生物药剂学与药代动力学知识讲解

合集下载

生物药剂学与药物动力学

生物药剂学与药物动力学

生物药剂学与药物动力学1. 引言生物药剂学与药物动力学是药学领域中的两个重要分支。

生物药剂学研究的是生物药物的制备、质量控制、稳定性和分散度等方面的知识,而药物动力学则研究的是药物在体内的吸收、分布、代谢和排泄等过程。

本文将重点介绍生物药剂学与药物动力学的定义、研究内容以及在药物研发和临床应用中的重要性。

2. 生物药剂学2.1 定义生物药剂学是研究生物药物在制剂中的制备、物理化学特性、质量控制和稳定性等方面的学科。

生物药物是利用生物技术制备的药物,包括蛋白质药物、基因治疗药物、细胞治疗药物等。

2.2 研究内容生物药剂学的研究内容主要包括:•制剂方案:研发适合生物药物的制剂方案,确保药物的稳定性和有效性。

•质量控制:建立合适的质量控制方法,确保制剂的质量符合规定标准。

•稳定性研究:评估药物制剂的物理化学稳定性,寻找最佳的保存条件。

•分散度研究:研究药物在制剂中的分散度,以及分散度对药物吸收和药效的影响。

2.3 在药物研发中的重要性生物药剂学在药物研发中起着重要的作用。

正确的制剂方案可以提高药物的稳定性和储存性,延长药物的有效期。

合适的质量控制方法可以保证制剂的质量符合标准,提高药物的安全性和有效性。

稳定性研究可以评估药物的物理化学性质,为药物制剂的改进提供依据。

分散度研究可以优化药物的溶解度和吸收性,提高药物的生物利用度。

3. 药物动力学3.1 定义药物动力学是研究药物在体内的吸收、分布、代谢和排泄等过程的学科。

药物动力学可以帮助我们了解药物在人体内的作用机制和药效学特性。

3.2 研究内容药物动力学的研究内容主要包括:•药物吸收:药物通过不同的给药途径进入体内的过程,包括口服、注射、吸入等。

•药物分布:药物在体内的分布情况,受到药物的蛋白结合率、血流动力学等因素的影响。

•药物代谢:药物在体内发生的代谢反应,包括酶促反应和非酶促反应。

•药物排泄:药物从体内排除的过程,包括肾脏排泄、肝排泄、肠道排泄等。

生物药剂学与药代动力学:生物药剂学概述

生物药剂学与药代动力学:生物药剂学概述

机体屏障—成药性的阻力
中山大学临床药理研究所
新药研发中代谢、ADME、药物相互作用的研究
Donglu Zhang, Gang Luo, Xinxin Ding, et al.Preclinical experimental models of drug metabolism and disposition in drug discovery and development. Acta Pharmaceutica Sinica B 2012,2:549 – 561.
该模型已成为预测药物在人体小肠吸收、研究药物转运机制的标准体外筛选工
具。
吸收评价指标—通透系数(Papp)
Papp >10 ×10-6cm ·s-1:药物在体内完全吸收(约80-100%被吸收); Papp <1×10-6cm ·s-1 :药物在体内吸收差(约0-20%被吸收)
Barry Press,Deanna Di Grandi. Permeability for Intestinal Absorption: Caco-2 Assay and Related Issues.Current Drug Metabolism, 2008, 9, 893-900.
1、药物的体内过程 DRUG PROCESS
药物
吸收 ABSORPTION
转运 TRANSPORTATION
分布 DISTRIBUTION
血液循环中药物浓度
药理效应EFFECTS
靶组织上受体部位的药物浓度
代谢 METABOLISM 排泄 EXCRETION 消除 ELIMINATION
ADME 过程
来源于动物,有异源性;转运蛋白表 达的种类少、水平低;酶代谢活性低

生物药剂学与药物动力学

生物药剂学与药物动力学

第二章生物药剂学与药物动力学一、理论部分1.301. 何谓生物药剂学?研究它的目的是什么?生物药剂学是研究药物及其剂型在体内的吸收、分布、代谢与排泄过程,阐明药物的剂型因素,机体生物因素与药物疗效之间相互关系的科学。

研究生物药剂学的目的是为了正确评价药剂质量,设计合理的剂型、处方及生产工艺,为临床合理用药提供科学依据,使药物发挥最佳的治疗作用。

2.302. 请叙述药物的体内过程包含的范围?⑴吸收过程吸收是指药物从用药部位进入体内循环的过程;⑵分布过程分布是指药物进入体循环后向各组织、器官或者体液转运的过程;⑶代谢或生物转化过程药物在吸收或进入体循环后,受肠道菌丛或体内酶系统的作用,结构发生转变的过程;⑷排泄过程排泄是药物或其代谢产物排出体外的过程。

3.303. 简述生物膜的结构?细胞膜主要由磷脂质、蛋白质和少量糖类所组成。

以脂质双分子层为基本结构,磷脂质与结构蛋白相聚集、形成球形蛋白和脂质的二维排列的流体膜。

4.304. 简述生物膜的性质?⑴膜的流动性构成的脂质分子层是液态的。

具有流动性。

⑵膜结构的不对称性膜的蛋白质、脂类及糖类物质分布不对称。

根据蛋白质在脂质双分子层的不同位置,膜中蛋白质可分为“外在蛋白”和“内在蛋白”。

膜外的蛋白质和脂类大部分以糖蛋白和糖脂的形式存在。

⑶膜结构的半透性膜结构具有半透性,某些药物能顺利通过,另一些药物则不能通过。

由于膜的液体脂质结构特征,脂溶性药物容易透过,脂溶性很小的药物难以通过。

5.305. 药物的跨膜转运有哪几种机制?⑴被动扩散指药物的膜转运服从浓度梯度扩散原理,即从高浓度一侧向低浓度一侧扩散的过程,分为单纯扩散和膜孔转运两种形式。

⑵载体媒介转运借助生物膜的载体蛋白作用,使药物透过生物膜而被吸收的过程,可分为促进扩散和主动转运两种形式。

⑶膜动转运是指通过细胞膜的主动变形将药物摄入细胞内或从细胞内释放到细胞外的转运过程,可分为胞饮和吞噬两种形式。

6.306. 被动转运具有哪些特点?(1)药物从高浓度侧向低浓度侧的顺浓度梯度转运;(2)不需要载体,膜对药物无特殊选择性;(3)不消耗能量,扩散过程与细胞代谢无关,不受细胞代谢抑制剂的影响;(4)不存在转运饱和现象和同类物竞争抑制现象。

