高频变压器原理

合集下载

高频变压器隔离采样原理

高频变压器隔离采样原理

高频变压器隔离采样原理
在电子电路设计中,高频变压器隔离采样是一种常见的技术,
用于实现信号采样和隔离。

这种技术通常被应用于各种测量、控制
和通信系统中,以确保信号的准确采集和传输。

高频变压器隔离采样的原理是利用变压器的工作原理和高频信
号的特性,将输入信号通过变压器进行隔离和采样。

在这个过程中,输入信号首先经过一个高频变压器,通过变压器的耦合作用,信号
被传递到次级绕组。

次级绕组上的信号可以被准确采样和处理,而
且由于变压器的隔离作用,输入信号和输出信号之间不存在电气连接,从而实现了信号的隔离和保护。

高频变压器隔离采样技术具有以下优点:
1. 信号隔离,通过高频变压器隔离采样,输入信号和输出信号
之间实现了电气隔离,可以有效地防止信号干扰和噪声的影响,提
高了系统的抗干扰能力。

2. 信号采样,高频变压器可以实现对输入信号的准确采样和处理,保证了信号的准确性和稳定性。

3. 传输效率高,由于高频变压器可以实现信号的高效传输和隔离,因此可以提高系统的传输效率和性能。

4. 安全可靠,高频变压器隔离采样可以有效地保护系统和操作人员的安全,减少了电气隔离带来的安全隐患。

总的来说,高频变压器隔离采样技术在电子电路设计中具有重要的应用价值,可以有效地提高系统的稳定性、可靠性和安全性,是一种值得推广和应用的技术。

高频变压器工作原理

高频变压器工作原理

高频变压器工作原理高频变压器是一种常见的电力设备,广泛应用于电子电路、通信系统及其他各个领域。

它通过调整电压来实现电能的传输与转换。

本文将详细介绍高频变压器的工作原理,以及其在实际应用中的重要性。

一、高频变压器的基本结构与原理高频变压器主要由铁芯和绕组两部分组成。

根据绕组的数量和连接方式,它可以分为单绕组和多绕组两种类型。

1. 单绕组变压器单绕组变压器包含一个绕组,通过改变绕组的匝数比例来实现输入电压与输出电压之间的变压关系。

当输入电压施加在绕组上时,变压器的铁芯会产生磁通。

根据导线圈的长度和截面积,绕组上会有一定的电阻和电感。

当交流电通过绕组时,会引起电流的变化,从而在绕组上产生电磁感应。

2. 多绕组变压器多绕组变压器包含多个绕组,通常有一个或多个输入绕组和一个或多个输出绕组。

每个绕组都有自己的匝数和独立的电压传递。

多绕组变压器通常用于复杂的电路系统,如功率放大器和变频器。

在高频变压器中,铁芯的材料通常采用铁氧体或硅钢片。

这些材料具有低磁导率,能够有效地抑制铁芯中的涡流损耗。

二、高频变压器的工作原理高频变压器的工作原理基于法拉第电磁感应定律和电能守恒定律。

当输入电压施加在绕组上时,产生的交变磁场会引起绕组内部的电流变化。

这个变化的电流会进一步产生磁场,并在绕组之间传递。

高频变压器通过绕组间的磁耦合将输入电能转换为输出电能。

当输入电压为正弦波时,通过绕组的正弦电流将能量传递到铁芯中,产生交变磁通。

磁通的变化进一步诱导电动势,在输出绕组中生成输出电压。

变压器的输出电压与输入电压之间的关系由匝数比例决定。

当输出绕组的匝数少于输入绕组的匝数时,输出电压会增加;反之,输出电压会减小。

这种变压器通过改变绕组的匝数比例来调整电压,满足不同电路的需求。

三、高频变压器在实际应用中的重要性高频变压器在电力传输、电子设备和通信系统等领域具有广泛的应用。

在电力传输中,高频变压器用于将高电压输送到远距离,然后通过变压器将电能转换为适合家庭和工业需求的低电压。

高频变压器设计原理

高频变压器设计原理

摘要:阐述了高频开关电源热设计的一般原则,着重分析了开关电源散热器的热结构设计。

关键词:高频开关电源;热设计;散热器1 引言电子产品对工作温度一般均有严格的要求。

电源设备内部过高的温升将会导致对温度敏感的半导体器件、电解电容等元器件的失效。

当温度超过一定值时,失效率呈指数规律增加。

有统计资料表明,电子元器件温度每升高2℃,可靠性下降10%;温升50℃时的寿命只有温升为25℃时的1/6。

所以电子设备均会遇到控制整个机箱及内部元器件温升的要求,这就是电子设备的热设计。

而高频开关电源这一类拥有大功率发热器件的设备,温度更是影响其可靠性的最重要的因素,为此对整体的热设计有严格要求。

完整的热设计包括两方面:如何控制热源的发热量;如何将热源产生的热量散出去。

最终目的是如何将达到热平衡后的电子设备温度控制在允许范围以内。

2 发热控制设计开关电源中主要的发热元器件为半导体开关管(如MOSFET、IGBT、GTR、SCR等),大功率二极管(如超快恢复二极管、肖特基二极管等),高频变压器、滤波电感等磁性元件以及假负载等。

