小学奥数举一反三优秀教案

合集下载

(完整)六年级奥数教案

(完整)六年级奥数教案
教学重点
教育学生养成认真计算的习惯,理清解题思路,探索简算方法
教学难点
理解并运用简算公式,掌握简算技巧
教学过程
一、复习导入
异分母分数的加减运算
让学生回顾异分母分数的运算过程并进行讲授
二、新课讲授
由回顾内容,导入新课公式
三、例题分析|习题强化
布置作业
拓展应用部分
思路要点
复习导入→新课讲授(公式)
课堂小结
教学难点
理解并运用倒推法
教学过程
一、导入概念
有些应用题如果按照一般方法,顺着题目的条件一步一步地列出算式求解,过程比较繁琐。所以,解题时,我们可以从最后的结果出发,运用加与减、乘与除之间的互逆关系,从后到前一步一步地推算,这种思考问题的方法叫倒推法。
六年级数学
《举一反三》
教案
第一讲简便运算
授课时间:课时:授课形式:讲解+练习教师:
教学目标
1.通过对多则运算转化为简便运算的过程,让学生养成独立思考、积极探索规律的良好学习习惯
2.化繁为简的过程中,让学生获得成就感,逐渐爱上做题,爱上探索
3.事物均有规律可循,探索的过程中,让学生爱上数字,积极探索数学世界
(可通过画图或画数轴进行分析)
2、情景问题讲解
三、例题分析|习题强化
类型题进行讲解+习题巩固
3、类型题回顾
布置作业
思路要点
例题+画题干分析变量不变量+思路启示+讲解+细节要求+习题
例:(课本典例1)有两筐苹果,乙筐是甲筐的 ,从甲筐取出6千克装入乙筐后,乙筐的苹果是甲筐的 ,问:甲乙两筐苹果共重多少千克?
2.能够理清题干中逻辑关系
3.能够对利用分数解决应用题有一个系统的知识领会过程

六年级奥数举一反三教案

六年级奥数举一反三教案
(课本典例1的进行学习和分析、讲解)
2.贯穿公式:工作效率= ,工作时间= ,
工作总量=工作效率 工作时间
三、例题分析|习题强化
题型进行讲解+习题巩固
布置作业
思路要点
基本关系梳理+导入公式+分析讲解
例:印刷厂有一批书要装订,甲单独要15天完成,乙单独要12天完成,两人一起装订多长时间完成?
基本关系梳理:
教学重点
教育学生养成认真计算的习惯,理清解题思路,探索简算方法
教学难点
理解并运用简算公式,掌握简算技巧
教学过程
一、复习导入
异分母分数的加减运算
让学生回顾异分母分数的运算过程并进行讲授
二、新课讲授
由回顾内容,导入新课公式
三、例题分析|习题强化
布置作业
拓展应用部分
思路要点
复习导入→新课讲授(公式)
课堂小结
本课主要探索了有规律可循的多则运算的简算技巧,更深入地了解了分数的加减乘除运算
第二讲巧算与估算
授课时间:课时:授课形式:讲解+练习教师:
教学目标
1.通过进一步学习分数求和问题,解决更复杂的分数运算
2.通过假设掌握估算的方法和技巧,让学生对估算形成概念
3.通过分数裂项相加法、提取公因式法、错位相减法等数学解题方法,进一步加强学生对分数的认识和理解
教学重点
深入研究分数的加减乘除混合运算
教学难点
分数解题方法和思路的理解和应用
教学过程
一、复习导入(公式)
二、例题分析|习题强化
1.通过例题学习新课,其中穿插分数解题方法的导入
(1)分数裂项相加法
(2)提取公因式法
(3)错位相减法
2.导入估算概念

三年级奥数举一反三应用题(一)教案

三年级奥数举一反三应用题(一)教案

应用题讲:第备课时间授课教师年级学生姓名找到问题掌握数量关系,学好应用题的关键在于认真分析题意,学教的突破口。

标目通过寻找等量关系对数学的兴趣并拓展我们的思维。

重、难点考教学内容基础狂记它需要我们小朋友用学到的数学应用题是小学数学中非常重要的一部分内容,知识来解决生产、生活中的一些实际问题。

学好应用题的关键在于认真分析题意,掌握数量关系,找到问题的突破口。

在分析应用题的数量关系时,我们可以从条件出发,逐步推出所求的问题;也可以从问题出发,找到必须的两个条件。

在实际解答时,我们可以根据题目中的数量关系,灵活运用这两种方法。

有时,借助线段图来分析应用题的数量关系,解答就更容易了。

例题狂学学校有排球、只,5倍少2足球的只数比排球的只,24学校里有排球】1【例题足球共多少只?【思路导航】根据题意画出线段图足倍数,1只排球看作24从上图可以看出,把-2×24只,用5倍还少2球的只数比这样的只可以求出两种球的总只数。

24=67+43再用可以求出足球的只数,(只)5=43 :1练习倍少3下,小军每分钟跳的下数比小红的25小红每分钟跳绳1.下,小军每16 分钟比小红多跳几下?棵。

少先队14倍多3棵,种的杨树的棵数比柳树棵数的30少先队员种柳树2. 员种的杨树、柳树共多少棵?月盆。

15倍少3比月季花盆数的盆郁金香,180人民广场花圃中有】2【例题季花有多少盆?1把月季花的盆数看作从上图可以看出,【思路导航】盆。

如果郁金15倍少3倍数,郁金香的盆数是这样的倍。

因此用3盆,就正好是月季花盆数的15香再增加(盆)就可求出月季花的盆数。

3=65)÷15+180(200倍少2元,比小明母亲每月工资的1000小明的父亲每月工资1.:2练习元。

小明母亲每月工资多少元?3千克。

卖出水果的千克数比剩下的45筐水果,平均每筐重9水果店卖出2.27倍还多千克,还剩多少千克水果?只,白12只,白鸡比黄鸡多13】小林家养了一些鸡,黄鸡比黑鸡多3【例题倍。