生物药剂学与药代动力学

生物药剂学与药代动力学

1. 生物药剂学(biopharmaceutics):是研究药物及其剂型在体内的吸收、分布、代谢与排泄过程,阐明药物的剂型因素,机体生物因素和药物疗效之间相互关系的科学。

2. 药物动力学(Pharmacokinetics)是将动力学原理应用于药物的一门边缘学科和交叉学科,即应用动力学原理与数学处理方法,定量描述药物及其它外源性物质在体内动态行为的变化规律3. 吸收(Absorption):药物从用药部位进入体循环的过程。

4. 分布(Distribution):药物进入体循环后向各组织、器官或者体液转运的过程。

5. 代谢(Motabolism):药物在吸收过程或进入体循环后,受肠道菌丛或体内酶系统的作用,结构发生转变的过程。

6. 排泄(Excretion):药物或其代谢产物排出体外的过程。

7. 转运(transport):药物的吸收、分布和排泄过程统称为转运。

8. 处置(disposition):分布、代谢和排泄过程称为处置。

9. 消除(elimination):代谢与排泄过程药物被清除,合称为消除。

10.首过效应(first pass effect) :药物在消化道和肝脏中发生的生物转化作用,使部分药物被代谢,最终进入体循环的原型药物量减少的现象。

11.负荷剂量:多剂量给药时第一次给药的剂量。

12.表观分布容积(aparent volume of distribution):是指药物在体内分布达到动态平衡时,体内药量与血药浓度的比值。

是描述药物在体内分布状况的重要参数。

13.肝提取率(extraction ratio,ER):指药物在肝脏中一过性代谢比例。

14.肾清除率(renal clearance, Clr ):指肾在单位时间内完全清除所含药物的血浆体积数。

15.生物利用度(bioavailability,F)是指药物吸收进入体循环的速度与程度。

16.绝对生物利用度(absolute bioavailability,Fabs)是药物吸收进入体循环的量与给药剂量的比值。

生物药剂学与药代动力学

生物药剂学与药代动力学

生物药剂学与药代动力学生物药剂学与药代动力学,这听起来像是某种神秘的魔法,但其实它们就是研究药物在我们身体里怎么跑的。

说白了,就是药物从你吃下去,到最后被你身体处理掉的这条路。

就像一场旅程,药物上车,经过各种“站点”,最后顺利下车,或许还顺带解决了一些小问题。

想象一下,药物就像一位探险者,从嘴巴出发,穿过喉咙,翻山越岭,最终抵达目的地——我们的细胞。

这一路上,药物会遇到不少挑战,像是胃酸的攻击、肝脏的筛选,甚至是细胞膜的阻拦。

这些挑战可不少,有时候药物还得找到合适的“通道”才能顺利通过呢。

什么是生物药剂学呢?它就像是药物的设计师,负责把药物做得好看又好用。

药剂师就像是厨师,调配各种成分,确保药物不仅能发挥效果,还能让人容易接受。

举个例子,大家都知道打针有多痛,谁不想来个口服药?药剂师就得想方设法,让药物变得口感更佳,甚至搞个好看的包装,这样一来,吃药的心情也会好不少。

你想啊,谁愿意吞那些难以下咽的药片呢?有些药物的成分可复杂了,就像做一桌丰盛的年夜饭,得考虑每个食材的搭配和火候,药剂师的工作就是把这些“食材”处理得当。

我们说说药代动力学,嘿,这玩意儿就像是药物的GPS。

药物进入体内之后,要经过几个关键步骤:吸收、分布、代谢和排泄。

药物得被吸收到血液里,像赶上末班车一样,争取尽快入场。

然后,药物在血液中四处游荡,寻找它的目标——受体。

这个过程就像寻找真爱的旅程,药物可得耐心,碰上合适的受体,就能发挥它的魔力。

就是代谢阶段,肝脏作为“药物加工厂”,对药物进行“改造”,让它变得更易被排出,有些药物可能还得变成另一种形态才能发挥作用。

当一切顺利时,药物就会被排出体外,像是参加完派对,顺利回家。

这个过程就像是把过期的食物清理掉,既保持了身体的健康,也给新鲜的东西腾出了空间。

不过,有些药物就像那种不愿意离开的朋友,可能会在体内逗留得更久,让你产生意想不到的效果。

听上去是不是很复杂?其实只要你了解药物在身体里的旅程,就会发现,生物药剂学与药代动力学其实是为我们健康保驾护航的重要环节。

生 物药剂学和药代动力学 名解和简答

生 物药剂学和药代动力学   名解和简答

生物药剂学与药代动力学名词解释生物药剂学:研究药物及其剂型在体内的吸收、分布、代谢与排泄的过程,阐明药物的剂型因素、机体的生物因素与药物效应三者之间相互关系的学科。

