第3章点缺陷、位错的基本类型和特征_材料科学基础
第3章点缺陷、位错的基本类型和特征_材料科学基础
位错运动导致晶体滑移的方向;该矢量的模|b|表示
了畸变的程度,即位错强度。
② 柏氏矢量的守恒性:柏氏矢量与回路起点及其具体途 径无关。一根不分岔的位错线,不论其形状如何变化 (直线、曲折线或闭合的环状),也不管位错线上各 处的位错类型是否相同,其各部位的柏氏矢量都相同; 而且当位错在晶体中运动或者改变方向时,其柏氏矢 量不变,即一根位错线具有唯一的柏氏矢量。
18
第
3.2 位错
三 章
3.2.1 位错的基本类型和特征
1. 位错的概念:位错是晶体的线性缺陷。晶体中
晶
某处一列或若干列原子有规律的错排。
体
• 意义:对材料的力学行为如塑性变形、强度、断裂等
缺
起着决定性的作用,对材料的扩散、相变过程有较大
陷
影响。
• 位错的提出:1926年,弗兰克尔发现理论晶体模型刚
b l
positive
b
l
negative
Edge dislocations
b
b
right-handed left-handed Screw dislocations
26
3.2
3. 伯氏矢量的特性 位 ① 柏氏矢量是一个反映位错周围点阵畸变总累积的物理
错
量。该矢量的方向表示位错的性质与位错的取向,即
性切变强度与与实测临界切应力的巨大差异(2~4个 数量级)。1934年,泰勒、波朗依、奥罗万几乎同时 提出位错的概念。1939年,柏格斯提出用柏氏矢量表 征位错。1947年,柯垂耳提出溶质原子与位错的交互 作用。1950年,弗兰克和瑞德同时提出位错增殖机制。 之后,用TEM直接观察到了晶体中的位错。
➢ 特征:如果杂质的含量在固溶体的溶解度范围内,
材料科学基础 第三章 晶体缺陷(六)
ABCABCABC…
AB,BC,CA…
ABABAB…
……
BA, AC,CB… ……
面心立方晶体: ……
密排六方结构:……
面心立方晶体: ……
抽出型层错 A B C B C A …… ……
插入型层错 A B C B A B C A …… ……
问题:位错都以密排方向的平移矢量存在吗?
若柏氏矢量不是晶体的平移矢量,当这种位错 扫过后,位错扫过的面两侧必出现错误的堆垛,称 堆垛层错。若这些错排不导致增加很多能量,则这 种位错是可能存在的,称部分位错(不全位错)
伴随的新现象:
1) 部分位错必伴随有层错,即部分位错线是层 错的边界线。
2) 形成层错时几乎不产生点阵畸变,但它也能破 坏晶体的完整性和正常的周期性。
内在
positive Frank
a b 3 111
intrinsic stacking fault
extrinsic stacking fault
4. 位错反应
位错间的相互转化(合成或分解)过程。 4. 位错反应(dislocation 位错反应满足条件: reaction) : (1) 几何条件 伯氏矢量守恒性,即: b b b a (2) 能量条件 反应过程能量降低 即:
1 1 1 [ 1 10] [ 211] [ 1 2 1 ] 2 6 6
I unslipped
b1
II slipped (faulted) zones
III
unfaulted
1 [ 211] 6
1 [1 2 1] 6
b2
把一个全位错分解为两个不全位错,中间夹着一 个堆垛层错的整个位错组态称为扩展位错
3_《材料科学基础》第三章_晶体结构缺陷((上)
点缺陷(零维缺陷)--原子尺度的偏离.
按 缺
例:空位、间隙原子、杂质原子等
陷 线缺陷(一维缺陷)--原子行列的偏离.
的
例:位错等
几 何
面缺陷(二维缺陷)--表面、界面处原子排列混乱.