三年级奥数举一反三有余除法教案

三年级奥数举一反三有余除法教案

教案:三年级奥数举一反三有余除法
一、教学目标:
1.理解有余除法的概念。

2.能够运用有余除法解决实际问题。

3.能够灵活运用举一反三的方法来扩展问题。

二、教学准备:
1.教材:《小学奥数入门》
2.工具:黑板、彩色粉笔
3.教具:纸和铅笔
三、教学过程:
1.导入新知识:
(1)教师出示一道有余除法的例题:36÷7,然后请学生计算。

(2)学生将计算结果告诉教师,教师指出答案为5余1
(3)教师解释有余除法的概念,即除不尽的部分叫做余数。

2.讲解有余除法的基本步骤:
(1)写下被除数和除数。

(2)看能否整除,若能则写出商。

(3)若不能整除则写出商和余数。

(4)检验计算结果。

3.进一步练习有余除法:
(1)教师出示更复杂的例题,如78÷9
(2)学生根据步骤计算,得出结果为8余6
(3)教师引导学生自行练习一些有余除法的计算。

4.发展:举一反三
(1)教师出示一道问题:班级里有48个学生,每个小组有6个学生,问班级能组成几个小组。

(2)学生根据举一反三的思路,可以将问题重新表达为:
“48÷6=?”。

(3)学生计算后得出结果为8,即班级能组成8个小组。

和差的变化规律 《举一反三》四年级奥数教案

和差的变化规律  《举一反三》四年级奥数教案

《举一反三》四年级奥数教案一、教学内容:举一反三P44--P47二、教学目标:1、两个加数同时变化时,和的变化规律。

2、被减数和减数同时变化时,差的变化规律。

三、教学难点:理解两数同时变化时,和、差的变化过程。

四、教学设计:1、复习上周所学内容,讲解作业。

作业1:计算9+18+27+36+...+261+270.[分析]:这个数列后项和前项的差是9,都相等,所以这个数列是等差数列,我们可以用求和公式计算。

要求这一数列的和,首先要求出项数是多少,用项数公式。

项数=(末项-首项)÷公差+1=(270-9)÷9+1=30;首项=9,末项=270,项数=30,则由求和公式可得,和=(首项+末项)×项数÷2=﹙9+270﹚×30÷2=4185。

作业2:1+2-3+4+5-6+7+8-9+...+58+59-60[分析]:原式=(1+2+3+...+59+60)-2×(3+6+9+ (60)=(1+60)×60÷2-2×[(3+60)×20÷2] = 570。

2、新课内容I、我们知道两个数的和的最基本的变化规律是:一个加数不变,和随另一个加数的增加(减少)而增加(减少);和与加数增加或减少的数量都是相等的。

下面我们要讲的和的变化规律都是以此为基础演变的。

【例题1】:两个数相加,一个加数减少10,另一个加数增加10,和是否会起变化?【分析】:一个加数+另一个加数=和+10 - -10- +10 +10和先增加10,后减少10,所以和不变。

练习:疯狂操练1(1)、(2)、(3)总结:两个加数同时变化时,和的变化规律有两种。

两个加数同时增加(或减少),和增加(或减少)的数量等于两个加数增加(或减少)的数量之和;两个加数中,一个加数增加,另一个加数减少,和的变化量就是较大变化量与较小变化量的差。

【例题2】:两个数相加,如果一个加数减少8,要使和增加8,另一个加数应有什么变化?【分析】:一个加数+另一个加数=和-8 - -8-8 → 不变 → +8和先增加8,后增加8,所以和增加16。

