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、是轴对称图形,也是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,不合题意;D、不是轴对称图形,是中心对称图形,不合题意.故选:A.【点评】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(2017•青岛)小明家1至6月份的用水量统计如图所示,关于这组数据,下列说法中错误的()A.众数是6吨B.平均数是5吨C.中位数是5吨D.方差是【考点】W7:方差;W1:算术平均数;W4:中位数;W5:众数.【分析】根据众数、平均数、中位数和方差的定义计算各量,然后对各选项进行判断.【解答】解:这组数据的众数为6吨,平均数为5吨,中位数为5。
5吨,方差为.故选C.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了平均数、众数、中位数.4.(3分)(2017•青岛)计算6m6÷(﹣2m2)3的结果为()A.﹣m B.﹣1 C.D.﹣【考点】4H:整式的除法;47:幂的乘方与积的乘方.【分析】根据整式的除法法则即可求出答案.【解答】解:原式=6m6÷(﹣8m6)=﹣故选(D)【点评】本题考查整式的除法,解题的关键是熟练运用整式的除法法则,本题属于基础题型.5.(3分)(2017•青岛)如图,若将△ABC绕点O逆时针旋转90°,则顶点B的对应点B1的坐标为()A.(﹣4,2)B.(﹣2,4)C.(4,﹣2)D.(2,﹣4)【考点】R7:坐标与图形变化﹣旋转.【分析】利用网格特征和旋转的性质,分别作出A、B、C的对应点A1、B1、C1,于是得到结论.【解答】解:如图,点B1的坐标为(﹣2,4),故选B.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等.6.(3分)(2017•青岛)如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD的度数为()A.100°B.110°C.115° D.120°【考点】M5:圆周角定理.【分析】连接AC,根据圆周角定理,可分别求出∠ACB=90°,∠ACD=20°,即可求∠BCD的度数.【解答】解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠AED=20°,∴∠ACD=20°,∴∠BCD=∠ACB+∠ACD=110°,故选B.【点评】此题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7.(3分)(2017•青岛)如图,▱ABCD的对角线AC与BD相交于点O,AE⊥BC,垂足为E,AB=,AC=2,BD=4,则AE的长为()A.B.C.D.【考点】L5:平行四边形的性质.【分析】由勾股定理的逆定理可判定△BAO是直角三角形,所以平行四边形ABCD 的面积即可求出.【解答】解:∵AC=2,BD=4,四边形ABCD是平行四边形,∴AO=AC=1,BO=BD=2,∵AB=,∴AB2+AO2=BO2,∴∠BAC=90°,∵在Rt△BAC中,BC===S△BAC=×AB×AC=×BC×AE,∴×2=AE,∴AE=,故选D.【点评】本题考查了勾股定理的逆定理和平行四边形的性质,能得出△BAC是直角三角形是解此题的关键.8.(3分)(2017•青岛)一次函数y=kx+b(k≠0)的图象经过A(﹣1,﹣4),B(2,2)两点,P为反比例函数y=图象上一动点,O为坐标原点,过点P作y轴的垂线,垂足为C,则△PCO的面积为()A.2 B.4 C.8 D.不确定【考点】G5:反比例函数系数k的几何意义;F8:一次函数图象上点的坐标特征.【分析】根据待定系数法,可得k,b,根据反比例函数图象上的点垂直于坐标轴得到的三角形的面积等于|k|的一半,可得答案.【解答】解:将A(﹣1,﹣4),B(2,2)代入函数解析式,得,解得,P为反比例函数y=图象上一动点,反比例函数的解析式y=,P为反比例函数y=图象上一动点,O为坐标原点,过点P作y轴的垂线,垂足为C,则△PCO的面积为|k|=2,故选:A.【点评】本题考查了反比例函数图象上点的坐标特征,利用反比例函数图象上的点垂直于坐标轴得到的三角形的面积等于|k|的一半二、填空题(本大题共6小题,每小题3分,共18分)9.(3分)(2017•青岛)近年来,国家重视精准扶贫,收效显著,据统计约65000000人脱贫,65000000用科学记数法可表示为6。
往年山东省青岛市中考数学真题及答案
往年山东省青岛市中考数学真题及答案一. 选择题(本题满分24分,共有8小题,每小题3分)1.( 3分)(往年•青岛)﹣2的绝对值是()B.﹣2 C.D.2A.﹣2.( 3分)(往年•青岛)下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.3.( 3分)(往年•青岛)如图,正方体表面上画有一圈黑色线条,则它的左视图是()A.B.C.D.4.( 3分)(往年•青岛)已知,⊙O1与⊙O2的半径分别是4和6,O1O2=2,则⊙O1与⊙O2的位置关系是()A.内切B.相交C.外切D.外离5.( 3分)(往年•青岛)某次知识竞赛中,10名学生的成绩统计如下:分数(分)60 70 80 90 100人数(人) 1 1 5 2 1则下列说法正确的是()A.学生成绩的极差是4 B.学生成绩的众数是5C.学生成绩的中位数是80分D.学生成绩的平均数是80分6.( 3分)(往年•青岛)如图,将四边形ABCD先向左平移3个单位,再向上平移2个单位,那么点A的对应点A′的坐标是()A.( 6,1)B.( 0,1)C.( 0,﹣3)D.( 6,﹣3)7.( 3分)(往年•青岛)用图中两个可自由转动的转盘做“配紫色”游戏:分别旋转两个转盘,若其中一个转出红色,另一个转出蓝色即可配成紫色.那么可配成紫色的概率是()A.B.C.D.8.( 3分)(往年•青岛)点A( x1,y1),B( x2,y2),C( x3,y3)都是反比例函数的图象上,若x1<x2<0<x3,则y1,y2,y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3二. 填空题(本题满分18分,共有6道小题,每小题3分)9.( 3分)(往年•青岛)计算:(﹣3)0+= _________ .10.( 3分)(往年•青岛)为改善学生的营养状况,中央财政从2011年秋季学期起,为试点地区在校生提供营养膳食补助,一年所需资金约为160亿元,用科学记数法表示为_ 元.11.( 3分)(往年•青岛)如图,点A. B. C在⊙O上,∠AOC=60°,则∠ABC的度数是_________ .12.( 3分)(往年•青岛)如图,在一块长为22米. 宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米.若设道路宽为x米,则根据题意可列出方程为_________ .13.( 3分)(往年•青岛)如图,Rt△ABC中,∠ACB=90°,∠ABC=30°,AC=1,将△ABC绕点C逆时针旋转至△A′B′C′,使得点A′恰好落在AB上,连接BB′,则BB′的长度为_________ .14.( 3分)(往年•青岛)如图,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底3cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为_________ cm.三. 作图题(本题满分4分)用圆规. 直尺作图,不写作法,但要保留作图痕迹.15.( 4分)(往年•青岛)已知:线段a,c,∠α.求作:△ABC.使BC=a,AB=c,∠ABC=∠α.结论:四. 解答题(本题满分74分,共有9道小题)16.( 8分)(往年•青岛)( 1)化简:( 2)解不等式组:.17.( 6分)(往年•青岛)某校为开展每天一小时阳光体育活动,准备组建篮球. 排球. 足球. 乒乓球四个兴趣小组,并规定每名学生至少参加1个小组,也可兼报多个小组.该校对八年级全体学生报名情况进行了抽样调查,并将所得数据制成如下两幅统计图:根据图中的信息解答下列问题:( 1)补全条形统计图;( 2)若该校八年级共有400名学生,估计报名参加2个兴趣小组的人数;( 3)综合上述信息,谈谈你对该校即将开展的兴趣小组活动的意见和建议.(字数不超过30字)18.( 6分)(往年•青岛)某商场为了吸引顾客,举行抽奖活动,并规定:顾客每购买100元的商品,就可随机抽取一张奖券,抽得奖券“紫气东来”. “花开富贵”. “吉星高照”,就可以分别获得100元. 50元. 20元的购物券,抽得“谢谢惠顾”不赠购物券;如果顾客不愿意抽奖,可以直接获得购物券10元.小明购买了100元的商品,他看到商场公布的前10000张奖券的抽奖结果如下:奖券种类紫气东来花开富贵吉星高照谢谢惠顾出现张数(张) 500 1000 2000 6500( 1)求“紫气东来”奖券出现的频率;( 2)请你帮助小明判断,抽奖和直接获得购物卷,哪种方式更合算?并说明理由.19.( 6分)(往年•青岛)小丽乘坐汽车从青岛到黄岛奶奶家,她去时经过环湾高速公路,全程约84千米,返回时经过跨海大桥,全程约45千米.小丽所乘汽车去时的平均速度是返回时的1.2倍,所用时间却比返回时多20分钟.求小丽所乘汽车返回时的平均速度.20.( 8分)(往年•青岛)如图,某校教学楼AB的后面有一建筑物CD,当光线与地面的夹角是22°时,教学楼在建筑物的墙上留下高2米的影子CE;而当光线与地面夹角是45°时,教学楼顶A在地面上的影子F与墙角C有13米的距离( B. F. C在一条直线上)( 1)求教学楼AB的高度;( 2)学校要在A. E之间挂一些彩旗,请你求出A. E之间的距离(结果保留整数).(参考数据:sin22°≈,cos22°≈,tan22°≈)21.( 8分)(往年•青岛)已知:如图,四边形ABCD的对角线AC. BD交于点O,BE⊥AC于E,DF⊥AC于F,点O既是AC的中点,又是EF的中点.( 1)求证:△BOE≌△DOF;( 2)若OA=BD,则四边形ABCD是什么特殊四边形?说明理由.22.( 10分)(往年•青岛)在“母亲节”期间,某校部分团员参加社会公益活动,准备购进一批许愿瓶进行销售,并将所得利润捐给慈善机构.根据市场调查,这种许愿瓶一段时间内的销售量y(个)与销售单价x(元/个)之间的对应关系如图所示:( 1)试判断y与x之间的函数关系,并求出函数关系式;( 2)若许愿瓶的进价为6元/个,按照上述市场调查的销售规律,求销售利润w(元)与销售单价x(元/个)之间的函数关系式;( 3)若许愿瓶的进货成本不超过900元,要想获得最大利润,试确定这种许愿瓶的销售单价,并求出此时的最大利润.23.( 10分)(往年•青岛)问题提出:以n边形的n个顶点和它内部的m个点,共( m+n)个点作为顶点,可把原n边形分割成多少个互不重叠的小三角形?问题探究:为了解决上面的问题,我们将采取一般问题特殊性的策略,先从简单和具体的情形入手:探究一:以△ABC的三个顶点和它内部的1个点P,共4个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?如图①,显然,此时可把△ABC分割成3个互不重叠的小三角形.探究二:以△ABC的三个顶点和它内部的2个点P. Q,共5个点为顶点,可把△ABC分割成多少个互不重叠的小三角形?在探究一的基础上,我们可看作在图①△ABC的内部,再添加1个点Q,那么点Q的位置会有两种情况:一种情况,点Q在图①分割成的某个小三角形内部.不妨假设点Q在△PAC内部,如图②;另一种情况,点Q在图①分割成的小三角形的某条公共边上.不妨假设点Q在PA上,如图③.显然,不管哪种情况,都可把△ABC分割成5个不重叠的小三角形.探究三:以△ABC的三个顶点和它内部的3个点P. Q. R,共6个点为顶点可把△ABC分割成_________ 个互不重叠的小三角形,并在图④中画出一种分割示意图.探究四:以△ABC的三个顶点和它内部的m个点,共( m+3)个顶点可把△ABC分割成_________ 个互不重叠的小三角形.探究拓展:以四边形的4个顶点和它内部的m个点,共( m+4)个顶点可把四边形分割成_________ 个互不重叠的小三角形.问题解决:以n边形的n个顶点和它内部的m个点,共( m+n)个顶点可把△ABC分割成_________ 个互不重叠的小三角形.实际应用:以八边形的8个顶点和它内部的往年个点,共2020个顶点,可把八边形分割成多少个互不重叠的小三角形?(要求列式计算)24.( 12分)(往年•青岛)已知:如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,D. E分别是AC. AB的中点,连接DE,点P从点D出发,沿DE方向匀速运动,速度为1cm/s;同时,点Q从点B出发,沿BA方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t( s)( 0<t<4).解答下列问题:( 1)当t为何值时,PQ⊥AB?( 2)当点Q在BE之间运动时,设五边形PQBCD的面积为y( cm2),求y与t之间的函数关系式;( 3)在( 2)的情况下,是否存在某一时刻t,使PQ分四边形BCDE两部分的面积之比为S △PQE:S四边形PQBCD=1:29?若存在,求出此时t的值以及点E到PQ的距离h;若不存在,请说明理由.往年年山东省青岛市中考数学试卷参考答案与试题解析一. 选择题1.D 2.C 3.B 4.A 5.C 6.B 7. D 8. A二. 填空题(本题满分18分,共有6道小题,每小题3分)请将9--14各小题的答案填写在第14小题后面给出的表格相应位置上.9.7.10.1.6×1010.11.150°.12.( 22﹣x)( 17﹣x)=300.13..14.5.四. 解答题(本题满分74分,共有9道小题)16.解:( 1)原式==…4分解:( 2)解不等式①,x>,解不等式②,x≤4,∴原式不等式组的解集为<x≤4.17.解:( 1)∵从统计图知报名参加丙小组的有15人,占总数的30%∴总人数有15÷30%=50人,∴报名参加丁小组的有50﹣10﹣20﹣15=5人,统计图为:( 2)报名参加2个兴趣小组的有400×=160人( 3)合理即可:如:利用课余时间多参加几个兴趣小组.18.解:( 1)或5%;( 2)平均每张奖券获得的购物券金额为+0×=14(元)∵14>10∴选择抽奖更合算.19.解:设小丽所乘汽车返回时的平均速度是x千米/时,根据题意得:,解这个方程,得x=75,经检验,x=75是原方程的解.答:小丽所乘汽车返回时的速度是75千米/时.20.解:( 1)过点E作EM⊥AB,垂足为M.设AB为x.Rt△ABF中,∠AFB=45°,∴BF=AB=x,∴BC=BF+FC=x+13,在Rt△AEM中,∠AEM=22°,AM=AB﹣BM=AB﹣CE=x﹣2, tan22°=,则=,解得:x=12.即教学楼的高12m.( 2)由( 1)可得ME=BC=x+13=12+13=25.在Rt△AME中,cos22°=.∴AE=,即A. E之间的距离约为27m.21.( 1)证明:∵BE⊥AC.DF⊥AC,∴∠BEO=∠DFO=90°,∵点O是EF的中点,∴OE=OF,又∵∠DOF=∠BOE,∴△BOE≌△DOF( ASA);( 2)解:四边形ABCD是矩形.理由如下:∵△BOE≌△DOF,∴OB=OD,又∵OA=OC,∴四边形ABCD是平行四边形,∵OA=BD,OA=AC,∴BD=AC,∴▱ABCD是矩形.22.解:( 1)y是x的一次函数,设y=kx+b,图象过点( 10,300),( 12,240),,解得,∴y=﹣30x+600,当x=14时,y=180;当x=16时,y=120,即点( 14,180),( 16,120)均在函数y=﹣30x+600图象上.∴y与x之间的函数关系式为y=﹣30x+600;( 2)w=( x﹣6)(﹣30x+600)=﹣30x2+780x﹣3600,即w与x之间的函数关系式为w=﹣30x2+780x﹣3600;( 3)由题意得:6(﹣30x+600)≤900,解得x≥15.w=﹣30x2+780x﹣3600图象对称轴为:x=﹣=13.∵a=﹣30<0,∴抛物线开口向下,当x≥15时,w随x增大而减小,∴当x=15时,w最大=1350,即以15元/个的价格销售这批许愿瓶可获得最大利润1350元.23.解:探究三:如图,三角形内部的三点共线与不共线时都分成了7部分, 故答案为:7;分割示意图(答案不唯一)探究四:三角形内部1个点时,共分割成3部分,3=3+2( 1﹣1),三角形内部2个点时,共分割成5部分,5=3+2( 2﹣1),三角形内部3个点时,共分割成7部分,7=3+2( 3﹣1),…,所以,三角形内部有m个点时,3+2( m﹣1)或2m+1;…4分探究拓展:四边形的4个顶点和它内部的m个点,则分割成的不重叠的三角形的个数为:4+2( m﹣1)或2m+2;…6分问题解决:n+2( m﹣1)或2m+n﹣2;…8分实际应用:把n=8,m=往年代入上述代数式,得2m+n﹣2,=2×往年+8﹣2,=4024+8﹣2,=4030.…10分24.解:( 1)如图①,在Rt△ABC中,AC=6,BC=8∴AB=.∵D. E分别是AC. AB的中点.AD=DC=3,AE=EB=5,DE∥BC且DE=BC=4∵PQ⊥AB,∴∠PQB=∠C=90°又∵DE∥BC∴∠AED=∠B∴△PQE∽△ACB由题意得:PE=4﹣t,QE=2t﹣5,即,解得t=.( 2)如图②,过点P作PM⊥AB于M,由△PME∽△ABC,得,∴,得PM=( 4﹣t).S△PQE=EQ•PM=( 5﹣2t)•( 4﹣t)=t2﹣t+6, S梯形DCBE=×( 4+8)×3=18,∴y=18﹣(t2﹣t+6)=t2+t+12.( 3)假设存在时刻t,使S△PQE:S四边形PQBCD=1:29, 则此时S△PQE=S梯形DCBE,∴t2﹣t+6=×18,即2t2﹣13t+18=0,解得t1=2,t2=(舍去).当t=2时,PM=×( 4﹣2)=,ME=×( 4﹣2)=,EQ=5﹣2×2=1,MQ=ME+EQ=+1=,∴PQ===.∵PQ•h=,∴h=•=(或).。
青岛中考数学试题与答案(初中数学)
青岛市中考数学真题一、选择题(本题共12个小题,每小题4分,满分48分)每小题给出标号为A ,B ,C ,D 四个备选答案,其中有且只有一个是正确的. 1.|3|-的相反数是( ) A .3B .3-C .13D .13-2.视力表对我们来说并不陌生.如图是视力表的一部分, 其中开口向上的两个“E ”之间的变换是( ) A .平移 B .旋转 C .对称 D .位似 3.学完分式运算后,老师出了一道题“化简:23224x xx x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----;小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法是:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( )A .小明B .小亮C .小芳D .没有正确的4.设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( ) A .2006B .2007C .2008D .20095.一个长方体的左视图、俯视图及相关数据如图所示, 则其主视图的面积为( ) A .6 B .8 C .12 D .24 6.如图,数轴上A B ,两点表示的数分别为1-和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( ) A .23-- B .13--C .23-+D .13+7.某校初一年级有六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是( )A .全年级学生的平均成绩一定在这六个平均成绩的最小值与最大值之间B .将六个平均成绩之和除以6,就得到全年级学生的平均成绩C .这六个平均成绩的中位数就是全年级学生的平均成绩32左视图4俯视图(第5题图)CA O B(第6题图)标准对数视力表0.1 4.0 0.12 4.1 0.154.2(第2题图)D .这六个平均成绩的众数不可能是全年级学生的平均成绩 8.如图,直线y kx b =+经过点(12)A --,和点(20)B -,, 直线2y x =过点A ,则不等式20x kx b <+<的解集为( ) A .2x <- B .21x -<<-C .20x -<<D .10x -<<9.现有四种地面砖,它们的形状分别是:正三角形、正方形、正六边形、正八边形,且它们的边长都相等.同时选择其中两种地面砖密铺地面,选择的方式有( )A .2种B .3种C .4种D .5种 10.如图,等边ABC △的边长为3,P 为BC 上一点,且1BP =,D 为AC 上一点,若60APD ∠=°,则 CD 的长为( ) A .32B .23C .12D .3411.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )12.利用两块长方体木块测量一张桌子的高度.首先按图①方式放置,再交换两木块的位置,按图②方式放置.测量的数据如图,则桌子的高度是() A .73cmB .74cmC .75cmD .76cm第Ⅱ卷二、填空题(本题共6个小题,每小题4分,满分24分) 13.若523m xy +与3n x y 的和是单项式,则m n = .①②(第12题图)A DCPB(第10题图)60°x x x x x14.设0a b >>,2260a b ab +-=,则a bb a+-的值等于 . 15.如图,将两张长为8,宽为2的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的周长有最小值8,那么菱形周长的最大值是 .16.如果不等式组2223xa xb ⎧+⎪⎨⎪-<⎩≥的解集是01x <≤,那么a b +的值为 .17.观察下表,回答问题:第 个图形中“△”的个数是“○”的个数的5倍.18.如图,ABC △与AEF △中,AB AE BC EF B E AB ==∠=∠,,,交EF 于D .给出下列结论: ①AFC C ∠=∠;②DF CF =;③ADE FDB △∽△;④BFD CAF ∠=∠.其中正确的结论是 (填写所有正确结论的序号). 三、解答题(本大题共8个小题,满分78分)19.(本题满分6分)化简:0293618(32)(12)23+--+-+-.20.(本题满分8分)将如图所示的牌面数字分别是1,2,3,4的四张扑克牌背面朝上,洗匀后放在桌面上. (1)从中随机抽出一张牌,牌面数字是偶数的概率是 ;(2)从中随机抽出二张牌,两张牌牌面数字的和是5的概率是 ;(3)先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是4的倍数的概率.序号 1 2 3 …图形…(第15题图)A E DB FC (第18题图) (第20题图)21.(本题满分8分)某市教育行政部门为了了解初一学生每学期参加综合实践活动的情况,随机抽样调查了某校初一学生一个学期参加综合实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图).请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中a 的值,并求出该校初一学生总数;(2)分别求出活动时间为5天、7天的学生人数,并补全频数分布直方图; (3)求出扇形统计图中“活动时间为4天”的扇形所对圆心角的度数; (4)在这次抽样调查中,众数和中位数分别是多少?(5)如果该市共有初一学生6000人,请你估计“活动时间不少于4天”的大约有多少人?22.(本题满分8分)腾飞中学在教学楼前新建了一座“腾飞”雕塑(如图①).为了测量雕塑的高度,小明在二楼找到一点C ,利用三角板测得雕塑顶端A 点的仰角为30°,底部B 点的俯角为45°,小华在五楼找到一点D ,利用三角板测得A 点的俯角为60°(如图②).若已知CD 为10米,请求出雕塑AB 的高度.(结果精确到0.1米,参考数据3173. ).4天 3天 2天 7天 6天 5天 30% 15% 10% 5%15% a 60 50 4030 20 102天 3天 4天 5天 6天 7天 (第21题图)时间人数DCB A②①(第22题图)23.(本题满分10分)某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.(1)假设每台冰箱降价x 元,商场每天销售这种冰箱的利润是y 元,请写出y 与x 之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?24.(本题满分10分)如图,AB ,BC 分别是O ⊙的直径和弦,点D 为BC 上一点,弦DE 交O ⊙于点E ,交AB 于点F ,交BC 于点G ,过点C 的切线交ED 的延长线于H ,且HC HG =,连接BH ,交O ⊙于点M ,连接MD ME ,.求证:(1)DE AB ⊥;(2)HMD MHE MEH ∠=∠+∠.25.(本题满分14分)如图,直角梯形ABCD 中,BC AD ∥,90BCD ∠=°,且2tan 2CD AD ABC =∠=,,过点D 作AB DE ∥,交BCD ∠的平分线于点E ,连接BE .(1)求证:BC CD =;(2)将BCE △绕点C ,顺时针旋转90°得到DCG △,连接EG.. 求证:CD 垂直平分EG .(3)延长BE 交CD 于点P . 求证:P 是CD 的中点.(第24题图) A D GE C B (第25题图)26.(本题满分14分)如图,抛物线23y ax bx =+-与x 轴交于A B ,两点,与y 轴交于C 点,且经过点(23)a -,,对称轴是直线1x =,顶点是M .(1) 求抛物线对应的函数表达式;(2) 经过C,M 两点作直线与x 轴交于点N ,在抛物线上是否存在这样的点P ,使以点P A C N ,,,为顶点的四边形为平行四边形?若存在,请求出点P 的坐标;若不存在,请说明理由;(3) 设直线3y x =-+与y 轴的交点是D ,在线段BD 上任取一点E (不与B D ,重合),经过A B E ,,三点的圆交直线BC 于点F ,试判断AEF △的形状,并说明理由;(4) 当E 是直线3y x =-+上任意一点时,(3)中的结论是否成立?(请直接写出结论).数学试题参考答案及评分意见本试题答案及评分意见,供阅卷评分使用.考生若写出其它正确答案,可参照评分意见相应评分.一、选择题(本题共12个小题,每小题4分,满分48分)二、填空题(本题共6个小题,每小题4分,满分24分)13.1414.15.1716.1 17.20 18.①,③,④三、解答题(本题共8个小题,满分78分)19.(本题满分6分)2)+(11|1=++. ····························································2分111 =.·································································4分1 =····································································································6分20.(本题满分8分)解:(1)12···································································································1分(2)13········································································································3分(3)根据题意,画树状图: ·············································································6分(第20题图)由树状图可知,共有16种等可能的结果:11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44.其中恰好是4的倍数的共有4种:12,24,32,44.所以,P(4的倍数)41164==.·····································································8分或根据题意,画表格: ····················································································6分1 2 3 41第一次第二次 1 2 3 421 2 3 431 2 3 44开始P (4的倍数)41164==. ·············································································· 8分 21.(本题满分8分)解:(1)1(10%15%30%15%5%)25%a =-++++=. ···································· 1分 初一学生总数:2010%200÷=(人). ····························································· 2分 (2)活动时间为5天的学生数:20025%50⨯=(人). 