形
例:表面、晶界、堆积层错、镶嵌结构等
态 体缺陷(三维缺陷)--局部的三维空间偏离理想晶体的周期性
例:异相夹杂物、孔洞、亚结构等
1、 固溶体的分类
(1) 按杂质原子的位置分: 置换型固溶体—杂质原子进入晶格中正常结点位置而取代基
质中的原子。例MgO-CoO形成Mg1-xCoxO固溶体。 间隙型固溶体—杂质原子进入晶格中的间隙位置。
有时俩
(2)按杂质原子的固溶度x分: 无限(连续)固溶体—溶质和溶剂任意比例固溶(x=0~1)。
多相系统
均一单相系统
Compounds AmBn
原子间相互反应生成
均一单相系统
结构
各自有各自的结构
A structure
structure
+ B structure
结构与基质相同 A structure
结构既不同于A也不同于B New structure
化学计量 A/B
不定
固溶比例不定
m:n 整数比或接近整数比的一定范围内
四、固溶体Solid solution(杂质缺陷)
1、固溶体的分类 2、置换型固溶体 3、间隙型固溶体 4、形成固溶体后对晶体性质的影响 5、固溶体的研究方法
①固溶体:含有外来杂质原子的单一均匀的晶态固体。 例:MgO晶体中含有FeO杂质 → Mg1-xFexO
基质 溶剂 主晶相
杂质 溶质 掺杂剂
萤石CaF2(F-空位)
材料科学基础第三章晶体缺陷
够的能量而跳入空位,并占据这个平衡位置,这时在这个原 子的原来位置上,就形成一个空位。这一过程可以看作是空 位向邻近结点的迁移。
在运动过程中,当间隙原子与一个空位相遇时,它将落入
这个空位,而使两者都消失,这一过程称为复合,或湮没。
(a)原来位置;
(b)中间位置;
(c)迁移后位置
图 空位从位置A迁移到B
2 Ar a 3 N A 8.57 (3.294108 )3 6.0231023 x 1 2 Ar 2 92.91 7.1766103 106 7.1766103 7176 .6(个) 所以, 106 个Nb中有7176 .6个空位。
a NA
作业:
二.本章重点及难点 1、点缺陷的形成与平衡浓度 2、位错类型的判断及其特征、伯氏矢量的特征和物理意义 3、位错源、位错的增殖(F-R源、双交滑移机制等)和运动、 交割
4、关于位错的应力场可作为一般了解
5、晶界的特性(大、小角度晶界)、孪晶界、相界的类型
维纳斯“无臂” 之美更深入人心
处处留心皆学问
2.点缺陷的形成(本征缺陷的形成)
点缺陷形成最重要的环节是原子的振动 原子的热振动
(以一定的频率和振幅作振动)
原子被束缚在它的平衡位置上,但原子却在做着挣脱
束缚的努力
点缺陷形成的驱动力:温度、离子轰击、冷加工
在外界驱动力作用下,哪个原子能够挣脱束缚,脱离
平衡位置是不确定的,宏观上说这是一种几率分布
刃型位错的特点:
1).刃型位错有一个额外的半原子面。其实正、负之分只具 相对意义而无本质的区别。 2).刃型位错线可理解为晶体中已滑移区与未滑移区的边界 线。它不一定是直线,也可以是折线或曲线,但它必与滑移 方向相垂直,也垂直于滑移矢量。
材料科学基础第3章
3.2 位错
晶体在结晶时受到杂质、温度变化或振动产
生的应力作用,或由于晶体受到打击、切削、 研磨等机械应力的作用,使晶体内部质点排列 变形,原子行列间相互滑移,即不再符合理想 晶格的有序排列,由此形成的缺陷称位错。
3.2.1 位错的基本类型和特征
刃型位错 螺型位错
刃型位错结构的特点: 1) 刃型位错有一个额外的半原子面。一般把多出的半原子面在滑移面 上边的称为正刃型位错,记为“┻”;而把多出在下边的称为负刃 型位错,记为“┳”。
螺型位错
a. 位错中心附近的原子移动小于一个原子间距的距离。 b. 位错线在滑移面上向左移动了一个原子间距。
c. d. e. 当位错线沿滑移面滑移通过整个晶体时,就会在晶体表面沿柏氏矢 量方向产生宽度为一个柏氏矢量大小的台阶。 螺型位错的运动方向始终垂直位错线并垂直于柏氏矢量。 螺型位错线与柏氏矢量平行,故其滑移不限于单一的滑移面上,所 有包含位错线的晶面都可成为其滑移面。
晶体中的位错环
晶体中的位错网络
3.柏氏矢量的表示法
•柏氏矢量的大小和方向可用与它同向的 晶向指数来表示。
[
a a a [2 2 2 ]
]
a [1 1 1] 2
例如:
在体心立方中, 柏氏矢量等于从体心 立方晶体的原点到体 心的矢量。
b=
a [1 1 1] 2
a •一般立方晶系中柏氏矢量可表示为b= n <u v w>
4)
5)
2.螺型位错
设立方晶体右侧受到切 应力的作用,其右侧上 下两部分晶体沿滑移面 ABCD发生了错动,如图 所示。这时已滑移区和 未滑移区的边界线 bb´(位错线)不是垂直而 是平行于滑移方向。
F
C D
《材料科学基础》 第03章 晶体缺陷
第三节 位错的基本概念
三、位错的运动
刃位错的攀移运动:刃型位错在垂直于滑移面方向上的运动。 刃位错发生攀移运动时相当于半原子面的伸长或缩短,通常把 半原子面缩短称为正攀移,反之为负攀移。 滑移时不涉及单个原子迁移,即扩散。刃型位错发生正攀 移将有原子多余,大部分是由于晶体中空位运动到位错线上的 结果,从而会造成空位的消失;而负攀移则需要外来原子,无 外来原子将在晶体中产生新的空位。空位的迁移速度随温度的 升高而加快,因此刃型位错的攀移一般发生在温度较高时;另 外,温度的变化将引起晶体的平衡空位浓度的变化,这种空位 的变化往往和刃位错的攀移相关。切应力对刃位错的攀移是无 效的,正应力的存在有助于攀移(压应力有助正攀移,拉应力 有助负攀移),但对攀移的总体作用甚小。
第一节 材料的实际晶体结构
二、晶体中的缺陷概论
晶体缺陷按范围分类:
1. 点缺陷 在三维空间各方向上尺寸都很小,在原 子尺寸大小的晶体缺陷。
2. 线缺陷 在三维空间的一个方向上的尺寸很大(晶 粒数量级),另外两个方向上的尺寸很小(原子尺 寸大小)的晶体缺陷。其具体形式就是晶体中的 位错Dislocation 。