吸收:药物从用药部位进入体循环的过程。

分布:药物从体循环向各组织、器官或体液转运的过程。

代谢:药物在吸收过程或进入体循环后,受肠道菌丛或体内酶系统的作用,结构发生转变的过程。

排泄:药物及其代谢物排出体外的过程。

胃排空:胃内容物从胃幽门排入十二指肠的过程称为胃排空。

肝首过效应:在肝药酶作用下,药物可产生转化而使药物进入体循环前降解或失活,这种作用称为肝首过效应。

首过效应:吸收过程中,药物在消化道和肝脏中发生的生物转化作用,使部分药物被代谢,最终进入体循环的原型药物量减少的现象。

肝肠循环:经胆汁排入肠道的药物在肠道中又被重新吸收,经门静脉又返回肝脏的的现象。

双峰现象:某些药物因肝肠循环可出现第二个血药浓度高峰,称为双峰现象。

崩解:固体制剂在检查时限内全部崩解或溶散成碎粒的过程,用崩解时限来描述。

溶出速率(溶出度):是指规定溶出介质中,片剂或胶囊等固体制剂中药物溶出的速度和程度。

血药蛋白结合:进入血液的药物,一部分在血液中呈非结合的游离状态存在,一部分与血浆蛋白结合成结合型药物,暂时失去活性,“储存”于血液中,不能向组织器官内转运。

前体药物:有一些药物本身没有药理活性,在体内经过代谢后产生有活性的代谢产物。

蓄积:当长期连续用药时,在机体的某些组织中的药物浓度有逐渐升高的趋势。

表观分布容积V:用来描述药物在体内分布状况的重要参数,是将血浆中的药物浓度与体内药量联系起来的比例常数。

血脑屏障:脑组织对外来物质有选择的摄取的能力称为血脑屏障。

第一相反应:包括氧化、还原和水解三种,通常是脂溶性药物通过反应生成极性基团。

第二相反应:即结合反应,通常是药物或第一相反应生成的代谢产物结构中的极性基团,与体内内源性物质反应生成结合物。

肾小球滤过率:每分钟由两个肾的肾小球滤过的血浆总体积肾清除率:在一定时间内(通常以分钟计),肾能使多少容积血浆(通常以毫升计)中的药物清除出去的能力药物动力学:是应用动力学的原理与数学的处理方法,研究药物通过各种途径给药后在体内的吸收、分布、代谢、排泄过程的量变规律的学科,致力于用数学表达式阐明不同部位药物浓度与时间的关系。

生物药剂学和药物动力学

生物药剂学和药物动力学

生物药剂学和药物动力学生物药剂学和药物动力学是生物制剂和药物在体内的活动规律的研究,是制药学的重要分支之一。

药物动力学主要研究药物在体内的吸收、分布、代谢和排泄等过程,而生物药剂学则是药物在体内的作用机制和效果的研究。

本文将分别介绍生物药剂学和药物动力学的基本概念、研究方法、应用和发展趋势等方面的内容。

一、生物药剂学1.基本概念生物药剂学是研究生物制剂在体内的活动规律和作用机制的学科。

生物制剂是指通过生物技术制备的药物,如蛋白质药物、抗体药物、基因治疗药物等。

生物制剂具有高度的特异性和效力,能够精准地靶向疾病靶点,因此在治疗各种疾病方面具有重要的临床应用前景。

2.研究方法生物药剂学的研究方法主要包括体外实验、动物模型实验和临床试验等。

体外实验主要是通过细胞培养和体外功能测定等方法,研究生物制剂在细胞级别的作用机制和效果。

动物模型实验则是通过建立各种动物模型,研究生物制剂在体内的药效学和毒理学特性。

临床试验则是通过人体试验,评估生物制剂的安全性、有效性和药代动力学特征。

3.应用生物制剂在临床药物研发和治疗方面具有广泛的应用前景。

例如,单克隆抗体药物可以用于癌症治疗、免疫性疾病治疗等;基因治疗药物可以用于治疗遗传性疾病、罕见病等。

生物制剂在治疗方面有着独特的优势,但也面临着诸多挑战,如生产工艺复杂、成本高昂、稳定性差等。

4.发展趋势随着生物技术和药物研发技术的不断进步,生物制剂领域的研究和应用将会越来越广泛。

未来的发展趋势包括:生物制剂的个体化治疗、靶向治疗、靶向释药系统等。

另外,生物制剂方面的技术创新和品种丰富,也将会为生物制剂在临床应用上带来更多机遇和挑战。

二、药物动力学1.基本概念药物动力学是研究药物在体内的吸收、分布、代谢和排泄等过程的学科。

药物在体内的活动规律直接影响到药物的药效学特性,因此药物动力学研究对于药物研发和临床应用具有重要意义。

通常,药物动力学的研究主要包括药物的ADME特性,即吸收(absorption)、分布(distribution)、代谢(metabolism)和排泄(excretion)等过程。