针对每一种发热元器件均有不同的控制发热量的方法。

2.1 减少功率开关的发热量开关管是高频开关电源中发热量较大的器件之一,减少它的发热量,不仅可以提高开关管自身的可靠性,而且也可以降低整机温度,提高整机效率和平均无故障时间(MTBF)。

开关管在正常工作时,呈开通、关断两种状态,所产生的损耗可细分成两种临界状态产生的损耗和导通状态产生的损耗。

其中导通状态的损耗由开关管本身的通态电阻决定。

可以通过选择低通态电阻的开关管来减少这种损耗。

MOSFET的通态电阻较IGBT的大,但它的工作频率高,因此仍是开关电源设计的首选器件。

现在IR公司新推出的IRL3713系列HEXFET(六角形场效应晶体管)功率MOSFET已将通态电阻做到3mΩ,从而使这些器件具有更低的传导损失、栅电荷和开关损耗。

美国APT公司也有类似的产品。

高频变压器工作原理

高频变压器工作原理

高频变压器工作原理在电力传输和电子设备中,变压器是一种常见且重要的电气设备。

变压器用于将电流从一个电路传输到另一个电路,同时改变电流的电压和电流大小。

在高频电子设备中,高频变压器起着至关重要的作用。

高频变压器相较于低频变压器有着一些独特的特点,下面将为您介绍高频变压器的工作原理。

1. 基本结构高频变压器的基本结构由两个或多个线圈组成,它们通过一个铁芯相互连接。

这些线圈分别称为主线圈(Primary winding)和副线圈(Secondary winding)。

主线圈接收到高频电流,而副线圈则传输变压器输出的电流。

2. 互感耦合原理高频变压器的工作原理基于互感耦合原理。

当主线圈中通入高频电流时,它会产生一个变化的磁场。

这个变化的磁场会传导到副线圈中,导致副线圈中的电压和电流发生变化。

这种通过磁场传输电能的现象称为互感耦合。

3. 磁芯为了提高变压器的效率和性能,高频变压器通常采用铁芯作为磁路传导材料。

铁芯的存在可以集中磁场并减少能量的损耗。

常见的铁芯材料包括硅钢片。

硅钢片由硅和钢材料组成,具有较高的导磁性能和低磁滞损耗。

4. 磁通和电压变换当高频电流通过主线圈时,产生的磁场会由铁芯传导到副线圈。

根据有关电磁感应定律,当磁场变化时,副线圈中将会产生电压。

这个电压的大小与主线圈和副线圈的匝数比例相关。

高频变压器通过改变主线圈和副线圈的匝数来实现电压的变换。

如果主线圈的匝数大于副线圈的匝数,那么变压器称为升压变压器。

反之,如果主线圈的匝数小于副线圈的匝数,则称为降压变压器。

通过这种方式,高频变压器能够在不改变电流大小的情况下改变电压大小。

总结:高频变压器的工作原理基于互感耦合的原理。

它通过主线圈产生的变化磁场来传导能量到副线圈,实现电流和电压的变换。

铁芯作为磁路传导材料,能够提高变压器的效率。

通过改变线圈的匝数比例,高频变压器实现电压的变换。

高频变压器在电力传输和电子设备中扮演着重要的角色,为我们的生活和工作提供了便利和支持。

高频变压器的原理

高频变压器的原理

高频变压器的原理
高频变压器是一种将高频交流电能转化为不同电压的装置。

它由一个或多个线圈组成,主要包括一个主线圈(也称为原线圈或一次线圈)和一个副线圈(也称为次级线圈或二次线圈)。

在高频变压器中,主线圈通常是由大直径的导线绕成圈,而副线圈由细丝绕成。

当高频交变电压通过主线圈时,会在主线圈中产生一个变化的磁场。

这个变化的磁场会穿透到副线圈中,导致副线圈中的电流产生变化。

由于副线圈的绕组方式和主线圈不同,因此副线圈中的电流和电压会有不同的改变。

这样,高频变压器就实现了输出不同的电压。

高频变压器的工作原理涉及到电磁感应和电压的变化。

当高频交流电通过主线圈时,高频的交变电流会产生一个交变磁场。

这个交变磁场会导致主线圈和副线圈之间产生电磁感应现象。

根据法拉第电磁感应定律,当磁通量的变化率发生变化时,会在导线中产生感应电动势。

在高频变压器中,这个变化的磁通量会产生变化的电动势,从而导致副线圈中的电流和电压发生变化。

除了电磁感应原理,高频变压器还涉及到传输功率和磁耦合。

传输功率是指输入和输出之间的电能转化,通过磁耦合实现。

当主线圈中的电流产生变化时,会在主线圈和副线圈之间产生磁场耦合。

这种耦合会导致主线圈中的能量传输到副线圈中,从而实现功率的传递。

总之,高频变压器通过电磁感应和磁耦合的原理,将高频交流
电能转化为不同的电压。

这种装置在许多电子设备中广泛应用,例如无线通信、电源适配器和放大器等。

高频变压器和低频变压器原理档

高频变压器和低频变压器原理档

高频变压器和低频变压器原理
高频变压器和低频变压器是作为开关电源最主要的组成部分。

开关电源一般采用半桥式功率转换电路,工作时两个开关三极管轮流导通来产生100kHz的高频脉冲波,然后通过高频变压器进行降压,输出低电压的交流电,高频变压器各个绕组线圈的匝数比例则决定了输出电压的多少。