说明:这是一个并不十分准确的定义方法。柏氏矢量的方向与位错线方向的定义有关,应该首 先定义位错线的方向,再依据位错线的方向来定柏氏回路的方向,再确定柏氏矢量的方 向。在专门的位错理论中还会纠正。
第三节 位错的基本概念
二、柏氏矢量
柏氏矢量与位错类型的关系:
刃型位错 柏氏矢量与位错线相互垂直。(依方向关系可 分正刃和负刃型位错) 螺型位错 柏氏矢量与位错线相互平行。(依方向关系可 分左螺和右螺型位错) 混合位错 柏氏矢量与位错线的夹角非0或90度。
过饱和空位 晶体中含点缺陷的数目明显超过平衡 值。如高温下停留平衡时晶体中存在一平衡空位, 快速冷却到一较低的温度,晶体中的空位来不及移 出晶体,就会造成晶体中的空位浓度超过这时的平 衡值。过饱和空位的存在是一非平衡状态,有恢复 到平衡态的热力学趋势,在动力学上要到达平衡态 还要一时间过程。
材料科学基础第三章 晶体缺陷
贵州师范大学
化学与材料科学学院
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
二、点缺陷的产生 1. 平衡点缺陷及其浓度 虽然点缺陷的存在使晶体的内能增高,但 同时也使熵增加,从而使晶体的能量下降。因 此,点缺陷是晶体中热力学平衡的缺陷。 等温等容条件下,点缺陷使晶体的亥姆霍 A U T S 兹自由能变化为:
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
三、点缺陷与材料行为 1. 点缺陷的运动 1)空位的运动
2)间隙原子的运动 3)空位片的形成
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
第三章 晶体缺陷
CRYSTAL DEFECTS
点缺陷 位错的基本概念 位错的弹性性质 作用在位错线上的力 实际晶体结构中的位错 晶体中的界面
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
一、点缺陷的类型
点缺陷的类型: (a) Schottky 空位; (b) Frenkel 缺陷; (c) 异类间隙原子; (d) 小置换原子; (e) 大置换原子
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
第3章 晶体缺陷 笔记及课后习题详解 (已整理 袁圆 2014.8.6)
第3章晶体缺陷3.1 复习笔记一、点缺陷1.点缺陷的定义点缺陷是在结点上或邻近的微观区域内偏离晶体结构正常排列的一种缺陷。
2.点缺陷的特征尺寸范围约为一个或几个原子尺度,故称零维缺陷,包括空位、间隙原子、杂质或溶质原子。
3.点缺陷的形成晶体中,位于点阵结点上的原子以其平衡位置为中心作热振动,当某一原子具有足够大的振动能而使振幅增大到一定限度时,就可能克服周围原子对它的制约作用,跳离其原来的位置,使点阵中形成空结点,称为空位。
离开平衡位置的原子有三个去处:(1)迁移到晶体表面或内表面的正常结点位置上,而使晶体内部留下空位,称为肖特基(Schottky)缺陷;(2)挤入点阵的间隙位置,而在晶体中同时形成数目相等的空位和间隙原子,则称为弗仑克尔(Frenkel)缺陷;(3)跑到其他空位中,使空位消失或使空位移位;(4)在一定条件下,晶体表面上的原子也可能跑到晶体内部的间隙位置形成间隙原子图3.1 晶体中的点缺陷(a)肖特基缺陷(b)弗伦克尔缺陷(c)间隙原子4.点缺陷的平衡浓度(1)点缺陷存在的影响①造成点阵畸变,使晶体的内能升高,降低了晶体的热力学稳定性;②由于增大了原子排列的混乱程度,并改变了其周围原子的振动频率,引起组态熵和振动熵的改变,使晶体熵值增大,增加了晶体的热力学稳定性。
晶体组态熵的增值:最小,即式中,Q f为空位形成能,单位为J/mol,R为气体常数,R=8.31J/(mol·K)。
(2)点缺陷浓度的几个特点对离子晶体而言,无论是Schottky缺陷还是Frenkel缺陷均是成对出现的事实;同时离子晶体的点缺陷形成能一般都相当大,故在平衡状态下存在的点缺陷浓度是极其微小的。
二、线缺陷1.位错的定义晶体中某一列或若干列原子有规律的错排。
2.线缺陷的特征在两个方向上尺寸很小,另外一个方向上延伸较长,也称一维缺陷。
3.位错(1)位错的分类①刃型位错:晶体的一部分相对于另一部分出现一个多余的半排原子面。
[课件]材料科学基础 第三章晶体缺陷PPT
2018/12/13
《材料科学基础》CAI课件-李克
11
b. 螺型位错 screw dislocation
位错线bb’:已滑移区和未滑移区的边界线
特征:
1)无额外半原子面, 原子错排是轴对称的 2)分左螺旋位错,符合左手法则;右螺旋位错 ,符合右手法则 3)位错线与滑移矢量平行,且为直线,位错线的运动方向与滑移矢量垂直 4)凡是以螺型位错线为晶带轴的晶带 所有晶面都可以为滑移面。 5) 点阵畸变引起平行于位错线的切应变,无正应变。 6)螺型位错是包含几个原子宽度的线缺陷。
2018/12/13 《材料科学基础》CAI课件-李克 9
3.2.1 位错的基本类型和特征
根据几何结构特征: a. 刃型位错 edge dislocation
b. 螺型位错 screw dislocation
2018/12/13
《材料科学基础》CAI课件-李克
10
a. 刃型位错 edge dislocation
材料科学基础 第三章_晶体缺 陷
第三章 晶体缺陷
Imperfections (defects) in Crystals
It is the defects that makes materials so interesting, just like the human being.