奥数推理举一反三教学设计

奥数推理举一反三教学设计

奥数推理举一反三教学设计引言:奥数(即奥林匹克数学)是一种富有挑战性和创造性的数学竞赛。

奥数推理举一反三则是奥数题目中一种常见的题型,要求学生能够通过观察、分析,并将已知条件应用到其他问题中。

本文将介绍一种奥数推理举一反三的教学设计,帮助学生培养逻辑思维、推理能力以及创新思维。

第一部分:目标设定1. 培养学生的逻辑思维能力。

通过奥数推理举一反三的题目,激发学生思考问题的多种可能性,并通过逻辑推理找到解决问题的方法。

2. 提升学生的推理能力。

通过多样化的题目设计,引导学生运用已有的数学知识和技巧解决新的问题。

3. 发展学生的创新思维。

鼓励学生在解决问题的过程中采用不同的思路和方法,培养他们的创造力和发散性思维。

第二部分:教学方法奥数推理举一反三的教学设计可以采用以下方法:1. 观察和分析。

要求学生认真观察题目中给出的信息,分析各个条件之间的关系,并尝试找出其中的规律。

2. 利用已知条件推理。

学生可以根据已知条件进行推理,猜测未知结果,并进行验证。

3. 扩展应用。

学生可以将已知条件应用到其他问题中,进一步探索解决问题的方法。

4. 启发式教学。

引导学生提出问题,发散思维,培养学生自主思考和解决问题的能力。

第三部分:教学步骤1. 导入阶段:通过实例引入奥数推理举一反三的题型,激发学生的兴趣。

2. 示范阶段:教师引导学生一起观察和分析一个奥数推理举一反三的题目,解释解题的思路和方法。

3. 练习阶段:学生通过解答一些奥数推理举一反三的练习题,巩固掌握解题方法。

4. 拓展阶段:学生尝试将已知条件应用到其他问题中,发散思维,并探索解决问题的不同方法。

5. 总结与归纳:教师带领学生总结奥数推理举一反三的解题思路和方法,并与学生一起分析解题中遇到的困难和突破口。

6. 拓展应用:鼓励学生利用奥数推理举一反三的方法解决实际生活中的问题,拓展数学应用能力。

第四部分:教学评估教学评估是教学过程中不可或缺的一部分,通过评估可以了解学生对奥数推理举一反三的理解和掌握程度。

大班数学举一反三教案

大班数学举一反三教案

大班数学举一反三教案以下是一份针对小学大班数学举一反三的教案:教学目标:1. 温故知新——在回顾之前所学的数学知识的基础上,了解举一反三的概念;2. 通过举一反三的教学方法,让学生能够将已经学过的数学知识应用到其他领域;3. 培养学生观察、分析、归纳等综合能力。

教学准备:1. PowerPoint或者PPT展示设备等;2. 学生教材和练习册;3. 容易理解和记忆的生动例子;4. 长方形纸片或者乐高积木等可视化教具。

教学流程:Step 1. 导入举一反三的概念。

通过简单的生动例子引入,例如同学已经学习过加法,那么如果给你一个数,可以通过加上其他数字得到同样的结果,如7+3=10,也有5+5=10,8+2=10等等。

这就是举一反三的思想,思考同样的问题,从不同的角度入手,寻找不同的解法。

Step 2. 回顾思考所学的数学知识。

通过同学们的回答,对之前所学的知识进行简单又深入的回顾,例如:有理数的加减法、相反数、绝对值等等。

Step 3. 编排综合例子。

将所回顾的知识应用到其他数学领域,如几何图形、分数等,例如:让同学们通过两个长方形的面积相等,发现长方形边长之间的关系。

Step 4. 引导学生进一步思考。

向同学们提出疑问,如“你能再举一个例子吗?”“你们能找到更多的规律吗?”等等,不断引导学生去思考。

Step 5. 结语。

对本课内容进行简单回顾,肯定同学们在本节课中所取得的进步。

教学提示:1. 教师需要注重培养学生的创新思维能力,鼓励他们提出与所学知识相关的问题。

2. 教师要准备充分生动的例子,适当运用教具让学生易于理解。

3. 在整节课中,与同学互动交流,让课堂气氛更加轻松,更有趣味性。

4. 在教学中,注意处置同学提出的问题和问题的解答验证。

针对小数混合运算举一反三教案

针对小数混合运算举一反三教案

针对小数混合运算举一反三教案一、教学目标:1.能够灵活运用小数的加减乘除混合运算。

2.能够对不同题型进行分类归纳并总结解题方法。

3.能够通过举一反三的方法,将所学知识运用到解决实际问题中。

二、教学重点:1.小数的运算方法。

2.如何将所学知识灵活运用。

3.举一反三的思路和方法。

三、教学难点:1.小数的加减乘除混合运算的综合运用。

2.如何将所学知识灵活运用。

3.举一反三的思路和方法。

四、教学准备:1.教师应提前准备好相关教学素材,如教学PPT、实物模型等。

2.教师应对教学过程进行充分的思考和准备。

五、教学过程:1.引入教师可通过给学生举一些关于小数的现实例子,如购物折扣等,引导学生对小数的认知,并为后续的教学做好铺垫。

2.讲解运算方法3.1小数的加法小数的加法是将小数位上的数对齐,然后一位一位相加,如8.32+6.85=15.17。

4.2小数的减法小数的减法是将小数位上的数对齐,然后一位一位相减,如12.53-9.37=3.16。

5.3小数的乘法小数的乘法是将小数点前后的数分别相乘,然后将所得结果的小数点右移相应的位数,如3.456×2.13=7.36608。

6.4小数的除法小数的除法是先将除数和被除数的小数点移动,然后进行整数的除法运算,并将得到的商的小数点右移相应的位数,直到商的小数位数达到所需的精度为止,如24.724÷2.9=8.53241379。

7.练习题教师可以通过一些练习题,让学生灵活运用所学知识,并对不同题型进行分类归纳并总结解题方法。

8.举一反三教师可通过给学生一些实际问题,引导学生对所学知识进行综合运用,并通过举一反三的思路和方法,将所学知识运用到解决实际问题中。

六、教学总结:通过本次教学,学生对小数的加减乘除混合运算有了更深入的认识,并掌握了灵活运用的方法。

通过对实际问题的综合运用,学生还能够将所学知识运用到日常生活中,解决实际问题。

举一反三的思路和方法,也为学生今后的学习和实践提供了有益的启示。

举一反三数学奥数教案

举一反三数学奥数教案

举一反三数学奥数教案
教学目标:
1. 帮助学生理解和掌握奥数中的“举一反三”解题方法;
2. 培养学生的逻辑思维和推理能力;
3. 提高学生的数学解题速度和准确率。

教学内容:
1. “举一反三”解题方法的定义和原理;
2. 经典奥数题型的“举一反三”解法示例;
3. 学生实际操作,进行“举一反三”解题。

教学难点与重点:
难点:如何准确找到题目中的关键点,进行“举一反三”。

重点:“举一反三”在各类题型中的应用。

教具和多媒体资源:
1. 黑板或投影仪,用于展示题目和解法;
2. 数学教学软件,可用于实时解题演示。

教学方法:
1. 激活学生的前知:回顾与“举一反三”相关的基础数学知识;
2. 教学策略:结合实例,边讲解边演示;
3. 学生活动:小组讨论,分享不同题型的“举一反三”
解法。