活动时间为7天的学生数:2005%10⨯=(人). ················································ 3分 频数分布直方图(如图)···················· 4分 (3)活动时间为4天的扇形所对的圆心角是36030%108⨯=°°. ··························· 5分 (4)众数是4天,中位数是4天. ···································································· 7分 (5)该市活动时间不少于4天的人数约是6000(30%25%15%5%)4500⨯+++=(人). ················································· 8分 22.(本题满分8分)解:过点C 作CE AB ⊥于E .906030903060D ACD ∠=-︒=∠=-=°°,°°°, 90CAD ∴∠=°.11052CD AC CD =∴==,. ························· 3分 在Rt ACE △中,5sin 5sin 302AE AC ACE =∠==°, ··············· 4分5cos 5cos3032CE AC ACE =∠==° ·············5分在Rt BCE △中,545tan 4532BCE BE CE ∠=∴==°,°, ···················································· 6分DB BA(第22题图)C(第21题图)551) 6.822AB AE BE ∴=+=+=≈(米). 所以,雕塑AB 的高度约为6.8米. ··································································· 8分23.(本题满分10分) 解:(1)根据题意,得(24002000)8450x y x ⎛⎫=--+⨯ ⎪⎝⎭, 即2224320025y x x =-++. ·········································································· 2分 (2)由题意,得22243200480025x x -++=.整理,得2300200000x x -+=.····································································· 4分 解这个方程,得12100200x x ==,. ································································ 5分 要使百姓得到实惠,取200x =.所以,每台冰箱应降价200元. ···························· 6分 (3)对于2224320025y x x =-++, 当241502225x =-=⎛⎫⨯- ⎪⎝⎭时, ·········································································· 8分150(24002000150)8425020500050y ⎛⎫=--+⨯=⨯= ⎪⎝⎭最大值.所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元.········· 10分24.(本题满分10分)(1)证明:连接OC ,HC HG HCG HGC =∴∠=∠,. ························· 1分 HC 切O ⊙于C 点,190HCG ∴∠+∠=°, ··········· 2分 12OB OC =∴∠=∠,, ······································ 3分 3HGC ∠=∠,2390∴∠+∠=°.······················· 4分 90BFG ∴∠=°,即DE AB ⊥. ···························· 5分 (2)连接BE .由(1)知DE AB ⊥.AB 是O ⊙的直径, ∴BD BE =. ······························································································· 6分BED BME ∴∠=∠. ····················································································· 7分 四边形BMDE 内接于O ⊙,HMD BED ∴∠=∠. ··········································· 8分 HMD BME ∴∠=∠.BME ∠是HEM △的外角,BME MHE MEH ∴∠=∠+∠. ······························ 9分 HMD MHE MEH ∴∠=∠+∠. ···································································· 10分 25.(本题满分14分)证明:(1)延长DE 交BC 于F .(第24题图)AD BC ∥,AB DF ∥,AD BF ABC DFC ∴=∠=∠,. ···························· 1分 在Rt DCF △中,tan tan 2DFC ABC ∠=∠=,2CD CF∴=,即2CD CF =. 22CD AD BF ==,BF CF ∴=. ······················ 3分 1122BC BF CF CD CD CD ∴=+=+=, 即BC CD =. ······························································································· 4分 (2)CE 平分BCD ∠,∴BCE DCE ∠=∠. 由(1)知BC CD CE CE ==,,BCE DCE ∴△≌△,BE DE ∴=. ················· 6分 由图形旋转的性质知CE CG BE DG DE DG ==∴=,,. ····································· 8分 C D ∴,都在EG 的垂直平分线上,CD ∴垂直平分EG . ····································· 9分 (3)连接BD .由(2)知BE DE =,12∴∠=∠.AB DE ∥.32∴∠=∠.13∴∠=∠. ······················································· 11分 AD BC ∥,4DBC ∴∠=∠.由(1)知BC CD =.DBC BDC ∴∠=∠,4BDP ∴∠=∠. ···························· 12分 又BD BD =,BAD BPD ∴△≌△,DP AD ∴=. ······································· 13分 12AD CD =,12DP CD ∴=.P ∴是CD 的中点. ········································ 14分 28.(本题满分14分)解:(1)根据题意,得34231.2a a b b a-=+-⎧⎪⎨-=⎪⎩,··············2分解得12.a b =⎧⎨=-⎩,∴抛物线对应的函数表达式为223y x x =--. ········3分(2)存在.在223y x x =--中,令0x =,得3y =-.令0y =,得2230x x --=,1213x x ∴=-=,.(10)A ∴-,,(30)B ,,(03)C -,.又2(1)4y x =--,∴顶点(14)M -,. ······························································ 5分容易求得直线CM 的表达式是3y x =--. 在3y x =--中,令0y =,得3x =-.(30)N ∴-,,2AN ∴=. ··············································································· 6分 A D G E C B (第25题图)FP(第26题图)第 11 页 共 11 页 在223y x x =--中,令3y =-,得1202x x ==,. 2CP AN CP ∴=∴=,.AN CP ∥,∴四边形ANCP 为平行四边形,此时(23)P -,. ····························· 8分 (3)AEF △是等腰直角三角形.理由:在3y x =-+中,令0x =,得3y =,令0y =,得3x =.∴直线3y x =-+与坐标轴的交点是(03)D ,,(30)B ,.OD OB ∴=,45OBD ∴∠=°. ······································································ 9分 又点(03)C -,,OB OC ∴=.45OBC ∴∠=°. ··········································· 10分 由图知45AEF ABF ∠=∠=°,45AFE ABE ∠=∠=°. ··································· 11分90EAF ∴∠=°,且AE AF =.AEF ∴△是等腰直角三角形. ···························· 12分 (4)当点E 是直线3y x =-+上任意一点时,(3)中的结论成立. ······················· 14分。
历年全国中考数学试题及答案(完整详细版)
班级 姓名 学号 成绩一、精心选一选1.下列运算正确的是( ) A.()11a a --=-- B.()23624aa -=C.()222a b a b -=-D.3252a a a +=2.如图,由几个小正方体组成的立体图形的左视图是( )3.下列事件中确定事件是( ) A.掷一枚均匀的硬币,正面朝上 B.买一注福利彩票一定会中奖C.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球D.掷一枚六个面分别标有1,2,3,4,5,6的均匀正方体骰子,骰子停止转动后奇数点朝上 4.如图,AB CD ∥,下列结论中正确的是( ) A.123180++=∠∠∠ B.123360++=∠∠∠C.1322+=∠∠∠D.132+=∠∠∠5.已知24221x y k x y k +=⎧⎨+=+⎩,且10x y -<-<,则k 的取值范围为( )A.112k -<<-B.102k <<C.01k <<D.112k << 6.顺次连接矩形各边中点所得的四边形( ) A.是轴对称图形而不是中心对称图形 B.是中心对称图形而不是轴对称图形 C.既是轴对称图形又是中心对称图形 D.没有对称性 7.已知点()3A a -,,()1B b -,,()3C c ,都在反比例函数4y x=的图象上,则a ,b ,c 的大小关系为( ) A.a b c >> B.c b a >>C.b c a >> D.c a b >>8.某款手机连续两次降价,售价由原来的1185元降到580元.设平均每次降价的百分率为x ,则下面列出的方程中正确的是( ) A.21185580x = B.()211851580x -= C.()211851580x-=D.()258011185x +=9.如图,P 是Rt ABC △斜边AB 上任意一点(A ,B 两点除外),过P 点作一直线,使截得的三角形与Rt ABC △相似,这样的直线可以作( ) A.1条 B.2条 C.3条 D.4A. B. C. D.A B DC32 1 第4题图10.某校为了了解学生课外阅读情况,随机调查了50名学生各自平均每天的课外阅读时间,并绘制成条形图(如图),据此可以估计出该校所有学生平均每人每天的课外阅读时间为( ) A.1小时 B.0.9小时 C.0.5小时 D.1.5小时11.如图,I 是ABC △的内切圆,D ,E ,F 为三个切点,若52DEF =∠,则A ∠的度数为( ) A.76B.68C.52D.38当输入数据是时,输出的数是( ) A.861B.865C.867D.869二、细心填一填 13.化简21111mm m ⎛⎫+÷ ⎪--⎝⎭的结果是_______________. 14.从边长为a 的大正方形纸板中挖去一个边长为b 的小正方形后,将其裁成四个相同的等腰梯形(如图甲),然后拼成一个平行四边形(如图乙).那么通过计算阴影部分的面积可以验证公式______________.第10题图第11题图 ab15.把一组数据中的每一个数据都减去80,得一组新数据,若求得新一组数据的平均数是1.2,方差是4.4,则原来一组数据的平均数和方差分别为_______________.16.在平面直角坐标系中,已知()24A ,,()22B -,,()62C -,,则过A ,B ,C 三点的圆的圆心坐标为_______________.17.实验中学要修建一座图书楼,为改善安全性能,把楼梯的倾斜角由原来设计的42改为36.已知原来设计的楼梯长为4.5m ,在楼梯高度不变的情况下,调整后的楼梯多占地面_____________m .(精确到0.01m )三、用心用一用18.用配方法解方程:2210x x --=.答案:二、填空题 13.1m + 14.()()22a b a b a b -=+-15.81.2,4.416.()41,17.0.80三、解答题18.解:两边都除以2,得211022x x --=. 移项,得21122x x -=. 配方,得221192416x x ⎛⎫-+= ⎪⎝⎭,第17题图219416x ⎛⎫-= ⎪⎝⎭. 1344x ∴-=或1344x -=-. 11x ∴=,212x =-数学试题库2注意事项:1.试卷分为第I 卷和第II 卷两部分,共6页,全卷 150分,考试时间120分钟. 2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需要改动,先用橡皮擦干净后,再选涂其它答案,答案写在本试卷上无效.3.答第II 卷时,用0.5毫米黑色墨水签字笔,将答案写在答题卡上指定的位置.答案写在试卷上火答题卡上规定的区域以外无效. 4.作图要用2B 铅笔,加黑加粗,描写清楚. 5.考试结束,将本试卷和答题卡一并交回.第I 卷 (选择题 共24分)一、选择题(本大题共8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是正确的,请把正确选项前的字母代号填涂在答题卡相应位置.......上) 1.﹣3的相反数是A .﹣3B .13- C .13D .3 2.地球与太阳的平均距离大约为150 000 000km ,将150 000 000用科学记数法表示应为 A .15×107B .1.5×108C .1.5×109D .0.15×1093.若一组数据3、4、5、x 、6、7的平均数是5,则x 的值是 A .4 B .5 C .6 D .7 4.若点A(﹣2,3)在反比例函数ky x=的图像上,则k 的值是 A .﹣6 B .﹣2 C .2 D .65.如图,三角板的直角顶点落在矩形纸片的一边上,若∠1=35°,则∠2的度数是 A .35° B .45° C .55° D .65°6.如图,菱形ABCD 的对角线AC 、BD 的长分别为6和8,则这个菱形的周长是A .20B .24C .40D .487.若关于x 的一元二次方程x 2﹣2x ﹣k +1=0有两个相等的实数根,则k 的值是 A .﹣1 B .0 C .1 D .2 8.如图,点A 、B 、C 都在⊙O 上,若∠AOC =140°,则∠B 的度数是 A .70° B .80° C .110° D .140°第II 卷 (选择题 共126分)二、填空题(本大题共8小题,每小题3分,本大题共24分.不需要写出解答过程,只需把答案直接填写在答题卡相应位置.......上) 9.计算:23()a = .10.一元二次方程x 2﹣x =0的根是 .11.某射手在相同条件下进行射击训练,结果如下:该射手击中靶心的概率的估计值是 (明确到0.01).12.若关于x ,y 的二元一次方程3x ﹣ay =1有一个解是32x y =⎧⎨=⎩,则a = .13.若一个等腰三角形的顶角等于50°,则它的底角等于 .14.将二次函数21y x =-的图像向上平移3个单位长度,得到的图像所对应的函数表达式是 .15.如图,在Rt △ABC 中,∠C =90°,AC =3,BC =5,分别以点A 、B 为圆心,大于12AB 的长为半径画弧,两弧交点分别为点P 、Q ,过P 、Q 两点作直线交BC 于点D ,则CD 的长是 .16.如图,在平面直角坐标系中,直线l 为正比例函数y =x 的图像,点A 1的坐标为(1,0),过点A 1作x 轴的垂线交直线l 于点D 1,以A 1D 1为边作正方形A 1B 1C 1D 1;过点C 1作直线l 的垂线,垂足为A 2,交x 轴于点B 2,以A 2B 2为边作正方形A 2B 2C 2D 2;过点C 2作x 轴的垂线,垂足为A 3,交直线l 于点D 3,以A 3D 3为边作正方形A 3B 3C 3D 3;…;按此规律操作下去,所得到的正方形A n B n C n D n 的面积是 .三、解答题(本大题共11小题,共102分.请在答题卡...指定区域....内作答,解答时应写出文字说明、证明过程或演算步骤) 17.(本题满分10分)(1)计算:02sin 45(1)1822π︒+--+-; (2)解不等式组:35131212x x x x -<+⎧⎪⎨--≥⎪⎩.18.(本题满分8分)先化简,再求值:212(1)11aa a -÷+-,其中a =﹣3.19.(本题满分8分)已知:如图,□ABCD 的对角线AC 、BD 相交于点O ,过点O 的直线分别与AD 、BC 相交于点E 、F ,求证:AE =CF .20.(本题满分8分)某学校为了解学生上学的交通方式,现从全校学生中随机抽取了部分学生进行“我上学的交通方式”问卷调查,规定每人必须并且只能在“乘车”、“步行”、“骑车”和“其他”四项中选择一项,并将统计结果绘制了如下两幅不完整的统计图.请解答下列问题:(1)在这次调查中,该学校一共抽样调查了 名学生; (2)补全条形统计图;(3)若该学校共有1500名学生,试估计该学校学生中选择“步行”方式的人数.21.(本题满分8分)一只不透明袋子中装有三只大小、质地都相同的小球,球面上分别标有数字1、﹣2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点A 的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点A 的纵坐标.(1)用画树状图或列表等方法列出所有可能出现的结果; (2)求点A 落在第四象限的概率.22.(本题满分8分)如图,在平面直角坐标系中,一次函数y =kx +b 的图像经过点A(﹣2,6),且与x 轴相交于点B ,与正比例函数y =3x 的图像交于点C ,点C 的横坐标为1.(1)求k 、b 的值;(2)若点D 在y 轴负半轴上,且满足S △COD =13S △BOC ,求点D 的坐标.23.(本题满分8分)为了计算湖中小岛上凉亭P 到岸边公路l 的距离,某数学兴趣小组在公路l 上的点A 处,测得凉亭P 在北偏东60°的方向上;从A 处向正东方向行走200米,到达公路l 上的点B 处,再次测得凉亭P 在北偏东45°的方向上,如图所示.求凉亭P 到公路l 的距离.(结果保留整数,参考数据:2 1.414≈,3 1.732≈)24.(本题满分10分)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,切点为A ,BC 交⊙O 于点D ,点E 是AC 的中点.(1)试判断直线DE 与⊙O 的位置关系,并说明理由;(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.25.(本题满分10分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.(1)当每件的销售价为52元时,该纪念品每天的销售数量为件;(2)当每件的销售价x为多少时,销售该纪念品每天获得的利润y最大?并求出最大利润.26.(本题满分12分)+=90°,那么我们称这样的三角形为“准互如果三角形的两个内角α与β满足2αβ余三角形”.(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B=°;(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5,若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE 也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC 是“准互余三角形”.求对角线AC的长.27.(本题满分12分)如图,在平面直角坐标系中,一次函数243y x=-+的图像与x轴和y轴分别相交于A、B两点.动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动.点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN.设运动时间为t秒.(1)当t=13秒时,点Q的坐标是;(2)在运动过程中,设正方形PQMN与△AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值.参考答案三、解答题17.(1)1;(2)13x ≤<. 18.化简结果为12a -,计算结果为﹣2. 19.先证△AOE ≌△COF ,即可证出AE =CF .20.(1)50;(2)在条形统计图画出,并标数据15;(3)450名.21.(1)六种:(1,﹣2)、(1,3)、(﹣2,1)、(﹣2,3)、(3,1)、(3,﹣2); (2)点A 落在第四象限的概率为13. 22.(1)k 的值为﹣1,b 的值为4; (2)点D 坐标为(0,﹣4).23.凉亭P 到公路l 的距离是273米.24.(1)先根据“SSS ”证明△AEO ≌△DEO ,从而得到∠ODE =∠OAE =90°,即可判断出直线DE 与⊙O 相切; (2)阴影部分面积为:241059π-. 25.(1)180;(2)2[20010(50)](40)10(55)2250y x x x =---=--+,∴当每件的销售价为55元时,每天获得利润最大为2250元.26.(1)15°;(2)存在,BE 的长为95(思路:利用△CAE ∽△CBA 即可); (3)20,思路:作AE ⊥CB 于点E ,CF ⊥AB 于点F ,先根据△FCB ∽△FAC 计算出AF =16,最后运用勾股定理算出AC =20.27.(1)(4,0);(2)22233,01439418,1434312,23t t S t t t t t ⎧≤<⎪⎪⎪=-+≤≤⎨⎪⎪-+<≤⎪⎩;(3)OT +PT.。
2015年山东省青岛市中考数学试题及解析
2015年山东省青岛市中考数学试卷一、选择题(本题满分24分,共有8小题,每小题3分)下列每小题都给出标号为A,B,C,D的四个结论,其中只有一个是正确的1.(3分)(2015•青岛)的相反数是()A.﹣B.C.D.22.(3分)(2015•青岛)某种计算机完成一次基本运算的时间约为0.000 000 001s.把0.000 000 001s用科学记数法可表示为()A.0.1×10﹣8s B.0.1×10﹣9s C.1×10﹣8s D.1×10﹣9s3.(3分)(2015•青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)(2015•青岛)如图,在△ABC中,△C=90°,△B=30°,AD是△ABC的角平分线,DE△AB,垂足为E,DE=1,则BC=()A.B.2C.3D.+25.(3分)(2015•青岛)小刚参加射击比赛,成绩统计如下表:成绩(环)678910次数13231关于他的射击成绩,下列说法正确的是()A.极差是2环B.中位数是8环C.众数是9环D.平均数是9环6.(3分)(2015•青岛)如图,正六边形ABCDEF内接于△O,若直线PA与△O相切于点A,则△PAB=()A.30°B.35°C.45°D.60°7.(3分)(2015•青岛)如图,菱形ABCD的对角线AC,BD相交于O点,E,F分别是AB,BC边上的中点,连接EF.若EF=,BD=4,则菱形ABCD的周长为()A.4B.4C.4D.288.(3分)(2015•青岛)如图,正比例函数y1=k1x的图象与反比例函数y2=的图象相交于A,B两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是()A.x<﹣2或x>2B.x<﹣2或0<x<2C.﹣2<x<0或0<x<﹣2D.﹣2<x<0或x>2二、填空题(本题满分18分,共有6小题,每小题3分)9.(3分)(2015•青岛)计算:3a3•a2﹣2a7÷a2=.10.(3分)(2015•青岛)如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标分别变为原来的,那么点A的对应点A′的坐标是.11.(3分)(2015•青岛)把一个长、宽、高分别为3cm,2cm,1cm的长方体铜块铸成一个圆柱体铜块,则该圆柱体铜块的底面积s(cm2)与高h(cm)之间的函数关系式为.12.(3分)(2015•青岛)如图,平面直角坐标系的原点O是正方形ABCD的中心,顶点A,B的坐标分别为(1,1),(﹣1,1),把正方形ABCD绕原点O逆时针旋转45°得正方。
2016年山东省烟台市中考数学试卷(含解析版)