Defects are at the heart of materials science.
1、点缺陷的形成 (production of point defects)
原因:热运动:热振动强度是温度的函数 能量起伏=〉原子脱离原来的平衡位置而迁移别处 Schottky 空位,-〉晶体表面 =〉空位(vacancy)
无机材料科学基础第三章晶体结构缺陷
(4)溶质原子(杂质原子):
LM 表示溶质L占据了M的位置。如:CaNa SX 表示S溶质占据了X位置。 (5)自由电子及电子空穴:
有些情况下,价电子并不一定属于某个特定位置的原子,在光、电、热 的作用下可以在晶体中运动,原固定位置称次自由电子(符号e/ )。同 样可以出现缺少电子,而出现电子空穴(符号h. ),它也不属于某个特定 的原子位置。
(5)热缺陷与晶体的离子导电性
纯净MX晶体:只有本征缺陷(即热缺陷) 能斯特-爱因斯坦(Nernst-Einstein)方程:
n k 2 e 2 z T [a 2cex k E c p ) T a ( 2a ex k E a p )T ]( n k 2 e 2 z T D
式中 D —— 带电粒子在晶体中的扩散系数; n —— 单位体积的电荷载流子数,即单位体 积的缺陷数。 下标c、a —— 阳离子、阴离子
离子晶体中:CaF2型结构。
从形成缺陷的能量来分析——
Schttky缺陷的形成能量小,Frankel 缺陷的 形成能量大,因此对于大多数晶体来说, Schttky 缺陷是主要的。
(4) 点缺陷对结构和性能的影响
• 点缺陷引起晶格畸变(distortion of lattice),能量升 高,结构不稳定,易发生转变。
东北大学材料科学基础_第三章__晶体的缺陷(五)位错的弹性性质
复习 应力
一、应力:
受力物体截面上内力的集度,即单位面积上的内力。
P1 P2 2 mΔ A
K
ΔF
P P3 3
P P4 4
K
Fk
s
m
F Fk A0 A lim
控制 Fk 复杂,按理论力学上分成两个分量
Fk
剪应力 MPa=N/mm2 = 10 6 Pa kg/cm2 = 0.1 MPa
(a) 直角坐标系(xyz)
3个正应力分量(σxx, σyy σzz) 和 6个切应力分量 (τxy=τyx, τyz=τzy , τxz=τzx ) ; 下标中第1个字母表示应力 作用面的外法线方向 ,第 2字母表示应力的指向。
(b) 圆柱坐标系(
r z )
3 个正应力分量 (σθθ、
σzz、σrr) 和六个切应力分量
c. 单位长度混合位错的应变能:3.15式(P99)
简化上述各式得3.16式
结论:(P100)
(1) -(5)
(1) 刃型位错We 假设 x→x+dx ,那么 b'→ b'+db'.