教学过程:
1. 导入:故事导入,讲述数学大师如何运用“举一反三”解决问题;
2. 讲授新课:详细解释“举一反三”的原理,并通过实例进行演示;
3. 巩固练习:提供多道奥数题,让学生运用“举一反三”进行解答;
4. 归纳小结:总结本节课学到的“举一反三”解题方法。

评价与反馈:
1. 设计评价策略:小组报告,展示解题过程;
2. 为学生提供反馈:针对学生的解题方法和答案,给予指导性的意见。

作业布置:布置5道奥数题,要求学生运用“举一反三”进行解答。

教师自我反思:本节课通过举例与实战相结合的方式让学生理解举一反三在数学题目中的实际应用,效果不错。

举一反三二年级市公开课获奖教案省名师优质课赛课一等奖教案

举一反三二年级市公开课获奖教案省名师优质课赛课一等奖教案

举一反三二年级教案一、教学目标1. 理解“举一反三”这一概念,并能够正确运用。

2. 培养学生观察、分析和解决问题的能力。

3. 提高学生的批判性思维和创造性思维。

二、教学准备1. 教师准备:准备一些与二年级学生所学内容相关的问题。

2. 学生准备:纸和笔。

三、教学过程1. 导入教师可以通过一个简单的问题引出“举一反三”的概念,例如:如果我有一辆汽车,我可以开车去哪些地方?2. 学习“举一反三”教师首先解释“举一反三”的意思,即在解决一个问题之后,可以推广和运用到其他类似问题中。

然后给学生提供一个简单的例子,如:小明每天走路去学校需要10分钟,那么他走路去图书馆大概需要多长时间呢?让学生思考一下该如何解决这个问题。

3. 学生自主解决问题学生们用纸和笔记录下他们的解决思路,并尝试解决这个问题。

教师可以鼓励学生多想几种不同的方法,并进行讨论和分享。

4. 分析解决方法教师和学生一起分析不同的解决方法,讨论哪种方法最有效,为什么。

教师引导学生发现一些规律和共同点,并总结出解决问题的一般步骤。

5. 运用“举一反三”教师将学生分成小组,给每个小组提供一个类似的问题,让他们用“举一反三”的思维解决。

教师可以走到每个小组,引导和帮助学生思考和解决问题。

6. 结束教师引导学生进行总结,让他们回顾整个学习过程,总结出“举一反三”思维对于解决问题的重要性。

四、课堂延伸教师可以设计一些拓展性的问题,让学生运用“举一反三”的思维解决。

同时,教师也可以在其他学科课程中引入“举一反三”的概念,激发学生对知识的探索和发现的兴趣。

五、教学反思通过这节课的教学,学生在解决问题的过程中养成了观察、分析和推理的习惯,培养了他们的批判性思维和创造性思维能力。

通过引导学生进行思考和合作,学生的学习动力和兴趣也得到了提高。

在以后的学习过程中,教师可以不断引导和支持学生运用“举一反三”的思维解决更复杂的问题,提高他们的解决问题的能力。

小学奥数举一反三(三年级)优秀教案

小学奥数举一反三(三年级)优秀教案

第 1 讲找规律一、知识要点按照一定次序排列起来的一列数,叫做数列。

如自然数列:1,2,3,4,⋯⋯双数列:2,4,6,8,⋯⋯我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。

按照一定的顺序排列的一列数,只要从连续的几个数中找到规律,那么就可以知道其余所有的数。

寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。

善于发现数列的规律是填数的关键。

二、精讲精练【例题 1】在括号内填上合适的数。

( 1) 3, 6, 9, 12,(),()( 2) 1, 2, 4, 7, 11,(),()( 3) 2, 6, 18,54,(),()练习 1:在括号内填上合适的数。

( 1) 2, 4, 6, 8, 10,(),()( 2) 1, 2, 5, 10,17,(),()( 3) 2, 8, 32,128,(),()( 4) 1, 5, 25,125,(),()( 5) 12,1,10,1,8,1,(),()【例题 2】先找出规律,再在括号里填上合适的数。

( 1) 15,2,12,2,9,2,(),()( 2) 21,4,18,5,15, 6,(),()练习 2:按规律填数。

( 1) 2, 1, 4, 1, 6, 1,(),()( 2) 3, 2, 9, 2, 27,2,(),()( 3) 18,3,15,4,12, 5,(),()( 4) 1, 15,3,13,5,11,(),()( 5) 1, 2, 5, 14,(),()【例题 3】先找出规律,再在括号里填上合适的数。

( 1) 2, 5, 14,41,()(2)252, 124,60,28,()( 3) 1, 2, 5, 13,34,()(4)1,4,9,16,25, 36,()练习 3:按规律填数。

( 1)2,3,5,9,17,(),()(2)2,4,10,28,82,(),()( 3) 94,46,22, 10,(),()(4)2,3,7,18,47,(),()1 / 197【例题 4】根据前面图形里的数的排列规律,填入适当的数。

假设法解题A 《举一反三》六年级奥数教案

假设法解题A  《举一反三》六年级奥数教案

《举一反三》六年级奥数教案一、教学内容:举一反三P49—P54二、教学目标:1、了解假设法解题的思考方法。

2、能运用假设法进行解题。

三、教学难点:怎样进行假设。

四、教学设计:1、复习上次课所学内容,讲解作业。

P46疯狂操练2(3)P47疯狂操练3(2)2、新课内容假设法解题的思考方法是先通过假设来改变题目的条件,然后再和已知条件配合推算。

有些题目用假设法思考,能找到巧妙的解答思路。

【例题1】一批零件,甲独做8天完成,乙独做10天完成,现在由两人合作这批零件,中途甲因事请假一天,完成这批零件共用多少天?【分析】方法一:假设甲没有请假,则甲、乙工作时间相同,共完成这批零件的(1+1/8)倍。