2016年山东省烟台市中考数学试卷一、选择题:本大题共12小题,每小题3分,共36分1.下列实数中,有理数是()A.B.C.D.0.1010010012.下列商标图案中,既不是轴对称图形又不是中心对称图形的是()A.B.C.D.3.下列计算正确的是()A.3a2﹣6a2=﹣3 B.(﹣2a)•(﹣a)=2a2C.10a10÷2a2=5a5 D.﹣(a3)2=a64.如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为() A. B.C.D.5.如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是()A.B.C. D.6.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示,丁的成绩如图所示.根据以上图表信息,参赛选手应选()A.甲B.乙C.丙D.丁7.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)8.反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是()A.t< B.t> C.t≤D.t≥9.若x1,x2是一元二次方程x2﹣2x﹣1=0的两个根,则x12﹣x1+x2的值为()A.﹣1 B.0 C.2 D.310.如图,Rt△ABC的斜边AB与量角器的直径恰好重合,B点与0刻度线的一端重合,∠ABC=40°,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将△ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是()A.40°B.70°C.70°或80° D.80°或140°11.二次函数y=ax2+bx+c的图象如图所示,下列结论:①4ac<b2;②a+c>b;③2a+b>0.其中正确的有()A.①② B.①③ C.②③ D.①②③12.如图,○O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P 点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是()A.B.C.D.二、填空题:本大题共6个小题,每小题3分,共18分13.已知|x﹣y+2|﹣=0,则x2﹣y2的值为.14.如图,O为数轴原点,A,B两点分别对应﹣3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为.15.已知不等式组,在同一条数轴上表示不等式①,②的解集如图所示,则b﹣a的值为.16.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=的图象上,则k的值为.17.如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为cm2.18.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的直径为10cm,则圆柱上M,N两点间的距离是cm.三、解答题:本大题共7个小题,满分66分19.先化简,再求值:(﹣x﹣1)÷,其中x=,y=.20.网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”、“中评”、“差评”三种评价,假设这三种评价是等可能的.(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小明一共统计了个评价;②请将图1补充完整;③图2中“差评”所占的百分比是;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.21.由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:原料成本(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)22.某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)23.如图,△ABC内接于⊙O,AC为⊙O的直径,PB是⊙O的切线,B为切点,OP⊥BC,垂足为E,交⊙O于D,连接BD.(1)求证:BD平分∠PBC;(2)若⊙O的半径为1,PD=3DE,求OE及AB的长.24.【探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明.如图1,矩形ABCD中,EF⊥GH,EF分别交AB,CD于点E,F,GH分别交AD,BC于点G,H.求证: =;【结论应用】(2)如图2,在满足(1)的条件下,又AM⊥BN,点M,N分别在边BC,CD上,若=,则的值为;【联系拓展】(3)如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M,N分别在边BC,AB上,求的值.25.如图1,已知平行四边形ABCD顶点A的坐标为(2,6),点B在y轴上,且AD∥BC∥x轴,过B,C,D三点的抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,2),点F(m,6)是线段AD上一动点,直线OF交BC于点E.(1)求抛物线的表达式;(2)设四边形ABEF的面积为S,请求出S与m的函数关系式,并写出自变量m的取值范围;(3)如图2,过点F作FM⊥x轴,垂足为M,交直线AC于P,过点P作PN⊥y轴,垂足为N,连接MN,直线AC分别交x轴,y轴于点H,G,试求线段MN的最小值,并直接写出此时m的值.2016年山东省烟台市中考数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分1.下列实数中,有理数是()A.B.C.D.0.101001001【考点】实数.【分析】实数分为有理数,无理数,有理数有分数、整数,无理数有根式下不能开方的,π等,很容易选择.【解答】解:A、不能正好开方,即为无理数,故本选项错误;B、不能正好开方,即为无理数,故本选项错误;C、π为无理数,所以为无理数,故本选项错误;D、小数为有理数,符合.故选D.2.下列商标图案中,既不是轴对称图形又不是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念逐项分析即可.【解答】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、既不是轴对称图形,也不是中心对称图形;D、不是轴对称图形,是中心对称图形,故选C.3.下列计算正确的是()A.3a2﹣6a2=﹣3 B.(﹣2a)•(﹣a)=2a2C.10a10÷2a2=5a5 D.﹣(a3)2=a6【考点】整式的除法;合并同类项;幂的乘方与积的乘方;单项式乘单项式.【分析】根据整式的加减法可得出A选项结论不正确;根据单项式乘单项式的运算可得出B选项不正确;根据整式的除法可得出C选项正确;根据幂的乘方可得出D选项不正确.由此即可得出结论.【解答】解:A、3a2﹣6a2=﹣3a2,﹣3a2≠﹣3,∴A中算式计算不正确;B、(﹣2a)•(﹣a)=2a2,2a2=2a2,∴B中算式计算正确;C、10a10÷2a2=5a8,5a8≠5a5(特殊情况除外),∴C中算式计算不正确;D、﹣(a3)2=﹣a6,﹣a6≠a6(特殊情况除外),∴D中算式计算不正确.故选B.4.如图,圆柱体中挖去一个小圆柱,那么这个几何体的主视图和俯视图分别为()A.B.C.D.【考点】简单组合体的三视图.【分析】直接利用组合体结合主视图以及俯视图的观察角度得出答案.【解答】解:由几何体所示,可得主视图和俯视图分别为:和.故选:B.5.如图,是我们数学课本上采用的科学计算器面板,利用该型号计算器计算cos55°,按键顺序正确的是()A.B.C.D.【考点】计算器—三角函数;计算器—数的开方.【分析】简单的电子计算器工作顺序是先输入者先算,其中R﹣CM表示存储、读出键,M+为存储加键,M﹣为存储减键,根据按键顺序写出式子,再根据开方运算即可求出显示的结果.【解答】解:利用该型号计算器计算cos55°,按键顺序正确的是.故选:C.6.某射击队要从甲、乙、丙、丁四人中选拔一名选手参赛,在选拔赛中,每人射击10次,然后从他们的成绩平均数(环)及方差两个因素进行分析,甲、乙、丙的成绩分析如表所示,丁的成绩如图所示.根据以上图表信息,参赛选手应选()A.甲B.乙C.丙D.丁【考点】方差;算术平均数.【分析】根据方差的计算公式求出丁的成绩的方差,根据方差的性质解答即可.【解答】解:由图可知丁射击10次的成绩为:8、8、9、7、8、8、9、7、8、8,则丁的成绩的平均数为:×(8+8+9+7+8+8+9+7+8+8)=8,丁的成绩的方差为:×[(8﹣8)2+(8﹣8)2+(8﹣9)2+(8﹣7)2+(8﹣8)2+(8﹣8)2+(8﹣9)2+(8﹣7)2+(8﹣8)2+(8﹣8)2]=0.4,∵丁的成绩的方差最小,∴丁的成绩最稳定,∴参赛选手应选丁,故选:D.7.如图,在平面直角坐标中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,点A,B,E在x轴上,若正方形BEFG的边长为6,则C点坐标为()A.(3,2)B.(3,1)C.(2,2)D.(4,2)【考点】位似变换;坐标与图形性质;正方形的性质.【分析】直接利用位似图形的性质结合相似比得出AD的长,进而得出△OAD∽△OBG,进而得出AO的长,即可得出答案.【解答】解:∵正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为,∴=,∵BG=6,∴AD=BC=2,∵AD∥BG,∴△OAD∽△OBG,∴=,∴=,解得:OA=1,∴OB=3,∴C点坐标为:(3,2),故选:A.8.反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,则t的取值范围是()A.t< B.t> C.t≤D.t≥【考点】反比例函数与一次函数的交点问题.【分析】将一次函数解析式代入到反比例函数解析式中,整理得出关于x的一元二次方程,由两函数图象有两个交点,且两交点横坐标的积为负数,结合根的判别式以及根与系数的关系即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:将y=﹣x+2代入到反比例函数y=中,得:﹣x+2=,整理,得:x2﹣2x+1﹣6t=0.∵反比例函数y=的图象与直线y=﹣x+2有两个交点,且两交点横坐标的积为负数,∴,解得:t>.故选B.9.若x1,x2是一元二次方程x2﹣2x﹣1=0的两个根,则x12﹣x1+x2的值为()A.﹣1 B.0 C.2 D.3【考点】根与系数的关系.【分析】由根与系数的关系得出“x1+x2=2,x1•x2=﹣1”,将代数式x12﹣x1+x2变形为x12﹣2x1﹣1+x1+1+x2,套入数据即可得出结论.【解答】解:∵x1,x2是一元二次方程x2﹣2x﹣1=0的两个根,∴x1+x2=﹣=2,x1•x2==﹣1.x12﹣x1+x2=x12﹣2x1﹣1+x1+1+x2=1+x1+x2=1+2=3.故选D.10.如图,Rt△ABC的斜边AB与量角器的直径恰好重合,B点与0刻度线的一端重合,∠ABC=40°,射线CD绕点C转动,与量角器外沿交于点D,若射线CD将△ABC分割出以BC为边的等腰三角形,则点D在量角器上对应的度数是()A.40°B.70°C.70°或80° D.80°或140°【考点】角的计算.【分析】如图,点O是AB中点,连接DO,易知点D在量角器上对应的度数=∠DOB=2∠BCD,只要求出∠BCD的度数即可解决问题.【解答】解:如图,点O是AB中点,连接DO.∵点D在量角器上对应的度数=∠DOB=2∠BCD,∵当射线CD将△ABC分割出以BC为边的等腰三角形时,∠BCD=40°或70°,∴点D在量角器上对应的度数=∠DOB=2∠BCD=80°或140°,故选D.11.二次函数y=ax2+bx+c的图象如图所示,下列结论:①4ac<b2;②a+c>b;③2a+b>0.其中正确的有()A.①② B.①③ C.②③ D.①②③【考点】二次函数图象与系数的关系.【分析】根据抛物线与x轴有两个交点即可判断①正确,根据x=﹣1,y<0,即可判断②错误,根据对称轴x>1,即可判断③正确,由此可以作出判断.【解答】解:∵抛物线与x轴有两个交点,∴△>0,∴b2﹣4ac>0,∴4ac<b2,故①正确,∵x=﹣1时,y<0,∴a﹣b+c<0,∴a+c<b,故②错误,∴对称轴x>1,a<0,∴﹣>1,∴﹣b<2a,∴2a+b>0,故③正确.故选B.12.如图,○O的半径为1,AD,BC是⊙O的两条互相垂直的直径,点P从点O出发(P 点与O点不重合),沿O→C→D的路线运动,设AP=x,sin∠APB=y,那么y与x之间的关系图象大致是()A.B.C.D.【考点】动点问题的函数图象.【分析】根据题意确定出y与x的关系式,即可确定出图象.【解答】解:根据题意得:sin∠APB=,∵OA=1,AP=x,sin∠APB=y,∴xy=1,即y=(1<x<2),图象为:,故选B.二、填空题:本大题共6个小题,每小题3分,共18分13.已知|x﹣y+2|﹣=0,则x2﹣y2的值为﹣4.【考点】因式分解-运用公式法;非负数的性质:绝对值;非负数的性质:算术平方根.【分析】由|x﹣y+2|﹣=0,根据非负数的性质,可求得x﹣y与x+y的值,继而由x2﹣y2=(x﹣y)(x+y)求得答案.【解答】解:∵|x﹣y+2|﹣=0,∴x﹣y+2=0,x+y﹣2=0,∴x﹣y=﹣2,x+y=2,∴x2﹣y2=(x﹣y)(x+y)=﹣4.故答案为:﹣4.14.如图,O为数轴原点,A,B两点分别对应﹣3,3,作腰长为4的等腰△ABC,连接OC,以O为圆心,CO长为半径画弧交数轴于点M,则点M对应的实数为.【考点】勾股定理;实数与数轴;等腰三角形的性质.【分析】先利用等腰三角形的性质得到OC⊥AB,则利用勾股定理可计算出OC=,然后利用画法可得到OM=OC=,于是可确定点M对应的数.【解答】解:∵△ABC为等腰三角形,OA=OB=3,∴OC⊥AB,在Rt△OBC中,OC===,∵以O为圆心,CO长为半径画弧交数轴于点M,∴OM=OC=,∴点M对应的数为.故答案为.15.已知不等式组,在同一条数轴上表示不等式①,②的解集如图所示,则b﹣a的值为.【考点】解一元一次不等式组;负整数指数幂;在数轴上表示不等式的解集.【分析】根据不等式组,和数轴可以得到a、b的值,从而可以得到b﹣a的值.【解答】解:,由①得,x≥﹣a﹣1,由②得,x≤b,由数轴可得,原不等式的解集是:﹣2≤x≤3,∴,解得,,∴,故答案为:.16.如图,在平面直角坐标系中,菱形OABC的面积为12,点B在y轴上,点C在反比例函数y=的图象上,则k的值为﹣6.【考点】反比例函数系数k的几何意义;菱形的性质.【分析】连接AC,交y轴于点D,由四边形ABCO为菱形,得到对角线垂直且互相平分,得到三角形CDO面积为菱形面积的四分之一,根据菱形面积求出三角形CDO面积,利用反比例函数k的几何意义确定出k的值即可.【解答】解:连接AC,交y轴于点D,∵四边形ABCO为菱形,∴AC⊥OB,且CD=AD,BD=OD,∵菱形OABC的面积为12,∴△CDO的面积为3,∴|k|=6,∵反比例函数图象位于第二象限,∴k<0,则k=﹣6.故答案为:﹣6.17.如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为πcm2.【考点】扇形面积的计算;旋转的性质.【分析】根据已知条件和旋转的性质得出两个扇形的圆心角的度数,再根据扇形的面积公式进行计算即可得出答案.【解答】解:∵∠BOC=60°,△B′OC′是△BOC绕圆心O逆时针旋转得到的,∴∠B′OC′=60°,△BCO=△B′C′O,∴∠B′OC=60°,∠C′B′O=30°,∴∠B′OB=120°,∵AB=2cm,∴OB=1cm,OC′=,∴B′C′=,==π,∴S扇形B′OBS扇形C′OC==,∵∴阴影部分面积=S扇形B′OB +S△B′C′O﹣S△BCO﹣S扇形C′OC=S扇形B′OB﹣S扇形C′OC=π﹣=π;故答案为:π.18.如图,在正方形纸片ABCD中,EF∥AD,M,N是线段EF的六等分点,若把该正方形纸片卷成一个圆柱,使点A与点D重合,此时,底面圆的直径为10cm,则圆柱上M,N两点间的距离是cm.【考点】圆柱的计算.【分析】根据题意得到EF=AD=BC,MN=2EM,由卷成圆柱后底面直径求出周长,除以6得到EM的长,进而确定出MN的长即可.【解答】解:根据题意得:EF=AD=BC,MN=2EM=EF,∵把该正方形纸片卷成一个圆柱,使点A与点D重合,底面圆的直径为10cm,∴底面周长为10πcm,即EF=10πcm,则MN=cm,故答案为:.三、解答题:本大题共7个小题,满分66分19.先化简,再求值:(﹣x﹣1)÷,其中x=,y=.【考点】分式的化简求值.【分析】首先将括号里面进行通分,进而将能分解因式的分解因式,再化简求出答案.【解答】解:(﹣x﹣1)÷,=(﹣﹣)×=×=﹣,把x=,y=代入得:原式=﹣=﹣1+.20.网上购物已经成为人们常用的一种购物方式,售后评价特别引人关注,消费者在网店购买某种商品后,对其有“好评”、“中评”、“差评”三种评价,假设这三种评价是等可能的.(1)小明对一家网店销售某种商品显示的评价信息进行了统计,并列出了两幅不完整的统计图.利用图中所提供的信息解决以下问题:①小明一共统计了150个评价;②请将图1补充完整;③图2中“差评”所占的百分比是13.3%;(2)若甲、乙两名消费者在该网店购买了同一商品,请你用列表格或画树状图的方法帮助店主求一下两人中至少有一个给“好评”的概率.【考点】列表法与树状图法;扇形统计图;条形统计图.【分析】(1)①用“中评”、“差评”的人数除以二者的百分比之和可得总人数;②用总人数减去“中评”、“差评”的人数可得“好评”的人数,补全条形图即可;③根据×100%可得;(2)可通过列表表示出甲、乙对商品评价的所有可能结果数,通过概率公式计算可得.【解答】解:(1)①小明统计的评价一共有: =150(个);②“好评”一共有150×60%=90(个),补全条形图如图1:③图2中“差评”所占的百分比是:×100%=13.3%;(2)列表如下:由表可知,一共有9种等可能结果,其中至少有一个给“好评”的有5种,∴两人中至少有一个给“好评”的概率是.故答案为:(1)①150;③13.3%.21.由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:甲原料成本12(1)若该公司五月份的销售收入为300万元,求甲、乙两种型号的产品分别是多少万只?(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入﹣投入总成本)【考点】一元二次方程的应用.【分析】(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据销售收入为300万元列出方程,求出方程的解即可得到结果;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价﹣成本列出W与y的一次函数,根据y的范围确定出W的最大值即可.【解答】解:(1)设甲型号的产品有x万只,则乙型号的产品有(20﹣x)万只,根据题意得:18x+12(20﹣x)=300,解得:x=10,则20﹣x=20﹣10=10,则甲、乙两种型号的产品分别为10万只,10万只;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20﹣y)万只,根据题意得:13y+8.8(20﹣y)≤239,解得:y≤15,根据题意得:利润W=(18﹣12﹣1)y+(12﹣8﹣0.8)(20﹣y)=1.8y+64,当y=15时,W最大,最大值为91万元.22.某中学广场上有旗杆如图1所示,在学习解直角三角形以后,数学兴趣小组测量了旗杆的高度.如图2,某一时刻,旗杆AB的影子一部分落在平台上,另一部分落在斜坡上,测得落在平台上的影长BC为4米,落在斜坡上的影长CD为3米,AB⊥BC,同一时刻,光线与水平面的夹角为72°,1米的竖立标杆PQ在斜坡上的影长QR为2米,求旗杆的高度(结果精确到0.1米).(参考数据:sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)【考点】解直角三角形的应用.【分析】如图作CM∥AB交AD于M,MN⊥AB于N,根据=,求出CM,在RT△AMN中利用tan72°=,求出AN即可解决问题.【解答】解:如图作CM∥AB交AD于M,MN⊥AB于N.由题意=,即=,CM=,在RT△AMN中,∵∠ANM=90°,MN=BC=4,∠AMN=72°,∴tan72°=,∴AN≈12.3,∵MN∥BC,AB∥CM,∴四边形MNBC是平行四边形,∴BN=CM=,∴AB=AN+BN=13.8米.23.如图,△ABC内接于⊙O,AC为⊙O的直径,PB是⊙O的切线,B为切点,OP⊥BC,垂足为E,交⊙O于D,连接BD.(1)求证:BD平分∠PBC;(2)若⊙O的半径为1,PD=3DE,求OE及AB的长.【考点】切线的性质;三角形的外接圆与外心.【分析】(1)由∠PBD+∠OBD=90°,∠DBE+∠BDO=90°利用等角的余角相等即可解决问题.(2)利用面积法首先证明==,再证明△BEO∽△PEB,得=,即==,由此即可解决问题.【解答】(1)证明:连接OB.∵PB是⊙O切线,∴OB⊥PB,∴∠PBO=90°,∴∠PBD+∠OBD=90°,∵OB=OD,∴∠OBD=∠ODB,∵OP⊥BC,∴∠BED=90°,∴∠DBE+∠BDE=90°,∴∠PBD=∠EBD,∴BD平分∠PBC.(2)解:作DK⊥PB于K,∵==,∵BD平分∠PBE,DE⊥BE,DK⊥PB,∴DK=DE,∴==,∵∠OBE+∠PBE=90°,∠PBE+∠P=90°,∴∠OBE=∠P,∵∠OEB=∠BEP=90°,∴△BEO∽△PEB,∴=,∴==,∵BO=1,∴OE=,∵OE⊥BC,∴BE=EC,∵AO=OC,∴AB=2OE=.24.【探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明.如图1,矩形ABCD中,EF⊥GH,EF分别交AB,CD于点E,F,GH分别交AD,BC于点G,H.求证: =;【结论应用】(2)如图2,在满足(1)的条件下,又AM⊥BN,点M,N分别在边BC,CD上,若=,则的值为;【联系拓展】(3)如图3,四边形ABCD中,∠ABC=90°,AB=AD=10,BC=CD=5,AM⊥DN,点M,N分别在边BC,AB上,求的值.【考点】相似形综合题.【分析】(1)过点A作AP∥EF,交CD于P,过点B作BQ∥GH,交AD于Q,如图1,易证AP=EF,GH=BQ,△PDA∽△QAB,然后运用相似三角形的性质就可解决问题;(2)只需运用(1)中的结论,就可得到==,就可解决问题;(3)过点D作平行于AB的直线,交过点A平行于BC的直线于R,交BC的延长线于S,如图3,易证四边形ABSR是矩形,由(1)中的结论可得=.设SC=x,DS=y,则AR=BS=5+x,RD=10﹣y,在Rt△CSD中根据勾股定理可得x2+y2=25①,在Rt△ARD中根据勾股定理可得(5+x)2+(10﹣y)2=100②,解①②就可求出x,即可得到AR,问题得以解决.【解答】解:(1)过点A作AP∥EF,交CD于P,过点B作BQ∥GH,交AD于Q,如图1,∵四边形ABCD是矩形,∴AB∥DC,AD∥BC.∴四边形AEFP、四边形BHGQ都是平行四边形,∴AP=EF,GH=BQ.又∵GH⊥EF,∴AP⊥BQ,∴∠QA T+∠AQT=90°.∵四边形ABCD是矩形,∴∠DAB=∠D=90°,∴∠DAP+∠DPA=90°,∴∠AQT=∠DPA.∴△PDA∽△QAB,∴=,∴=;(2)如图2,∵EF⊥GH,AM⊥BN,∴由(1)中的结论可得=, =,∴==.故答案为;(2)过点D作平行于AB的直线,交过点A平行于BC的直线于R,交BC的延长线于S,如图3,则四边形ABSR是平行四边形.∵∠ABC=90°,∴▱ABSR是矩形,∴∠R=∠S=90°,RS=AB=10,AR=BS.∵AM⊥DN,∴由(1)中的结论可得=.设SC=x,DS=y,则AR=BS=5+x,RD=10﹣y,∴在Rt△CSD中,x2+y2=25①,在Rt△ARD中,(5+x)2+(10﹣y)2=100②,由②﹣①得x=2y﹣5③,解方程组,得(舍去),或,∴AR=5+x=8,∴===.25.如图1,已知平行四边形ABCD顶点A的坐标为(2,6),点B在y轴上,且AD∥BC∥x轴,过B,C,D三点的抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,2),点F(m,6)是线段AD上一动点,直线OF交BC于点E.(1)求抛物线的表达式;(2)设四边形ABEF的面积为S,请求出S与m的函数关系式,并写出自变量m的取值范围;(3)如图2,过点F作FM⊥x轴,垂足为M,交直线AC于P,过点P作PN⊥y轴,垂足为N,连接MN,直线AC分别交x轴,y轴于点H,G,试求线段MN的最小值,并直接写出此时m的值.【考点】二次函数综合题.【分析】(1)根据平行四边形的性质和抛物线的特点确定出点D,然而用待定系数法确定出抛物线的解析式.(2)根据AD∥BC∥x轴,且AD,BC间的距离为3,BC,x轴的距离也为3,F(m,6),确定出E(,3),从而求出梯形的面积.(3)先求出直线AC解析式,然后根据FM⊥x轴,表示出点P(m,﹣ m+9),最后根据勾股定理求出MN=,从而确定出MN最大值和m的值.【解答】解:(1)∵过B,C,D三点的抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,2),∴点C的横坐标为4,BC=4,∵四边形ABCD为平行四边形,∴AD=BC=4,∵A(2,6),∴D(6,6),设抛物线解析式为y=a(x﹣2)2+2,∵点D在此抛物线上,∴6=a(6﹣2)2+2,∴a=,∴抛物线解析式为y=(x﹣2)2+2=x2﹣x+3,(2)∵AD∥BC∥x轴,且AD,BC间的距离为3,BC,x轴的距离也为3,F(m,6)∴E(,3),∴BE=,∴S=(AF+BE)×3=(m﹣2+)×3=m﹣3∵点F(m,6)是线段AD上,∴2≤m≤6,即:S=m﹣3.(2≤m≤6)(3)∵抛物线解析式为y=x2﹣x+3,∴B(0,3),C(4,3),∵A(2,6),∴直线AC解析式为y=﹣x+9,∵FM⊥x轴,垂足为M,交直线AC于P∴P(m,﹣ m+9),(2≤m≤6)∴PN=m,PM=﹣m+9,∵FM⊥x轴,垂足为M,交直线AC于P,过点P作PN⊥y轴,∴∠MPN=90°,∴MN===∵2≤m≤6,==.∴当m=时,MN最大祝福语祝你考试成功!。
2013-2019年山东省青岛市中考数学试题汇编(含参考答案与解析)
【中考数学试题汇编】2013—2019年山东省青岛市中考数学试题汇编(含参考答案与解析)1、2013年山东省青岛市中考数学试题及参考答案与解析 (2)2、2014年山东省青岛市中考数学试题及参考答案与解析 (26)3、2015年山东省青岛市中考数学试题及参考答案与解析 (51)4、2016年山东省青岛市中考数学试题及参考答案与解析 (75)5、2017年山东省青岛市中考数学试题及参考答案与解析 (98)6、2018年山东省青岛市中考数学试题及参考答案与解析 (121)7、2019年山东省青岛市中考数学试题及参考答案与解析 (146)2013年山东省青岛市中考数学试题及参考答案与解析一、选择题(本题满分24分,共有8道小题,每小题3分)1.﹣6的相反数是()A.﹣6 B.6 C.16D.162.下列四个图形中,是中心对称图形的是()A.B.C.D.3.如图所示的几何体的俯视图是()A.B.C.D.4.“十二五”以来,我国积极推进国家创新体系建设.国家统计局《2012年国民经济和社会发展统计公报》指出:截止2012年底,国内有效专利达8750000件,将8750000件用科学记数法表示为()件.A.8.75×104B.8.75×105C.8.75×106D.8.75×1075.一个不透明的口袋里装有除颜色外都相同的5个白球和若干个红球,在不允许将球倒出来数的前提下,小亮为了估计其中的红球数,采用如下方法:现将口袋中的球摇匀,再从口袋里随机摸出一球,记下颜色,然后把它放回口袋中,不断重复上述过程,小亮共摸了100次,其中有10次摸到白球.因此小亮估计口袋中的红球大约有()个.A.45 B.48 C.50 D.556.已知矩形的面积为36cm2,相邻的两条边长分别为xcm和ycm,则y与x之间的函数图象大致是()A.B.C.D.7.直线l与半径为r的⊙O相交,且点O到直线l的距离为6,则r的取值范围是()A.r<6 B.r=6 C.r>6 D.r≥68.如图,△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′点A、B、A′、B′均在图中在格点上.若线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为()A .,2m n ⎛⎫ ⎪⎝⎭B .(m ,n )C .,2n m ⎛⎫ ⎪⎝⎭D .,22m n ⎛⎫ ⎪⎝⎭ 二、填空题(本题满分18分共有6道题,每小题3分)9.计算:12-+= .10.某校对甲、乙两名跳高运动员的近期调高成绩进行统计分析,结果如下:=1.69m ,=1.69m ,S 2甲=0.0006,S 2乙=0.00315,则这两名运动员中 的成绩更稳定.11.某企业2010年底缴税40万元,2012年底缴税48.4万元.设这两年该企业交税的年平均增长率为x ,根据题意,可得方程 .12.如图,一个正比例函数图象与一次函数y=﹣x+1的图象相交于点P ,则这个正比例函数的表达式是 .13.如图,AB 是⊙O 的直径,弦AC=2,∠ABC=30°,则图中阴影部分的面积是 .14.要把一个正方体分割成8个小正方体,至少需要切3刀,因为这8个小正方体都只有三个面是现成的.其他三个面必须用三刀切3次才能切出来.那么,要把一个正方体分割成27个小正方体,至少需用刀切 次;分割成64个小正方体,至少需要用刀切 次.三、作图题(本题满分4分)用圆规、直尺作图,不写做法,但要保留作图痕迹。
2024年山东省青岛市中考二模数学试题及答案