Gb x( x 2 y 2 ) xy 2 (1 ) ( x 2 y 2 ) 2
zx zy 0
xy
Gb x( x 2 y 2 ) 2 (1 ) ( x 2 y 2 )2
zx zy 0
y2 ) )2
zx zy 0
刃位错应力场特点: ① 正应力分量和切应力分量同时存在。 ② 各应力分量都是x、 y的函数,而与z无关。 ③ 应力场以多余半原子面对称。 ④ y=0时, σ=0只有切应力而无正应力,切应力最大值Gb/[2(1υ)x] ⑤ y>0 时, σxx<0;y<0时, σxx>0 。说时正刃位错滑移面上部 受压,下部分受拉。 ⑥ 应力场中任意一点位置, |σxx| > |σyy| ⑦ x = ±y时及y轴上 σyy = τxy = 0,说明在直角坐标系中的对 角线处只有σxx ,而且在每条对角线的两侧, τxy及σyy 的符号相 反。 ⑧ 上述公式不能适用于刃位错的中心区。
材料科学基础第3-4章小结及习题课讲解
b a u2 v2 w2 n
六方晶系中: b=(a/n)[uvtw]
同一晶体中,柏氏矢量愈大,表明该位错导致点阵畸变愈 严重,它所在处的能量也愈高。
3.2.3 位错的运动
基本形式:滑移和攀移
滑移(slip):三种位错的滑移过程 攀移(climb):在垂直于滑移面方向上运动,
第三章 晶体缺陷
晶体缺陷分类及特征(几何形态、相对于晶体的尺寸、影响范围) :
1. 点缺陷:特征是三维空间的各个方面上尺寸都很小,尺寸
范围约为一个或几个原子尺度,包括空位、间隙原子、杂质 和溶质原子。
2. 线缺陷:特征是在两个方向上尺寸很小,另外一个方面上
很大,如各类位错。
3. 面缺陷:特征是在一个方向上尺寸很小,另外两个方向上
晶界:属于同一固相但位向不同的晶粒之间的界面 称为晶界。
亚晶界:每个晶粒有时又由若干个位向稍有差异的 亚晶粒所组成,相邻亚晶粒间的界面称为亚晶界。
确定晶界位置方法: (1)两晶粒的位向差θ (2)晶界相对于一个点阵某一平面的夹角φ。
晶界分类(按θ的大小): 小角度晶界θ<10º 大角度晶界θ>10º
(3)刃型位错标记 正刃型位错用“⊥”表示,负刃型位错用“┬”表示;其
正负只是相对而言。
(4)刃型位错特征: ① 有一额外的半原子面,分正和负刃型位错;
② 可理解为是已滑移区与未滑移区的边界线,可是直线也 可是折线和曲线,但它们必与滑移方向和滑移矢量垂直;
③ 只能在同时包含有位错线和滑移矢量的滑移平面上滑移; ④ 位错周围点阵发生弹性畸变,有切应变,也有正应变;
表面能(γ):产生单位面积新表面所做的功。 表示法:①γ= dw/ds ②γ= T/L (N/m) ③γ= [被割断的结合键数/形成单位新表面]×[能量/每个键] 影响γ的因素: (1)晶体表面原子排列的致密程度。 (2)晶体表面曲率。 (3)外部介质的性质。 (4)晶体性质。
材料科学基础位错部分知识点
材料科学基础位错部分知识点第三章晶体结构缺陷(位错部分)1.刃型位错及螺型位错的特征刃型位错特征:1)刃型位错是由一个多余半原子面所组成的线缺陷;2)位错滑移矢量(柏氏向量)垂直于位错线,而且滑移面是位错线和滑移矢量所构成唯一平面;3)位错的滑移运动是通过滑移面上方的原子面相对于下方原子面移动一个滑移矢量来实现的;4)刃型位错线的形状可以是直线、折线和曲线;5)晶体中产生刃型位错时,其周围的点阵发生弹性畸变,使晶体处于受力状态,既有正应变,又有切应变。
螺型位错特征:1)螺型位错是由原子错排呈轴线对称的一种线缺陷;2)螺型位错线与滑移矢量平行,因此,位错线只能是直线;3)螺型位错线的滑移方向与晶体滑移方向、应力矢量方向互相垂直;4)位错线与滑移矢量同方向的为右螺型位错;为此系与滑移矢量异向的为左螺型位错。
刃型位错螺型位错位错线和柏氏矢量关系(判断位错类型)⊥∥滑移方向∥b∥b位错线运动方向和柏氏矢量关系∥⊥相关概念(ppt上的,大概看一看):A.位错运动与晶体滑移:通过位错运动可以在较小的外加载荷下晶体产生滑移,宏观显现为产生塑性变形。
B.位错线:位错产生点阵畸变区空间呈线状分布。
对于纯刃型位错,其可以描述为刃型位错多余半原子面的下端沿线。
为了与其它类型位错统一,位错线可表述为已滑移区与未滑移区的交界线。
C.混合型位错:在外力作用下,两部分之间发生相对滑移,在晶体内部已滑移和未滑移部分的交线既不垂直也不平行滑移方向(柏氏矢量b),这样的位错称为混合位错。
(位错线上任意一点,经矢量分解后,可分解为刃位错和螺位错分量。