(1+1/8)÷(1/8+1/10)=5(天)方法二:假设乙中途也请假一天,则甲、乙工作时间也相同,至完成这批零件的(1-1/10)。

(1-1/10)÷(1/8+1/10)+1=5(天)答:略。

练习:疯狂操练1(1)、(2)、(3)运用假设法时,可以假设数量增加或减少,从而与已知条件产生联系。

【例题2】彩色电视机和黑白电视机共250台。

如果彩色电视机卖出1 9,则比黑白电视机多5台。

问:两种电视机原来各有多少台?【分析】假设黑白电视机增加5台,就和彩色电视机卖出1/9后剩下的一样多。

即:黑白电视机增加5台后,相当于彩色电视机的(1-1/9)=8/9。

彩色电视机原有:(250+5)÷[1+(1-1/9)]=135(台)黑白电视机原有:250-125=115(台) 答:略。

练习:疯狂操练2(1)、(2)运用假设法时,也可以假设某个量的分率与另一个量的分率一样,再根据乘法分配律求出这个分率对应的和,最后依据它与实际条件的矛盾求解。

【例题3】某公司向银行申请A 、B 两种贷款共60万元,每年共需付利息5万元。

A 种贷款年利率为8%,B 种贷款年利率为9%,该公司申请了A 种贷款多少万元?【分析】:假设两种贷款年利率均为9%,则每年共需付利息60×9%=5.4万元,多算的5.4-5=0.4万元,就是A 种贷款的9%-8%=1%。

小学五年级奥数举一反三-教师版-教师教案

小学五年级奥数举一反三-教师版-教师教案
如何灵活运用平均数的数量关系解答一些稍复杂的问题呢? 下面的数量关系必须牢记: 平均数=总数量÷总份数 总数量=平均数×总份数 总份数=总数量÷平均数
【例题1】 小明前几次数学测验的平均成绩是 84 分,这次要考 100分, 才能把平均成绩提高到86分。问这是他第几次测验?
【思路导航】
100分比86分多14分,这14分必须填补到前几次的平均分 84分中去,使 其平均分成为86分。每次填补86-84=2(分),14里面有7个2,所以, 前面已经测验了7次,这是第8次测验。
把几个不相等的数,在总数不变的条件下,通过移多补少, 使它们完全相等,求得的相等的数就是平均数。
如何灵活运用平均数的数量关系解答一些稍复杂的问题呢? 下面的数量关系必须牢记: 平均数=总数量÷总份数 总数量=平均数×总份数 总份数=总数量÷平均数
【例题1】 有4箱水果,已知苹果、梨、橘子平均每箱42个, 梨、橘子、桃平均每箱36个,苹果和桃平均每箱37个。一箱 苹果多少个?
【练习2】
1,甲、乙、丙三个数的平均数是82,甲、乙两数的平均数是86,乙、丙 两数的平均数是77。乙数是多少?甲、丙两个数的平均数是多少?
2,小华的前几次数学测验的平均成绩是80分,这一次得了100分,正好 把这几次的平均分提高到85分。这一次是他第几次测验?
3,五个数排一排,平均数是9。如果前四个数的平均数是7,后四个数的 平均数是10,那么,第一个数和第五个数的平均数是多少?
同学们都知道,长方形的周长 = (长+宽)×2 ,正方形 的周长= 边长×4。长方形、正方形的周长公式只能用来计算 标准的长方形和正方形的周长。如何应用所学知识巧求表面 上看起来不是长方形或正方形的图形的周长,还需同学们灵 活应用已学知识,掌握转化的思考方法,把复杂的问题转化 为标准的图形,以便计算它们的周长。

错中求错 《举一反三》四年级奥数教案

错中求错  《举一反三》四年级奥数教案

《举一反三》四年级奥数教案一、教学内容:举一反三P52--P56二、教学目标:1 、让学生了解错中求错问题的出现。

2 、理解解决这类问题的关键是利用加、减、乘、除各算式内部各量的变化关系。

三、教学难点:利用加、减、乘、除各算式内部各量的变化关系进行解题。

四、教学设计:1、复习上周所学内容,讲解作业。

2、新课内容I、复习加法的变化规律加数部分与和的变化方向是一样的,加数怎么变,和就怎么变。

【例题1】:小李在计算两个数相加时,把一个加数个位上的7错写成1,把另一个加数百位上的2错写成3,所得的和是2003,原来两个数相加的正确答案是多少?【分析】:我们知道可以根据一个数的位数把它表示成几个数相加,如213=200+10+3。

那么,根据题意,由于错写,把一个加数个位上的7错写成1,说明这个加数减少了7-1=6;把另一加数百位上的2错写成3,说明这个加数增加了300-200=100;这样加数部分总共增加了100-6=94,所以这时的和比原来正确的和增加了94,原来两个数相加的正确答案是2003-(100-6)=1909。

练习:疯狂操练1(1)、(2)、(3)总结:II、复习减法的变化规律被减数与差的变化方向相同,被减数增大或减少,差也会随之增大或减少;减数与差的变化方向相反,减数增大或减少,差反而会减少或增大。

【例题2】:大明做题时,把被减数个位上的3错写成8,把十位上的6错写成0,这样算出的差是200,正确的差是多少?【分析】:由于错写,被减数个位上的3错写成8,被减数增加了8-3=5,十位上的6错写成0,被减数减少了60-0=60,这样错写的被减数比原来少了60-5=55;因为减数不变,根据差的变化规律,差也减少了55,即错误的差比原来正确的差总共减少了55。