2024年青岛中考二模数学试题一、选择题(本大题共10小题,每小题3分,共30分)1.剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .2. ﹣3的相反数是( ) A. 13−B.13C. 3D. 3−3. 如图所示几何体的主视图是( )A. B. C. D.4. 常言道:失之毫厘,谬以千里.当人们向太空发射火箭或者描述星际位置时,需要非常准确的数据.1′′的角真的很小.把整个圆等分成360份,每份这样的弧所对的圆心角的度数是1°.1603600′′′°==.若一个等腰三角形的腰长为1千米,底边长为4.848毫米,则其顶角的度数就是1′′.太阳到地球的平均距离大约为81.510×千米.若以太阳到地球的平均距离为腰长,则顶角为1′′的等腰三角形底边长为( )A. 24.24千米B. 727.2千米C. 242.4千米D.72.72 千米5. 如图,在直角坐标系中,ABC 各点坐标分别为()2,1A −,()1,3B −,()4,4C −.先作ABC 关于x 轴成轴对称的111A B C △,再把111A B C △平移后得到222A B C △.若()22,1B ,则点2A 坐标为( )A. ()1,5B. ()1,3C. ()5,3D. ()5,56. 如图,分别过ABC 的顶点A ,B 作AD BE .若25CAD ∠=°,80EBC ∠=°,则ACB ∠的度数为( )A. 65°B. 85°C. 75°D. 95°7. 下列运算正确的是( ) A. 2242a a a +=B. ()32639a a −=−C. 23544a a a ⋅=D. 623a a a ÷=8. 如图,点O 是ABC 外接圆的圆心,点I 是ABC 的内心,连接OB ,IA .若35CAI ∠=°,则OBC ∠的度数为( )A. 15°B. 17.5°C. 20°D. 25°9、如图,三角形纸片ABC 中,点D 是BC 边上一点,连接AD ,把△AAAAAA 沿着直线AD 翻折,得到△AAAAAA ,DE 交AC 于点G ,连接BE 交AD 于点FF .若AADD =AADD ,AAFF =4,AAAA =5,△AAAADD 的面积为92,则BD 的长为( )A. √13B. √11C. √7D. √510、 一个几何体的三视图如下,则这个几何体的表面积是( )A. 39πB. 45πC. 48πD. 54π二、填空题(本大题共6小题,每小题3分,共18分)11、计算:−=______.12、一组数据,6、4、a 、3、2的平均数是5,这组数据的方差为_______13、已知实数m 满足210m m −−=,则32239m m m −−+=_________.14、《九章算术》中有一个问题:“今有共买物,人出八,盈三;人出七,不足四、问人数、物价各几何?”题目大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元.问有多少人?该物品价值多少元?设有x 人,该物品价值y 元,根据题意列方程组:___________.15、如图,正八边形ABCDEFGH的边长为4,以顶点A为圆心,AB的长为半径画圆,则阴影部分的面积为__________(结果保留π).16、小明在学习“二次函数”内容后,进行了反思总结.如图,二次函数y=ax2+bx+c(a≠0)图象的一部分与x轴的一个交点坐标为(1,0),对称轴为直线x=﹣1,结合图象他得出下列结论:①ab>0且c>0;②a+b+c =0;③关于x的一元二次方程ax2+bx+c=0(a≠0)的两根分别为﹣3和1;④若点(﹣4,y1),(﹣2,y2),(3,y3)均在二次函数图象上,则y1<y2<y3;⑤3a+c<0,其中正确的结论有.(填序号,多选、少选、错选都不得分)三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.17.(4分)如图,利用尺规在平面内确定一点O,使得点O到△ABC的两边AB、AC的距离相等,并且点O到B、C两点的距离也相等(保留作图痕迹,不写作法).四.解答题(本题满分68分,共有8道小题) 18.(8分)(1)解不等式组:(2)化简:(﹣1)19. (6分)某班学生以跨学科主题学习为载体,综合运用体育,数学,生物学等知识,研究体育课的运动负荷,在体育课基本部分运动后,测量统计了部分学生的心率情况,按心率次数x (次/分钟)分为如下五组:A 组:5075x ≤<,B 组:75100x ≤<,C 组:100125x ≤<,D 组:125150x ≤<,E 组:150175x ≤≤.其中,A 组数据为73,65,74,68,74,70,66,56.根据统计数据绘制了不完整的统计图(如图所示),请结合统计图解答下列问题:(1)A 组数据的中位数是_______,众数是_______;在统计图中B 组所对应的扇形圆心角是_______度; (2)补全学生心率频数分布直方图;(3)一般运动的适宜行为为100150x ≤<(次/分钟),学校共有2300名学生,请你依据此次跨学科项目研究结果,估计大约有多少名学生达到适宜心率?20、(6分)在不透明的口袋中,装有3个分别标有数字1、2、3的小球,它们除标示的数字外完全相同,小红、小明和小亮用这些道具做摸球游戏.游戏规则如下:由小红随机从口袋中摸出一个小球,记录下数字放回摇匀再由小明随机从口袋中摸出一个小球,记录下数字,放回摇匀.如果两人摸到的小球上数字相同,那么小亮获胜;如果两人摸到的小球上数字不同,那么小球上数字大的一方获胜. (1)请用树状图或列表的方法表示一次游戏中所有可能出现的结果; (2)这个游戏规则对三人公平吗?请说明理由.21、(8分)无人机在实际生活中的应用广泛,如图所示,某人利用无人机测最大楼的高度BC ,无人机在空中点P 处,测得点P 距地面上A 点80米,点A 处俯角为60°,楼顶C 点处的俯角为30°,已知点A 与大楼的距离AB 为70米(点A ,B ,C ,P 在同一平面内),求大楼的高度BC (结果保留根号)22、(8分)如图,正比例函数112y x =和反比例函数2(0)ky x x=>图像交于点(),2A m .(1)求反比例函数的解析式;(2)将直线OA 向上平移3个单位后,与y 轴交于点B ,与2(0)ky x x=>的图像交于点C ,连接AB AC ,,求ABC 的面积.23、(10分)即墨古城某城门横断面分为两部分,上半部分为抛物线形状,下半部分为正方形(OOOOOOAA 为正方形),已知城门宽度为4米,最高处离地面6米,如图1所示,现以O 点为原点,OM 所在的直线为x 轴,OE 所在的直线为y 轴建立直角坐标系.(1)求出上半部分抛物线的函数表达式,并写出其自变量的取值范围;(2)有一辆宽3米,高4.5米的消防车需要通过该城门进入古城,请问该消防车能否正常进入?(3)为营造节日气氛,需要临时搭建一个矩形“装饰门”ABCD ,该“装饰门”关于抛物线对称轴对称,如图2所示,其中AB ,AD ,CD 为三根承重钢支架,A 、D 在抛物线上,B ,C 在地面上,已知钢支架每米50元,的问搭建这样一个矩形“装饰门”,仅钢支架一项,最多需要花费多少元?24、(8分)已知:在RRRR△AAAAAA中,∠AAAAAA=90∘,D是BC的中点,E是AD的中点.过点A作AAFF//AAAA交BE的延长线于点FF.(1)求证:△AAAAFF≌△AAAAAA;(2)当△AAAAAA满足什么条件时,四边形ADCF是正方形?请说明理由.25、(8分)5月13日是母亲节,为了迎接母亲节的到来,利客来商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于24件,并且商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?(3)在(2)条件下,若每件甲种玩具售价30元,每件乙种玩具售价45元,请求出卖完这批玩具获利W(元)与甲种玩具进货量m(件)之间的函数关系式,并求出最大利润为多少?26.(12分)如图,矩形ABCD中,AB=8cm,AD=10cm,E是AD上一点,AE=6cm,连接BE,CE.点P从点E出发,沿EB方向向点B匀速运动,同时点Q从点C出发,在BC的延长线上匀速运动,P,Q 的运动速度均为lcm/s.连接DQ,PQ,PQ交CE于F,设点P,Q的运动时间为t(s)(0<t<10).(1)当t为何值时,PQ⊥BE?(2)设四边形PQDE的面积为y(cm2),求y与t之间的函数关系式.(3)是否存在某一时刻t,使得S四边形PQDE:S矩形ABCD=7:10?若存在,求出t的值;若不存在,请说明理由.(4)过点P作PG⊥CE于G,在P,Q运动过程中,线段FG的长度是否发生变化?若变化,说明理由:若不变化,求出线段FG的长度.2024年青岛中考二模数学试题解析1.剪纸文化是中国最古老的民间艺术之一,下列剪纸图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形与轴对称图形的概念进行判断即可.【解答】解:A.既是轴对称图形又是中心对称图形,故此选项符合题意;B.不是中心对称图形,是轴对称图形,故此选项不合题意;C.是中心对称图形,不是轴对称图形,故此选项不合题意;D.不是中心对称图形,是轴对称图形,故此选项不合题意;故选:A.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与自身重合.2. ﹣3的相反数是()A.13− B.13C. 3D. 3−【答案】C【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3,故选C.【点睛】本题考查相反数,题目简单,熟记定义是关键.3. 如图所示几何体的主视图是()A. B. C. D.【答案】D 【解析】【分析】从正面看到的平面图形是主视图,根据主视图的含义可得答案. 【详解】解:如图所示的几何体的主视图如下:故选:D .【点睛】此题主要考查了三视图;用到的知识点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.4. 常言道:失之毫厘,谬以千里.当人们向太空发射火箭或者描述星际位置时,需要非常准确的数据.1′′的角真的很小.把整个圆等分成360份,每份这样的弧所对的圆心角的度数是1°.1603600′′′°==.若一个等腰三角形的腰长为1千米,底边长为4.848毫米,则其顶角的度数就是1′′.太阳到地球的平均距离大约为81.510×千米.若以太阳到地球的平均距离为腰长,则顶角为1′′的等腰三角形底边长为( ) A. 24.24千米 B. 727.2千米C. 242.4千米D. 72.72千米【答案】B 【解析】【分析】设以太阳到地球的平均距离为腰长,则顶角为1′′的等腰三角形底边长为x 毫米,根据顶角相等的两等腰三角形相似,相似三角形的对应边成比例,可列出方程81.5101 4.848x×=,求解即可. 【详解】解:设以太阳到地球的平均距离为腰长,则顶角为1′′的等腰三角形底边长为x 毫米,根据题意,得81.5101 4.848x ×= 解得:87.27210x ×∴等腰三角形底边长为87.27210×毫米727.2=千米.故选:B .【点睛】本题考查一元一次方程的应用.根据相似三角形判定与性质列出方程是解题的关键,注意单位换算. 5. 如图,在直角坐标系中,ABC 各点坐标分别为()2,1A −,()1,3B −,()4,4C −.先作ABC 关于x 轴成轴对称的111A B C △,再把111A B C △平移后得到222A B C △.若()22,1B ,则点2A 坐标为( )A. ()1,5B. ()1,3C. ()5,3D. ()5,5【答案】B【解析】 【分析】三点()2,1A −,()1,3B −,()4,4C −的对称点坐标为()12,1A −−,()11,3B −−,()4,4C −−,结合()22,1B ,得到平移规律为向右平移3个单位,向上平移4个单位,计算即可.【详解】∵三点()2,1A −,()1,3B −,()4,4C −的对称点坐标为()12,1A −−,()11,3B −−,()4,4C −−,结合()22,1B ,∴得到平移规律为向右平移3个单位,向上平移4个单位,故2A 坐标为()1,3.故选B .【点睛】本题考查了关于x 轴对称,平移规律,熟练掌握轴对称的特点和平移规律是解题的关键.6. 如图,分别过ABC 的顶点A ,B 作AD BE .若25CAD ∠=°,80EBC ∠=°,则ACB ∠的度数为( )A. 65°B. 85°C. 75°D. 95°【答案】C【解析】 【分析】根据两直线平行,同位角相等,得到80E ADC BC =°∠=∠,利用三角形内角和定理计算即可.【详解】∵AD BE ,80EBC ∠=°,∴80E ADC BC =°∠=∠,∵25CAD ∠=°,∴71805ACB ADC CAD =°∠=°−∠−∠,故选C .【点睛】本题考查了平行线的性质,三角形内角和定理,熟练掌握平行线性质是解题的关键.7. 下列运算正确的是( )A. 2242a a a +=B. ()32639a a −=−C. 23544a a a ⋅=D. 623a a a ÷= 【答案】C【解析】【分析】根据合并同类项、积的乘方、单项式乘以单项式和同底数幂除法法则进行判断即可.【详解】A 、2222a a a +=,不符合题意;B 、()326327a a −=−,不符合题意;C 、23544a a a ⋅=,符合题意;D 、624a a a ÷=,不符合题意,故选:C .8. 如图,点O 是ABC 外接圆的圆心,点I 是ABC 的内心,连接OB ,IA .若35CAI ∠=°,则OBC ∠的度数为( )A. 15°B. 17.5°C. 20°D. 25°【答案】C【解析】 【分析】根据三角形内心的定义可得BAC ∠的度数,然后由圆周角定理求出BOC ∠,再根据三角形内角和定理以及等腰三角形的性质得出答案.【详解】解:连接OC ,∵点I 是ABC 的内心,35CAI ∠=°,∴270BAC CAI ∠=∠=°, ∴2140BOC BAC ∠=∠=°, ∵OB OC =, ∴1801801402022BOC OBC OCB °−∠°−°∠=∠===°, 故选:C .【点睛】本题主要考查了三角形内心的定义和圆周角定理,熟知三角形的内心是三角形三个内角平分线的交点是解题的关键.9.【答案】A【解析】解:∵把△AAAAAA 沿着直线AD 翻折,得到△AAAAAA ,∴AAAA =AAAA =5,AAAA =AAAA ,AAAA ⊥AAFF , ∴AAFF =√AAAA 2−AAFF 2=√25−16=3, ∵AADD =AADD ,△AAAADD 的面积为92,∴SS △AAAAAA =2×SS △AAAAAA =9=12×AAFF ×AAAA , ∴AAAA =6, ∴AAFF =2,∴AAAA =AAAA =√AAFF 2+AAFF 2=√9+4=√13, 故选:AA .由折叠的性质可得AAAA =AAAA =5,AAAA =AAAA ,AAAA ⊥AAFF ,由三角形面积公式可求AAAA =6,由勾股定理可求解. 本题考查了翻折变换,勾股定理,三角形的面积公式等知识,灵活运用这些性质进行推理是本题的关键. 10、一个几何体的三视图如下,则这个几何体的表面积是( )A. 39πB. 45πC. 48πD. 54π【答案】B【解析】 【分析】先根据三视图还原出几何体,再利用圆锥的侧面积公式和圆柱的侧面积公式计算即可.【详解】根据三视图可知,该几何体上面是底面直径为6,母线为4的圆锥,下面是底面直径为6,高为4的圆柱,该几何体的表面积为:211π646π4π612π24π9π45π22S =×××+×+××=++=. 故选B .【点睛】本题主要考查了简单几何体的三视图以及圆锥的侧面积公式和圆柱的侧面积公式,根据三视图还原出几何体是解决问题的关键.二、填空题(本大题共6小题,每小题3分,共18分)11、 计算:−=______. 【答案】3【解析】【分析】先利用二次根式的性质化简,再计算括号内的减法,然后计算二次根式的除法即可.【详解】解:3 (3= 故答案为:3.12、10.【答案】8【解析】【分析】本题考查方差和平均数:一般地设n 个数据,xx 1,xx 2,…xx nn 的平均数为xx ,则方差ss 2=1nn [(xx 1−xx )2+(xx 2−xx )2+…+(xx nn −xx )2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.先由平均数的公式计算出a 的值,再根据方差的公式计算即可.【解答】解:∵数据6、4、a 、3、2平均数为5,∴(6+4+2+3+aa )÷5=5, 解得:aa =10,∴这组数据的方差是15×[(6−5)2+(4−5)2+(10−5)2+(2−5)2+(3−5)2]=8. 故答案为:8.13、已知实数m 满足210m m −−=,则32239m m m −−+=_________. 【答案】8【解析】【分析】由题意易得21m m −=,然后整体代入求值即可.【详解】解:∵210m m −−=,∴21m m −=,∴32239m m m −−+()2229m m m m m −−−+229mmm−−+29m m=−+()29m m=−−+19=−+8=;故答案为8.14、《九章算术》中有一个问题:“今有共买物,人出八,盈三;人出七,不足四、问人数、物价各几何?”题目大意是:有几个人一起去买一件物品,每人出8元,多3元;每人出7元,少4元.问有多少人?该物品价值多少元?设有x人,该物品价值y元,根据题意列方程组:___________.【答案】8374 y xy x=−=+【解析】【分析】设有x人,物品价值为y元,根据等量关系“每人出8元,多3元”和“每人出7元,少4元”列出二元一次方程组即可解答.【详解】解:设有x人,物品价值为y元,由题意得:8374 y xy x=−=+.故答案为:8374 y xy x=−=+.15、如图,正八边形ABCDEFGH的边长为4,以顶点A为圆心,AB的长为半径画圆,则阴影部分的面积为__________(结果保留π).【答案】6π【解析】【分析】先利用正八边形求出圆心角的度数,再利用扇形的面积公式求解即可.【详解】解:由题意,()821801358HAB−⋅°∠==°,4AH AB == ∴213546360S ππ⋅==阴, 故答案为:6π.16.小明在学习“二次函数”内容后,进行了反思总结.如图,二次函数y =ax 2+bx +c (a ≠0)图象的一部分与x 轴的一个交点坐标为(1,0),对称轴为直线x =﹣1,结合图象他得出下列结论:①ab >0且c >0;②a +b +c =0;③关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两根分别为﹣3和1;④若点(﹣4,y 1),(﹣2,y 2),(3,y 3)均在二次函数图象上,则y 1<y 2<y 3;⑤3a +c <0,其中正确的结论有 ①②③ .(填序号,多选、少选、错选都不得分)【分析】由抛物线的对称轴的位置以及与y 轴的交点可判断①;由抛物线过点(1,0),即可判断②;由抛物线的对称性可判断③;根据各点与抛物线对称轴的距离大小可判断④;对称轴可得b =2a ,由抛物线过点(1,0)可判断⑤.【解答】解:∵抛物线对称轴在y 轴的左侧,∴ab >0,∵抛物线与y 轴交点在x 轴上方,∴c >0,①正确;∵抛物线经过(1,0),∴a +b +c =0,②正确.∵抛物线与x 轴的一个交点坐标为(1,0),对称轴为直线x =﹣1,∴另一个交点为(﹣3,0),∴关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的两根分别为﹣3和1,③正确;∵﹣1﹣(﹣2)<﹣1﹣(﹣4)<3﹣(﹣1),抛物线开口向下,∴y 2>y 1>y 3,④错误.∵抛物线与x 轴的一个交点坐标为(1,0),∴a+b+c=0,∵﹣=﹣1,∴b=2a,∴3a+c=0,⑤错误.故答案为:①②③.【点评】本题考查二次函数图象与系数的关系,解题关键是掌握二次函数的性质,掌握二次函数与方程及不等式的关系.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.17.(4分)如图,利用尺规在平面内确定一点O,使得点O到△ABC的两边AB、AC的距离相等,并且点O到B、C两点的距离也相等(保留作图痕迹,不写作法).【分析】根据线段垂直平分线的性质以及角平分线的性质即可解决问题.【解答】解:如图,①作线段BC的垂直平分线MN.②作∠BAC的平分线P A交MN于点O.点O即为所求.【点评】本题考查作图﹣复杂作图,线段的垂直平分线性质、角平分线的性质等知识,解题的关键是灵活运用线段垂直平分线的性质以及角平分线的性质解决问题,属于中考常考题型.四.解答题(本题满分74分,共有9道小题)18.(8分)(1)解不等式组:(2)化简:(﹣1)【分析】(1)根据解不等式组的方法可以解答本题;(2)根据分式的减法和乘法可以化简题目中的式子.【解答】解:(1),由不等式①,得x <5,由不等式②,得x ≥﹣3,故原不等式组的解集为﹣3≤x <5;(2)(﹣1) ===.【点评】本题考查分式的混合运算、解一元一次不等式组,解答本题的关键是明确它们各自的计算方法. 19. 某班学生以跨学科主题学习为载体,综合运用体育,数学,生物学等知识,研究体育课的运动负荷,在体育课基本部分运动后,测量统计了部分学生的心率情况,按心率次数x (次/分钟)分为如下五组:A 组:5075x ≤<,B 组:75100x ≤<,C 组:100125x ≤<,D 组:125150x ≤<,E 组:150175x ≤≤.其中,A 组数据为73,65,74,68,74,70,66,56.根据统计数据绘制了不完整的统计图(如图所示),请结合统计图解答下列问题:(1)A 组数据的中位数是_______,众数是_______;在统计图中B 组所对应的扇形圆心角是_______度; (2)补全学生心率频数分布直方图;(3)一般运动的适宜行为为100150x ≤<(次/分钟),学校共有2300名学生,请你依据此次跨学科项目研究结果,估计大约有多少名学生达到适宜心率?【答案】(1)69,74,54;(2)见解析 (3)大约有1725名学生达到适宜心率.【解析】【分析】(1)根据中位数和众数的概念求解,先求出总人数,然后求出B 组所占的百分比,最后乘以360°即可求出在统计图中B 组所对应的扇形圆心角;(2)根据样本估计总体的方法求解即可.【小问1详解】将A 组数据从小到大排列为:56,65,66,68,70,73,74,74, ∴中位数为6870692+=; ∵74出现的次数最多,∴众数是74;88%100÷=,1536054100°×=° ∴在统计图中B 组所对应的扇形圆心角是54°;故答案为:69,74,54;【小问2详解】10081545230−−−−=∴C 组的人数为30,∴补全学生心率频数分布直方图如下:【小问3详解】304523001725100+×=(人), ∴大约有1725名学生达到适宜心率.【点睛】本题主要考查调查与统计的相关知识,理解频数分布直方图,扇形统计图的相关信息,掌握运用样本百分比估算总体数量是解题的关键.20、(6分)在不透明的口袋中,装有3个分别标有数字1、2、3的小球,它们除标示的数字外完全相同,小红、小明和小亮用这些道具做摸球游戏.游戏规则如下:由小红随机从口袋中摸出一个小球,记录下数字放回摇匀再由小明随机从口袋中摸出一个小球,记录下数字,放回摇匀.如果两人摸到的小球上数字相同,那么小亮获胜;如果两人摸到的小球上数字不同,那么小球上数字大的一方获胜.(1)请用树状图或列表的方法表示一次游戏中所有可能出现的结果;(2)这个游戏规则对三人公平吗?请说明理由.【分析】(1)画树状图列出所有等可能结果;(2)结合树状图,利用概率公式计算出三人获胜的概率,比较大小即可得.【解答】解:(1)画树状图如下:由树状图知共有9种等可能结果;(2)由树状图知,小红获胜的结果有3种,小明获胜的结果有3种,∴P (小亮获胜)==,P (小红获胜)==,P (小明获胜)==,∴游戏对三人公平.【点评】此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比. 21、无人机在实际生活中的应用广泛,如图所示,某人利用无人机测最大楼的高度BC ,无人机在空中点P 处,测得点P 距地面上A 点80米,点A 处俯角为60°,楼顶C 点处的俯角为30°,已知点A 与大楼的距离AB 为70米(点A ,B ,C ,P 在同一平面内),求大楼的高度BC (结果保留根号)【答案】大楼的高度BC 为.【解析】【分析】如图,过P 作PH AB ⊥于H ,过C 作CQ PH ⊥于Q ,而CB AB ⊥,则四边形CQHB 是矩形,可得QH BC =,BH CQ =,求解sin 6080PH AP =°= ,cos 6040AH AP °= ,可得704030CQ BH ==−=,tan 30PQ CQ =°=BC QH ===.【详解】解:如图,过P 作PH AB ⊥于H ,过C 作CQ PH ⊥于Q ,而CB AB ⊥,则四边形CQHB 是矩形,∴QH BC =,BH CQ =,由题意可得:80AP =,60PAH ∠=°,30PCQ ∠=°,70AB =,∴sin 6080PH AP =°= cos 6040AH AP °= , ∴704030CQ BH ==−=,∴tan 30PQ CQ =°=∴BC QH ==−=,∴大楼的高度BC为.【点睛】本题考查的是矩形的判定与性质,解直角三角形的实际应用,理解仰角与俯角的含义是解本题的关键.22、 如图,正比例函数112y x =和反比例函数2(0)k y x x=>图像交于点(),2A m .(1)求反比例函数的解析式;的(2)将直线OA 向上平移3个单位后,与y 轴交于点B ,与2(0)k y x x =>的图像交于点C ,连接AB AC ,,求ABC 的面积.【答案】(1)28y x= (2)3【解析】【分析】(1)待定系数法求函数解析式;(2)根据平移的性质求得平移后函数解析式,确定B 点坐标,然后待定系数法求直线AB 的解析式,从而利用三角形面积公式分析计算.小问1详解】解:把(),2A m 代入112y x =中,122m =, 解得4m =,∴()4,2A, 把()4,2A 代入2(0)k y x x =>中,24k =, 解得8k , ∴反比例函数的解析式为28y x=; 【小问2详解】解:将直线OA 向上平移3个单位后,其函数解析式为132y x =+, 当0x =时,3y =,∴点B 的坐标为()0,3, 设直线AB 的函数解析式为ABy mx n =+, 将()4,2A ,()0,3B 代入可得423m n n += = , 解得143m n =− = ,∴直线AB 的函数解析式为134AB y x =−+, 联立方程组1328y x y x =+ =,解得1181x y =− =− ,2224x y = = 【∴C点坐标为()2,4,过点C作CM x⊥轴,交AB于点N,在134BCy x=−+中,当2x=时,52y=,∴53422 CN=−=,∴134322ABCS=××=△.【点睛】本题考查一次函数和反比例函数的交点问题,掌握待定系数法求函数解析式,运用数形结合思想解题是关键.23、【答案】解:(1)由题意知,抛物线的顶点为(2,6),∴设抛物线的表达式为yy=aa(xx−2)2+6,又∵抛物线经过点AA(0,4),∴4=4aa+6,∴aa=−12,∴抛物线的表达式为yy=−12(xx−2)2+6,即yy=−12xx2+2xx+4(0≤xx≤4);(2)由题意知,当消防车走最中间时,进入的可能性最大,即当xx=12时,yy=−12×(12)2+2×12+4=4.857>4.5,∴消防车能正常进入;(3)设B点的横坐标为m,AAAA+AAAA+AAAA的长度为L,由题意知AAAA=4−2mm,即AAAA=4−2mm,AAAA=AAAA=−12mm2+2mm+4,∴LL=2×(−12mm2+2mm+4)+(4−2mm)=−mm2+2mm+12,当mm=−bb2aa=−22×(−1)=1时,L最大,,∴费用为13×50=650(元),答:仅钢支架一项,最多需要花费650元.24、【答案】(1)证明:∵AAFF//AAAA,∴∠AAFFAA=∠AAAAAA,∵AA是AD的中点,∴AAAA=AAAA,在△AAAAFF和△AAAAAA中,�∠AAFFAA=∠AAAAAA∠FFAAAA=∠AAAAAAAAAA=AAAA,∴△AAAAFF≌△AAAAAA(AAAASS);(2)解:当AAAA=AAAA时,四边形ADCF是正方形,理由:由(1)知,△AAAAFF≌△AAAAAA,∴AAFF=AAAA,∵AA是BC的中点,∴AAAA=AAAA,∴AAFF=AAAA,∵AAFF//AAAA,∴四边形ADCF是平行四边形,∵∠AAAAAA=90∘,D是BC的中点,∴AAAA=AAAA=12AAAA,∴四边形ADCF是菱形,∵AAAA=AAAA,D是BC的中点,∴AAAA⊥AAAA,∴四边形ADCF是正方形.【解析】(1)根据平行线的性质得到∠AAFFAA=∠AAAAAA,根据全等三角形的判定即可得到结论;(2)根据全等三角形的性质得到AAFF=AAAA,推出四边形ADCF是平行四边形,根据直角三角形的性质得到AAAA= AAAA=12AAAA,求得四边形ADCF是菱形,由正方形的判定定理即可得到结论.此题考查了正方形的判定,全等三角形的判定和性质,菱形的判定和性质,关键是根据全等三角形的判定和性质以及正方形的判定解答.2520.(8分)5月13日是母亲节,为了迎接母亲节的到来,利客来商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.(1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于24件,并且商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?(3)在(2)条件下,若每件甲种玩具售价30元,每件乙种玩具售价45元,请求出卖完这批玩具获利W(元)与甲种玩具进货量m(件)之间的函数关系式,并求出最大利润为多少?【考点】B7:分式方程的应用;C9:一元一次不等式的应用;FH:一次函数的应用.【专题】1:常规题型.【分析】(1)设甲种玩具进价为x元/件,则乙种玩具进价为(40﹣x)元/件,根据用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同可列方程求解.(2)设购进甲种玩具m件,则购进乙种玩具(48﹣m)件,根据甲种玩具的件数少于24件,并且商场决定此次进货的总资金不超过1000元,可列出不等式组求解.(3)先列出有关总利润和进货量的一次函数关系式,然后利用一次函数的性质结合自变量的取值范围求最大值即可.【解答】解:(1)设甲种玩具进价x元/件,则乙种玩具进价为(40﹣x)元/件,根据题意,得=,解得x=15,经检验x=15是原方程的解.则40﹣x=25.答:甲、乙两种玩具分别是15元/件,25元/件;(2)设购进甲种玩具m件,则购进乙种玩具(48﹣m)件,由题意,得,解得20≤m<24.∵m是整数,∴m取20,21,22,23,故商场共有四种进货方案:方案一:购进甲种玩具20件,乙种玩具28件;方案二:购进甲种玩具21件,乙种玩具27件;方案三:购进甲种玩具22件,乙种玩具26件;方案四:购进甲种玩具23件,乙种玩具25件;(3)设购进甲种玩具m件,卖完这批玩具获利W元,则购进乙种玩具(48﹣m)件,根据题意得:W=(30﹣15)m+(45﹣25)(48﹣m)=﹣5m+960,∵比例系数k=﹣5<0,∴W随着m的增大而减小,∴当m=20时,有最大利润W=﹣5×20+960=860元.26.(12分)如图,矩形ABCD中,AB=8cm,AD=10cm,E是AD上一点,AE=6cm,连接BE,CE.点P从点E出发,沿EB方向向点B匀速运动,同时点Q从点C出发,在BC的延长线上匀速运动,P,Q的运动速度均为lcm/s.连接DQ,PQ,PQ交CE于F,设点P,Q的运动时间为t(s)(0<t<10).(1)当t为何值时,PQ⊥BE?(2)设四边形PQDE的面积为y(cm2),求y与t之间的函数关系式.(3)是否存在某一时刻t,使得S四边形PQDE:S矩形ABCD=7:10?若存在,求出t的值;若不存在,请说明理由.(4)过点P作PG⊥CE于G,在P,Q运动过程中,线段FG的长度是否发生变化?若变化,说明理由:若不变化,求出线段FG的长度.【考点】LO:四边形综合题.【专题】152:几何综合题.【分析】(1)由△AEB∽△PBQ,可得=,由此构建方程即可解决问题;(2)如图1中,作PH⊥BC于H.根据S四边形PQDE=S梯形EBQD﹣S△BQP计算即可;(3)构建方程即可解决问题;(4)如图2中,作PM∥BC交AC于M.想办法证明EG=GM、MF=FC即可解决问题;【解答】解:(1)∵四边形ABCD是矩形,∴AD=BC=10,∠A=90°,AE∥BC,∴∠AEB=∠PBQ,∵PQ⊥BE,∴∠A=∠QPB=90°,。