晶体中位错线的形状可以是任意的。
)=l/V;单位面积内位错条数来表示位错密度:D.错位密度:单位体积内位错线的长度:ρv=n/S。
(金属中位错密度通常在106~8—1010~121/c㎡之间。
)ρs2.柏氏矢量:1)刃型位错和螺型位错的柏氏矢量表示:2)柏氏矢量的含义:柏氏矢量反映出柏氏回路包含的位错所引起点阵畸变的总累计。
武汉理工大学考研材料科学基础重点 第3章-晶体结构缺陷
第二章晶体结构缺陷缺陷的含义:通常把晶体点阵结构中周期性势场的畸变称为晶体的结构缺陷。
理想晶体:质点严格按照空间点阵排列的晶体。
实际晶体:存在着各种各样的结构的不完整性。
本章主要内容:2.1 晶体结构缺陷的类型2.2 点缺陷2.3 线缺陷2.4 面缺陷2.5 固溶体2.6 非化学计量化合物⏹ 2.1 晶体结构缺陷的类型分类方式:几何形态:点缺陷、线缺陷、面缺陷和体缺陷等形成原因:热缺陷、杂质缺陷、非化学计量缺陷、电荷缺陷和辐照缺陷等●一、按缺陷的几何形态分类1. 点缺陷(零维缺陷)缺陷尺寸处于原子大小的数量级上,即三维方向上缺陷的尺寸都很小。
包括:空位:正常结点没有被质点占据,成为空结点间隙质点:质点进入正常晶格的间隙位置,成为间隙质点错位原子或离子杂质质点:指外来质点进入正常结点位置或晶格间隙,形成杂质缺陷双空位等复合体点缺陷与材料的电学性质、光学性质、材料的高温动力学过程等有关。
2. 线缺陷(一维缺陷)位错指在一维方向上偏离理想晶体中的周期性、规则性排列所产生的缺陷,即缺陷尺寸在一维方向较长,另外二维方向上很短,如各种位错。
线缺陷的产生及运动与材料的韧性、脆性密切相关。
3.面缺陷面缺陷又称为二维缺陷,是指在二维方向上偏离理想晶体中的周期性、规则性排列而产生的缺陷,即缺陷尺寸在二维方向上延伸,在第三维方向上很小。
如晶界、表面、堆积层错、镶嵌结构等。
面缺陷的取向及分布与材料的断裂韧性有关。
4.体缺陷体缺陷亦称为三维缺陷,是指在局部的三维空间偏离理想晶体的周期性、规则性排列而产生的缺陷。
如第二相粒子团、空位团等。
体缺陷与物系的分相、偏聚等过程有关。
●二、按缺陷产生的原因分类1. 热缺陷定义:热缺陷亦称为本征缺陷,是指由热起伏的原因所产生的空位或间隙质点(原子或离子)。
类型:弗仑克尔缺陷和肖特基缺陷。
弗伦克尔缺陷是质点离开正常格点后进入到晶格间隙位置,其特征是空位和间隙质点成对出现。
肖特基缺陷是质点由表面位置迁移到新表面位置,在晶体表面形成新的一层,同时在晶体内部留下空位。
材料科学基础第三章答案
第三章答案3-2略。
3-2试述位错的基本类型及其特点。
解:位错主要有两种:刃型位错和螺型位错。
刃型位错特点:滑移方向与位错线垂直,符号⊥,有多余半片原子面。
螺型位错特点:滑移方向与位错线平行,与位错线垂直的面不是平面,呈螺施状,称螺型位错。
3-3非化学计量化合物有何特点?为什么非化学计量化合物都是n型或p型半导体材料?解:非化学计量化合物的特点:非化学计量化合物产生及缺陷浓度与气氛性质、压力有关;可以看作是高价化合物与低价化合物的固溶体;缺陷浓度与温度有关,这点可以从平衡常数看出;非化学计量化合物都是半导体。
由于负离子缺位和间隙正离子使金属离子过剩产生金属离子过剩(n型)半导体,正离子缺位和间隙负离子使负离子过剩产生负离子过剩(p型)半导体。
3-4影响置换型固溶体和间隙型固溶体形成的因素有哪些?解:影响形成置换型固溶体影响因素:(1)离子尺寸:15%规律:1.(R1-R2)/R1>15%不连续。
2.<15%连续。
3.>40%不能形成固熔体。
(2)离子价:电价相同,形成连续固熔体。
(3)晶体结构因素:基质,杂质结构相同,形成连续固熔体。
(4)场强因素。
(5)电负性:差值小,形成固熔体。
差值大形成化合物。
影响形成间隙型固溶体影响因素:(1)杂质质点大小:即添加的原子愈小,易形成固溶体,反之亦然。
(2)晶体(基质)结构:离子尺寸是与晶体结构的关系密切相关的,在一定程度上来说,结构中间隙的大小起了决定性的作用。
一般晶体中空隙愈大,结构愈疏松,易形成固溶体。
(3)电价因素:外来杂质原子进人间隙时,必然引起晶体结构中电价的不平衡,这时可以通过生成空位,产生部分取代或离子的价态变化来保持电价平衡。
3-5试分析形成固溶体后对晶体性质的影响。