那么,原来正确的差应是200+55=255练习:疯狂操练2(1)、(2)、(3)总结:可以先根据加法的变化规律得出被减数和减数的变化,然后由减法的变化规律得出原来正确的差。

小学奥数举一反三三年级优秀教案

小学奥数举一反三三年级优秀教案
答:除数和商分别是24,1;____,____;____,____;____,____。
练习3:
(1)下面算式中,除数和商各是几
①22÷[ ]=[ ]……4②65÷[ ]=[ ]……2
③37÷[ ]=[ ]……7④48÷[ ]=[ ]……6
(2)149除以一个两位数,余数是5,请写出所有这样的两位数。
【例题4】算式[ ]÷7=[ ]……[ ]中,商和余数相等,被除数可以是哪些数
【思路导航】题目中告诉我们除数是7,商和余数相等,因为余数必须比除数小,所以余数和商可为1,2,3,4,5,6,这样被除数就可以求出来了。
7×1+1=8 7×2+2=16 7×3+3=24
7×4+4=32 7×5+5=40 7×6+6=48
(3)18,3,15,4,12,5,( ),( )
(4)1,15,3,13,5,11,( ),( )
(5)1,2,5,14,( ),( )
【例题3】先找出规律,再在括号里填上合适的数。
(1)2,5,14,41,( )(2)252,124,60,28,( )
(3)1,2,5,13,34,( )(4)1,4,9,16,25,36,( )
进行加减巧算时,凑整之后,对于原数与整十、整百、整千……相差的数,要根据“多加要减去,少加要再加,多减要加上,少减要再减”的原则进行处理。另外,可以结合加法交换律、结合律以及减法的性质进行凑整,从而达到简算的目的。
二、精讲精练
【例题1】你有好办法迅速算出结果吗
(1) 502+799-298-98 (2) 9999+999+99+9
【例题2】算式[ ]÷[ ]=8……[]中,被除数最小是几
【思路导航】题中只告诉我们商是8,要使被除数最小,那么只要除数和余数小就行。余数最小为______,那么除数则为______。

四年级奥数举一反三简单举例教案

四年级奥数举一反三简单举例教案

基础狂记有些题目,因其所求问题的答案有多种,直接列式解答比较困难,在这种情况下,我们不妨采用一一列举的方法解决。

这种根据题目的要求,通过一一列举各种情况最终达到解答整个问题的方法叫做列举法。

【例题1】从南通到上海有两条路可走,从上海到南京有3条路可走。

王叔叔从南通经过上海到南京去,有几种走法?【思路导航】为了帮助理解,先画一个线路示意图,并用①、②、③、④、⑤表示其中的5条路。

我们把王叔叔的各种走法一一列举如下:根据以上列举可以发现,从南通经过①到上海再到南京有3种方法,从南通经过②到上海再到南京也有3种方法,共有两个3种方法,即3×2=6(种)。

练习1:1.小明从家到学校有3条路可走,从学校到少年宫有两条路,小明从家经过学校到少年宫有几种走法?2.从甲地到乙地,有两条直达铁路,从乙地到丙地,有4条直达公路。

那么,从甲地到丙地有多少种不同的走法?【例题2】用红、黄、蓝三种信号灯组成一种信号,可以组成多少种不同的信号?【思路导航】要使信号不同,就要求每一种信号颜色的顺序不同,我们把这些不同的信号一一列举如下:从上面的排列中可以发现,红色信号灯排在第一位置时,有两种不同的信号,黄色信号灯排在第一位置时,也有两种不同的信号,蓝色信号灯排在第一位置时,也有两种不同的信号。

因此,共有2×3=6种不同的排法。

例题狂学1.甲、乙、丙三个同学排成一排,有几种不同的排法?2.用3、4、5、6四个数字可以组成多少个不同的四位数?【例题3】有三张数字卡片,分别为3、6、0。

从中挑出两张排成一个两位数,一共可以排成多少个两位数?【思路导航】排成时要注意“0”不能排在最高位,下面我们进行分类考虑。

(1)十位上排6,个位上有两个数字可选,这样的数共有两个:60,63;(2)十位上排3.个位上也有两个数字可选,这样的数也有两个:30,60。

从以上列举容易发现,一共可以排成2×2=4(个)两位数。

四年级奥数举一反三简单推理教案

四年级奥数举一反三简单推理教案

第2讲: 简单推理学生姓名年级 四 授课教师 备课时间教 学 目 标学会推理重、 难考 点推理要有条理,有逻辑。

教学内容一、知识要点 解答推理问题,要从许多条件中找出关键条件作为推理的突破口。

推理要有条理地进行,要充分利用已经得出的结论,作为进一步推理的依据。

【例题1】 一包巧克力的重量等于两袋饼干的重量,4袋牛肉干的重等于一包巧克力的重量,一袋饼干等于几袋牛肉干的重量?【思路导航】根据“一包巧克力的重量=两袋饼干的重量”与“4袋牛肉干的重量=一包巧克力的重量”可推出:两袋饼干的重量=4袋牛肉干的重量。

因此,一袋饼干的重量=两袋牛肉干的重量。

练习1:(1)一只菠萝的重量等于4根香蕉的重量,两只梨子的重量等于一只菠萝的重量,一只梨子的重量等于几根香蕉的重量(2)3包巧克力的重量等于两袋糖的的重量,12袋牛肉干的重量等于3包巧克力的重量,一袋糖的重量等于几袋牛肉干的重量【例题2】一头象的重量等于4头牛的重量,一头牛的重量等于3匹小马的重量,一匹小马的重量等于3头小猪的重量。