青岛市中考数学试题及答案(word解析版)
山东省青岛市中考数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.(3分)(•青岛)﹣7的绝对值是()D.A.﹣7 B.7C.﹣考点:绝对值.分析:根据负数的绝对值是它的相反数,可得答案.解答:解:|﹣7|=7,故选:B.点评:本题考查了绝对值,负数的绝对值是它的相反数.2.(3分)(•青岛)下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.考点:中心对称图形;轴对称图形.分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.解答:解:A、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;B、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,不是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.点评:此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.(3分)(•青岛)据统计,我国全年完成造林面积约6090000公顷.6090000用科学记数法可表示为()A.6.09×106B.6.09×104C.609×104D.60.9×105考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将6090000用科学记数法表示为:6.09×106.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(•青岛)在一个有15万人的小镇,随机调查了3000人,其中有300人看电视台的早间新闻.据此,估计该镇看电视台早间新闻的约有()A.2.5万人B.2万人C.1.5万人D.1万人考点:用样本估计总体.分析:求得调查样本的看早间新闻的百分比,然后乘以该镇总人数即可.解答:解:该镇看电视台早间新闻的约有15×=1.5万,故选B.点评:本题考查了用样本估计总体的知识,解题的关键是求得样本中观看的百分比,难度不大.5.(3分)(•青岛)已知⊙O1与⊙O2的半径分别是2和4,O1O2=5,则⊙O1与⊙O2的位置关系是()A.内含B.内切C.相交D.外切考点:圆与圆的位置关系.分析:由⊙O1、⊙O2的半径分别是2、4,O1O2=5,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系即可得出两圆位置关系.解答:解:∵⊙O1、⊙O2的半径分别是2、4,∴半径和为:2+4=6,半径差为:4﹣2=2,∵O1O2=5,2<6<6,∴⊙O1与⊙O2的位置关系是:相交.故选C.点评:此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r 的数量关系间的联系.6.(3分)(•青岛)某工程队准备修建一条长1200m的道路,由于采用新的施工方式,实际每天修建道路的速度比原计划快20%,结果提前2天完成任务.若设原计划每天修建道路xm,则根据题意可列方程为()A.B.﹣=2﹣=2D.﹣=2C.﹣=2考点:由实际问题抽象出分式方程.分析:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,根据采用新的施工方式,提前2天完成任务,列出方程即可.解答:解:设原计划每天修建道路xm,则实际每天修建道路为(1+20%)xm,由题意得,﹣=2.故选D.点评:本题考查了由实际问题抽象出分式方程,关键是读懂题意,设出未知数,找出合适的等量关系,列出方程.7.(3分)(•青岛)如图,将矩形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,则BF的长为()A.4B.3C.4.5 D.5考点:翻折变换(折叠问题).分析:先求出BC′,再由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在直角三角形C′BF中,运用勾股定理BF2+BC′2=C′F2求解.解答:解:∵点C′是AB边的中点,AB=6,∴BC′=3,由图形折叠特性知,C′F=CF=BC﹣BF=9﹣BF,在直角三角形C′BF中,BF2+BC′2=C′F2,∴BF2+9=(9﹣BF)2,解得,BF=4,故选:A.点评:本题考查了折叠问题及勾股定理的应用,综合能力要求较高.同时也考查了列方程求解的能力.解题的关键是找出线段的关系.8.(3分)(•青岛)函数y=与y=﹣kx2+k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.考点:二次函数的图象;反比例函数的图象.分析:本题可先由反比例函数的图象得到字母系数的正负,再与二次函数的图象相比较看是否一致.解答:解:由解析式y=﹣kx2+k可得:抛物线对称轴x=0;A、由双曲线的两支分别位于二、四象限,可得k<0,则﹣k>0,抛物线开口方向向上、抛物线与y轴的交点为y轴的负半轴上;本图象与k的取值相矛盾,错误;B、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象符合题意,正确;C、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,错误;D、由双曲线的两支分别位于一、三象限,可得k>0,则﹣k<0,物线开口方向向下、抛物线与y轴的交点在y轴的正半轴上,本图象与k的取值相矛盾,错误.故选:B.点评:本题主要考查了二次函数及反比例函数和图象,解决此类问题步骤一般为:(1)先根据图象的特点判断k取值是否矛盾;(2)根据二次函数图象判断抛物线与y轴的交点是否符合要求.二、填空题(本题满分18分,共有6道小题,每小题3分)9.(3分)(•青岛)计算:=2+1.考点:二次根式的混合运算.专题:计算题.分析:根据二次根式的除法法则运算.解答:解:原式=+=2+1.故答案为2+1.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.10.(3分)(•青岛)某茶厂用甲、乙两台分装机分装某种茶叶(每袋茶叶的标准质量为200g).为了监控分装质量,该厂从它们各自分装的茶叶中随机抽取了50袋,测得它们的实际质量分析如下:平均数(g)方差甲分装机200 16.23乙分装机200 5.84则这两台分装机中,分装的茶叶质量更稳定的是乙(填“甲”或“乙”).考点:方差.分析:根据方差的意义,方差越小数据越稳定,比较甲,乙两台包装机的方差可判断.解答:解:∵=16.23,=5.84,∴>,∴这两台分装机中,分装的茶叶质量更稳定的是乙.故答案为:乙.点评:本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.11.(3分)(•青岛)如图,△ABC的顶点都在方格线的交点(格点)上,如果将△ABC绕C点按逆时针方向旋转90°,那么点B的对应点B′的坐标是(1,0).考点:坐标与图形变化-旋转.专题:数形结合.分析:先画出旋转后的图形,然后写出B′点的坐标.解答:解:如图,将△ABC绕C点按逆时针方向旋转90°,点B的对应点B′的坐标为(1,0).故答案为(1,0).点评:本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.12.(3分)(•青岛)如图,AB是⊙O的直径,BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°.连接AC,则∠A的度数是35°.考点:切线的性质.分析:首先连接OC,由BD,CD分别是过⊙O上点B,C的切线,且∠BDC=110°,可求得∠BOC的度数,又由圆周角定理,即可求得答案.解答:解:连接OC,∵BD,CD分别是过⊙O上点B,C的切线,∴OC⊥CD,OB⊥BD,∴∠OCD=∠OBD=90°,∵∠BDC=110°,∴∠BOC=360°﹣∠OCD﹣∠BDC﹣∠OBD=70°,∴∠A=∠BOC=35°.故答案为:35.点评:此题考查了切线的性质以及圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.13.(3分)(•青岛)如图,在等腰梯形ABCD中,AD=2,∠BCD=60°,对角线AC平分∠BCD,E,F分别是底边AD,BC的中点,连接EF.点P是EF上的任意一点,连接PA,PB,则PA+PB的最小值为2.考点:轴对称-最短路线问题;等腰梯形的性质.分析:要求PA+PB的最小值,PA、PB不能直接求,可考虑转化PA、PB的值,从而找出其最小值求解.解答:解:∵E,F分别是底边AD,BC的中点,四边形ABCD是等腰梯形,∴B点关于EF的对称点C点,∴AC即为PA+PB的最小值,∵∠BCD=60°,对角线AC平分∠BCD,∴∠ABC=60°,∠BCA=30°,∴∠BAC=90°,∵AD=2,∴PA+PB的最小值=AB•tan60°=.故答案为:2.点评:考查等腰梯形的性质和轴对称等知识的综合应用.综合运用这些知识是解决本题的关键.14.(3分)(•青岛)如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要54个小立方块.考点:由三视图判断几何体.分析:首先根据该几何体的三视图确定需要的小立方块的块数,然后确定搭成一个大正方体需要的块数.解答:解:由俯视图易得最底层有7个小立方体,第二层有2个小立方体,第三层有1个小立方体,那么共有7+2+1=10个几何体组成.若搭成一个大正方体,共需4×4×4=64个小立方体,所以还需64﹣10=54个小立方体,故答案为:54.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,主视图疯狂盖,左视图拆违章”就更容易得到答案.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.(4分)(•青岛)已知:线段a,∠α.求作:△ABC,使AB=AC=a,∠B=∠α.考点:作图—复杂作图.分析:首先作∠ABC=α,进而以B为圆心a的长为半径画弧,再以A为圆心a为半径画弧即可得出C的位置.解答:解:如图所示:△ABC即为所求.点评:此题主要考查了复杂作图,得出正确的作图顺序是解题关键.四、解答题(本题满分74分,共有9道小题)16.(8分)(•青岛)(1)计算:÷;(2)解不等式组:.考点:解一元一次不等式组;分式的乘除法.分析:(1)首先转化为乘法运算,然后进行约分即可;(2)先求出不等式组中每一个不等式的解集,再求出它们的公共部分就是不等式组的解集.解答:解:(1)原式===;(2)解不等式①,得x>.解不等式②,得x<3.所以原不等式组的解集是<x<3.点评:本题考查的是一元一次不等式组的解,解此类题目常常要结合数轴来判断.还可以观察不等式的解,若x>较小的数、<较大的数,那么解集为x介于两数之间.17.(6分)(•青岛)空气质量状况已引起全社会的广泛关注,某市统计了每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.根据以上信息解答下列问题:(1)该市每月空气质量达到良好以上天数的中位数是14天,众数是13天;(2)求扇形统计图中扇形A的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况(字数不超过30字).考点:折线统计图;扇形统计图;中位数;众数.分析:(1)利用折线统计图得出各数据,进而求出中位数和众数;(2)利用(1)中数据得出空气为优的所占比例,进而得出扇形A的圆心角的度数;(3)结合空气质量进而得出答案.解答:解:(1)由题意可得,数据为:8,9,12,13,13,13,15,16,17,19,21,21,最中间的是:13,15,故该市每月空气质量达到良好以上天数的中位数是14天,众数是13天故答案为:14,13;(2)由题意可得:360°×=60°.答:扇形A的圆心角的度数是60°.(3)该市空气质量为优的月份太少,应对该市环境进一步治理,合理即可.点评:此题主要考查了折线统计图以及中位数和众数的概念,利用折线统计图分析数据是解题关键.18.(6分)(•青岛)某商场为了吸引顾客,设立了可以自由转动的转盘(如图,转盘被均匀分为20份),并规定:顾客每购买200元的商品,就能获得一次转动转盘的机会.如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么顾客就可以分别获得200元、100元、50元的购物券,凭购物券可以在该商场继续购物.如果顾客不愿意转转盘,那么可以直接获得购物券30元.(1)求转动一次转盘获得购物券的概率;(2)转转盘和直接获得购物券,你认为哪种方式对顾客更合算?考点:概率公式.分析:(1)由转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,直接利用概率公式求解即可求得答案;(2)首先求得指针正好对准红色、黄色、绿色区域的概率,继而可求得转转盘的情况,继而求得答案.解答:解:(1)∵转盘被均匀分为20份,转动一次转盘获得购物券的有10种情况,∴P(转动一次转盘获得购物券)==.(2分)(2)∵P(红色)=,P(黄色)=,P(绿色)==,∴(元)∵40元>30元,∴选择转转盘对顾客更合算.(6分)点评:此题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.19.(6分)(•青岛)甲、乙两人进行赛跑,甲比乙跑得快,现在甲让乙先跑10米,甲再起跑.图中l1和l2分别表示甲、乙两人跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系,其中l1的关系式为y1=8x,问甲追上乙用了多长时间?考点:一次函数的应用.分析:设l2表示乙跑步的路程y(m)与甲跑步的时间x(s)之间的函数关系为y2=kx+b,代入(0,10),(2,22)求得函数解析式,进一步与l1的关系式为y1=8x联立方程解决问题.解答:解:设y2=kx+b(k≠0),代入(0,10),(2,22)得解这个方程组,得所以y2=6x+10.当y1=y2时,8x=6x+10,解这个方程,得x=5.答:甲追上乙用了5s.点评:本题考查了一次函数的应用及一元一次方程的应用,解题的关键是根据题意结合图象说出其图象表示的实际意义,这样便于理解题意及正确的解题.20.(8分)(•青岛)如图,小明想测山高和索道的长度.他在B处仰望山顶A,测得仰角∠B=31°,再往山的方向(水平方向)前进80m至索道口C处,沿索道方向仰望山顶,测得仰角∠ACE=39°.(1)求这座山的高度(小明的身高忽略不计);(2)求索道AC的长(结果精确到0.1m).(参考数据:tan31°≈,sin31°≈,tan39°≈,sin39°≈)考点:解直角三角形的应用-仰角俯角问题.分析:(1)过点A作AD⊥BE于D,设山AD的高度为xm,在Rt△ABD和Rt△ACD中分别表示出BD和CD的长度,然后根据BD﹣CD=80m,列出方程,求出x的值;(2)在Rt△ACD中,利用sin∠ACD=,代入数值求出AC的长度.解答:解:(1)过点A作AD⊥BE于D,设山AD的高度为xm,在Rt△ABD中,∵∠ADB=90°,tan31°=,∴BD=≈=x,在Rt△ACD中,∵∠ADC=90°,tan39°=,∴CD=≈=x,∵BC=BD﹣CD,∴x﹣x=80,解得:x=180.即山的高度为180米;(2)在Rt△ACD中,∠ADC=90°,sin39°=,∴AC==≈282.9(m).答:索道AC长约为282.9米.点评:本题考查了解直角三角形的应用,解答本题关键是利用仰角构造直角三角形,利用三角函数的知识表示出相关线段的长度.21.(8分)(•青岛)已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC 的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=∠AEB=45°时,四边形ACED是正方形?请说明理由.考点:平行四边形的性质;全等三角形的判定与性质;正方形的判定.分析:(1)根据平行线的性质可得∠D=∠OCE,∠DAO=∠E,再根据中点定义可得DO=CO,然后可利用AAS证明△AOD≌△EOC;(2)当∠B=∠AEB=45°时,四边形ACED是正方形,首先证明四边形ACED是平行四边形,再证对角线互相垂直且相等可得四边形ACED是正方形.解答:证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC.∴∠D=∠OCE,∠DAO=∠E.∵O是CD的中点,∴OC=OD,在△ADO和△ECO中,,∴△AOD≌△EOC(AAS);(2)当∠B=∠AEB=45°时,四边形ACED是正方形.∵△AOD≌△EOC,∴OA=OE.又∵OC=OD,∴四边形ACED是平行四边形.∵∠B=∠AEB=45°,∴AB=AE,∠BAE=90°.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∴∠COE=∠BAE=90°.∴▱ACED是菱形.∵AB=AE,AB=CD,∴AE=CD.∴菱形ACED是正方形.故答案为:45.点评:此题主要考查了全等三角形的判定与性质,以及正方形的判定,关键是掌握对角线互相垂直且相等的平行四边形是正方形.22.(10分)(•青岛)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?(每天的总成本=每件的成本×每天的销售量)考点:二次函数的应用.分析:(1)根据“利润=(售价﹣成本)×销售量”列出方程;(2)把(1)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答;(3)把y=4000代入函数解析式,求得相应的x值;然后由“每天的总成本不超过7000元”列出关于x的不等式50(﹣5x+550)≤7000,通过解不等式来求x的取值范围.解答:解:(1)y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x﹣27500∴y=﹣5x2+800x﹣27500(50≤x≤100);(2)y=﹣5x2+800x﹣27500=﹣5(x﹣80)2+4500∵a=﹣5<0,∴抛物线开口向下.∵50≤x≤100,对称轴是直线x=80,∴当x=80时,y最大值=4500;(3)当y=4000时,﹣5(x﹣80)2+4500=4000,解得x1=70,x2=90.∴当70≤x≤90时,每天的销售利润不低于4000元.由每天的总成本不超过7000元,得50(﹣5x+550)≤7000,解得x≥82.∴82≤x≤90,∵50≤x≤100,∴销售单价应该控制在82元至90元之间.点评:本题考查二次函数的实际应用.此题为数学建模题,借助二次函数解决实际问题.23.(10分)(•青岛)数学问题:计算+++…+(其中m,n都是正整数,且m≥2,n≥1).探究问题:为解决上面的数学问题,我们运用数形结合的思想方法,通过不断地分割一个面积为1的正方形,把数量关系和几何图形巧妙地结合起来,并采取一般问题特殊化的策略来进行探究.探究一:计算+++…+.第1次分割,把正方形的面积二等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续二等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续二等分,…;…第n次分割,把上次分割图中空白部分的面积最后二等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣.探究二:计算+++…+.第1次分割,把正方形的面积三等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续三等分,阴影部分的面积之和为+;第3次分割,把上次分割图中空白部分的面积继续三等分,…;…第n次分割,把上次分割图中空白部分的面积最后三等分,所有阴影部分的面积之和为+++…+,最后空白部分的面积是.根据第n次分割图可得等式:+++…+=1﹣,两边同除以2,得+++…+=﹣.探究三:计算+++…+.(仿照上述方法,只画出第n次分割图,在图上标注阴影部分面积,并写出探究过程)解决问题:计算+++…+.(只需画出第n次分割图,在图上标注阴影部分面积,并完成以下填空)根据第n次分割图可得等式:+++…+=1﹣,所以,+++…+=﹣.拓广应用:计算+++…+.考点:作图—应用与设计作图;规律型:图形的变化类.专题:规律型.分析:探究三:根据探究二的分割方法依次进行分割,然后表示出阴影部分的面积,再除以3即可;解决问题:按照探究二的分割方法依次分割,然后表示出阴影部分的面积及,再除以(m﹣1)即可得解;拓广应用:先把每一个分数分成1减去一个分数,然后应用公式进行计算即可得解.解答:解:探究三:第1次分割,把正方形的面积四等分,其中阴影部分的面积为;第2次分割,把上次分割图中空白部分的面积继续四等分,阴影部分的面积之和为;第3次分割,把上次分割图中空白部分的面积继续四等分,…,第n次分割,把上次分割图中空白部分的面积最后四等分,所有阴影部分的面积之和为:+++…+,最后的空白部分的面积是,根据第n次分割图可得等式:+++…+=1﹣,两边同除以3,得+++…+=﹣;解决问题:+++…+=1﹣,+++…+=﹣;故答案为:+++…+=1﹣,﹣;拓广应用:+++…+,=1﹣+1﹣+1﹣+…+1﹣,=n﹣(+++…+),=n﹣(﹣),=n﹣+.点评:本题考查了应用与设计作图,图形的变化规律,读懂题目信息,理解分割的方法以及求和的方法是解题的关键.24.(12分)(•青岛)已知:如图,菱形ABCD中,对角线AC,BD相交于点O,且AC=12cm,BD=16cm.点P从点B出发,沿BA方向匀速运动,速度为1cm/s;同时,直线EF从点D 出发,沿DB方向匀速运动,速度为1cm/s,EF⊥BD,且与AD,BD,CD分别交于点E,Q,F;当直线EF停止运动时,点P也停止运动.连接PF,设运动时间为t(s)(0<t<8).解答下列问题:(1)当t为何值时,四边形APFD是平行四边形?(2)设四边形APFE的面积为y(cm2),求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形APFE:S菱形ABCD=17:40?若存在,求出t的值,并求出此时P,E两点间的距离;若不存在,请说明理由.考点:四边形综合题.分析:(1))由四边形ABCD是菱形,OA=AC,OB=BD.在Rt△AOB中,运用勾股定理求出AB=10.再由△DFQ∽△DCO.得出=.求出DF.由AP=DF.求出t.(2)过点C作CG⊥AB于点G,由S菱形ABCD=AB•CG=AC•BD,求出CG.据S梯=(AP+DF)•CG.S△EFD=EF•QD.得出y与t之间的函数关系式;形APFD(3)过点C作CG⊥AB于点G,由S菱形ABCD=AB•CG,求出CG,由S四边形APFE:S=17:40,求出t,再由△PBN∽△ABO,求得PN,BN,据线段关系求出EM,菱形ABCDPM再由勾股定理求出PE.解答:解:(1)∵四边形ABCD是菱形,∴AB∥CD,AC⊥BD,OA=OC=AC=6,OB=OD=BD=8.在Rt△AOB中,AB==10.∵EF⊥BD,∴∠FQD=∠COD=90°.又∵∠FDQ=∠CDO,∴△DFQ∽△DCO.∴=.即=,∴DF=t.∵四边形APFD是平行四边形,∴AP=DF.即10﹣t=t,解这个方程,得t=.∴当t=s时,四边形APFD是平行四边形.(2)如图,过点C作CG⊥AB于点G,∵S菱形ABCD=AB•CG=AC•BD,即10•CG=×12×16,∴CG=.∴S梯形APFD=(AP+DF)•CG=(10﹣t+t)•=t+48.∵△DFQ∽△DCO,∴=.即=,∴QF=t.同理,EQ=t.∴EF=QF+EQ=t.∴S△EFD=EF•QD=×t×t=t2.∴y=(t+48)﹣t2=﹣t2+t+48.(3)如图,过点P作PM⊥EF于点M,PN⊥BD于点N,若S四边形APFE:S菱形ABCD=17:40,则﹣t2+t+48=×96,即5t2﹣8t﹣48=0,解这个方程,得t1=4,t2=﹣(舍去)过点P作PM⊥EF于点M,PN⊥BD于点N,当t=4时,∵△PBN∽△ABO,∴==,即==.∴PN=,BN=.∴EM=EQ﹣MQ==.PM=BD﹣BN﹣DQ==.在Rt△PME中,PE===(cm).点评:本题主要考查了四边形的综合知识,解题的关键是根据三角形相似比求出相关线段.。
2024年山东省青岛市九年级中考三模数学试题