解:影响有:(1)稳定晶格,阻止某些晶型转变的发生;(2)活化晶格,形成固溶体后,晶格结构有一定畸变,处于高能量的活化状态,有利于进行化学反应;(3)固溶强化,溶质原子的溶入,使固溶体的强度、硬度升高;(4)形成固溶体后对材料物理性质的影响:固溶体的电学、热学、磁学等物理性质也随成分而连续变化,但一般都不是线性关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
缺
陷
陷,如Fe1-xO、Zn1+xO等晶体中的缺陷。
特点:其化学组成随周围气氛的性质及其分压大
小而变化。是一种半导体材料。
4. 其它原因,如电荷缺陷,辐照缺陷等
6
第
三
3.1 点缺陷
章
1. 基本概念:如果在任何方向上缺陷区的尺寸
晶
体
都远小于晶体或晶粒的线度,因而可以忽略
缺
不计,那么这种缺陷就叫做点缺陷。 点缺陷
T 100K 300K 500K 700K 900K 1000K n/N 10-57 10-19 10-11 10-8.1 10-6.3 10-5.7
14
3.1
点 4. 点缺陷的产生
缺
陷 ➢ 平衡点缺陷:热振动中的能力起伏。 ➢ 过饱和点缺陷:外来作用,如高温淬火、辐 照、冷加工等。
15
3.1
点 5. 点缺陷的运动:迁移、复合-浓度降低;聚集
需的能量,叫空位移动能Em。自扩散激活能 相当于空位形成能与移动能的总和。
17
3.1
6. 点缺陷与材料行为
点
缺 (1)结构变化:晶格畸变(如空位引起晶格收
陷
缩,间隙原子引起晶格膨胀,置换原子可引
起收缩或膨胀。);形成其他晶体缺陷(如
过饱和的空位可集中形成内部的空洞,集中
一片的塌陷形成位错。)
(2)性能变化:物理性能:如电阻率增大,密 度减小。力学性能:屈服强度提高(间隙原 子和异类原子的存在会增加位错的运动阻 力。)加快原子的扩散迁移
位错运动导致晶体滑移的方向;该矢量的模|b|表示
了畸变的程度,即位错强度。
② 柏氏矢量的守恒性:柏氏矢量与回路起点及其具体途 径无关。一根不分岔的位错线,不论其形状如何变化 (直线、曲折线或闭合的环状),也不管位错线上各 处的位错类型是否相同,其各部位的柏氏矢量都相同; 而且当位错在晶体中运动或者改变方向时,其柏氏矢 量不变,即一根位错线具有唯一的柏氏矢量。
原因:空位的出现破坏了其周围的结合状态, 因而造成局部能量的升高(由空位的出现而高 于没有空位时的那一部分能量称为“空位形成 能”)但同时空位的出现大大提高了体系的熵 值
11
3.1
点 ② 点缺陷的平衡浓度的计算:假设温度T和压强
缺
P条件下,从N个原子组成的完整晶体中取走
陷
n个原子,即生成n个空位。并定义晶体中空
位缺陷的平衡浓度为:x=n/N
12
3.1
点 ② 点缺陷的平衡浓度的计算
缺 陷
13
3.1
点 由上式可得:
缺 1)晶体中空位在热力学上是稳定的,一定温度
陷
T对应一平衡浓度X;
2)X与T呈指数关系,温度升高,空位浓度增 大;
3)空位形成能ΔUV大,空位浓度小。 例如:已知铜中ΔUV=1.7×10-19 J,A取为1,则
陷
是最简单的晶体缺陷,它是在结点上或邻近
的微观区域内偏离晶体结构的正常排列的一
种缺陷。
7
3.1
3.1 点缺陷
点
缺 2. 基本类型: 陷 空位(vacancy) :实际晶体中某些晶格结
点的原子脱离原位,形成的空着的结点位置 就叫做空位。 间隙原子(interstitial particle) :进入 点阵间隙中的原子称为间隙原子。 置换原子(foreign particle):那些占据 原来基体原子平衡位置上的异类原子称为置 换原子。
若它终止于晶体内部,则必与其他位错线相连接,
或在晶体内部形成封闭线。形成封闭线的位错称为
位错环。
② 位错反应: b= b1+b2
b2
b1
b3
28
3.2
位 5. 伯氏矢量的表示方法:用点阵矢量来表示 ,
错
也用与伯氏矢量同向的晶向指数来表示。
➢ 表示: b=a [uvw] /n (可以用矢量加法
进行运算)。
8
3.1 点 缺 陷
(a) 肖脱基空位-离位原子进入其它空位或迁移至界面。 (b)弗兰克尔空位-离位原子进入晶体间隙。 (c)间隙原子:位于晶体点阵间隙的原子。 (d)(e)置换原子:位于晶体点阵位置的异类原子。 (f)离子晶体:负离子不能到间隙; 局部电中性要求。
9
3.1
点 缺 陷
(a)弗仑克尔缺陷的形成 (空位与间隙质点成对出现)
24
3.2 3.2.2 伯氏矢量 Burgers vector
位 1. 伯氏矢量的确定:a. 在位错周围(避开严重畸
错
变区)沿着点阵结点形成封闭回路;b. 在理想
晶体中按同样顺序作同样大小的回路;c. 在理