一头象的重量等于几头小猪的重量?【思路导航】根据“一头象的重量等于4头牛的重量”与“一头牛的重量等于3匹小马的重量”可推出:“一头象的重量等于12匹小马的重量”,而“一匹基础狂记例题狂学小马的重量等于3头小猪的重量”,因此,一头象的重量等于36头小猪的重量。

练习2:(1)一只西瓜的重量等于两个菠萝的重量,1个菠萝的重量等于4个苹果的重量,1个苹果的重量等于两个橘子的重量。

1只西瓜的重量等于几个橘子的重量(2)一头牛一天吃草的重量和一只兔子9天吃草的重量相等,也和6只羊一天吃草的重量相等。

已知一头牛每天吃青草18千克,一只兔子和一只羊一天共吃青草多少千克【例题3】根据下面两个算式,求○与□各代表多少?○+○+○=18○+□=10【思路导航】在第一个算式中,3个○相加的和是18,所以○代表的数是:18÷3=6,又由第二个算式可求出□代表的数是:10-6=4.练习3:(1)根据下面两个算式,求□与△各代表多少?□+□+□+□=32 △-□=20(2)根据下面两个算式,求○与□各代表多少?○+○+○=15 ○+○+□+□+□=40【例题4】根据下面两个算式,求○与△各代表多少?△-○=2 ○+○+△+△+△=56【思路导航】由第一个算式可知,△比○多2;如果将第二个算式的○都换成△,那么5个△=56+2×2,△=12,再由第一个算式可知,○=12-2=10.练习4:(1)根据下面两个算式求□与○各代表多少?□-○=8 □+□+○+○=20(2)根据下面两个算式,求△与○各代表多少?△+△+△+○+○=78 △+△+○+○+○=72【例题5】甲、乙、丙三人分别是一小、二小和三小的学生,在区运动会上他们分别获得跳高、跳远和垒球冠军。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲找规律一、知识要点按照一定次序排列起来的一列数,叫做数列。

如自然数列:1,2,3,4,……双数列:2,4,6,8,……我们研究数列,目的就是为了发现数列中数排列的规律,并依据这个规律来填写空缺的数。

按照一定的顺序排列的一列数,只要从连续的几个数中找到规律,那么就可以知道其余所有的数。

寻找数列的排列规律,除了从相邻两数的和、差考虑,有时还要从积、商考虑。

善于发现数列的规律是填数的关键。

二、精讲精练【例题1】在括号内填上合适的数。

(1)3,6,9,12,(),()(2)1,2,4,7,11,(),()(3)2,6,18,54,(),()练习1:在括号内填上合适的数。

(1)2,4,6,8,10,(),()(2)1,2,5,10,17,(),()(3)2,8,32,128,(),()(4)1,5,25,125,(),()(5)12,1,10,1,8,1,(),()【例题2】先找出规律,再在括号里填上合适的数。

(1)15,2,12,2,9,2,(),()(2)21,4,18,5,15,6,(),()练习2:按规律填数。

(1)2,1,4,1,6,1,(),()(2)3,2,9,2,27,2,(),()(3)18,3,15,4,12,5,(),()(4)1,15,3,13,5,11,(),()(5)1,2,5,14,(),()【例题3】先找出规律,再在括号里填上合适的数。

(1)2,5,14,41,()(2)252,124,60,28,()(3)1,2,5,13,34,()(4)1,4,9,16,25,36,()练习3:按规律填数。

(1)2,3,5,9,17,(),()(2)2,4,10,28,82,(),()(3)94,46,22,10,( ),( ) (4)2,3,7,18,47,( ),( ) 【例题4】根据前面图形里的数的排列规律,填入适当的数。

(1)(3)练习4:找出排列规律,在空缺处填上适当的数。

(1) (3)【例题5】按规律填数。

(1)187,286,385,( ),( ) (2)练习5:根据规律,在空格内填数。

(1)198,297,396,( ),( ) (2) (3)(2)9437148428164(2)4892768287第2讲有余除法一、知识要点把一些书平均分给几个小朋友,要使每个小朋友分得的本数最多,这些书分到最后会出现什么情况呢?一种是全部分完,还有一种是有剩余,并且剩余的本数必须比小朋友的人数少,否则还可以继续分下去。

每次除得的余数必须比除数小,这就是有余数除法计算中特别要注意的。

解这类题的关键是要先确定余数,如果余数已知,就可以确定除数,然后再根据被除数与除数、商和余数的关系求出被除数。

在有余数的除法中,要记住:(1)余数必须小于除数;(2)被除数=商×除数+余数。

二、精讲精练【例题1】[ ]÷6=8……[ ],根据余数写出被除数最大是几?最小是几?【思路导航】除数是____,根据____________,余数可填_____________.根据____________,又已知商、除数、余数,可求出最大的被除数为6×8+5=53,最小的被除数为______________。

列式如下:________________________________________答:被除数最大是53,最小是______。

练习1:(1)下面题中被除数最大可填________,最小可填_______。

[ ]÷8=3……[ ](2)下面题中被除数最大可填________,最小可填_______。

[ ]÷4=7……[ ](3)下题中要使除数最小,被除数应为________。

[ ]÷[ ]=12 (4)【例题2】算式[ ]÷[ ]=8……[]中,被除数最小是几?【思路导航】题中只告诉我们商是8,要使被除数最小,那么只要除数和余数小就行。

