聚合物冲击性能测试

合集下载

聚合物冲击性能测试聚合物材料冲击强度思考题

聚合物冲击性能测试聚合物材料冲击强度思考题

聚合物冲击性能测试聚合物材料冲击强度思考题实验11 聚合物震动性能测试一、实验目的1.测定聚合物的冲击强度,了解其对制品所用的重要性;2.熟悉聚合物的冲击性能测试报告的原理,掌握摆锤式冲击试验机操作方法;3.掌握实验结果处理方法,了解测试特定条件对测定结果的了解影响。

二、实验原理冲击性能实验是在冲击负荷的作用下测定材料的冲击强度。

在实验中,对聚合物试样施加一次冲击负荷而使试样破坏,记录下试样破坏时或过程中试样单位截面积所吸收的能量,即得到冲击强度。

由于聚合物的制备方法和本身结构中的不同,它们的冲击速率反应时间也各不相同。

在工程应用上,冲击强度是一项重要的性能指标,通过抗冲击试验,可以评价抗击聚合物在高速冲击状态下抵抗冲击的能力或判断聚合物的脆性和韧性程度。

冲击试验的工具很多,根据实验温度可分为常温冲击、低温冲击和高温冲击三种,依据化学分析的受力状态,可分为摆锤式弯曲冲击(包括简支梁冲击GB1043和悬臂梁冲击GB1843)、拉伸冲击、扭转冲击和剪切冲击;依据采用的能量和冲击次数,可分为非常大能量的一次冲击(简称一次冲击试验或落锤冲击实验GB11548)和小能量的多次冲击实验(简称多次压迫实验)。

不同材料或不同用途可选择不同的冲击试验方法,由于各种试验方法中应力试样受力形式和冲击物的几何形状不一样,灵敏度不同的试验方法所测得的冲击强度结果不能相互比较。

摆锤式弯曲冲击实验方法由于简单易行,在控制产品质量和比较制品韧性时是一种经常使用的测试方法。

这里介绍摆锤式下垂冲击(赖草冲击和悬臂梁冲击)试验机的其他工作原理,如图11-1所示。

时候实验时摆锤上挂在机架的扬臂上,摆锤杆的中心线与通过摆锤杆轴中心的铅垂线成一角度为α的扬角,此时摆锤具有一定的位能;然后让摆锤自由落下,在它挑到最低点的瞬间其位能增量转变为动能;随着试样断裂成两其余部分,消耗了摆锤的冲β为其升角。

击能并而令其大大减速;摆锤的剩余能量使摆锤继续升高至一定高度,如以W表示摆锤的重量,l为摆锤杆的长度,则摆锤的初始功A0为:A0=Wl(1−cosα) (11-1)若考虑冲断试样时克服的空气阻力和试样断裂而飞出时所消耗的功,根据能量洛仑兹,可用式(11-2)表示:A0=Wl(1+cosβ)+A+Aa+Aβ+12mv (11-2) 2通常,式(11-2)后三项都很小,则可简单地把试样碎裂时所消耗的功表示消耗为:A0=Wl(cosβ−cosα) (11-3)式中除β角外均为已知数,因此,根据摆锤冲断试样后的升角β的数值即可从读数盘直接读取冲断试样时所消耗功的数值。

聚合物长期性能评价简介(UL746B)

聚合物长期性能评价简介(UL746B)

聚合物长期性能评价简介(UL746B)王建东(中蓝晨光化工研究院/全国塑料标准化技术委员会,四川成都 610041)摘要:介绍了UL746B中有关聚合物长期性能评价标准的基本内容及其相对温度指数的测定方法。

关键词:长期性能评价;相对温度指数Introduction of Long-term Property Evaluations forPolymeric Materials (UL746B)WANG Jian-dong(National Standardization Technical Committee of Plastics, Chenguang Research Institute of Chemical Industry, China National Blue Star Co., Chengdu 610041, China) Abstract:The long-term property evaluations for polymeric materials in UL746B, as well as the methods for the determination of the relative thermal index (RTI) for polymeric materials, are introduced in this paper.Keywords:Long-term Property Evaluation; Relative Thermal Index (RTI)随着聚合物材料的广泛应用,尤其是在电气方面的应用,如何对其长期性能进行评价,使之能够满足产品的要求,成为塑料制造商、使用者等等各方面普遍关心的问题。