典型的半桥式变压电路中最为显眼的是三只高频变压器:主变压器、驱动变压器和辅助变压器(待机变压器),每种变压器在国家规定中都有各自的衡量标准,比如主变压器,只要是200W以上的电源,其磁芯直径(高度)就不得小于35mm。

而辅助变压器,在电源功率不超过300W时其磁芯直径达到16mm就够了。

变压器的工作原理
变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。

变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈
目前在生产高频变压器厂家和低频变压器厂家很多工厂生产出来的质量都不是一样的,因为他用的变压器骨架材料,变压器磁芯,电线是不一样的,还有他们设计的低频变压器参数和高频变压器参输是不一样的。

做变压器原理改变了,材料不一样了,质量就不一样。

高频变压器的工作原理

高频变压器的工作原理

高频变压器的工作原理
高频变压器工作原理:
高频变压器是作为开关电源最主要的组成局部。

开关电源一般采用半桥式功率转换电路,工作时两个开关三极管轮流导通来产生100kHz 高频脉冲波,然后通过高频变压器进行降压,输出低电压的交流电,高频变压器各个绕组线圈的匝数比例则决定了输出电压的多少。

典型的半桥式变压电路中最为显眼的三只高频变压器:主变压器、驱动变压器和辅助变压器(待机变压器)每种变压器在国家规定中都有各自的衡量规范,比如主变压器,只要是200W 以上的电源,其磁芯直径(高度)就不得小于35mm 而辅助变压器,电源功率不超过300W 时其磁芯直径达到16mm 就够了
变压器的工作原理:
变压器是变换交流电压、电流和阻抗的器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)
变压器由铁芯(或磁芯)和线圈组成,线圈有两个或两个以上的绕组,其中接电源的绕组叫初级线圈,其余的绕组叫次级线圈。

高频变压器是工作频率逾越中频(10kHz 电源变压器,主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源和高频逆变焊机中作高频逆变电源变压器的按工
作频率高低,可分为几个档次:10kHz-50kHz 50kHz-100kHz 100kHz 500kHz 500kHz 1MHz 1MHz 以上。

传送功率比较大的工作频率比较低;传送功率比较小的工作频率比较高。

高频变压器工作原理及用途

高频变压器工作原理及用途

高频变压器工作原理及用途简介就是作为开关电源最主要得组成部分。

开关电源中得拓扑结构有很多。

比如半桥式功率转换电路,工作时两个开关三极管轮流导通来产生100kHz得高频脉冲波,然后通过高频变压器进行变压,输出交流电,高频变压器各个绕组线圈得匝数比例则决定了输出电压得多少。

典型得半桥式变压电路中最为显眼得就是三只高频变压器:主变压器、驱动变压器与辅助变压器(待机变压器),每种变压器在国家规定中都有各自得衡量标准,比如主变压器,只要就是200W以上得电源,其磁芯直径(高度)就不得小于35mm。

而辅助变压器,在电源功率不超过300W时其磁芯直径达到16mm就够了。

工作原理变压器就是变换交流电压、电流与阻抗得器件,当初级线圈中通有交流电流时,铁芯(或磁芯)中便产生交流磁通,使次级线圈中感应出电压(或电流)。

变压器由铁芯(或磁芯)与线圈组成,线圈有两个或两个以上得绕组,其中接电源得绕组叫初级线圈,其余得绕组叫次级线圈。

用途高频变压器就是工作频率超过中频(10kHz)得电源变压器,主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源与高频逆变焊机中作高频逆变电源变压器得。

按工作频率高低,可分为几个档次:10kHz- 50kHz、50kHz-100kHz、100kHz~500kHz、500kHz~1MHz、1MHz以上。

传送功率比较大得情况下,功率器件一般采用 IGBT,由于IGBT存在关断电流拖尾现象,所以工作频率比较低;传送功率比较小得,可以采用MOSFET,工作频率就比较高。

制造工艺高频变压器得制造工艺要点一。

绕线A 确定BOBBIN得参数B 所有绕线要求平整不重叠为原则C 单组绕线以单色线即可,双组绕线必需以双色线或开线浸锡来分脚位,以免绕错D 横跨线必需贴胶带隔离1、疏绕完全均匀疏开2、密绕排线均匀紧密3、线圈两边与绕线槽边缘保持足够得安全距离A,B4、套管长度必须足够,一端伸入绕线管得安全胶带以内,另一端伸出BOBBIN上沿面,但不得靠近PIN5、最外层胶带切割在铁芯组合面,切割处必须被铁芯覆盖。