余数最小为______,那么除数则为______。

根据这些,我们就可求出被除数最小为:8×______+______=_______。

练习2:(1)下面算式中,被除数最小是几?①[ ]÷[ ]=4……[]②[ ]÷[ ]=7……[]③[ ]÷[ ]=9……[](2)下面算式中商和余数相等,被除数最小是几?①[ ]÷[ ]=3……[]②[ ]÷[ ]=6……[](3)算式[ ]÷8=[ ]……[]中,商和余数都相等,那么被除数最大是几?【例题3】算式28÷[ ]=[ ]……4中,除数和商分别是______和______。

【思路导航】根据“被除数=商×除数+余数”,可以得知“商×除数=被除数-余数”,所以本题中商×除数=28-4=24。

这两个数可能是1和24,____和____,____和____,____和____,又因为余数为4,因此除数可以是24,12,8,6,商分别为____,____,____,____。

_________________________________________________________________答:除数和商分别是24,1;____,____;____,____;____,____。

练习3:(1)下面算式中,除数和商各是几?①22÷[ ]=[ ]......4 ②65÷[ ]=[ ] (2)③37÷[ ]=[ ]......7 ④48÷[ ]=[ ] (6)(2)149除以一个两位数,余数是5,请写出所有这样的两位数。

__________________________________________________________________________(3)算式[ ]÷4=[ ]……[ ]中,商和余数相等,被除数可以是哪些数?__________________________________________________________________________【例题4】算式[ ]÷7=[ ]……[ ]中,商和余数相等,被除数可以是哪些数?【思路导航】题目中告诉我们除数是7,商和余数相等,因为余数必须比除数小,所以余数和商可为1,2,3,4,5,6,这样被除数就可以求出来了。

7×1+1=8 7×2+2=16 7×3+3=247×4+4=32 7×5+5=40 7×6+6=48答:被除数可以是8,16,24,32,40,48。

练习4:(1) 下列算式中,商和余数相等,被除数可以是哪些数?①[ ]÷6=[ ]……[ ] ②[ ]÷5=[ ]……[ ]③[ ]÷4=[ ]……[ ] ④[ ]÷3=[ ]……[ ](2)一个三位数除以15,商和余数相等,请你写出五个这样的除法算式。

(3) 算式[ ]÷9=[ ]……[ ]中,商和余数相等,被除数最大是____。

【例题5】算式[ ]÷[ ]=[ ]……4中,除数和商相等,被除数最小是几?【思路导航】题目中告诉我们余数是4,除数和商相等,因为余数必须比除数小,所以除数必须比4大,但其中要求最小的被除数,因而除数应填_______,商也是______。

由算式____________________,所以被除数最小是__________。

练习5:下面算式中,除数和商相等,被除数最小是几?(1)[ ]÷[ ]=[ ]......6 (2)[ ]÷[ ]=[ ] (8)(3)[ ]÷[ ]=[ ]......3 (4)[ ]÷[ ]=[ ] (9)(5)[ ]÷[ ]=[ ] (7)第3讲配对求和一、知识要点被人称为“数学王子”的高斯在年仅8岁时,就以一种非常巧妙的方法又快又好地算出了1+2+3+4+……+99+100的结果。

小高斯是用什么办法算得这么快呢?原来,他用了一种简便的方法:先配对再求和。

数列的第一个数(第一项)叫首项,最后一个数(最后一项)叫末项,如果一个数列从第二项起,每一项与前一项的差是一个不变的数,这样的数列叫做等差数列,这个不变的数则称为这个数列的公差。

计算等差数列的和,可以用以下关系式:等差数列的和=(首项+末项)×项数÷2末项=首项+公差×(项数-1)项数=(末项-首项)÷公差+1二、精讲精练【例题1】你有好办法算一算吗?1+2+3+4+5+6+7+8+9+10=()练习1:速算。

(1) 1+2+3+4+5+……+20 (2) 1+2+3+4+……+99+100(3) 21+22+23+24+……+100【例题2】计算。

(1) 21+23+25+27+29+31 (2) 312+315+318+321+324练习2:计算。

(1) 48+50+52+54+56+58+60+62 (2) 108+128+148+168+188【例题3】有一堆木材叠堆在一起,一共是10层,第1层有16根,第2层有17根,……下面每层比上层多一根,这堆木材共有多少根?练习3:(1)体育馆的东区共有30排座位,呈梯形,第1排有10个座位,第2排有11个座位,……这个体育馆东区共有多少个座位?(2)有一串数,第1个数是10,以后每个数比前一个数大4,最后一个数是90,这串数连加的和是多少?(3)有一个钟,一点钟敲1下,两点钟敲2下,……十二点钟敲12下,分钟指向6敲1下,这个钟一昼夜敲多少下?【例题4】计算992+993+994+995+996+997+998+999。

练习4:计算。

(1) 95+96+97+98+99 (2) 2006+2007+2008+2009(3) 9997+9998+9999 (4) 100-1-3-5-7-9-9【例题5】计算-88-5-85-8-82-19-81练习5:计算。

(1) 1000-1-9-2-8-3-7-4-6-5-5-6-4-7-3-8-2-9-1(2) -4-85-7-88-18-89-19(3) 2001-1+2-3+4-5+6-7+8-9+10-11+12-13+14-15+16第4讲加减巧算一、知识要点在进行加减运算时,为了又快又好,除了要熟练地掌握计算法则外,还需要掌握一些巧算的方法。

加减法的巧算主要是运用“凑整”的方法,把接近整十、整百、整千的数看做所接近的数进行简算。

进行加减巧算时,凑整之后,对于原数与整十、整百、整千……相差的数,要根据“多加要减去,少加要再加,多减要加上,少减要再减”的原则进行处理。

相关文档
最新文档