(完整版)生物药剂学与药物动力学重点

(完整版)生物药剂学与药物动力学重点

名词解释1.生物药剂学:是研究药物及其剂型在体内的吸收,分布,代谢和排泄的过程,阐明了药物的剂型因素,机体的生物因素与药物效应三者之间的相互关系的科学。

2.肠肝循环:是指经胆汁排入肠道的药物,在肠道中又重新被吸收,经门静脉又返回肝脏的现象。

3.肝首过效应:在吸收过程中,药物在消化道和肝脏中发生的生物转化作用,使部分药物被代谢,最终进入体循环的原形药物量减少的现象。

4.药物的溶出:药物的溶出速率是指在一定溶出条件下,单位时间药物溶解的量。

5.药物的蓄积:当长期连续用药时,在机体的某些组织中的药物浓度有逐渐升高的趋势。

6.药物代谢:药物被机体吸收后,在体内各种酶以及体液环境作用下,其化学结构可发生改变的过程。

又称生物转化。

7.肝清除率:只在单位时间内有多少体积血浆中所含的药物被肝脏清除。

8.诱导作用:许多药物,特别是指在肝中停留时间长,脂溶性好的化合物,能是某些药物代谢酶过量生成,从而促进自身或其他药物代谢。

9.抑制作用:正如药物可以产生酶诱导作用一样,一些药物相反对代谢酶具有抑制作用,是其他药物代谢减慢,作用时间延长,导致药理活性或毒副作用增强。

10.前体药物:是指将活性药物衍生化成药理惰性物质,但该惰性物质在体内经化学反应或酶反应后,能回复到原来的母体药物,再发挥治疗作用。

11.排泄:指体内药物或其代谢物排除体外的过程。

12.药物动力学(pk):是应用动力学的原理与数学处理方法,研究药物通过各种途径给药后在体内吸收,分布,代谢,排泄过程的量变规律的学科。

13.生物半衰期:表示药物在体内消除一半所需要的时间。

其他1.处置:药物的分布,代谢,和排泄过程。

2.清除:药物的代谢和排泄的过程。

口服剂型生物利用度高低的顺序为:溶液剂>混悬剂>颗粒剂>胶囊剂>片剂>包装片3.药物代谢的在新药研发中的应用:①药物代谢研究与创新药物的筛选②代谢药物与前体药物设计③药物代谢的饱和现象和制剂设计④药物代谢与剂型设计⑤药物毒性及相互作用的预测影响剂型体内过程的因素:1.种族差异2、性别差异3、年龄差异4、生理和病理条件的差异5、遗产因素4.生物膜的性质:流动性、不对称性、半透性。

生物药剂学与药代动力学课件

生物药剂学与药代动力学课件
油溶媒注射液药物 ③促进吸收因素:按摩,热敷,运动
生物药剂学与药代动力学
23
⑵ 剂型因素
①分子量 ②难溶性药物的溶解度 如混悬剂 ③非水溶媒注射 溶媒被吸收和药物的溶解度 ④药物与体液蛋白相结合 结合物的解离速率<药
物快于高渗溶液 ⑥非水溶媒注射剂和混合溶媒注射剂药物的溶出
生物药剂学与药代动力学
4
1 概念
➢ 药效:药物效应,包括治疗作用与毒副作用
➢ 剂型因素: 药物性质 药物处方 贮存条件
药物剂型 制剂工艺
➢ 生理(物)因素:种族、年龄、性别、 个体差异、疾病状态
生物药剂学与药代动力学
5
1 概念
➢吸收:药物从用药部位进入体循环的过程 ➢分布:药物在血液与组织间的可逆转运过程。 ➢代谢:药物在体内发生的化学结构变化的过程。 ➢排泄:药物及其代谢物排出体外的过程。 ➢消除:代谢与排泄 ➢配置 (处置):分布与消除
➢被动扩散 大多数药物的转运方式 ✓溶解扩散 限制扩散 ✓影响吸收的因素:浓度差 扩散分子大小
电荷性质 亲脂性
➢主动转运
特点:①需载体→饱和现象;②耗能;③逆浓度梯度
转运;④结构和部位特异性→竞争转运;⑤受代谢 抑制剂影响
➢促进扩散
➢胞饮(和吞噬) 蛋白 部位特异性
生物药剂学与药代动力学
9
2 吸收
脏排泄 这主要靠结合反应
生物药剂学与药代动力学
35
五 代谢
3 药酶与酶系统
➢药酶:参与药物代谢的酶称药物代谢酶或药酶。
➢酶系统 ✓肝微粒体酶系统(混合功能氧化酶系统) ✓非微粒体酶系统:细胞浆可溶部分酶系;
线粒体酶系;血浆中酶系 ✓肠道和肠道菌丛酶系
生物药剂学与药代动力学

生物药剂学与药物动力学课件

生物药剂学与药物动力学课件

生物药剂学与药物动力学
2288
➢辅料
稀释剂
分散、吸附
粘合剂
延缓崩解
崩解剂
溶出
润滑剂
疏水性 崩解、溶出
表面活性剂 促进、延缓吸收
生物药剂学与药物动力学
2299
➢工艺
提取精制:有效成分的质量、数量 制备工艺:有效成分的分散状态 成型工艺:有效成分的释放、溶出
生物药剂学与药物动力学
3300
影响胃肠道吸收的因素
小肠表面积极大,即使是弱酸药物,吸收仍然较好
酸酸碱碱促吸收
生物药剂学与药物动力学
2020
影响因素(二):药物因素
➢2.溶出速度
--固体制剂 崩解(分散) 溶出 吸 收
--溶出是难溶性药物的限速过程
生物药剂学与药物动力学
2211
溶出方程(Noyes- Whitney方程)
ddct S•K•Cs
影响因素:减小粒径 升高温度 振摇或搅拌 改变pH 成盐
生物药剂学与药物动力学
2222
影响因素(二):药物因素
➢3.粒径
粒径↓,比表面积↑,溶出速度↑,吸 收↑
使难溶性药物吸收增加
生物药剂学与药物动力学
2233
影响因素(二):药物因素
➢4.多晶型
熔点 溶解度 溶出速度 吸收 稳定性
稳定 高


亚稳 定型
• 胞饮、吞噬
生物药剂学与药物动力学
9
三、影响胃肠道吸收的因素
生理因素 药物因素 剂型因素
机体生物因素 药物理化性质
生物药剂学与药物动力学
1100
影响因素(一)
生理因素
1.胃肠液pH值 2.胃排空 3.胃肠蠕动 4.食物 5.循环系统 6.胃肠分泌物及粘膜内的代谢