想晶体中从终点到起点的矢量即为伯氏矢量。
图3-8 柏氏回路与柏氏矢量的确定
25
3.2
位 3.2.2 伯氏矢量 错 2. 基本类型位错的矢量图解
③ 一个柏氏矢量为b的位错分解为柏氏矢量分别为b1, b2….bn的n个位错,则分解后各位错柏氏矢量之和等 于原位错的柏氏矢量,即 b= b1+b2+b3+……
27
3.2
4. 位错的性质
位
① 由于位错线是已滑移区与未滑移区的边界线,因此,
错
位错具有一个重要的性质,即一根位错线不能终止
于晶体内部,而只能露头于晶体表面(包括晶界)。
位
3-7பைடு நூலகம்示。晶体右上半部分在外力的作用下
错
发生局部滑移,滑移面为ABCD,滑移方向
如图所示。
21
3.2
位 3. 混合位错:混合位错的位错线呈曲线状,与
错
滑移方向既不垂直也不平行,而是呈任意角
度。因此,混合位错可以看成是由刃型位错
和螺型位错混合而成。
22
3.2 刃型位错的特点:
位 刃型位错线可理解为晶体中已滑移区与未滑移区的边
第3章 晶体缺陷
3.1 点缺陷 3.2 位错 3.3 表面及界面
1
第
三 缺陷的含义:通常把晶体点阵结构中周期
章 性势场的畸变称为晶体的结构缺陷。
晶
理想晶体:质点严格按照空间点阵排列。
体
缺
实际晶体:存在着各种各样的结构的不
陷 完整性。
2
第
三
章
缺陷的分类方式:
晶
体 按形成原因:热缺陷、杂质缺陷、非化学计量
(b)单质中的肖特基缺陷的 形成
Frenkel defect 和 Schottky defect产生示意图
10
3.1
点 3. 点缺陷的平衡浓度
缺 ① 热力学分析表明,晶体最稳定的状态并不是完
陷
整晶体,而是含有一定浓度的点缺陷状态,即
在该浓度情况下,自由能最低。这个浓度就称
为该温度下晶体中点缺陷的平衡浓度。
缺
陷
缺陷等
按几何形态:点缺陷、线缺陷、面缺陷等
3
第
三 缺陷的形成原因
章
晶 1. 热缺陷
体 ➢ 定义:热缺陷亦称为本征缺陷,是指由热起伏的
缺
原因所产生的空位或间隙质点(原子或离子)。
陷
➢ 类型:弗仑克尔缺陷(Frenkel defect)和肖特
基缺陷(Schottky defect)
➢ 热缺陷浓度与温度的关系:温度升高时,热缺陷 浓度增加
b l
positive
b
l
negative
Edge dislocations
b
b
right-handed left-handed Screw dislocations
26
3.2
3. 伯氏矢量的特性 位 ① 柏氏矢量是一个反映位错周围点阵畸变总累积的物理
错
量。该矢量的方向表示位错的性质与位错的取向,即
方向与位错线平行;晶体滑移方向与位错运动 方向垂直。
• 共同点:晶体两部分的相对移动量决定于柏氏
矢量的大小和方向,与位错线的移动方向无关。 切应力方向与柏氏矢量一致;晶体滑移与柏氏 矢量一致。
33
3.2 位
错 ⑤ 位错环的滑移:
34
3.2
⑤ 位错环的滑移:在一个滑移面上存在一位错环,如图所
位
示。前后为刃位错,在切应力τ的作用下,
4
第
三 缺陷的形成原因
章
晶 2.杂质缺陷
体 ➢ 定义:亦称为组成缺陷,是由外加杂质的引入所
缺
陷
产生的缺陷。
➢ 特征:如果杂质的含量在固溶体的溶解度范围内,
则杂质缺陷的浓度与温度无关。
➢ 杂质缺陷对材料性能的影响
5
第
三 缺陷的形成原因
章
晶 3. 非化学计量缺陷
体 定义:组成上偏离化学中的定比定律所形成的缺
② 刃型位错滑移:运动方向始终与位错线垂直而 与柏氏矢量平行。刃型位错的滑移面就是由位 错线与柏氏矢量所构成的平面,因此刃型位错 的滑移限于单一的滑移面上。
③ 螺型位错滑移:螺型位错的移动方向与位错线 垂直,也与柏氏矢量垂直。
31
3.2 位 错
32
3.2
位 ④ 刃型位错与螺型位错滑移比较:
错 • 不同点:螺型位错可以有多个滑移面,切应力
① 运动位错交割后,每根位错线上都可能产生一扭折 或割阶。刃型位错的割阶部分仍为刃型位错,而扭 折部分则为螺型位错;螺型位错中的扭折和割阶线 段,由于均与柏氏矢量相垂直,属于刃型位错。
② 所有的割阶都是刃型位错,而扭折可以是刃型也可 是螺型的。扭折与原位错线在同一滑移面上,可随 主位错线一道运动,几乎不产生阻力。割阶则与原 位错线不在同一滑移面上,因此不能跟随主位错线 一道滑移,成为位错运动的障碍,称为割阶硬化。
2. 位错攀移:刃型位错除了可以在滑移面上滑移
位
外,还可以在垂直于滑移面的方向上通过原子