2024年山东省青岛市九年级中考三模数学试题一、单选题1.下列用于证明勾股定理的图形中,是轴对称图形的是( )A .B .C .D . 2.爱达·魔都号,是中国第一艘国产大型邮轮,全长323.6米,总吨位为13.55万吨,可搭载乘客5246人.将13.55万用科学记数法表示为( )A .4135510⨯B .51.35510⨯C .41.35510⨯D .90.135510⨯ 3.中国古代数学名著《九章算术注》中记载:“邪解立方,得两堑堵.”意即把一长方体沿对角面一分为二,这相同的两块叫做“堑堵”.如图是“堑堵”的立体图形,它的俯视图为( )A .B .C .D .4.某校计划对教室进行多媒体安装改造,现安排两家公司共同完成.已知A 公司的工作效率是B 公司工作效率的1.2倍,B 公司安装30间教室比A 公司安装同样数量的教室多用2天.若设B 公司每天安装x 间教室,则可列方程为( )A .303021.2x x-= B .303021.2x x -= C .3063025x x ⨯-= D .6303025x x ⨯-= 5.如图,在直角坐标系中,一次函数12y x =-+的图象与反比例函数23y x=-的图象交于(1,3),(3,1)A B --两点,与y 轴、x 轴分别交于C ,D 两点,下列结论正确的是( )A .tan 2CDO ∠=B .AC BD CD +> C .当11x -<<时,12y y >D .连接,OA OB ,则AOC BOD S S =△△ 6.反比例函数(0)k y k x=≠在第二象限内的图象与一次函数y x b =+的图象如图所示.则函数3y bx k =+-的图象大致为( )A .B .C .D . 7.如图,在O e 中,直径AB 与弦CD 相交于点P ,连接AC ,AD ,BD ,若15C ∠=︒,40ADC ∠=︒,则BPC ∠的度数为( )A .50︒B .55°C .60︒D .65︒8.已知二次函数()20y ax bx c a =++<的图象与x 轴的一个交点坐标为()2,0-,对称轴为直线1x =,下列结论中:①0a b c -+>;②若点()13,y -,()22,y ,()36,y 均在该二次函数图象上,则132y y y <<;③方程210ax bx c +++=的两个实数根为12,x x ,且12x x <,则12x <-,24x >;④若m 为任意实数,则29am bm c a ++≤-.正确结论的序号为( )A .①②④B .①③④C .②③④D .①③9.1的绝对值是( )A .0B .1C .2D .7二、填空题10.南山植物园坐落在省级南山风景名胜区群山之中,与重庆主城区夹长江面峙,是一个以森林为基础;每到春季,上山赏花的人络绎不绝,开办了植物花卉门市;将A 、B 、C 三种花卉包装成“如沐春风”、“懵懂少女”、“粉色回忆”三种不同的礼盒进行销售;用A 花卉2支、B 花卉4支、C 种花卉10支包装成“如沐春风”礼盒;用A 花卉2支、B 花卉2支、C 种花卉4支包装成“懵懂少女”礼盒;用A 花卉2支、B 花卉3支、C 花卉6支包装成“粉色回忆”礼盒,且每支B 花卉的成本是每支C 花卉成本的4倍,每盒“如沐春风”礼盒的总成本是每盒“懵懂少女”礼盒总成本的2倍;该商家将三种礼盒均以利润率50%进行定价销售;某周末,该门市为了加大销量,将“如沐春风”、“懵懂少女”两种礼盒打八折进行销售,且两种礼盒的销量相同,“粉色回忆”礼盒打九折销售,三种礼盒的总成本恰好为总利润的4倍,则该周末“粉色回忆”礼盒的总利润与三种礼盒的总利润的比值为 .11.如图,在平面直角坐标系xOy 中,抛物线26y ax bx =+-与直线=1y x --交于A ,B 两点(点A 在x 轴上),与y 轴交于点C ,且90ABC ∠=︒,那么本抛物线的表达式为.12.如图,将长方形纸片沿EB ,CF 折叠成图1,使AB 与CD 在一条直线上,再沿BF 折叠成图2,使点D 落在点D '处,若39CEB ∠=︒,则BPF ∠的度数为︒.13.如图,矩形ABCD 中,点E 在BC 边上,且AE AD =,AE 平分BAD ∠.作D F AE ⊥于点F ,连接DE ,BF ,BF 的延长线交DE 于点O ,交CD 于点G .以下结论:①AF BE =;②20CDE ∠=︒;③12OF DE =;④若1AB =,则OB =(填写序号)14.已知2340x x --=,求值:223111x x x x +⎛⎫÷-- ⎪-+⎝⎭= 15.如图,在正方形ABCD 中,以BC 为直径作半圆O ,以D 为圆心,DA 为半径作»AC ,与半圆O 交于点P ,我们称:点P 为正方形ABCD 的一个“奇妙点”,过奇妙点的多条线段与正方形ABCD 无论是位置关系还是数量关系,都具有不少优美的性质值得探究.连接PA 、PB 、PC 、PD ,并延长PD 交AB 于点F .下列结论中:①FD FB BC =+;②135APC ∠=︒;③212PBC S AP =V ;④1tan 3BAP ∠=;其中正确的结论的序号为.三、解答题16.设计一个有关青岛旅游宣传的图案,使它既是中心对称图形,又是轴对称图形. 17.计算(1)解不等式组()11233151x x x x -⎧-≤⎪⎨⎪+<-⎩;(2)化简211x x x -++. 18.已知:以AB 为直径的O e 中,弦CD AB ⊥,垂足为E,CD =3AE =.(1)如图,求O e 的周长;(2)如图,P 为优弧CD 上一动点(不与A 、C 、D 三点重合),M 为半径OP 的中点,连接ME ,若MEO x ∠=︒,弧AP 的长为y ,求y 与x 之间的函数关系式,并写出x 的取值范围;(3)如图,在(2)的条件下,过点P 作PN CD ⊥于点N ,连接MN ,当t a n 2P N M ∠=-求PN 的长,并判断以OP 为直径的圆与直线ON 的位置关系.19.如图,抛物线215y x bx c =++与x 轴交于点()1,0A 和点B ,与y 轴交于点C 0,1 ,抛物线的对称轴交x 轴于点D .过点B 作直线l x ⊥轴,连接CD ,过点D 作DE CD ⊥,交直线l 于点E ,作直线CE .(1)求抛物线的函数表达式并直接写出直线CE 的函数表达式;(2)如图,点P 为抛物线上第二象限内的点,设点P 的横坐标为m ,连接BP 与CE 交于点Q ,当点Q 为线段BP 的中点时,求m ;(3)若点M 为x 轴上一个动点,点N 为抛物线上一动点,试判断是否存在这样的点M ,使得以点D ,E ,M ,N 为顶点的四边形是平行四边形,若存在,请直接写出点M 的坐标;若不存在,请说明理由.20.阅读以下信息,完成下列小题材料一:对数是高中数学必修一中的一个重要知识点,是高中运算的基础.材料二:对数的基本运算法则:对数公式是数学中的一种常见公式,如果x a N =(a >0,且1a ≠),则x 叫做以a 为底N 的对数,记做log a x N =,其中a 要写于log 右下.其中a 叫做对数的底,N 叫做真数.通常以10为底的对数叫做常用对数,记作lg ;以e 为底的对数称为自然对数,记作ln .(1)请把下列算式写成对数的形式:328=,3101000=,2416=(2)平方运算是对数运算的基础.完成下列运算:33=99=1212=(3)对数和我们在初中阶段学习的平方根的运算也有相似之处.请完成有关平方根的知识点的填空.平方根,又叫二次方根,表示为〔〕,其中属于的平方根称之为算术平方根(arithmeticsquareroot ),是一种方根.一个正数有个实平方根,它们互为,负数在范围内没有平方根,0的平方根是021.已知1y 是自变量x 的函数,当21y xy =时,称函数2y 为函数1y 的“升幂函数”.在平面直角坐标系中,对于函数1y 图象上任意一点(,)A m n ,称点(,)B m mn 为点A “关于1y 的升幂点”,点B 在函数1y 的“升幂函数”2y 的图象上.例如:函数12y x =,当22122y xy x x x ==⋅=时,则函数222y x =是函数12y x =的“升幂函数”.在平面直角坐标系中,函数12y x =的图象上任意一点(,2)A m m ,点()2,2B m m 为点A “关于1y 的升幂点”,点B 在函数12y x =的“升幂函数”222y x =的图象上.(1)求函数112y x =的“升幂函数”2y 的函数表达式; (2)如图1,点A 在函数13(0)y x x=>的图象上,点A “关于1y 的升幂点”B 在点A 上方,当2AB =时,求点A 的坐标;(3)点A 在函数14y x =-+的图象上,点A “关于1y 的升幂点”为点B ,设点A 的横坐标为m .①若点B 与点A 重合,求m 的值;②若点B 在点A 的上方,过点B 作x 轴的平行线,与函数1y 的“升幂函数”2y 的图象相交于点C ,以AB ,BC 为邻边构造矩形ABCD ,设矩形ABCD 的周长为y ,求y 关于m 的函数表达式;③在②的条件下,当直线1y t =与函数y 的图象的交点有3个时,从左到右依次记为E ,F ,G ,当直线2y t =与函数y 的图象的交点有2个时,从左到右依次记为M ,N ,若EF M N =,请直接写出....21t t -的值. 22.在平行四边形ABCD 中,4AB =,45ABC ∠=︒,将ABC V 沿对角线AC 翻折,点B 的对应点为点E ,线段EC 与边AD 交于点F .(1)如图1,30ACB ∠=︒,求FCD ∠的度数;(2)若CDF V 是以CF 为腰的等腰三角形,求线段BC 的长;(3)如图2,连接BE ,CA 的延长线交BE 于点N ,BA 的延长线交EC 于点M ,当点M 至BC 的距离最小值时,求出此时BCN △的面积.23.阅读材料,完成下列小题.集合,简称集,是数学中一个基本概念,也是集合论的主要研究对象.集合论的基本理论创立于19世纪,关于集合的最简单的说法就是在朴素集合论(最原始的集合论)中的定义,即集合是“确定的一堆东西”,集合里的“东西”则称为元素.现代的集合一般被定义为:由一个或多个确定的元素所构成的整体.我们把这个抽象的概念具体化:关于1+1=这个算式答案的集合,我们表示为{2}.交集指的是两个集合的共同部分,用“∩”表示;比如“小于4大于1的实数”这个集合与“小于5大于2的实数”的交集就是{3}并集指的是把两个集合合并在一起,用“∪”表示;比如“小于4大于1的实数”这个集合与“小于5大于2的实数”的并集就是{4,3,2}【开胃小菜】请表示不等式组23789x x x x⎧>⎪⎨⎪-<⎩的解集.【拓展延伸】集合论在离散数学中有着非常重要的地位.对于非空集合A 和B ,定义和集{},A B a b a A b B +=+∈∈,用符号()d A B +表示和集A B +内的元素个数.(1)已知集合{}1,3,5A =,{}1,2,6B =,{}1,2,6,C x =,若A B A C +=+,求x 的值;(2)记集合{}1,2,,n A n =L,,n B =L ,n n n C A B =+,n a 为n C 中所有元素之和,n是正整数,求证:12121)nn a a a +++<L ; (3)若A 与B 都是由()*3,m m m ≥∈N 个整数构成的集合,且()21d A B m +=-,证明:若按一定顺序排列,集合A 与B 中的元素是两个公差相等的等差数列.【知识卡片】“∈”的意思是属于,*N 的意思是正整数.。
青岛中考数学试题及答案】
二0一0年山东省青岛市初级中学学业水平考试数 学 试 题(考试时间:120分钟;满分:120分)一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.请将1—8各小题所选答案的标号填写在第8小题后面给出表格的相应位置上. 1.下列各数中,相反数等于5的数是( ).A .-5B .5C .-15D .152.如图所示的几何体的俯视图是( ). A .B .C .D . 3.由四舍五入法得到的近似数8.8×103,下列说法中正确的是( ).A .精确到十分位,有2个有效数字B .精确到个位,有2个有效数字C .精确到百位,有2个有效数字D .精确到千位,有4个有效数字4.下列图形中,中心对称图形有( ).A .1个B .2个C .3个D .4个5.某外贸公司要出口一批规格为150g 的苹果,现有两个厂家提供货源,它们的价格相同,苹果的品质也相近. 质检员分别从甲、乙两厂的产品中随机抽取了50个苹果称重,并将所得数据处理后,制成如下表格. 根据表中信息判断,下列说法错误的是( ).A .本次的调查方式是抽样调查B .甲、乙两厂被抽取苹果的平均质量相同C .被抽取的这100个苹果的质量是本次调查的样本D .甲厂苹果的质量比乙厂苹果的质量波动大6.如图,在Rt△ABC 中,∠C = 90°,∠B = 30°,BC = 4 cm ,以点C 为圆心,以2 cm 的长为半径作圆,则⊙C 与AB 的位置关系是( ). A .相离 B .相切 C .相交 D .相切或相交7.如图,△ABC 的顶点坐标分别为A (4,6)、B (5,2)、C (2,1),如果将△ABC 绕点C 按逆时针方向旋转90°,得到△''A B C ,那么点A 的对应点'A 的坐标是( ).A .(-3,3)B .(3,-3)C .(-2,4)D .(1,4) 个数 平均 质量(g )质量的方差甲厂 50 150 2.6 乙厂 50 150 3.1 第2题图7O -2 -4 -3 -5 yC -1 6A 2 1 34 5 1 2 Bx3 4 5 B C A第6题图8.函数y ax a =-与ay x=(a ≠0)在同一直角坐标系中的图象可能是( ).A .B .C .D .二、填空题(本题满分18分,共有6道小题,每小题3分)请将9—14各小题的答案填写在第14小题后面给出表格的相应位置上.9= .10.如图,点A 、B 、C 在⊙O 上,若∠BAC = 24°,则∠BOC = °. 11.某市为治理污水,需要铺设一段全长为300 m 的污水排放管道.铺设120 m后,为了尽量减少施工对城市交通所造成的影响,后来每天的工效比原计划增加20%,结果共用30天完成这一任务.求原计划每天铺设管道的长度.如果设原计划每天铺设m x 管道,那么根据题意,可得方程 . 12.一个口袋中装有10个红球和若干个黄球.在不允许将球倒出来数的前提下,为估计口袋中黄球的个数,小明采用了如下的方法:每次先从口袋中摸出10个球,求出其中红球数与10的比值,再把球放回口袋中摇匀.不断重复上述过程20次,得到红球数与10的比值的平均数为0.4.根据上述数据,估计口袋中大约有 个黄球.13.把一张矩形纸片(矩形ABCD )按如图方式折叠,使顶点B 和点D 重合,折痕为EF .若AB = 3 cm ,BC= 5 cm ,则重叠部分△DEF 的面积是 cm 2.14.如图,是用棋子摆成的图案,摆第1个图案需要7枚棋子,摆第2个图案需要19枚棋子,摆第3个图案需要37枚棋子,按照这样的方式摆下去,则摆第6个图案需要 枚棋子,摆第n 个图案需要 枚棋子.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹. 15.如图,有一块三角形材料(△ABC ),请你画出一个圆,使其与△ABC 的各边都相切.解:结论: 四、解答题(本题满分74分,共有9道小题) 16.(本小题满分8分,每题4分)x OAB C第10题图·…第14题图A BCFE 'A 第13题图('B )D AB C(1)解方程组:34194x y x y +=⎧⎨-=⎩; (2)化简:22142a a a +--. 解: 解:原式=17.(本小题满分6分)配餐公司为某学校提供A 、B 、C 三类午餐供师生选择,三类午餐每份的价格分别是:A 餐5元,B 餐6元,C 餐8元.为做好下阶段的营销工作,配餐公司根据该校上周A 、B 、C 三类午餐购买情况,将所得的数据处理后,制成统计表(如下左图);根据以往销售量与平均每份利润之间的关系,制成统计图(如下右图).请根据以上信息,解答下列问题:(1)该校师生上周购买午餐费用的众数是 元;(2)配餐公司上周在该校销售B 餐每份的利润大约是 元; (3)请你计算配餐公司上周在该校销售午餐约盈利多少元? 解:(3)18.(本小题满分6分)“五·一”期间,某书城为了吸引读者,设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),并规定:读者每购买100元的书,就可获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色区域,那么读者就可以分别获得45元、30元、25元的购书券,凭购书券可以在书城继续购书.如果读者不愿意转转盘,那么可以直接获得10元的购书券.(1)写出转动一次转盘获得45元购书券的概率; (2)转转盘和直接获得购书券,你认为哪种方式对读者更合算?请说明理由.以往销售量与平均每份利润之间的关系统计图一周销售量(份)(不含800) (不含1200)1200以上该校上周购买情况统计表解:(1)(2)19.(本小题满分6分)小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数) (参考数据:o o o o 337sin37tan37sin 48tan485410≈≈≈≈,,,解:20.(本小题满分8分)某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数; (2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元.根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金.解:(1)(2) 21.(本小题满分8分)已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF .(1)求证:BE = DF ;(2)连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接EM 、FM .判断四边形AEMF 是什么特殊四边形?并证明你的结论.证明:(1)A D第19题图(2)22.(本小题满分10分)某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y (件)与销售单价x (元)之间的关系可近似的看作一次函数:10500y x =-+.(1)设李明每月获得利润为w (元),当销售单价定为多少元时,每月可获得最大利润?(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元? (成本=进价×销售量) 解:(1)(2)(3)23.(本小题满分10分)问题再现现实生活中,镶嵌图案在地面、墙面乃至于服装面料设计中随处可见.在八年级课题学习“平面图形的镶嵌”中,对于单种多边形的镶嵌,主要研究了三角形、四边形、正六边形的镶嵌问题.今天我们把正.多边形...的镶嵌作为研究问题的切入点,提出其中几个问题,共同来探究. 我们知道,可以单独用正三角形、正方形或正六边形镶嵌平面.如右图中,用正方形镶嵌平面,可以发现在一个顶点O 周围围绕着4个正方形的内角.BEF OCM第21题图试想:如果用正六边形来镶嵌平面,在一个顶点周围应该围绕着 个 正六边形的内角.问题提出如果我们要同时用两种不同的正多边形镶嵌平面,可能设计出几种不同的组合方案? 问题解决猜想1:是否可以同时用正方形、正八边形两种正多边形组合进行平面镶嵌?分析:我们可以将此问题转化为数学问题来解决.从平面图形的镶嵌中可以发现,解决问题的关键在于分析能同时用于完整镶嵌平面的两种正多边形的内角特点.具体地说,就是在镶嵌平面时,一个顶点周围围绕的各个正多边形的内角恰好拼成一个周角.验证1:在镶嵌平面时,设围绕某一点有x 个正方形和y 个正八边形的内角可以拼成一个周角.根据题意,可得方程:()82180903608x y -⨯+ =,整理得:238x y +=,我们可以找到惟一一组适合方程的正整数解为12x y =⎧⎨=⎩ .结论1:镶嵌平面时,在一个顶点周围围绕着1个正方形和2个正八边形的内角可以拼成一个周角,所以同时用正方形和正八边形两种正多边形组合可以进行平面镶嵌.猜想2:是否可以同时用正三角形和正六边形两种正多边形组合进行平面镶嵌?若能,请按照上述方法进行验证,并写出所有可能的方案;若不能,请说明理由.验证2:结论2: .上面,我们探究了同时用两种不同的正多边形组合镶嵌平面的部分情况,仅仅得到了一部分组合方案,相信同学们用同样的方法,一定会找到其它可能的组合方案.问题拓广请你仿照上面的研究方式,探索出一个同时用三种不同的正多边形组合进行平面镶嵌的方案,并写出验证过程.猜想3: .验证3:结论3: .24.(本小题满分12分)已知:把Rt△ABC 和Rt△DEF 按如图(1)摆放(点C 与点E 重合),点B 、C (E )、F 在同一条直线上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm ,BC = 6 cm ,EF = 9 cm .如图(2),△DEF 从图(1)的位置出发,以1 cm/s 的速度沿CB 向△ABC 匀速移动,在△DEF 移动的同时,点P 从△ABC 的顶点B 出发,以2 cm/s 的速度沿BA 向点A 匀速移动.当△DEF 的顶点D 移动到AC 边上时,△DEF 停止移动,点P 也随之停止移动.DE 与AC 相交于点Q ,连接PQ ,设移动时间为t (s )(0<t <4.5).解答下列问题:(1)当t 为何值时,点A 在线段PQ 的垂直平分线上?(2)连接PE ,设四边形APEC 的面积为y (cm 2),求y 与t 之间的函数关系式;是否存在某一时刻t ,使面积y 最小?若存在,求出y 的最小值;若不存在,说明理由.(3)是否存在某一时刻t ,使P 、Q 、F 三点在同一条直线上?若存在,求出此时t 的值;若不存在,说明理由.(图(3)供同学们做题使用)解:(1)(2)(3)二○一○年山东省青岛市初级中学学业水平考试数学试题参考答案及评分标准说明:1.如果考生的解法与本解法不同,可参照本评分标准制定相应评分细则.2.当考生的解答在某一步出现错误,影响了后继部分时,如果这一步以后的解答未改变这道题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后面部分应给分数的一半;如果这一步以后的解答有较严重的错误,就不给分.3.为阅卷方便,本解答中的推算步骤写得较为详细,但允许考生在解答过程中,合理省略非关键性的推算步骤.4.解答右端所注分数,表示考生正确做到这一步应得的累加分数.A D BE ) 图(1) 图(2) A B C 图(3) (用圆珠笔或钢笔画图)一、选择题(本题满分24分,共有8道小题,每小题3分)二、填空题(本题满分18分,共有6道小题,每小题3分)三、作图题(本题满分4分)15.正确画出两条角平分线,确定圆心; ······· 2分确定半径; ······· 3分 正确画出圆并写出结论. ······· 4分四、解答题(本题满分74分,共有9道小题) 16.(本小题满分8分) (1)34194x y x y +=⎧⎨-=⎩解:②×4得:4416x y -=,③①+③得:7x = 35, 解得:x = 5.把x = 5代入②得,y = 1. ∴原方程组的解为51x y =⎧⎨=⎩.········ 4分(2)解:原式 =()()21222a a a a -+-- ()()()()222222a a a a a a +=-+-+- ② ①()()()()()2222222a a a a a a a -+=+--=+-12a =+. ······· 4分17.(本小题满分6分)解:(1)6元; ······· 2分 (2)3元;······· 4分 (3)1.5×1000+3×1700+3×400 = 1500+5100+1200 = 7800(元).答:配餐公司上周在该校销售午餐约盈利7800元. ······· 6分18.(本小题满分6分)解:(1)P (获得45元购书券) = 112; ······· 2分(2)12345302515121212⨯+⨯+⨯=(元). ∵15元>10元,∴转转盘对读者更合算.······· 6分19.(本小题满分6分) 解:设CD = x . 在Rt △ACD 中,tan37ADCD ︒=, 则34AD x =, ∴34AD x =.在Rt△BCD 中,tan48° = BDCD, 则1110BD x=, ∴1110BD x =. ……………………4分∵AD +BD = AB , ∴31180410x x +=. 解得:x ≈43.答:小明家所在居民楼与大厦的距离CD 大约是43米. ………………… 6分 20.(本小题满分8分)解:(1)设单独租用35座客车需x 辆,由题意得:3555(1)45x x =--,解得:5x =.第19题图∴35355175x =⨯=(人).答:该校八年级参加社会实践活动的人数为175人. ········ 3分 (2)设租35座客车y 辆,则租55座客车(4y -)辆,由题意得:3555(4)175320400(4)1500y y y y +-⎧⎨+-⎩≥≤, ······· 6分 解这个不等式组,得111244y ≤≤.∵y 取正整数, ∴y = 2.∴4-y = 4-2 = 2.∴320×2+400×2 = 1440(元).所以本次社会实践活动所需车辆的租金为1440元. ······· 8分21.(本小题满分8分)证明:(1)∵四边形ABCD 是正方形,∴AB =AD ,∠B = ∠D = 90°. ∵AE = AF ,∴Rt Rt ABE ADF △≌△. ∴BE =DF . ······· 4分 (2)四边形AEMF 是菱形.∵四边形ABCD 是正方形,∴∠BCA = ∠DCA = 45°,BC = DC .∵BE =DF ,∴BC -BE = DC -DF . 即CE CF =.∴OE OF =.∵OM = OA ,∴四边形AEMF 是平行四边形. ∵AE = AF ,∴平行四边形AEMF 是菱形. ······· 8分22.(本小题满分10分)解:(1)由题意,得:w = (x -20)·y=(x -20)·(10500x -+) 21070010000x x =-+-352b x a=-=.答:当销售单价定为35元时,每月可获得最大利润. ······· 3分(2)由题意,得:210700100002000x x -+-=解这个方程得:x 1 = 30,x 2 = 40.答:李明想要每月获得2000元的利润,销售单价应定为30元或40元. ····· 6分(3)法一:∵10a =-<0,∴抛物线开口向下.∴当30≤x ≤40时,w ≥2000.∵x ≤32,∴当30≤x ≤32时,w ≥2000.设成本为P (元),由题意,得:20(10500)P x =-+20010000x =-+∵200k =-<0,A DB E F O CM 第21题图 法二:∵10a =-<0,∴抛物线开口向下.∴当30≤x ≤40时,w ≥2000.∵x ≤32,∴30≤x ≤32时,w ≥2000.∵10500y x =-+,100k =-<, ∴y 随x 的增大而减小. ∴当x = 32时,y 最小=180. ∵当进价一定时,销售量越小, 成本越小,11 ∴P 随x 的增大而减小.∴当x = 32时,P 最小=3600.答:想要每月获得的利润不低于2000元,每月的成本最少为3600元.·········· 10分23.(本小题满分10分)解:3个; ······· 1分验证2:在镶嵌平面时,设围绕某一点有a 个正三角形和b 个正六边形的内角可以拼成一个周角.根据题意,可得方程:60120360a b +=.整理得:26a b +=,可以找到两组适合方程的正整数解为22a b =⎧⎨=⎩和41a b =⎧⎨=⎩. ······ 3分 结论2:镶嵌平面时,在一个顶点周围围绕着2个正三角形和2个正六边形的内角或者围绕着4个正三角形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形和正六边形两种正多边形组合可以进行平面镶嵌. ··· 5分猜想3:是否可以同时用正三角形、正方形和正六边形三种正多边形组合进行平面镶嵌? ······· 6分验证3:在镶嵌平面时,设围绕某一点有m 个正三角形、n 个正方形和c 个正六边形的内角可以拼成一个周角. 根据题意,可得方程:6090120360m n c ++=,整理得:23412m n c ++=,可以找到惟一一组适合方程的正整数解为121m n c =⎧⎪=⎨⎪=⎩. ······· 8分结论3:镶嵌平面时,在一个顶点周围围绕着1个正三角形、2个正方形和1个正六边形的内角可以拼成一个周角,所以同时用正三角形、正方形和正六边形三种正多边形组合可以进行平面镶嵌. (说明:本题答案不惟一,符合要求即可.) ······· 10分24.(本小题满分12分)解:(1)∵点A 在线段PQ 的垂直平分线上,∴AP = AQ .∵∠DEF = 45°,∠ACB = 90°,∠DEF +∠ACB +∠EQC = 180°,∴∠EQC = 45°.∴∠DEF =∠EQC .∴CE = CQ .由题意知:CE = t ,BP =2 t ,∴CQ = t .∴AQ = 8-t .在Rt△ABC 中,由勾股定理得:AB = 10 cm .则AP = 10-2 t .∴10-2 t = 8-t .解得:t = 2.答:当t = 2 s 时,点A 在线段PQ 的垂直平分线上. ····· 4分(2)过P 作PM BE ⊥,交BE 于M ,∴90BMP ∠=︒.在Rt△ABC 和Rt△BPM 中,sin AC PM B AB BP==, 图(2)12 ∴8210PM t = . ∴PM = 85t . ∵BC = 6 cm ,CE = t , ∴ BE = 6-t .∴y = S △ABC -S △BPE =12BC AC ⋅-12BE PM ⋅= 1682⨯⨯-()186t t 25⨯-⨯ =24242455t t -+ = ()2484355t -+. ∵405a =>,∴抛物线开口向上. ∴当t = 3时,y 最小=845. 答:当t = 3s 时,四边形APEC 的面积最小,最小面积为845cm 2. ··· 8分 (3)假设存在某一时刻t ,使点P 、Q 、F 三点在同一条直线上.过P 作PN AC ⊥,交AC 于N ,∴90ANP ACB PNQ ∠=∠=∠=︒.∵PAN BAC ∠=∠,∴△PAN ∽△BAC . ∴PN AP AN BC AB AC==. ∴1026108PN t AN -==. ∴665PN t =-,885AN t =-. ∵NQ = AQ -AN ,∴NQ = 8-t -(885t -) = 35t . ∵∠ACB = 90°,B 、C (E )、F 在同一条直线上,∴∠QCF = 90°,∠QCF = ∠PNQ .∵∠FQC = ∠PQN ,∴△QCF ∽△QNP . ∴PN NQ FC CQ= . ∴636559t t t t -=- . ∵0t <<4.5 ∴663595t t -=- 解得:t = 1.答:当t = 1s ,点P 、Q 、F 三点在同一条直线上. 12分图(3)。
2016年山东省青岛市市北区中考数学一模试卷(解析版)