生物药剂学与药代动力学:第一章 药物动力学概述

生物药剂学与药代动力学:第一章 药物动力学概述

中山大学临床药理研究所 Institute of Clinical Pharmacology, Sun Yat-sen University
五、血药浓度与药理效应
K1
R+D
RD
E
K2
R: 受体,D: 药物分子,RD: 药物-受体复合物,E: 药理效应
➢ 血液中药物浓度间接反映药物在受体部位的浓度;
Institute of Clinical Pharmacology, Sun Yat-sen University
中山大学临床药理研究所 Institute of Clinical Pharmacology, Sun Yat-sen University
药物体内ADME过程
组织
Binding and storage
释制剂的研究与开发; ➢ 进行药物动力学研究,如非临床、临床药代动力学研究,
人体生物利用度和生物等效性研究; ➢ 应用药动学参数设计给药方案,并进行治疗药物监测,使
用药个体化、合理化,并达到最有效的药物治疗作用; ➢ 新药设计与开发及老药重新评价。
Institute of Clinical Pharmacology, Sun Yat-sen University
Institute of Clinical Pharmacology, Sun Yat-sen University
中山大学临床药理研究所 Institute of Clinical Pharmacology, Sun Yat-sen University
苯妥英血药浓度与疗效和毒性的关系
血药浓度(mg/mL) 10-20 20-30 30-40 >40
中山大学临床药理研究所 Institute of Clinical Pharmacology, Sun Yat-sen University

生物药剂学和药物动力学

生物药剂学和药物动力学

生物药剂学和药物动力学生物药剂学是研究生物药物的制备、质量控制以及药物的稳定性和递送系统的一门学科。

而药物动力学则是研究药物在体内的吸收、分布、代谢和排泄过程,以及药物在体内产生的效应和用药剂量与效果之间的关系。

在药物研发和药物治疗中,这两个学科起着重要的作用。

生物药剂学主要研究生物药物的制备工艺和质量控制,包括药物的纯化、表征、稳定性的评估以及药物制备过程中的工艺优化。

生物药物一般由生物反应器中的细胞或微生物通过发酵或其他方式制备得到。

这些生物药物一般较大并且复杂,制备过程可能会受到多种因素的干扰,导致产品的质量波动。

生物药剂学通过优化制备工艺,控制生物反应过程中的环境参数和营养条件,以及设计适合的分离和纯化工艺,来保证药物的质量稳定性。

另外,生物药剂学还研究药物的递送系统。

由于生物药物一般较大,肠道吸收效率较低,因此需要设计合适的递送系统来解决这个问题。

递送系统可以通过改变药物的药物形态、封装药物为纳米粒子或微胶囊,以及利用载体来提高药物在体内的吸收效率。

生物药剂学通过研究不同的递送系统,可以提高药物的生物利用度和治疗效果。

药物动力学主要研究药物在体内的吸收、分布、代谢和排泄过程,以及药物在体内产生的效应和用药剂量与效果之间的关系。

药物在体内的吸收一般发生在胃肠道中,吸收效率会受到多种因素的影响,比如药物的溶解度、生物利用度以及药物与胃肠道的相互作用。

药物在体内的分布可以受到多种因素的影响,比如药物的组织亲和性、蛋白结合率以及生理血流情况。

药物在体内的代谢和排泄主要发生在肝脏和肾脏,这些器官中的代谢酶和排泄通道会对药物的代谢和排泄过程产生重要影响。

药物动力学研究还包括药物在体内产生的效应和用药剂量与效果之间的关系。

药物在体内可以通过结合受体、抑制酶活性或调节生物化学过程来产生治疗效果。

药物动力学研究可以评估药物的药效和药物的剂量效应关系,指导临床用药的选择和用药剂量的调整。

生物药剂学和药物动力学在药物研发和药物治疗中起着非常重要的作用。

生物药剂与药物动力学作业讲解

生物药剂与药物动力学作业讲解

生物药剂与药物动力学作业讲解
背景介绍
生物药剂与药物动力学是药学领域的重要概念。

生物药剂研究
生物制剂的药理学和药代动力学特性,包括药物在体内的吸收、分布、代谢和排泄等过程。

药物动力学研究药物在体内的行为和效果,以预测药物的剂量和给药方案。

生物药剂的特点
生物药剂是由生物技术制备的药物,具有以下特点:
- 由生物源制备,如基因工程制备的蛋白质药物。

- 结构复杂,包括多肽、蛋白质等。

- 对体内环境敏感,易受代谢和免疫系统的影响。

药物动力学的重要性
药物动力学研究药物在体内的行为和效果,对药物治疗的有效
性和安全性具有重要意义:
- 药物吸收:研究药物在体内的吸收速度和吸收程度,以确定
给药途径和剂型。