高频变压器磁场屏蔽原理

高频变压器磁场屏蔽原理

高频变压器磁场屏蔽原理
高频变压器磁场屏蔽原理:
高频变压器是一种用于变换电压和电流的电气设备,通常用于电子设备中的电
源转换和信号传输。

在高频变压器中,磁场的屏蔽是非常重要的,因为磁场的泄漏会对周围的电路和设备产生干扰和影响。

磁场屏蔽的原理是通过使用屏蔽材料或结构来减少或阻止磁场的扩散和泄漏。

常用的磁场屏蔽材料包括铁氧体、铁氧体磁石、铁氧体软磁材料等。

这些材料具有良好的磁导磁性能,能够吸收和导引磁场,从而减少磁场的泄漏。

除了屏蔽材料,磁场屏蔽的结构设计也非常重要。

常见的磁场屏蔽结构包括磁
屏蔽罩、磁屏蔽罩和磁屏蔽壁等。

这些结构能够有效地阻止磁场的扩散和泄漏,保护周围的电路和设备不受磁场干扰。

在高频变压器中,磁场屏蔽的设计和制造是非常重要的。

通过合理的选择屏蔽
材料和结构设计,可以有效地减少磁场的泄漏,提高变压器的性能和稳定性。

同时,磁场屏蔽也能够减少电磁干扰,保护设备和人员的安全。

总的来说,磁场屏蔽是高频变压器设计中的重要环节,对于提高设备的性能和
可靠性具有重要意义。

通过合理的屏蔽设计和制造,可以有效地减少磁场的泄漏,保护周围的电路和设备,确保设备的正常运行和稳定性。

高频变压器磁芯的设计原理

高频变压器磁芯的设计原理

高频变压器磁芯的设计原理
1.磁性材料的选择:高频变压器通常使用铁氧体作为磁芯材料。

铁氧体具有高磁导率、低磁导率傅立叶频谱、低铁损耗和低饱和磁感应强度等优点,非常适合高频变压器的使用。

在选择铁氧体材料时,需要考虑其磁导率和损耗特性,以保证变压器的高效工作。

2.磁芯形状和尺寸设计:磁芯的形状和尺寸直接影响变压器的工作性能。

常见的磁芯形状包括E型、I型、U型和EE型等。

选择合适的磁芯形状可以提高磁传导效率和减小漏磁等问题。

此外,磁芯的尺寸也需要根据具体应用的功率和电流大小来确定,以确保变压器的工作稳定性和效率。

3.匝数和绕组设计:磁芯的设计还需要考虑变压器的匝数和绕组。

匝数决定了变压器的变比,而绕组则是将电能从一个线圈传递到另一个线圈的关键部分。

在设计过程中,需要合理选择匝数和绕组的结构,以达到所需的电压转换效果。

4.漏磁和磁交流损耗的抑制:高频变压器在工作过程中会产生漏磁和磁交流损耗,影响变压器的转换效率和稳定性。

为了抑制漏磁和磁损耗,可采取一些措施,如合理布置绕组、增加绕组间隙、使用隔离层等。

5.独立开关电源的设计:高频变压器通常由独立开关电源供电,因此在设计过程中需要考虑电源的功率和稳定性等因素,以确保变压器的正常运行。

总之,高频变压器磁芯的设计原理涉及到磁性材料的选择、磁芯形状和尺寸的设计、匝数和绕组设计、漏磁和磁交流损耗的抑制以及独立开关电源的设计等方面。

通过合理的设计,可以提高变压器的转换效率和稳定性,满足各种应用的需求。

高频变压器的工作原理

高频变压器的工作原理

高频变压器的工作原理
高频变压器是一种能够将交流电能通过电磁感应转换为不同电压的设备。

它由原次线圈和副次线圈组成,两个线圈通过共享磁路互相耦合。

高频变压器的工作原理可以分解为两个主要步骤:磁场产生和电压转换。

首先,在高频电源的作用下,原次线圈产生一个交变磁场。

这个磁场会通过磁路传播到副次线圈上。

由于两个线圈通过磁路耦合,原次线圈发出的交变磁场会诱导副次线圈中的电动势。

接下来,根据法拉第电磁感应定律,副次线圈中的电动势会导致电流在副次线圈中流动。

这个电流通过副次线圈的匝数比例决定了输出电压与输入电压的关系。

如果副次线圈的匝数比较大,输出电压就会比输入电压高;反之,如果副次线圈的匝数比较小,输出电压就会比输入电压低。

高频变压器的工作频率较高,一般在几十千赫至几百千赫的范围内。

由于工作频率高,变压器磁路中的铁芯能更有效地传导磁场,从而提高了能量转换的效率。

此外,高频变压器还通常采用紧凑的设计和高效率的线圈,以便在小体积中实现高效能转换。

总结起来,高频变压器通过交变磁场的产生和电磁感应原理实现电压的转换。

它在许多电子设备中广泛应用,如电源适配器、通信设备和无线充电器等。

高频变压器工作原理

高频变压器工作原理

高频变压器工作原理
高频变压器是一种用于改变交流电压的电气设备。

它的工作原理基于电感和电能传输的原理。

高频变压器通常由一个主线圈和一个副线圈组成。

主线圈是连接到电源的线圈,副线圈是连接到负载的线圈。

两个线圈之间通过一个铁芯相连。