2016年山东省青岛市市北区中考数学一模试卷(解析版)DA.0个B.1个C.2个D.3个4.据研究,一种H7N9病毒直径为30纳米(1纳米=10﹣9米).下列用科学记数法表示这个病毒直径的大小,正确的是()A.30×10﹣9米B.3.0×10﹣8米C.3.0×10﹣10米D.0.3×10﹣7米5.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连结BC,若,则∠C等于()A.15°B.30°C.45°D.60°6.当﹣2<x<2时,下列函数中,函数值y随自变量x增大而增大的有()个.①y=2x;②y=2﹣x;③y=﹣;④y=x2+6x+8.A.1 B.2 C.3 D.47.如图,在△ABC为等边三角形,P为BC上一点,△APQ为等边三角形,PQ与AC相交于点M,则下列结论中正确的是()①AB∥CQ;②∠ACQ=60°;③AP2=AM•AC;④若BP=PC,则PQ⊥AC.A.只有①②B.只有①③C.只有①②③D.①②③④8.抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y=在同一坐标系内的图象大致为()A. B.C.D.二、填空题:(本题满分18分,共有6道小题,每小题3分)9.计算:=______.10.在一个不透明的口袋中装有5个白球和n个黄球,它们出颜色外完全相同,若从中随机摸出一球,摸到白球的概率为,则n的值是______.11.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x千米/时,根据题意,可列方程为______.12.如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为______.13.如图,线段AB与⊙O相切于点C,连接OA、OB,OB交⊙O于点D,已知OA=OB=3cm,AB=3cm,则图中阴影部分的面积为______.14.将n+1个腰长为1的等腰直角三角形,按如图所示放在同一直线上.设阴影部分△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,B n+1D n C n的面积为S n,则S2=______;S n=______.(用含n 的式子表示)三、解答题(本大题共10小题,满分78分)15.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,线段a.求做:Rt△ABC,使∠A=90°,AB=AC=a.结论:______.16.(1)化简:(2)解不等式组:.17.某餐厅为了吸引顾客,举行吃套餐优惠活动,套餐每套20元,每消费一套即可直接获得10元餐劵,或者参与游戏赢得餐劵.游戏规则如下:设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),顾客每消费一套套餐,就可以获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐劵,下次就餐时可以代替现金消费.(1)求顾客任意转动一次转盘的平均收益是多少;(2)如果你是餐厅经理,你希望顾客参与游戏还是直接获得10元餐劵?请说明理由.18.某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛,在最近的10次选拔赛中,这两个人的跳远成绩(单位:cm)如图所示,请根据图中信息,解答下列问题:(1)通过计算,补充完成下面的统计分析表.运动员平均数众数中位数方差甲601.8 600 600 50.56乙599.3 ______ ______ 284.21 (2)请依据对上述统计信息的数据分析,说明这两名运动员的成绩各有什么特点?19.某厂家新开发的一种电动车如图,它的大灯A射出的光线AB,AC 与地面MN 所夹的锐角分别为8°和10°,大灯A与地面离地面的距离为1m求该车大灯照亮地面的宽度BC.(不考虑其它因素)(参数数据:sin8°=,tan8°=,sin10°=,tan10°=)20.某水果店计划购进苹果和丑桔共140千克,这两种水果的进价、售价如表所示:进价(元/千售价(元/千克)克)苹果 5 8丑桔9 13(1)若该水果店购进这两种水果的进货款为1000元,求水果店购进这两种水果各多少千克.(2)若该水果店决定丑桔的进货量不超过苹果进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?21.如图,在△ABC中,AD是BC边上的中线,过点A作AF∥BC,且AF=BC,连接BF、BF,线段BF与AD相交于点E.(1)求证:E是AD的中点;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.22.某公园有一个抛物线形状的观景拱桥ACB,其横截面如图所示,量得该拱桥占地面最宽处AB=20米,最高处点C距地面5米(即OC=5米)(1)分别以AB、OC所在直线为x轴、y轴,建立如图所示的平面直角坐标系,求该抛物线的解析式;(2)夜晚,公园沿着抛物线ACB用彩灯勾勒拱桥的形状;现公园管理处打算在观景拱桥ABC 的横截面前放置一个长为10米的矩形广告牌EFMN,为安全起见,要求广告牌高拱桥的桥面至少0.35米,求矩形广告牌的最大高度,并说明理由.23.设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆,延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFFH与ABCD等积.理由:连接AH,EH.∵AE为直径∴∠AHE=90°∴∠HAE+∠HEA=90°.∵DH⊥AE∴∠ADH=∠EDH=90°∴∠HAD+∠AHD=90°∴∠AHD=∠HED∴△ADH∽______.∴=,即DH2=AD×DE.又∵DE=DC∴DH2=______.即正方形DFGH与矩形ABCD等积.(2)类比思考平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.(3)解决问题三角形的“化方”思路是:先把三角形转化为等积的______(填写图形各称),再转化为等积的正方形.如图②,△ABC的顶点在正方形网格的格点上,请用尺规或借助作出与△ABC等积的正方形的一条边.(不要求写具体作法,但要保留作图痕迹)(4)拓展探究n边形(n>3)的“化方”思路之一是:把n边形转化为n﹣1边形,…,直至转化为等积三角形,从而可以化方.如图③,四边形ABCD的顶点在正方形网格的格点上,请用尺规或借助网格作出与四边形ABCD等积的三角形(不要求写具体作法,但要保留作图痕迹).24.已知:如图,在平行四边形ABCD中,AB=10cm,BC=12cm,对角线AC=10cm,点P 从点C出发沿着边CB向点B匀速运动,速度为每秒1个单位:同时,点Q从点B开始沿着边AB向点A匀速运动,到达A点后立刻以原来的速度沿AB返回,点Q的速度为每秒1个单位,过P点与AB平行的直线交线段AD于点E,交AC于点F,连接PQ,设运动时间为t(s).(1)当0<t<10时,设四边形AQPE的面积为y(cm2),求y与t之间的函数关系式;(2)当0<t<10时,是否存在某一时刻t,使四边形AQPE的面积为平行四边形ABCD面积的一半?若存在,求出t的值;若不存在,请说明理由;(3)当0<t<10时,是否存在某一时刻t,使PQ⊥PE?若存在,求出t的值;不存在,请说明理由;(4)当0<t<12时,是否存在某一时刻t,使线段PQ的垂直平分线恰好经过点B?存在,请直接给出相应的t值;若不存在,请说明理由.2016年山东省青岛市市北区中考数学一模试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)1.的绝对值是()A.﹣6 B.6 C.﹣D.【考点】绝对值.【分析】根据计算绝对值的方法可以得到的绝对值,本题得以解决.【解答】解:∵,∴的绝对值是,故选D.2.如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形统计图,(两图都不完整),则下列结论中正确的是()A.步行人数为30人 B.骑车人数占总人数的10%C.该班总人数为50人 D.乘车人数是骑车人数的40%【考点】频数(率)分布直方图;扇形统计图.【分析】根据乘车的人数和所占的百分比求出总人数,用总人数乘以步行所占的百分比求出步行的人数,用骑车的人数除以总人数求出骑车人数占总人数的百分比,用乘车的人数除以骑车人数,求出乘车人数是骑车人数的倍数.【解答】解:A、步行的人数有:×30%=15人,故本选项错误;B、骑车人数占总人数10÷=20%,故本选项错误;C、该班总人数为=50人,故本选项正确;D、乘车人数是骑车人数的=2.5倍,故本选项错误;故选:C.3.下列四个图形能围成棱柱的有几个()A.0个B.1个C.2个D.3个【考点】展开图折叠成几何体.【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:第一个图形缺少一个面,不能围成棱柱;第三个图形折叠后底面重合,不能折成棱柱;第二个图形,第四个图形都能围成四棱柱;故选:C.4.据研究,一种H7N9病毒直径为30纳米(1纳米=10﹣9米).下列用科学记数法表示这个病毒直径的大小,正确的是()A.30×10﹣9米B.3.0×10﹣8米C.3.0×10﹣10米D.0.3×10﹣7米【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:由题意可得:30×10﹣9=3.0×10﹣8.故选:B.5.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连结BC,若,则∠C等于()A.15°B.30°C.45°D.60°【考点】切线的性质;含30度角的直角三角形.【分析】连接OB,构造直角△ABO,结合已知条件推知直角△ABO的直角边OB等于斜边OA 的一半,则∠A=30°.【解答】解:如图,连接OB.∵AB与⊙O相切于点B,∴∠ABO=90°.∵OB=OC,,∴∠C=∠OBC,OB=OA,∴∠A=30°,∴∠AOB=60°,则∠C+∠OBC=60°,∴∠C=30°.故选B.6.当﹣2<x<2时,下列函数中,函数值y随自变量x增大而增大的有()个.①y=2x;②y=2﹣x;③y=﹣;④y=x2+6x+8.A.1 B.2 C.3 D.4【考点】二次函数的性质;一次函数的性质;正比例函数的性质;反比例函数的性质.【分析】一次函数当a>0时,函数值y总是随自变量x增大而增大,反比例函数当k<0时,在每一个象限内,y随自变量x增大而增大,二次函数根据对称轴及开口方向判断增减性.【解答】解:①为一次函数,且a>0时,函数值y总是随自变量x增大而增大;②为一次函数,且a<0时,函数值y总是随自变量x增大而减小;③为反比例函数,当x>0或者x<0时,函数值y随自变量x增大而增大,当﹣2<x<2时,就不能确定增减性了;④为二次函数,对称轴为x=﹣3,开口向上,故当﹣2<x<2时,函数值y随自变量x增大而增大,符合题意的是①④,故选B.7.如图,在△ABC为等边三角形,P为BC上一点,△APQ为等边三角形,PQ与AC相交于点M,则下列结论中正确的是()①AB∥CQ;②∠ACQ=60°;③AP2=AM•AC;④若BP=PC,则PQ⊥AC.A.只有①②B.只有①③C.只有①②③D.①②③④【考点】相似三角形的判定与性质;全等三角形的判定与性质;等边三角形的性质.【分析】根据等边三角形性质得出AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,求出∠BAP=∠CAQ,根据SAS证△ABP≌△ACQ,推出∠ACQ=∠B=60°=∠BAC,根据平行线的判定推出即可,再根据等腰三角形性质求出∠BAP=30°,求出∠PMA=90°,即可得出答案.【解答】证明:如图,∵△ABC和△APQ是等边三角形,∴AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,∴∠BAP=∠CAQ=60°﹣∠PAC,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),∴∠ACQ=∠B=60°=∠BAC,故②正确,∴AB∥CQ,故①正确,∵∠APQ=∠ACQ=60°,∠PAC=∠PAC,∴△APM∽△ACP,∴,∴AP2=AC•AM,故③正确,∵BP=PC,∴∠BAP=30°,∴∠PAC=30°,∵∠APC=60°,∴∠AMP=90°,∴PQ⊥AC,故④正确.故选D.8.抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y=在同一坐标系内的图象大致为()A. B.C.D.【考点】二次函数图象与系数的关系;反比例函数的图象.【分析】首先观察抛物线y=ax2+bx+c图象,由抛物线的对称轴的位置由其开口方向,即可判定﹣b的正负,由抛物线与x轴的交点个数,即可判定﹣4ac+b2的正负,则可得到一次函数y=﹣bx ﹣4ac+b2的图象过第几象限,由当x=1时,y=a+b+c<0,即可得反比例函数y=过第几象限,继而求得答案.【解答】解:∵抛物线y=ax2+bx+c开口向上,∴a>0,∵抛物线y=ax2+bx+c的对称轴在y轴右侧,∴x=﹣>0,∴b<0,∴﹣b>0,∵抛物线y=ax2+bx+c的图象与x轴有两个交点,∴△=b2﹣4ac>0,∴一次函数y=﹣bx﹣4ac+b2的图象过第一、二、三象限;∵由函数图象可知,当x=1时,抛物线y=a+b+c <0,∴反比例函数y=的图象在第二、四象限.故选D.二、填空题:(本题满分18分,共有6道小题,每小题3分)9.计算:=﹣.【考点】二次根式的混合运算.【分析】先把各二次根式化为最简二次根式,然后把分子合并后进行二次根式的除法运算.【解答】解:原式===﹣.故答案为﹣.10.在一个不透明的口袋中装有5个白球和n个黄球,它们出颜色外完全相同,若从中随机摸出一球,摸到白球的概率为,则n的值是10.【考点】概率公式.【分析】根据摸到白球的概率为,列出方程求解即可.【解答】解:∵在一个不透明的布袋中装有5个白球和n个黄球,∴共有(5+n)个球,根据古典型概率公式知:P(白球)=,解得n=10.故答案为:10.11.已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x千米/时,根据题意,可列方程为.【考点】由实际问题抽象出分式方程.【分析】设原来的平均速度为x千米/时,列车大提速后平均速度为x+70千米/时,根据走过相同的距离时间缩短了3小时,列方程即可.【解答】解:设原来的平均速度为x千米/时,可得:,故答案为:12.如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为(﹣2a,﹣2b).【考点】位似变换.【分析】先找一对应点是如何变化,那么所求点也符合这个变化规律.【解答】解:小鱼最大鱼翅的顶端坐标为(5,3),大鱼对应点坐标为(﹣10,﹣6);小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为(﹣2a,﹣2b).13.如图,线段AB与⊙O相切于点C,连接OA、OB,OB交⊙O于点D,已知OA=OB=3cm,AB=3cm,则图中阴影部分的面积为.【考点】扇形面积的计算;切线的性质.【分析】由AB为圆的切线,得到OC⊥AB,再由OA=OB,利用三线合一得到C为AB中点,且OC为角平分线,在直角三角形AOC中,利用30度所对的直角边等于斜边的一半求出OC 的长,利用勾股定理求出AC的长,进而确定出AB的长,求出∠AOB度数,阴影部分面积=三角形AOB面积﹣扇形AOB面积,求出即可.【解答】解:连接OC,∵AB与圆O相切,∴OC⊥AB,∵OA=OB,∴AC=BC=AB=,∴sin∠AOC==,∴∠AOC=60°,∴∠AOB=120°∴OC=OA=,∴S 阴影=S△AOB﹣S扇形=×3×﹣,故图中阴影部分的面积为,故答案为:.14.将n+1个腰长为1的等腰直角三角形,按如图所示放在同一直线上.设阴影部分△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,B n+1D n C n的面积为S n,则S2=;S n=.(用含n的式子表示)【考点】相似三角形的判定与性质;等腰直角三角形.【分析】连接B1、B2、B3、B4、B5点,显然它们共线且平行于AC1,依题意可知△B1C1B2是等腰直角三角形,知道△B1B2D1与△C1AD1相似,求出相似比,根据三角形面积公式可得出S1,同理:B2B3:AC2=1:2,所以B2D2:D2C2=1:2,进而S2的值可求出,同样的道理,即可求出S3,S4…S n 的值.【解答】解:∵n+1个边长为1的等腰三角形有一条边在同一直线上,∴S△AB1C1=×1×1=,连接B1、B2、B3、B4、B5点,显然它们共线且平行于AC1∵∠B1C1B2=90°∴A1B1∥B2C1∴△B1C1B2是等腰直角三角形,且边长=1,∴△B1B2D1∽△C1AD1,∴B1D1:D1C1=1:1,∴S1=×=,同理:B2B3:AC2=1:2,∴B2D2:D2C2=1:2,∴S2=×=,同理:B3B4:AC3=1:3,∴B3D3:D3C3=1:3,∴S3=×=,∴S4=×=,…∴S n=故答案为:;.三、解答题(本大题共10小题,满分78分)15.用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,线段a.求做:Rt△ABC,使∠A=90°,AB=AC=a.结论:△ABC为等腰直角三角形.【考点】作图—复杂作图.【分析】先在一直线上截取AB=a,再过A作AB的垂线,接着在此垂线上截取AC=a,则△ABC满足条件.【解答】解:如图,△ABC为所作,△ABC为等腰直角三角形.故答案为△ABC为等腰直角三角形.16.(1)化简:(2)解不等式组:.【考点】分式的加减法;解一元一次不等式组.【分析】(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)原式=+===;(2),由①得:x>,由②得:x≤3,则不等式组的解集为<x≤3.17.某餐厅为了吸引顾客,举行吃套餐优惠活动,套餐每套20元,每消费一套即可直接获得10元餐劵,或者参与游戏赢得餐劵.游戏规则如下:设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),顾客每消费一套套餐,就可以获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐劵,下次就餐时可以代替现金消费.(1)求顾客任意转动一次转盘的平均收益是多少;(2)如果你是餐厅经理,你希望顾客参与游戏还是直接获得10元餐劵?请说明理由.【考点】概率公式.【分析】(1)根据转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐劵得:顾客任意转动一次转盘的平均收益是×(20+15×2+10×3+5×6),再计算即可;(2)根据(1)的结果与10比较即可.【解答】解:(1)顾客任意转动一次转盘的平均收益是×(20+15×2+10×3+5×6)=(元),答:顾客任意转动一次转盘的平均收益是元;(2)∵<10,∴如果是餐厅经理,希望顾客参与游戏,这样能减少支出.18.某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛,在最近的10次选拔赛中,这两个人的跳远成绩(单位:cm)如图所示,请根据图中信息,解答下列问题:(1)通过计算,补充完成下面的统计分析表.运动员平均数众数中位数方差甲601.8 600 600 50.56乙599.3 618596.5284.21 (2)请依据对上述统计信息的数据分析,说明这两名运动员的成绩各有什么特点?【考点】折线统计图;中位数;众数;方差.【分析】(1)根据中位数、众数的概念求值即可;(2)答案不惟一,如:甲的成绩比较稳定,波动小;乙成绩不稳定,波动较大.【解答】解:(1)根据折线统计图知乙10次成绩从小到大依次排列为:574,580,585,590,595,598,613,618,618,624,则其众数为:618,中位数为:=596.5;(2)甲的平均水平和跳远在600及以上要优于乙且甲的方差小说明甲成绩比医德成绩稳定,乙跳远的最好成绩大于甲的最好成绩.故答案为:(1)618,596.5.19.某厂家新开发的一种电动车如图,它的大灯A射出的光线AB,AC 与地面MN 所夹的锐角分别为8°和10°,大灯A与地面离地面的距离为1m求该车大灯照亮地面的宽度BC.(不考虑其它因素)(参数数据:sin8°=,tan8°=,sin10°=,tan10°=)【考点】解直角三角形的应用.【分析】通过构造直角三角形来解答,过A作AD⊥MN于D,就有了∠ABN、∠ACN的度数,又已知AE的长,可在直角三角形ABE、ACE 中分别求出BE、CE的长,BC就能求出.【解答】解:如图,过A作AD⊥MN于点D,在Rt△ACD中,tan∠ACD==,CD=5.6(m),在Rt△ABD中,tan∠ABD==,BD=7(m),则BC=7﹣5.6=1.4(m).答:该车大灯照亮地面的宽度BC是1.4m.20.某水果店计划购进苹果和丑桔共140千克,这两种水果的进价、售价如表所示:进价(元/千售价(元/千克)克)苹果 5 8丑桔9 13(1)若该水果店购进这两种水果的进货款为1000元,求水果店购进这两种水果各多少千克.(2)若该水果店决定丑桔的进货量不超过苹果进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?【考点】一元一次不等式的应用;一元一次方程的应用.【分析】(1)设购进苹果x千克,则购进丑桔千克,根据进货钱数=单价×数量,列出关于x的一元一次方程,解方程即可得出结论;(2)设购进苹果x千克时售完这批水果将获利y元,由丑桔的进货量不超过苹果进货量的3倍可列出关于x的一元一次不等式,解不等式可找出x的取值范围,再根据总利润=每千克利润×千克数可找出y关于x的函数关系式,根据函数的性质即可解决最值问题.【解答】解:(1)设购进苹果x千克,则购进丑桔千克,依题意得:5x+9=1000,解得:x=65,则140﹣65=75(千克),答:水果店购进苹果65千克,丑桔75千克.(2)设购进苹果x千克时售完这批水果将获利y元,由题意得:140﹣x≤3x,解得:x≥35.获得利润y=(8﹣5)x+(13﹣9)=﹣x+560.故当x=35时,y有最大值,最大值为525元.140﹣35=105(千克).答:购进苹果35千克,丑桔105千克时水果店在销售完这批水果时获利最多.21.如图,在△ABC中,AD是BC边上的中线,过点A作AF∥BC,且AF=BC,连接BF、BF,线段BF与AD相交于点E.(1)求证:E是AD的中点;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.【考点】相似三角形的判定与性质;直角三角形斜边上的中线;平行四边形的判定与性质;菱形的判定.【分析】(1)先连接DF,判定四边形ABDF是平行四边形,再根据平行四边形的性质,得出DE=AE即可;(2)先判定四边形ADCF是平行四边形,再根据直角三角形的性质,得出AD=CD,最后判断四边形ADCF是菱形.【解答】(1)连接DF,∵AD是BC边上的中线,∴DB=BC,∵AF=BC,∴DB=AF,又∵AF∥BC,∴四边形ABDF是平行四边形,∴DE=AE即E是AD的中点;(2)四边形ADCF是菱形.∵AD是BC边上的中线,∴DC=BC,∵AF=BC,∴DC=AF,又∵AF∥BC,∴四边形ADCF是平行四边形,又∵AB⊥AC,AD是BC边上的中线,∴AD=BC=CD,∴四边形ADCF是菱形.22.某公园有一个抛物线形状的观景拱桥ACB,其横截面如图所示,量得该拱桥占地面最宽处AB=20米,最高处点C距地面5米(即OC=5米)(1)分别以AB、OC所在直线为x轴、y轴,建立如图所示的平面直角坐标系,求该抛物线的解析式;(2)夜晚,公园沿着抛物线ACB用彩灯勾勒拱桥的形状;现公园管理处打算在观景拱桥ABC 的横截面前放置一个长为10米的矩形广告牌EFMN,为安全起见,要求广告牌高拱桥的桥面至少0.35米,求矩形广告牌的最大高度,并说明理由.【考点】二次函数的应用.【分析】(1)根据题意可设抛物线解析式为y=ax2+c,将点C(0,5),点B(10,0)代入求得a、c的值即可求解;(2)令x=5求得y的值,将y的值减去0.35可得广告牌最大高度.【解答】解:(1)根据题意,设抛物线解析式为y=ax2+c,将点C(0,5),点B(10,0)代入,得:,解得:.故抛物线解析式为:y=﹣x2+5;(2)当x=5时,y=﹣×25+5=3.75(m),3.75﹣0.35=3.4(m).答:矩形广告牌的最大高度为3.4m.23.设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆,延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFFH与ABCD等积.理由:连接AH,EH.∵AE为直径∴∠AHE=90°∴∠HAE+∠HEA=90°.∵DH⊥AE∴∠ADH=∠EDH=90°∴∠HAD+∠AHD=90°∴∠AHD=∠HED∴△ADH∽△HDE.∴=,即DH2=AD×DE.又∵DE=DC∴DH2=AD•DC.即正方形DFGH与矩形ABCD等积.(2)类比思考平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.(3)解决问题三角形的“化方”思路是:先把三角形转化为等积的▱ABDE(填写图形各称),再转化为等积的正方形.如图②,△ABC的顶点在正方形网格的格点上,请用尺规或借助作出与△ABC等积的正方形的一条边.(不要求写具体作法,但要保留作图痕迹)(4)拓展探究n边形(n>3)的“化方”思路之一是:把n边形转化为n﹣1边形,…,直至转化为等积三角形,从而可以化方.如图③,四边形ABCD的顶点在正方形网格的格点上,请用尺规或借助网格作出与四边形ABCD等积的三角形(不要求写具体作法,但要保留作图痕迹).【考点】四边形综合题.【分析】(1)通过直角△ADH和直角△HDE中,∠AHD=∠HED证明△ADH∽△HDE,得DH2=AD×DE,再根据等量代换得出正方形DFGH与矩形ABCD等积;(3)作法:①作BC的中垂线,取BD中点,作▱ABDE;②过B作BF⊥AE,垂足为F,作矩形BDHF;③在直线AE在取BF=FM,以HM 为直径,以点F为圆心作半圆,与直线BF交于点G;④则线段FG就是所求的正方形的一边;(4)作法:①连接BD,②过A作l∥BD,③延长CD交l于E,④连接BE,则S△BEC=S四边形ABCD.【解答】解:(1)答案为:△HDE,AD•DC;(3)如图2,答案为:▱ABDE;(4)如图3,则△BEC的面积=四边形ABCD 的面积;24.已知:如图,在平行四边形ABCD中,AB=10cm,BC=12cm,对角线AC=10cm,点P 从点C出发沿着边CB向点B匀速运动,速度为每秒1个单位:同时,点Q从点B开始沿着边AB向点A匀速运动,到达A点后立刻以原来的速度沿AB返回,点Q的速度为每秒1个单位,过P点与AB平行的直线交线段AD于点E,交AC于点F,连接PQ,设运动时间为t(s).(1)当0<t<10时,设四边形AQPE的面积为y(cm2),求y与t之间的函数关系式;(2)当0<t<10时,是否存在某一时刻t,使四边形AQPE的面积为平行四边形ABCD面积的一半?若存在,求出t的值;若不存在,请说明理由;(3)当0<t<10时,是否存在某一时刻t,使PQ⊥PE?若存在,求出t的值;不存在,请说明理由;(4)当0<t<12时,是否存在某一时刻t,使线段PQ的垂直平分线恰好经过点B?存在,请直接给出相应的t值;若不存在,请说明理由.【考点】四边形综合题.【分析】(1)利用相似三角形的判断和性质,表示出BQ=t,QH=t,PF=t,相似三角形的面积比等于相似比的平方,S△CPF=t2,从而y用三角形的面积的差表示出,即可;(2)假设存在,建立方程,求出方程的解,全不符合题意,得到不存在;(3)假设存在,建立方程,求出方程的解符合题意,即存在时间t,使PQ⊥PE;(4)假设存在,由线段PQ的垂直平分线恰好经过点B,得到BQ=BP,建立方程,求出t,即可.【解答】解:如图1,作AG⊥BC于G,作QH ⊥BC于H,∴QH∥AG,∴=,∵AG⊥BC,AB=AC=10,BC=12,∴BG=BC=×12=6,AG=8,∵BQ=t,∴=,∴QH=t,∵PE∥AB,∴=,∴=,∴PF=t,∵BC=12,AG=8,∴S△ABC=×BC×AG=48,(1)∵PE∥AB,∴=()2==,∴S△CPF=×S△ABC=×48=t2,∵BP=BC﹣PC=12﹣t,QH=t,∴S△BPQ=BP×QH=×(12﹣t)×t,∴y=S四边形AQPE=S△ABC﹣S△BPQ﹣S△CPF=48﹣×(12﹣t)×t﹣t2=﹣t2﹣t+48,(0<t<10)(2)解:假设存在某一时刻t,使四边形AQPE 的面积为平行四边形ABCD面积的一半,由(1)由S四边形AQPE=﹣t2﹣t+48,∴=﹣t2﹣t+48=48,∴t=0(舍)或t=﹣60(舍),∴假设不成立,∴不存在这样某一时刻t,使四边形AQPE的面积为平行四边形ABCD面积的一半;(3)解:假设存在某一时刻t,使PQ⊥PE,∵PE∥AB,∴∠BQP=90°,∴∠BQP=∠AGB,∠B=∠B,∴△BQP∽△BGA,∴,∵BG=6,BQ=t,BP=12﹣t,AB=10,∴=,∴t=,∴存在t=,使PQ⊥PE;(4)假设存在某一时刻t,使线段PQ的垂直平分线恰好经过点B,∴BQ=BP,当0<t<10时,∵BP=12﹣t,BQ=t,∴12﹣t=t,∴t=6,∴存在t=6,使线段PQ的垂直平分线恰好经过点B,当10≤t<12时,∵BQ=20﹣t,BP=12﹣t,∴20﹣t=12﹣t,明显等式不成立,∴不存在某一时刻t,使线段PQ的垂直平分线恰好经过点B,即:存在t=6,使线段PQ的垂直平分线恰好经过点B.。
2016年青岛中考数学试题及答案
2016年青岛中考数学试题及真题及答案2016年青岛市中考数学试题及真题及答案
一、选择题(每小题3分,共30分)
1. 已知集合
A={4,6},B={1,2,4,6},则A∩B=( A.1,2 B.4,6
C.4 D.1,2,4,5,6 )
答案:B.4,6
2. 下列说法正确的是( A.直线m∥x轴,则m=-1 B.若平面
m∥平面n,则m=-1 C.直线m与平面n垂直,则m∥n D.若直线
m∥x轴,则m⊥y轴 )
答案:A.直线m∥x轴,则m=-1
3. 已知抛物线y=2x2-6x+7的焦点坐标是( A.(3,4) B.(1,6) C.(3,6) D.(1,4) )
答案:C.(3,6)
4. 下列函数的图像大致为顺序连续的是( A.y=2x2+2 B.y
=-x2 C.y=-2x D.y=x4-4x2+2 )
答案:C.y=-2x
5. 大华站每天早上7点开动,从大华到九楼城历时40分钟,到
达时间为8:20。
中途停顿5分钟,则早上7点从九楼城出发可以在多少时间到达大华站?( A.7:42 B.7:45 C.7:40 D.7:38 )
答案:B.7:45
二、填空题(每小题3分,共15分)
6. 设角A的顶点为O,起点为A,终点为B,过A点作直线⊙,则角A的边长长度为OB=___________
答案:OB=2
7. 等差数列{an}中,若a3=2,a5=7,则a7=___________
答案:a7=12
8. 若角A的顶点是A,起点是B,终点是C,则角A的面积为___________