- 药物分布:研究药物在体内的分布情况,以了解药物在不同
组织和器官的浓度分布。

- 药物代谢:研究药物在体内的代谢过程,以确定药物的代谢
产物和代谢途径。

- 药物排泄:研究药物在体内的排泄过程,以了解药物的清除
速度和排泄途径。

简单策略的重要性
在研究生物药剂和药物动力学时,采用简单策略具有以下优势:- 提高实验的可重复性和可靠性。

- 减少实验中的法律风险和争议。

- 降低实验的复杂性和成本。

结论
生物药剂与药物动力学是药学领域的重要研究方向。

了解生物
药剂的特点和药物动力学的重要性,采用简单策略进行研究,可以
提高实验的有效性和可靠性。

同时,确保研究结果的准确性和可证
实性,避免引用无法确认的内容。

---
(800字以上)。

生物药剂学和药物动力学概述专家讲座

生物药剂学和药物动力学概述专家讲座

生物药剂学和药物动力学概述专家讲座
第36页
如建立鼻腔给药、口腔黏膜给药、经皮给药等体外试验方 法以及研究其合理性、试验结果正确性
生物药剂学和药物动力学概述专家讲座
第18页
新药合成和筛选
研究药品体内 转运和转化
安全性评价 制剂研究
临床前和临床研究
药动学研究为毒 评价剂型设 性试验提供依据 计合理性
动物或人体 药动学研究
药品非临床药代动力学研究技术指导标准 药品毒代动力学研究技术指导标准 药品代谢产物安全性试验技术指导标准 化学药品制剂人体生物利用度和生物等效性研究技术指导标准
第28页
基因给药
生物药剂学和药物动力学概述专家讲座
第29页
载体结构对药品生物转运影响
Figure 6
DTA PEG
diINF-7 Anti-EGFR
生物药剂学和药物动力学概述专家讲座
第30页
4、药品对映体生物药剂学研究
沙利度胺
R-构型含有抑制妊娠反应活性,而S-构型有致畸性。
生物药剂学和药物动力学概述专家讲座
生物药剂学和药物动力学概述专家讲座
第19页
(三)生物药剂学与相关学科关系
✓药剂学 ✓药理学 ✓生物化学 ✓生理学与人体解剖学 ✓分子和细胞生物学 ✓分子药理学 ✓药品动力学
生物药剂学和药物动力学概述专家讲座
第20页
三、生物药剂学发展
(一)研究内容和进展
1. 生物药剂学分类系统
III
溶解度好 渗透性不好
A.吸收 B.渗透 C.分布 D.代谢 E.排泄 3. 药品消除是指
A.吸收 B.渗透 C.分布 D.代谢 E.排泄
生物药剂学和药物动力学概述专家讲座

生物药剂学和药物动力学重点总结

生物药剂学和药物动力学重点总结

1.生物药剂学〔biopharmaceutics,biopharmacy〕——研究药物及其剂型在体的吸收、分布、代与排泄过程,说明药物的剂型因素,机体生物因素和药物疗效之间相互关系的科学。

2.生物药剂学的剂型因素和生物因素.1剂型因素:化学性质、物理性质、剂型及服法、辅料、药物配伍、工艺条件等。

2生物因素3.口服药物消化道吸收的因素、解离度、脂溶性和分子量2、溶出速率3、药物4.影响体药物分布的主要因素:体循环与血管透过性的影响、药物与血浆蛋白结合的能力、药物的的理化性质与透过生物膜的能力、药物与组织的亲和力、药物相互作用对分制的影响。

5.影响药物代的因素给药途径对药物代的影响、给药剂量和剂型对药物代的影响、药物光循环的过程。

分布〔Distribution〕:药物进入体循环后向各组织、器官或者体液转运的过程。

代〔Motabolism〕:用,构造发生转变的过程。

排泄〔E*cretion〕:药物或其代产物排出体外的过程。

转运〔transport〕:分布和排泄过程统称为转运。

处置〔disposition〕:代和排泄过程称为处置。

消除〔elimination〕:代与排泄过程药物被去除,合称为消除。

5片剂口服后的体过程有:片剂崩解、药物的溶出、吸收、分布、代、排泄。

7生物膜的构造:细胞膜的组成:①膜脂:磷脂、胆固醇、糖脂②少量糖③蛋白质。

生物膜性质:膜的流动性;膜构造的不对称性;膜构造的半透性。

8膜转运途径。

细胞通道转运:药物借助其脂溶性或膜蛋白的载体作用,透过细胞而被吸是小分子水溶性的药物转运吸收的通道。

细胞旁路通道转运:是指一些小分子物质通过细胞间连接处的微孔进入体循环的过程。

是脂溶性药物及一些经主动机制吸收药物的通道。

9药物通过生物膜的几种转运机制及特点:(一)、被动转运(passive transport)是指药物的膜转运服从浓度梯度扩散原理,即从高①.单纯扩散(passive diffusion) 又称脂溶扩散,脂溶性药物可溶于脂质而通过生物膜..1〕药物的油/水分配系数愈大,在脂质层的溶解愈大,就愈容易扩散。

生物药剂学与药物动力学必须版

生物药剂学与药物动力学必须版

生物药剂学与药物动力学一、生物药剂学1、什么是生物药剂学?生物药剂学是一门研究药物的吸收、分布、代谢和排泄以及药物在体内的作用机制的学科。

它涉及药物的吸收、分布、代谢和排泄,以及药物在体内的作用机制,以及药物的药效学和毒理学。

2、生物药剂学的研究内容生物药剂学的研究内容主要包括:药物的吸收机制、药物的分布机制、药物的代谢机制、药物的排泄机制、药物的药效学机制和药物的毒理学机制。

3、生物药剂学的应用生物药剂学的应用主要是用于药物研发、药物分析、药物评价和药物管理。

(1)药物研发:生物药剂学可以为药物研发提供重要的理论指导,从而推动药物研发的进展。

(2)药物分析:生物药剂学可以帮助研究者分析药物的吸收、分布、代谢和排泄,从而更好地理解药物的作用机制。

(3)药物评价:生物药剂学可以帮助研究者评价药物的药效学和毒理学,从而更好地评价药物的安全性和有效性。

(4)药物管理:生物药剂学可以帮助研究者更好地管理药物,从而更好地控制药物的使用和安全性。

二、药物动力学1、什么是药物动力学?药物动力学是一门研究药物在体内的吸收、分布、代谢和排泄以及药物在体内的作用机制的学科。

它涉及药物的药效学和毒理学,以及药物在体内的吸收、分布、代谢和排泄机制。

2、药物动力学的研究内容药物动力学的研究内容主要包括:药物的吸收、分布、代谢和排泄机制、药物的药效学机制和药物的毒理学机制。

3、药物动力学的应用药物动力学的应用主要是用于药物研发、药物分析、药物评价和药物管理。

(1)药物研发:药物动力学可以为药物研发提供重要的理论指导,从而推动药物研发的进展。

(2)药物分析:药物动力学可以帮助研究者分析药物的吸收、分布、代谢和排泄,从而更好地理解药物的作用机制。

(3)药物评价:药物动力学可以帮助研究者评价药物的药效学和毒理学,从而更好地评价药物的安全性和有效性。

(4)药物管理:药物动力学可以帮助研究者更好地管理药物,从而更好地控制药物的使用和安全性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