当主线圈上通入交流电时,产生的交变磁场会通过铁芯传递到副线圈上。

根据法拉第电磁感应定律,副线圈中会感应出一定的电压。

通过改变主线圈和副线圈的匝数比,可以改变输出电压的大小。

由于高频变压器通常工作在高频范围,电能传输时以磁场感应为主导。

高频电流通过主线圈产生的磁场会迅速传导到副线圈,从而实现高效的电能传输。

此外,铁芯的存在可以增加磁场的传导效率。

高频变压器还可以通过控制器来调节输出电压和输入电流。

控制器通常是一个电子装置,通过改变主线圈上的电流和频率来实现电压调节。

同时,控制器还能保护变压器免受过电流和过电压等因素的损坏。

总之,高频变压器通过变换主线圈上的交流电压,利用电磁感应原理在副线圈上产生相应的电压。

它在电能传输中具有高效率和可调性的特点,广泛应用于电力系统、通信设备以及许多其他领域。

电除尘高频变压器原理

电除尘高频变压器原理

电除尘高频变压器原理
电除尘高频变压器是一种用于工业除尘设备中的变压器,其工作原理基于高频电磁场的产生和利用。

电除尘高频变压器通过将低频交流电转换为高频交流电,从而产生高频电磁场。

其基本原理可以概括为以下几步:
1. 变压:电除尘高频变压器首先通过一个低频变压器将输入电源的电压进行调整,使其适合变频器的使用。

2. 变频:接下来,变压后的电能进入变频器中,通过调节变频器的工作频率,将输入电能从低频电信号转换为高频电信号。

通常,电除尘高频变压器的工作频率可以达到数十千赫兹至数百千赫兹。

3. 高频电磁场产生:高频电信号被输送到电除尘设备的电极中,通过与电极之间的间隙形成电弧放电,产生高频电磁场。

4. 除尘效果:高频电磁场能够使空气中的粉尘带电,形成带电粒子。

这些带电粒子会受到高频电场力的作用,从而被吸附、困捕或沉积在除尘设备的收尘板或收尘筒上,实现除尘的效果。

总的来说,电除尘高频变压器通过将低频交流电转换为高频交流电,并利用高频电场力使空气中的粉尘带电并被捕集,从而实现高效的工业除尘效果。

高频变压器原理

高频变压器原理

高频变压器原理
高频变压器是一种特殊设计的电气设备,能够将输入电压的频率转换为输出电压的高频的变压器。

它是基于电磁感应定律工作的,其中主要包括两个线圈,即工作线圈和辅助线圈。

工作线圈位于变压器的一侧,通常称为一次绕组,而辅助线圈位于另一侧,通常称为二次绕组。

高频变压器的工作原理如下:
1. 输入电压加到一次绕组上,使一次绕组形成一个电流。

这个电流产生的磁场穿过变压器的铁芯,导致铁芯内部的磁通量发生变化。

2. 当一次绕组中的电流改变时,磁通量也会改变。

这个变化的磁场从铁芯传导到二次绕组,诱导出一个在二次绕组中的电势。

3. 高频变压器的关键在于使一次绕组和二次绕组之间有足够的电磁耦合。

为了实现这个目标,常常使用高频的电流和细长的绕组线圈。

这样可以减小电感和电导带来的能量损失。

4. 输出电势的大小取决于输入电压和绕组的变比。

高频变压器的变比通常较小,因此输出电势较低。

然而,由于高频的工作频率,输出电压变成了高频的电压,有很多应用可以利用这个特点。

5. 高频变压器还可以用于电力传输、电源转换和调节、医疗设备、通信系统等多个领域。

总而言之,高频变压器通过电磁感应原理将输入电压的频率转换为输出电压的高频。

它是基于两个线圈的变压器设计,具有许多广泛的应用领域。

top系列和高频变压器原理

top系列和高频变压器原理

TOPSWITCH芯片的工作原理及应用图3-1 典型的TOPSwitch单端反激式开关电源电路原理图开关电源因具有重量轻、体积小、效率高、稳压范围宽等优点,在电子电气、控制、计算机等许多领域的电子设备中得到了广泛的使用。

TOPSwitch〔Three-terminal Off-line PWM Switch〕单片开关电源是美国PI ( Power Integration ) 公司于上世纪90年代中期推出的新型高频开关电源芯片,被誉为"顶级开关电源",它仅用了3个管脚就将脱线式开关电源所必需的具有高压N 沟道功率MOS场效应管、电压型PWM控制器、100kHz高频振荡器、高压启动偏置电路、基准电压、用于环路补偿的并联偏置调整器、误差放大器和故障保护功能块等全部集成在一起了。

采用TOPSwitch器件的开关电源与分立的MOSFET功率开关及PWM集成控制的开关电源相比,具有电路构造简洁、本钱低廉、性能稳定、制作及调试方便, 自保护完善等优点。