答案:1/2×AB×BC。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年山东省青岛市中考数学试卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.﹣的绝对值是()A.﹣B.﹣C.D.52.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000kg的煤所产生的能量.把130000000kg用科学记数法可表示为()A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg3.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a65.如图,线段AB经过平移得到线段A1B1,其中点A,B的对应点分别为点A1,B1,这四个点都在格点上.若线段AB上有一个点P(a,b),则点户在A1B1上的对应点P的坐标为()A.(a﹣2,b+3)B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)6.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=17.如图,一扇形纸扇完全打开后,外侧两竹条和AC的夹角为120°,长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm28.输入一组数据,按下列程序进行计算,输出结果如表:x20.520.620.720.820.9输出﹣13.75﹣8.04﹣2.31 3.449.21分析表格中的数据,估计方程(x+8)2﹣826=0的一个正数解x的大致范围为()A.20.5<x<20.6B.20.6<x<20.7C.20.7<x<20.8D.20.8<x<20.9二、填空题(本题满分18分,共有6道小题,每小题3分)9.计算:=.10.“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有名.11.如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD=°.12.已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为.13.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F 为DE的中点.若△CEF的周长为18,则OF的长为.14.如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为cm3.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹. 15.已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.四、解答题(本题满分74分,共有9道小题)16.(1)化简:﹣(2)解不等式组,并写出它的整数解.17.小明和小亮用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.转动两个转盘各一次,若两次数字之积大于2,则小明胜,否则小亮胜.这个游戏对双方公平吗?请说明理由.18.如图,AB是长为10m,倾斜角为37°的自动扶梯,平台BD与大楼CE垂直,且与扶梯AB的长度相等,在B处测得大楼顶部C的仰角为65°,求大楼CE的高度(结果保留整数).(参考数据:sin37°≈,tan37°≈,sin65°≈,tan65°≈)19.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲a77 1.2乙7b8c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?20.如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.已知抛物线上B,C两点到地面的距离均为m,到墙边似的距离分别为m,m.(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10m,则最多可以连续绘制几个这样的拋物线型图案?21.已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点0.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什幺特殊四边形?请说明理由.22.某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本Q(元)与月产销量y(个)满足如下关系:月产销量y(个)…160200240300…每个玩具的固定成本Q(元)…60484032…(1)写出月产销量y(个)与销售单价x(元)之间的函数关系式;(2)求每个玩具的固定成本Q(元)与月产销量y(个)之间的函数关系式;(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?23.问题提出:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1x5或2×3的矩形(axb的矩形指边长分别为a,b的矩形)?问题探究:我们先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题.探究一:如图①,当n=5时,可将正方形分割为五个1×5的矩形.如图②,当n=6时,可将正方形分割为六个2×3的矩形.如图③,当n=7时,可将正方形分割为五个1×5的矩形和四个2×3的矩形如图④,当n=8时,可将正方形分割为八个1×5的矩形和四个2×3的矩形如图⑤,当n=9时,可将正方形分割为九个1×5的矩形和六个2×3的矩形探究二:当n=10,11,12,13,14时,分别将正方形按下列方式分割:所以,当n=10,11,12,13,14时,均可将正方形分割为一个5×5的正方形、一个(n ﹣5)×(n ﹣5)的正方形和两个5×(n ﹣5)的矩形.显然,5×5的正方形和5×(n ﹣5)的矩形均可分割为1×5的矩形,而(n ﹣5)×(n ﹣5)的正方形是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.探究三:当n=15,16,17,18,19时,分别将正方形按下列方式分割:请按照上面的方法,分别画出边长为18,19的正方形分割示意图.所以,当n=15,16,17,18,19时,均可将正方形分割为一个10×10的正方形、一个(n ﹣10)×(n ﹣10)的正方形和两个10×(n ﹣10)的矩形.显然,10×10的正方形和10×(n ﹣10)的矩形均可分割为1x5的矩形,而(n ﹣10)×(n ﹣10)的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.问题解决:如何将边长为n (n ≥5,且n 为整数)的正方形分割为一些1×5或2×3的矩形?请按照上面的方法画出分割示意图,并加以说明.实际应用:如何将边长为61的正方形分割为一些1×5或2×3的矩形?(只需按照探究三的方法画出分割示意图即可)24.已知:如图,在矩形ABCD 中,Ab=6cm ,BC=8cm ,对角线AC ,BD 交于点0.点P 从点A 出发,沿方向匀速运动,速度为1cm/s ;同时,点Q 从点D 出发,沿DC 方向匀速运动,速度为1cm/s ;当一个点停止运动时,另一个点也停止运动.连接PO 并延长,交BC 于点E ,过点Q 作QF ∥AC ,交BD 于点F .设运动时间为t (s )(0<t <6),解答下列问题:(1)当t 为何值时,△AOP 是等腰三角形?(2)设五边形OECQF 的面积为S (cm 2),试确定S 与t 的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使S 五边形S 五边形OECQF :S △ACD =9:16?若存在,求出t 的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t ,使OD 平分∠COP ?若存在,求出t 的值;若不存在,请说明理由.2016年山东省青岛市中考数学试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A、B、C、D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.﹣的绝对值是()A.﹣B.﹣C.D.5【考点】实数的性质.【分析】直接利用绝对值的定义分析得出答案.【解答】解:|﹣|=.故选:C.2.我国平均每平方千米的土地一年从太阳得到的能量,相当于燃烧130000000kg的煤所产生的能量.把130000000kg用科学记数法可表示为()A.13×107kg B.0.13×108kg C.1.3×107kg D.1.3×108kg【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:130000000kg=1.3×108kg.故选:D.3.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形.是中心对称图形,故此选项错误;B、是轴对称图形,又是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、不是轴对称图形,不是中心对称图形,故此选项错误.故选:B.4.计算a•a5﹣(2a3)2的结果为()A.a6﹣2a5B.﹣a6C.a6﹣4a5D.﹣3a6【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】首先利用同底数幂的乘法运算法则以及结合积的乘方运算法则分别化简求出答案.【解答】解:原式=a6﹣4a6=﹣3a6.故选:D.5.如图,线段AB经过平移得到线段A1B1,其中点A,B的对应点分别为点A1,B1,这四个点都在格点上.若线段AB上有一个点P(a,b),则点户在A1B1上的对应点P的坐标为()A.(a﹣2,b+3)B.(a﹣2,b﹣3)C.(a+2,b+3)D.(a+2,b﹣3)【考点】坐标与图形变化-平移.【分析】根据点A、B平移后横纵坐标的变化可得线段AB向左平移2个单位,向上平移了3个单位,然后再确定a、b的值,进而可得答案.【解答】解:由题意可得线段AB向左平移2个单位,向上平移了3个单位,则P(a﹣2,b+3)故选A.6.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1B.﹣=1C.﹣=1D.﹣=1【考点】由实际问题抽象出分式方程.【分析】直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可.【解答】解:设原来的平均车速为xkm/h,则根据题意可列方程为:﹣=1.故选:A.7.如图,一扇形纸扇完全打开后,外侧两竹条和AC的夹角为120°,长为25cm,贴纸部分的宽BD为15cm,若纸扇两面贴纸,则贴纸的面积为()A.175πcm2B.350πcm2C.πcm2D.150πcm2【考点】扇形面积的计算.【分析】贴纸部分的面积等于扇形ABC减去小扇形的面积,已知圆心角的度数为120°,扇形的半径为25cm和10cm,可根据扇形的面积公式求出贴纸部分的面积.【解答】解:∵AB=25,BD=15,∴AD=10,﹣∴S贴纸==175πcm2,故选A.8.输入一组数据,按下列程序进行计算,输出结果如表:x20.520.620.720.820.9输出﹣13.75﹣8.04﹣2.31 3.449.21分析表格中的数据,估计方程(x+8)2﹣826=0的一个正数解x的大致范围为()A.20.5<x<20.6B.20.6<x<20.7C.20.7<x<20.8D.20.8<x<20.9【考点】估算一元二次方程的近似解.【分析】根据表格中的数据,可以知道(x+8)2﹣826的值,从而可以判断当(x+8)2﹣826=0时,x的所在的范围,本题得以解决.【解答】解:由表格可知,当x=20.7时,(x+8)2﹣826=﹣2.31,当x=20.8时,(x+8)2﹣826=3.44,故(x+8)2﹣826=0时,20.7<x<20.8,故选C.二、填空题(本题满分18分,共有6道小题,每小题3分)9.计算:=2.【考点】二次根式的混合运算.【分析】首先化简二次根式,进而求出答案.【解答】解:原式===2.故答案为:2.10.“万人马拉松”活动组委会计划制作运动衫分发给参与者,为此,调查了部分参与者,以决定制作橙色、黄色、白色、红色四种颜色运动衫的数量.根据得到的调查数据,绘制成如图所示的扇形统计图.若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有2400名.【考点】扇形统计图;用样本估计总体.【分析】根据样本中选择红色运动衫的人数占总数的百分比,据此可估计总体中选择红色运动衫的人数占总数的百分比近似相等,列式计算即可.【解答】解:若本次活动共有12000名参与者,则估计其中选择红色运动衫的约有12000×20%=2400(名),故答案为:2400.11.如图,AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD=62°.【考点】圆周角定理.【分析】根据直径所对的圆周角是直角得到∠ACB=90°,求出∠BCD,根据圆周角定理解答即可.【解答】解:∵AB是⊙O的直径,∴∠ACB=90°,∵∠BCD=28°,∴∠ACD=62°,由圆周角定理得,∠ABD=∠ACD=62°,故答案为:62.12.已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为.【考点】根的判别式.【分析】将一次函数解析式代入到二次函数解析式中,得出关于x的一元二次方程,由两函数图象只有一个交点可得知该方程有两个相同的实数根,结合根的判别式即可得出关于c的一元一次方程,解方程即可得出结论.【解答】解:将正比例函数y=4x代入到二次函数y=3x2+c中,得:4x=3x2+c,即3x2﹣4x+c=0.∵两函数图象只有一个交点,∴方程3x2﹣4x+c=0有两个相等的实数根,∴△=(﹣4)2﹣4×3c=0,解得:c=.故答案为:.13.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为.【考点】正方形的性质;直角三角形斜边上的中线;勾股定理;三角形中位线定理.【分析】先根据直角三角形的性质求出DE的长,再由勾股定理得出CD的长,进而可得出BE的长,由三角形中位线定理即可得出结论.【解答】解:∵CE=5,△CEF的周长为18,∴CF+EF=18﹣5=13.∵F为DE的中点,∴DF=EF.∵∠BCD=90°,∴CF=DE,∴EF=CF=DE=6.5,∴DE=2EF=13,∴CD===12.∵四边形ABCD是正方形,∴BC=CD=12,O为BD的中点,∴OF是△BDE的中位线,∴OF=(BC﹣CE)=(12﹣5)=.故答案为:.14.如图,以边长为20cm的正三角形纸板的各顶点为端点,在各边上分别截取4cm长的六条线段,过截得的六个端点作所在边的垂线,形成三个有两个直角的四边形.把它们沿图中虛线剪掉,用剩下的纸板折成一个底为正三角形的无盖柱形盒子,则它的容积为448﹣480cm3.【考点】剪纸问题.【分析】由题意得出△ABC为等边三角形,△OPQ为等边三角形,得出∠A=∠B=∠C=60°,AB=BC=AC.∠POQ=60°,连结AO,作QM⊥OP于M,在Rt△AOD中,∠OAD=∠OAK=30°,得出OD=AD=2cm,AD=OD=2cm,同理:BE=AD=2cm,求出PQ、QM,无盖柱形盒子的容积=底面积×高,即可得出结果.【解答】解:如图,由题意得:△ABC为等边三角形,△OPQ为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC,∠POQ=60°,∴∠ADO=∠AKO=90°.连结AO,作QM⊥OP于M,在Rt△AOD中,∠OAD=∠OAK=30°,∴OD=AD=2cm,∴AD=OD=2cm,同理:BE=AD=2cm,∴PQ=DE=20﹣2×2=20﹣4(cm),∴QM=OP•sin60°=(20﹣4)×=10﹣6,(cm),∴无盖柱形盒子的容积=×(20﹣4)(10﹣6)×4=448﹣480(cm3);故答案为:448﹣480.三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.已知:线段a及∠ACB.求作:⊙O,使⊙O在∠ACB的内部,CO=a,且⊙O与∠ACB的两边分别相切.【考点】作图—复杂作图.【分析】首先作出∠ACB的平分线CD,再截取CO=a得出圆心O,作OE⊥CA,由角平分线的性质和切线的判定作出圆即可.【解答】解:①作∠ACB的平分线CD,②在CD上截取CO=a,③作OE⊥CA于E,以O我圆心,OE长为半径作圆;如图所示:⊙O即为所求.四、解答题(本题满分74分,共有9道小题)16.(1)化简:﹣(2)解不等式组,并写出它的整数解.【考点】分式的加减法;解一元一次不等式组;一元一次不等式组的整数解.【分析】(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分确定出不等式组的解集,确定出整数解即可.【解答】解:(1)原式=﹣==;(2),由①得:x≤1,由②得:x≤,则不等式组的解集为x≤1,则不等式组的整数解为{x∈Z|x≤1}.17.小明和小亮用下面两个可以自由转动的转盘做游戏,每个转盘被分成面积相等的几个扇形.转动两个转盘各一次,若两次数字之积大于2,则小明胜,否则小亮胜.这个游戏对双方公平吗?请说明理由.【考点】游戏公平性.【分析】首先依据题先用列表法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率,游戏是否公平,求出游戏双方获胜的概率,比较是否相等即可.【解答】解:这个游戏对双方是公平的.列表得:∴一共有6种情况,积大于2的有3种,∴P(积大于2)==,∴这个游戏对双方是公平的.18.如图,AB是长为10m,倾斜角为37°的自动扶梯,平台BD与大楼CE垂直,且与扶梯AB的长度相等,在B处测得大楼顶部C的仰角为65°,求大楼CE的高度(结果保留整数).(参考数据:sin37°≈,tan37°≈,sin65°≈,tan65°≈)【考点】解直角三角形的应用-仰角俯角问题.【分析】作BF⊥AE于点F.则BF=DE,在直角△ABF中利用三角函数求得BF的长,在直角△CDB中利用三角函数求得CD的长,则CE即可求得.【解答】解:作BF⊥AE于点F.则BF=DE.在直角△ABF中,sin∠BAF=,则BF=AB•sin∠BAF=10×=6(m).在直角△CDB中,tan∠CBD=,则CD=BD•tan65°=10×≈27(m).则CE=DE+CD=BF+CD=6+27=33(m).答:大楼CE的高度是33m.19.甲、乙两名队员参加射击训练,成绩分别被制成下列两个统计图:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲a77 1.2乙7b8c(1)写出表格中a,b,c的值;(2)分别运用表中的四个统计量,简要分析这两名队员的射击训练成绩.若选派其中一名参赛,你认为应选哪名队员?【考点】方差;条形统计图;折线统计图;中位数;众数.【分析】(1)利用平均数的计算公式直接计算平均分即可;将乙的成绩从小到大重新排列,用中位数的定义直接写出中位数即可;根据乙的平均数利用方差的公式计算即可;(2)结合平均数和中位数、众数、方差三方面的特点进行分析.【解答】解:(1)甲的平均成绩a==7(环),∵乙射击的成绩从小到大从新排列为:3、4、6、7、7、8、8、8、9、10,∴乙射击成绩的中位数b==7.5(环),其方差c=×[(3﹣7)2+(4﹣7)2+(6﹣7)2+2×(7﹣7)2+3×(8﹣7)2+(9﹣7)2+(10﹣7)2]=×(16+9+1+3+4+9)=4.2;(2)从平均成绩看甲、乙二人的成绩相等均为7环,从中位数看甲射中7环以上的次数小于乙,从众数看甲射中7环的次数最多而乙射中8环的次数最多,从方差看甲的成绩比乙的成绩稳定,综合以上各因素,若选派一名学生参加比赛的话,可选择乙参赛,因为乙获得高分的可能更大.20.如图,需在一面墙上绘制几个相同的抛物线型图案.按照图中的直角坐标系,最左边的抛物线可以用y=ax2+bx(a≠0)表示.已知抛物线上B,C两点到地面的距离均为m,到墙边似的距离分别为m,m.(1)求该拋物线的函数关系式,并求图案最高点到地面的距离;(2)若该墙的长度为10m,则最多可以连续绘制几个这样的拋物线型图案?【考点】二次函数的应用.【分析】(1)根据题意求得B(,),C(,),解方程组求得拋物线的函数关系式为y=﹣x2+2x;根据抛物线的顶点坐标公式得到结果;(2)令y=0,即﹣x2+2x=0,解方程得到x1=0,x2=2,即可得到结论.【解答】解:(1)根据题意得:B(,),C(,),把B,C代入y=ax2+bx得,解得:,∴拋物线的函数关系式为y=﹣x2+2x;∴图案最高点到地面的距离==1;(2)令y=0,即﹣x2+2x=0,∴x1=0,x2=2,∴10÷2=5,∴最多可以连续绘制5个这样的拋物线型图案.21.已知:如图,在▱ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点0.(1)求证:△ABE≌△CDF;(2)连接DG,若DG=BG,则四边形BEDF是什幺特殊四边形?请说明理由.【考点】平行四边形的性质;全等三角形的判定与性质.【分析】(1)由平行四边形的性质得出AB=CD,∠BAE=∠DCF,由SAS证明△ABE≌△CDF 即可;(2)由平行四边形的性质得出AD∥BC,AD=BC,证出DE=BF,得出四边形BEDF是平行四边形,得出OB=OD,再由等腰三角形的三线合一性质得出EF⊥BD,即可得出四边形BEDF是菱形.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,∠BAE=∠DCF,在△ABE和△CDF中,,∴△ABE≌△CDF(SAS);(2)解:四边形BEDF是菱形;理由如下:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∵AE=CF,∴DE=BF,∴四边形BEDF是平行四边形,∴OB=OD,∵DG=BG,∴EF⊥BD,∴四边形BEDF是菱形.22.某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本Q(元)与月产销量y(个)满足如下关系:月产销量y(个)…160200240300…每个玩具的固定成本Q(元)…60484032…(1)写出月产销量y(个)与销售单价x(元)之间的函数关系式;(2)求每个玩具的固定成本Q(元)与月产销量y(个)之间的函数关系式;(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?【考点】二次函数的应用;待定系数法求一次函数解析式.【分析】(1)设y=kx+b,把,代入解方程组即可.(2)观察函数表可知两个变量的乘积为定值,所以固定成本Q(元)与月产销量y(个)之间存在反比例函数关系,不妨设Q=,由此即可解决问题.(3)求出销售价即可解决问题.(4)根据条件分别列出不等式即可解决问题.【解答】解;(1)由于销售单价每降低1元,每月可多售出2个,所以月产销量y(个)与销售单价x(元)之间存在一次函数关系,不妨设y=kx+b,则,满足函数关系式,得解得,产销量y(个)与销售单价x(元)之间的函数关系式为y=﹣2x+860.(2)观察函数表可知两个变量的乘积为定值,所以固定成本Q(元)与月产销量y(个)之间存在反比例函数关系,不妨设Q=,将Q=60,y=160代入得到m=9600,此时Q=.(3)当Q=30时,y=320,由(1)可知y=﹣2x+860,所以y=270,即销售单价为270元,由于=,∴成本占销售价的.(4)若y≤400,则Q≥,即Q≥24,固定成本至少是24元,400≥﹣2x+860,解得x≥230,即销售单价最底为230元.23.问题提出:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1x5或2×3的矩形(axb的矩形指边长分别为a,b的矩形)?问题探究:我们先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题.探究一:如图①,当n=5时,可将正方形分割为五个1×5的矩形.如图②,当n=6时,可将正方形分割为六个2×3的矩形.如图③,当n=7时,可将正方形分割为五个1×5的矩形和四个2×3的矩形如图④,当n=8时,可将正方形分割为八个1×5的矩形和四个2×3的矩形如图⑤,当n=9时,可将正方形分割为九个1×5的矩形和六个2×3的矩形探究二:当n=10,11,12,13,14时,分别将正方形按下列方式分割:所以,当n=10,11,12,13,14时,均可将正方形分割为一个5×5的正方形、一个(n﹣5)×(n﹣5)的正方形和两个5×(n﹣5)的矩形.显然,5×5的正方形和5×(n﹣5)的矩形均可分割为1×5的矩形,而(n﹣5)×(n﹣5)的正方形是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.探究三:当n=15,16,17,18,19时,分别将正方形按下列方式分割:请按照上面的方法,分别画出边长为18,19的正方形分割示意图.所以,当n=15,16,17,18,19时,均可将正方形分割为一个10×10的正方形、一个(n ﹣10)×(n﹣10)的正方形和两个10×(n﹣10)的矩形.显然,10×10的正方形和10×(n ﹣10)的矩形均可分割为1x5的矩形,而(n﹣10)×(n﹣10)的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形.问题解决:如何将边长为n(n≥5,且n为整数)的正方形分割为一些1×5或2×3的矩形?请按照上面的方法画出分割示意图,并加以说明.实际应用:如何将边长为61的正方形分割为一些1×5或2×3的矩形?(只需按照探究三的方法画出分割示意图即可)【考点】四边形综合题.【分析】先从简单的问题开始研究解决,再把复杂问题转化为已解决的问题,由此把要解决问题转化为已经解决的问题,即可解决问题.【解答】解:探究三:边长为18,19的正方形分割示意图,如图所示,问题解决:若5≤n <10时,如探究一.若n ≥10,设n=5a+b ,其中a 、b 为正整数,5≤b <10,则图形如图所示,均可将正方形分割为一个5a ×5a 的正方形、一个b ×b 的正方形和两个5a ×b 的矩形.显然,5a ×5a 的正方形和5a ×b 的矩形均可分割为1x5的矩形,而b ×b 的正方形又是边长分别为5,6,7,8,9的正方形,用探究一的方法可分割为一些1×5或2×3的矩形即可.问题解决:边长为61的正方形分割为一些1×5或2×3的矩形,如图所示,.24.已知:如图,在矩形ABCD 中,Ab=6cm ,BC=8cm ,对角线AC ,BD 交于点0.点P 从点A 出发,沿方向匀速运动,速度为1cm/s ;同时,点Q 从点D 出发,沿DC 方向匀速运动,速度为1cm/s ;当一个点停止运动时,另一个点也停止运动.连接PO 并延长,交BC 于点E ,过点Q 作QF ∥AC ,交BD 于点F .设运动时间为t (s )(0<t <6),解答下列问题:(1)当t 为何值时,△AOP 是等腰三角形?(2)设五边形OECQF 的面积为S (cm 2),试确定S 与t 的函数关系式;(3)在运动过程中,是否存在某一时刻t ,使S 五边形S 五边形OECQF :S △ACD =9:16?若存在,求出t 的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t ,使OD 平分∠COP ?若存在,求出t 的值;若不存在,请说明理由.【考点】四边形综合题.【分析】(1)根据矩形的性质和勾股定理得到AC=10,①当AP=PO=t ,如图1,过P 作PM ⊥AO ,根据相似三角形的性质得到AP=t=,②当AP=AO=t=5,于是得到结论;(2)作EH⊥AC于H,QM⊥AC于M,DN⊥AC于N,交QF于G,根据全等三角形的性质得到CE=AP=t,根据相似三角形的性质得到EH=,根据相似三角形的性质得到QM=,FQ=,根据图形的面积即可得到结论,(3)根据题意列方程得到t=,t=0,(不合题意,舍去),于是得到结论;(4)由角平分线的性质得到DM=DN=,根据勾股定理得到ON=OM==,由三角形的面积公式得到OP=5﹣t,根据勾股定理列方程即可得到结论.【解答】解:(1)∵在矩形ABCD中,Ab=6cm,BC=8cm,∴AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,∴AM=AO=,∵∠PMA=∠ADC=90°,∠PAM=∠CAD,∴△APM∽△ADC,∴,∴AP=t=,②当AP=AO=t=5,∴当t为或5时,△AOP是等腰三角形;(2)作EH⊥AC于H,QM⊥AC于M,DN⊥AC于N,交QF于G,在△APO与△CEO中,,∴△AOP≌△COE,∴CE=AP=t,∵△CEH∽△ABC,∴,∴EH=,∵DN==,∵QM∥DN,∴△CQM∽△CDN,。