生物药剂学与药代动力学生物药剂学与药物动力学习题一、单项选择题1.以下关于生物药剂学的描述,正确的是A.剂型因素是指片剂、胶囊剂、丸剂和溶液剂等药物的不同剂型B.药物产品所产生的疗效主要与药物本身的化学结构有关C.药物效应包括药物的疗效、副作用和毒性D.改善难溶性药物的溶出速率主要是药剂学的研究内容2. K+、单糖、氨基酸等生命必需物质通过生物膜的转运方式是 A.被动扩散 B.膜孔转运C.主动转运 D.促进扩散E.膜动转运3. 以下哪条不是主动转运的特点A.逆浓度梯度转运 B.无结构特异性和部住特异性C.消耗能量 D.需要载体参与E.饱和现象4. 胞饮作用的特点是A.有部位特异性 B.需要载体C.不需要消耗机体能量 D.逆浓度梯度转运E.以上都是5. 药物的主要吸收部位是A.胃 B.小肠 C.大肠 D.直肠 E.均是6. 药物的表观分布容积是指A.人体总体积 B.人体的体液总体积C.游离药物量与血药浓度之比 D.体内药量与血药浓度之比 E.体内药物分布的实际容积7. 当药物与蛋白结合率较大时,则A.血浆中游离药物浓度也高B.药物难以透过血管壁向组织分布C.可以通过肾小球滤过D.可以经肝脏代谢E.药物跨血脑屏障分布较多8. 药物在体内以原形不可逆消失的过程,该过程是A.吸收 B.分布 C.代谢D.排泄 E.转运9. 药物除了肾排泄以外的最主要排泄途径是A.胆汁 B.汗腺 C.唾液腺D.泪腺 E。