典型的TOPSwitch单端反激式开关电源电路原理图如图3-1所示。

第一节 TOPSwitch系列芯片工作原理图3-2是TOPSwitch芯片的内部构造图,TOPSwitch芯片是一个自偏置、自保护的电流--占空比线性控制转换器。

通常在控制极和源极之间,紧靠其管脚,并联一个外部旁路电容。

电源启动时,连接在漏极和源极之间的内部高压电流源向控制极充电,在RE两端产生压降,经RC滤波后,输入到PWM比较器的同相端,与振荡器产生的锯齿波电压相比较,产生脉宽调制信号并驱动MOSFET管,因此可通过控制极外接的电容充电过程来实现电路的软启动。

当控制极电压Uc到达5.7V时,内部高压电流源关闭,此时由反响控制电流向Uc供电。

在正常工作阶段,由外界电路构成电压负反响控制环,调节输出级MOSFET的占空比以实现稳压。

当输出电压升高时,Uc升高,采样电阻RE上的误差电压亦升高。

高频变压器直流叠加原理

高频变压器直流叠加原理

高频变压器直流叠加原理
高频变压器直流叠加原理是指在高频变压器中,直流信号可以叠加在交流信号上。

这是因为高频变压器的磁路中存在一个铁芯,该铁芯会集中和传导磁场,在瞬时脉冲信号(直流信号)通过时,铁芯会暂时储存磁能,然后在下一个脉冲信号通过时释放磁能。

当高频交流信号通过变压器时,其频率高于铁芯的饱和频率,因此高频交流信号能够顺利通过变压器的磁路而不受阻碍。

而对于直流信号,由于其频率为零,所以可以看作是低频信号,低于铁芯的饱和频率。

因此,直流信号通过铁芯时会引起铁芯饱和,磁导率减小,导致磁场不再传导。

综上所述,高频变压器的直流叠加原理即是指直流信号能够在高频变压器中叠加在交流信号上。

这个原理在一些应用中可以利用,例如在音频放大器中,通过高频变压器的直流叠加原理可以将直流偏置信号叠加在音频信号上实现音频放大。

微波炉变压器工作原理

微波炉变压器工作原理

微波炉变压器工作原理
微波炉变压器工作原理:
微波炉中使用的变压器一般是高频变压器,用于将电网提供的低压(通常是110或220伏)交流电转换为所需的高电压。

高电压经过变压器的绝缘包装线圈,形成强烈的磁场。

这种磁场可使磁场中具有磁特性的物质(例如铁芯)在其轴线上发生磁感应。

通过这种方式,变压器能将电能传递到微波炉的其他部件中。

高电压经过变压器后将电能传递给一个电子管,通常是半导体二极管(即整流器)。

电子管将交流电转换为直流电,并通过电容器进行平滑。

平滑后的电流通过微波发生器(如磁控管(Magnetron))产
生微波。

磁控管内部含有一个阴极和附近的一个聚束极。

当高压作用于磁控管时,阴极发射出电子束,通过聚束极生成电子束。

电子束进入一个高频谐振腔中,并受到螺旋线圈的磁场的控制。

当电子束通过螺旋线圈时,会产生一个交变的高频电磁场。

这个高频电磁场会通过波导引导到微波炉的腔体中。

在微波炉腔体中,转盘将食物放置在适当位置。

微波通过腔体并与食物中的水分子相互作用,引起水分子的震动和摩擦。

这种摩擦将水分子内部的振动能转化为热能,从而加热食物。

此外,在微波炉中使用了一些安全防护装置来确保使用者的安全,如门开关和泄漏探测器。

当微波炉门打开时,安全开关会切断电源,以防止微波泄漏。

泄漏探测器可检测微波是否从微波炉中泄漏出来,并在发现泄漏时断开电源。

总之,微波炉的串联变压器通过将低压交流电转换为高压交流电,提供了微波发生器所需的能量。

微波发生器将高频电磁场引导到微波腔体中,以产生热能,从而加热食物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2 高频电源变压器的设计原则
高频电源变压器作为一种产品,自然带有商品的属性,因此高频电源变压器的设计原则和其他商品一样,是在具体使用条件下完成具体的功能中追求性能价格比最好。有时可能偏重性能和效率,有时可能偏重价格和成本。现在,轻、薄、短、小,成为高频电源的发展方向,是强调降低成本。其中成为一大难点的高频电源变压器,更需要在这方面下功夫。所以在高频电源变压器的“设计要点”一文中,只谈性能,不谈成本,不能不说是一大缺憾,如果能认真考虑一下高频电源变压器的设计原则,追求更好的性能价格比,传送不到10VA的单片开关电源高频变压器,应当设计出更轻、薄、短、小的方案来。不谈成本,市场的价值规律是无情的!许多性能好的产品,往往由于价格不能为市场接受而遭冷落和淘汰。往往一种新产品最后被成本否决。一些“节能不节钱”的产品为什么在市场上推广不开值得大家深思。 产品成本,不但包括材料成本,生产成本,还包括研发成本,设计成本。