呼吸系统10. 可以用来测定肾小球滤过率的药物是A.青霉素 B.链霉素 C.菊粉D.葡萄糖 E.乙醇11. 肠肝循环发生在哪一排泄中A.肾排泄 B.胆汁排泄 C.乳汁排泄D.肺部排泄 E.汗腺排泄12. 最常用的药物动力学模型是A.隔室模型B.药动一药效结合模型C.非线性药物动力学模型D.统计矩模型E.生理药物动力学模型13. 药物动力学是研究药物在体内的哪一种变化规律A.药物排泄随时间的变化B.药物药效随时间的变化C.药物毒性随时间的变化D.体内药量随时间的变化E.药物体内分布随时间的变化14. 关于药物动力学的叙述,错误的是A.药物动力学在探讨人体生理及病理状态对药物体内过程的影响中具有重要的作用B.药物动力学对指导新药设计、优化给药方案、改进剂型等都发挥了重大作用C.药物动力学是采用动力学的原理和数学的处理方法,推测体内药物浓度随时间的变化D.药物动力学是研究体内药量随时间变化规律的科学E.药物动力学只能定性地描述药物的体内过程,要达到定量的目标还需很长的路要走15.反映药物转运速率快慢的参数是A.肾小球滤过率 B.肾清除率C.速率常数 D.分布容积E.药时曲线下面积16.关于药物生物半衰期的叙述,正确的是A.具一级动力学特征的药物,其生物半衰期与剂量有关 B.代谢快、排泄快的药物,生物半衰期短C.药物的生物半衰期与给药途径有关D.药物的生物半衰期与释药速率有关E.药物的生物半衰期与药物的吸收速率有关17.通常情况下与药理效应关系最为密切的指标是 A.给药剂量B.尿药浓度C.血药浓度D.唾液中药物浓度E.粪便中药物浓度18.关于表观分布容积的叙述,正确的有A.表观分布容积最大不能超过总体液B.无生理学意义C.表观分布容积是指体内药物的真实容积D.可用来评价药物的靶向分布E.表观分布容积一般小于血液体积19.某药物的组织结合率很高,因此该药物A.半衰期长B.半衰期短C.表观分布容积小D.表观分布容积大E.吸收速率常数大20.某药物口服后肝脏首过作用大,改为肌内注射后 A.t1/2增加,生物利用度也增加B.t1/2减少.生物利用度也减少C.t1/2不变,生物利用度减少D.t1/2不变,生物利用度增加E.t1/2和生物利用度均无变化21.能够反映药物在体内分布的某些特点和程度的是A.分布速度常数B.半衰期C.肝清除率D.表观分布容积E.吸收速率常数22. 关于单室模型错误的叙述是A.单室模型是把整个机体视为一个单元B.单室模型中药物在各个器官和组织中的浓度均相等C.在单室模型中药物进入机体后迅速成为动态平衡的均一体D.符合单室模型特征的药物称单室模型药物E.血浆中药物浓度的变化基本上只受消除速度常数的影响23. 关于清除率的叙述,错误的是A.清除率没有明确的生理学意义B.清除率是指机体或机体的某一部位在单位时间内清除掉相当于多少体积的血液中的药物C.清除率包括了速度与容积两种要素,在研究生理模型时是不可缺少的参数 D.清除率的表达式是Cl= (-dX/dt) /CE.清除率的表达式是Cl =kV24关于隔室划分的叙述,正确的是A.隔室的划分是随意的B.为了更接近于机体的真实情况,隔室划分越多越好C.药物进入脑组织需要透过血脑屏障,所以对所有的药物来说,脑是周边室 D.隔室是根据组织、器官、血液供应的多少和药物分布转运的快慢确定的 E.隔室的划分是固定的,与药物的性质无关25.测得利多卡因的消除速度常数为0.3465h-l,则它的生物半衰期为A. 0.693hB.1hC.1.5hD. 2.OhE.4h26.某药静脉注射经3个半衰期后,其休内药量为原来的A. 1/2B.1/4C.1/8D. 1/16E.1/3227.某药静脉滴注经3个半衰期后,其血药浓度达到稳态血药浓度的A. 50%B.75%C.88%D. 94%E.99%28.静脉注射某药物lOOmg,立即测得血药浓度为1pt,g/ml,则其表观分布容积为A. 5LB.10LC.50LD. 100LE.1000L29.欲使血药浓度迅速达到稳态,可采取的给药方式是A.单次静脉注射给药B.多次静脉注射给药C.首先静脉注射一个负荷剂量,然后恒速静脉滴注D.单次口服给药E.多次口服给药30.在线性药物动力学模型中,与给药剂量有关的参数有A.k B.ka C.v D. Cl E.AUC二、多项选择题1. 生物药剂学分类系统中参数吸收数An与( )项有关A.药物的有效渗透率 B.药物溶解度c.肠道半径 D.药物在肠道内滞留时间E.药物的溶出时间2. BCS中用来描述药物吸收特征的三个参数是A.吸收数B.剂量数 c.分布数 D.溶解度 E.溶出数3. 下列有关生物药剂学分类系统相关内容的描述正确的是A.生物药剂学分类系统根据溶解性与通透性的差异将药物分成四大类B.Ⅰ型药物具有高通透性和高渗透性C.Ⅲ型药物透过足吸收的限速过程,与溶出速率没有相关性D.剂量数是描述水溶性药物的口服吸收参数,一般剂量数越大,越有利于药物的吸收E.溶出数是描述难溶性药物吸收的重要参数,受剂型因素的影响,并与吸收分数F密切相关4. 以下可提高Ⅲ类药物吸收的方法有A.加入透膜吸收促进剂 B.制成前体药物C.制成可溶性盐类 D.制成微粒给药系统E.增加药物在胃肠道的滞留时间5. 体外研究口服药物吸收作用的方法有A.组织流动室法 B.外翻肠囊法C.外翻环法 D.肠道灌流法E.肠襻法6. 影响药物吸收的理化因素有A.解离度 B.脂溶性 C.溶出速度D.稳定性 E.晶型7. 下列关于经皮给药吸收的论述不正确的是A.脂溶性药物易穿过皮肤,但脂溶性过强容易在角质层聚集,不易穿透皮肤B.某弱碱药物的透皮给药系统宜调节pH为偏碱性,使其呈非解离型,以利于药物吸收C.脂溶性药物的软膏剂,应以脂溶性材料为基质,才能更好地促进药物的经皮吸收D.药物主要通过细胞间隙或细胞膜扩散穿透皮肤,但皮肤附属器亦可能成为重要的透皮吸收途径8. 影响肺部药物吸收的因素有A.药物粒子在气道内的沉积过程B.生理因素C.药物的理化性质D.制剂因素9. 药物代谢酶存在于以下哪些部位中A.肝B.肠 c.肾 D.肺10.药物代谢I相反应不包括A.氧化反应B.还原反应 c.水解反应 D.结合反应11.体内常见的结合剂主要包括A.葡萄糖醛酸B.乙酰辅酶AC.S.腺苷甲硫氨酸D.硫酸12.下列关于药物代谢与剂型设计的论述正确的是A.药酶有一定的数量,因此可利用给予大剂量药物先使酶饱和,从而达到提高生物利用度的目的B.药物代谢的目的是使原形药物灭活,并从体内排出C.老人药物代谢速度减慢,因此服用与正常人相同的剂量,易引起不良反应和毒性D.盐酸苄丝肼为脱羧酶抑制剂,与左旋多巴组成复方,可抑制外周的左旋多巴的代谢,增加入脑量13.下列论述正确的是A.光学异构体对药物代谢无影响B.体外法可完全替代体内法进行药物代谢的研究C.黄酮体具有很强的肝首过效应,因此口服无效D.硝酸甘油具有很强的肝首过效应,因此通过皮肤、鼻腔、直肠、口腔黏膜吸收可提高生物利用度14.以下情况下可考虑采用尿药排泄数据进行动力学分析A.大部分以原形从尿中排泄的药物B.用量太小或体内表观分布容积太大的药物C.用量太大或体内表观分布容积太小的药物D.血液中干扰性物质较多E.缺乏严密的医护条件15.采用尿排泄数据求算动力学参数须符合以下条件A.有较多原形药物从尿中排泄B.有较多代谢药物从尿中排泄C.药物经肾排泄过程符合一级速度过程D.药物经肾排泄过程符合零级速度过程E.尿中原形药物出现的速度与体内当时的药量成正比三、填空1.药物经肌内注射有吸收过程,一般____药物通过毛细血管壁直接扩散,水溶性药物中分子量______的可以穿过毛细血管内皮细胞膜上的孔隙快速扩散进入毛细血管,分子量____的药物主要通过淋巴系统吸收。

2.体外评价药物经皮吸收速率可采用______或______扩散池。

3.为达到理想的肺部沉积效率,应控制药物粒子的大小,其空气动力学粒径范围一般为______.4.蛋白多肽药物经黏膜给药的部位主要包括______、______、______等。

5.影响离子导入的因素有______、______等。

6.药物溶液滴入结膜内主要通过______、______途径吸收。

7.药物的分布是指药物从给药部位吸收进入血液后,由运送至的过程。

8.某些药物接续应用时,常常由于药物从组织解脱入血的速度比进入组织的速度____,导致组织中的药物有浓度逐渐上升的趋势,称为______。

9.人血中主要有三种蛋白质______、_______、______与大多数药物结合有关。

10.药物的淋巴管转运主要与药物的______有关。

分子量在______以上的大分子物质,经淋巴管转运的选择性倾向很强。

11.药物向中枢神经系统的转运,主要取决于药物的______性,另外药物与____也能在一定程度上影响血液--脑脊液间的药物分配。

12.粒径小于______μm的微粒,大部分聚集于网状内皮系统,被______摄取,这也是目前研究认为微粒系统在体内分布的主要途径。

13.制备长循环微粒,可通过改善微粒的______、增加微粒表面的______及其______则可明显延长微粒在血液循环中的半衰期。

相关文档
最新文档