因此,为了节约时间,根据以往的经验,对高频电源变压器的铁损铜损比例、漏感与激磁电感比例、原边和副边绕组损耗比例、电流密度提供一些参考数据,对窗口填充程度,绕组导线和结构推荐一些方案,有什么不好?为什么一定要按步就班地来回进行推算和仿真,才不是概念错误?作者曾在20世纪80年代中开发高频磁放大器式开关电源,以温升最低为条件,对高频电源变压器进行过优化设计。由于热阻难以确定,结果与试制样品相差甚远,不得不再次修正。现在有些公司的磁芯产品说明书中,为了缩短用户设计高频电源变压器的时间,有的列出简化的设计公式,有的用表列出磁芯在某种工作频率下的传送功率。这种既为用户着想,又推广公司产品的双赢行为,是完全符合市场规律的行为,绝不是什么需要辨析的错误概念。问题是提供的参考数据,推荐的方案是否是经验的总结?有没有普遍性?包括“辨析”一文中提出的一些说法,都需要经过实践检验,才能站得住脚。 总之,千万记住:高频电源变压器是一种产品(即商品),设计原则是在具体的使用条件下完成具体的功能中追求性能价格比最好。检验设计的唯一标准是设计出的产品能否经受住市场的考验。
高频变压器的工作原理
电源变压器的功能是功率传送、电压变换和绝缘隔离,作为一种主要的软磁电磁元件,在电源技术中和电力电子技术中得到广泛的应用。根据传送功率的大小,电源变压器可以分为几档:10kVA以上为大功率,10kVA~0.5kVA为中功率,0.5kVA~25VA为小功率,25VA以下为微功率。传送功率不同,电源变压器的设计也不一样,应当是不言而喻的。有人根据它的主要功能是功率传送,把英文名称“Power Transformers”译成“功率变压器”,在许多文献资料中仍然在使用。究竟是叫“电源变压器”,还是叫“功率变压器”好呢?有待于科技术语方面的权威机构来选择决定。
高频电源变压器是工作频率超过中频(10kHz)的电源变压器,主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源和高频逆变焊机中作高频逆变电源变压器的。按工作频率高低,可分为几个档次:10kHz~50kHz、50kHz~100kHz、100kHz~500kHz、500kHz~1MHz、1MHz以上。传送功率比较大的,工作频率比较低;传送功率比较小的,工作频率比较高。这样,既有工作频率的差别,又有传送功率的差别,工作频率不同档次的电源变压器设计方法不一样,也应当是不言而喻的。 如上所述,作者对高频电源变压器的设计原则、要求和程序不存在错误概念,而是在2003年7月初,阅读《电源技术应用》2003年第6期特别推荐的2篇高频磁性元件设计文章后,产生了疑虑,感到有些问题值得进一步商讨,因此才动笔写本文。正如《电源技术应用》主编寄语所说的那样:“具体地分析具体的情况”,写的目的,是尝试把最难详细说明和选择的磁性元件之一的高频电源变压器的设计问题弄清楚。如有说得不对的地方,敬请几位作者和广大读者指正。
同一个英文名称“Power Transformer”,还可译成“电力变压器”。电力变压器主要用于电力输配系统中起功率传送、电压变换和绝缘隔离作用,原边电压为6kV以上的高压,功率最小5kVA,最大超过上万kVA。电力变压器和电源变压器,虽然工作原理都是基于电磁感应原理,但是电力变压器既强调功率传送大,又强调绝缘隔离电压高,无论在磁芯线圈,还是绝缘结构的设计上,都与功率传送小、绝缘隔离电压低的电源变压器有显著的差别,更不能将电力变压器设计的优化设计条件生搬硬套地应用到电源变压器中去。电力变压器和电源变压器的设计方频电源变压器的设计要求
以设计原则为出发点,可以对高频电源变压器提出4项设计要求:使用条件,完成功能,提高效率,降低成本。 3.1 使用条件 使用条件包括两方面内容:可靠性和电磁兼容性。以前只注意可靠性,现在由于环境保护意识增强,必须注意电磁兼容性。 可靠性是指在具体的使用条件下,高频电源变压器能正常工作到使用寿命为止。一般使用条件对高频电源变压器影响最大的是环境温度。有些软磁材料,居里点比较低,对温度敏感。例如:锰锌软磁铁氧体,居里点只有215℃,其磁通密度,磁导率和损耗都随温度发生变化,故除正常温度25℃外,还要给出60℃,80℃,100℃时的各种参考数据。因此,将锰锌软磁铁氧体磁芯的工作温度限制在100℃以下,也就是环境温度为40℃时,温升只允许低于60℃,相当于A级绝缘材料温度。与锰锌软磁铁氧体磁芯相配套的电磁线和绝缘件,一般都采用E级和B级绝缘材料,采用H级绝缘的三重绝缘电磁线和聚酰胺薄膜,是不是大材小用?成本增加多少?是不是因为H级绝缘的高频电源变压器优化的设计方案,可以使体积减少1/2~1/3的缘故?如果是,请举具体实例数据。
作者曾开发H级绝缘工频50Hz,10kVA干式变压器,与B级绝缘工频50Hz,10kVA干式变压器相比,体积减小15%到20%,已经相当可观了。本来体积就比较小的高频100kHz10VA高频电源变压器,如次级绕组采用三重绝缘线,能把体积减小1/2~1/3,那一定是很宝贵的经验。请有关作者详细介绍优化设计方案,以便广大读者学习。 电磁兼容性是指高频电源变压器既不产生对外界的电磁干扰,又能承受外界的电磁干扰。电磁干扰包括可闻的音频噪声和不可闻的高频噪声。高频电源变压器产生电磁干扰的主要原因之一是磁芯的磁致伸缩。磁致伸缩大的软磁材料,产生的电磁干扰大。例如,锰锌软磁铁氧体,磁致伸缩系数λS为21×10-6,是取向硅钢的7倍以上,是高磁导坡莫合金和非晶合金的20倍以上,是微晶纳米晶合金的10倍以上。因此锰锌软磁铁氧体磁芯产生的电磁干扰大。高频电源变压器产生电磁干扰的主要原因还有磁芯之间的吸力和绕组导线之间的斥力。这些力的变化频率与高频电源变压器的工作频率一致。因此,工作频率为100kHz左右的高频电源变压器,没有特殊原因是不会产生20kHz以下音频噪声的。既然提出10W以下单片开关电源的音频噪声频率,约为10kHz~20kHz,一定有其原因。由于没有画出噪声频谱图,具体原因说不清楚,但是由高频电源变压器本身产生的可能性不大,没有必要采用玻璃珠胶合剂粘合磁芯。至于采用这种粘合工艺可将音频噪声降低5dB,请给出实例与数据以及对噪声原因的详细说明,才会令人可信。 屏蔽是防止电磁干扰,增加高频电源变压器电磁兼容性的好办法。但是为了阻止高频电源变压器的电磁干扰传播,在设计磁芯结构和设计绕组结构也应当采取相应的措施,只靠加外屏蔽带并不一定是最佳方案,因为它只能阻止辐射干扰,不能阻止传导干扰。 3.2 完成功能 高频电源变压器完成功能有3个:功率传送,电压变换和绝缘隔离。功率传送有两种方式。第一种是变压器功率的传送方式,加在原绕组上的电压,在磁芯中产生磁通变化,使副绕组感应电压,从而使电功率从原边传送到副边。在功率传送过程中,磁芯又分为磁通单方向变化和双方向变化两种工作模式。单方向变化工作模式,磁通密度从最大值Bm变化到剩余磁通密度Br,或者从Br变化到Bm。磁通密度变化值ΔB=Bm-Br。为了提高ΔB,希望Bm大,Br小。双方向变化工作模式磁通度从+Bm变化到-Bm,或者从-Bm变化到+Bm。磁通密度变化值ΔB=2Bm,为了提高ΔB,希望Bm大,但不要求Br小,不论是单方向变化工作模式还是双方向变化工作模式,变压器功率传送方式都不直接与磁芯磁导率有关。第二种是电感器功率传送方式,原绕组输入的电能,使磁芯激磁,变为磁能储存起来,然后通过去磁使副绕组感应电压,变成电能释放给负载。传送功率决定于电感磁芯储能,而储能又决定于原绕组的电感。电感与磁芯磁导率有关,磁导率高,电感量大,储能多,而不直接与磁通密度有关。虽然功率传送方式不同,要求的磁芯参数不一样,但是在高频电源变压器设计中,磁芯的材料和参数的选择仍然是设计的一个主要内容。在电源变压器“设计要点”一文中,很遗憾缺少这一个主要内容。只是在“交流损耗”一条中,提出BAC典型值为0.04~0.075T。显然,文中的高频电源变压器是采用电感功率传送方式,为什么不提磁导率,而提BAC弄不清楚。经查阅,在《电源技术应用》2003年1/2期,同一主要作者写的开关电源“设计要点”一文中,列出了“磁芯的选择”,也没有提磁导率,只是提出最大磁通密度Bm为0.275T。由于没有画磁通密度变化波形,弄不清楚前文中的BAC和后文中的Bm是否一致:为什么BAC和Bm相差6.8~3.7倍?更不清楚,选的是哪一种软磁铁氧体材料?为什么选这种型号?两文中都没有一点说明,只好让读者自己去猜想了。 电压变换通过原边和副边绕组匝数比来完成。不管功率传送是哪一种方式,原边和副边的电压变换比等于原绕组和副绕组匝数比,只要不改变匝数比,就不影响电压变换。但是,绕组匝数与高频电源变压器的漏感有关。漏感大小与原绕组匝数的平方成正比。有趣的是,漏感能不能规定一个数值?《电源技术应用》2003年第6期同时刊登的两篇文章有着不同的说法。“设计要点”一文中说:“对于一符合绝缘及安全标准的高频变压器,其漏感量应为次级开路时初级电感量的1%~3%”。“辨析”一文中说:“在很多技术单上,标注着漏感=1%的磁化电感或漏感。”
相关文档
最新文档