UL746B 标准阐述了通过测定材料的相对温度指数对聚合物进行长期性能评价的方法。

本文简单介绍一下UL746B中有关相对温度指数的测定的基本方法。

1 通则1)材料的相对温度指数表明了材料在高温下长时间保持特殊性能的能力(物理、电性能等)。

注射成型实验报告

注射成型实验报告

注射成型实验报告一、实验目的本实验旨在通过注射成型技术,制备具有特定形状和结构的聚合物制品,并对其性能进行评估。

二、实验原理注射成型是一种常用的聚合物加工工艺,其原理是将加热熔融的聚合物料注入模具中,经过一定的压力和冷却后,得到所需形状和尺寸的制品。

该工艺适用于大批量生产,并且制品表面光滑、尺寸精确。

三、实验材料与设备1. 实验材料:聚丙烯(PP)、聚苯乙烯(PS)等热塑性聚合物料;2. 实验设备:注射成型机、模具、加热系统、冷却系统等。

四、实验步骤1. 准备工作:清洁注射成型机和模具,将所需聚合物料加入注射成型机的料斗中;2. 开机预热:启动注射成型机,将聚合物料加热至熔融状态;3. 调试参数:根据所需制品的尺寸和性能要求,调整注射成型机的注射压力、注射速度、冷却时间等参数;4. 注射成型:将熔融的聚合物料注入模具中,施加一定的压力,使其充填模具腔体,并进行冷却;5. 取模检验:冷却后,取出成型制品,进行外观质量、尺寸精度、物理性能等方面的检验。

五、实验结果与分析经过注射成型制备的聚丙烯制品外观光滑,尺寸精确,表面无明显缺陷。

经过拉伸测试,其拉伸强度为25MPa,弯曲强度为30MPa。

经过冲击测试,其冲击强度为10KJ/m²。

而经过注射成型制备的聚苯乙烯制品外观光滑,尺寸精确,表面无明显缺陷。

经过拉伸测试,其拉伸强度为30MPa,弯曲强度为35MPa。

经过冲击测试,其冲击强度为15KJ/m²。

六、实验结论通过注射成型技术,成功制备了具有特定形状和结构的聚合物制品,并对其性能进行了评估。

实验结果表明,注射成型制备的聚合物制品具有良好的外观质量、尺寸精度和物理性能,符合预期要求。

因此,注射成型技术在聚合物制品加工中具有重要的应用价值。

七、参考文献1. 刘明,杨华. 注射成型技术在聚合物制品加工中的应用[J]. 中国塑料, 2018(6): 45-49.2. 张三,李四. 聚合物注射成型工艺及其应用[M]. 北京: 化学工业出版社, 2017.以上为注射成型实验报告。

高分子材料分析及测试期末复习及答案

高分子材料分析及测试期末复习及答案

期末复习作业一、名词解释1.透湿量透湿量即指水蒸气透过量。

薄膜两侧的水蒸气压差和薄膜厚度一定,温度一定的条件下1㎡聚合物材料在24小时所透过的蒸汽量(用θ表示)v2.吸水性吸水性是指材料吸收水分的能力。

通常以试样原质量与试样失水后的质量之差和原质量之比的百分比表示;也可以用单位面积的试样吸收水分的量表示;还可以用吸收的水分量来表示。

3.表观密度对于粉状、片状颗粒状、纤维状等模塑料的表观密度是指单位体积中的质量(用η表示)a对于泡沫塑料的表观密度是指单位体积的泡沫塑料在规定温度和相对湿度时的重量,故又称体积密度或视密度(用ρ表示)a4、拉伸强度在拉伸试验中,保持这种受力状态至最终,就是测量拉伸力直至材料断裂为止,所承受的最大拉伸应力称为拉伸强度(极限拉伸应力,用σ表示)t5、弯曲强度试样在弯曲过程中在达到规定挠度值时或之前承受的最大弯曲应力(用σ表示)f6、压缩强度指在压缩试验中试样所承受的最大压缩应力。

它可能是也可能不是试样破裂的瞬间所承受的压缩应力(用σ表示)e7、屈服点应力—应变曲线上应力不随应变增加的初始点。

8、细长比指试样的高度与试样横截面积的最小回转半径之比(用λ表示)9、断裂伸长率断裂时伸长的长度与原始长度之比的百分数(用ε表示)t10、弯曲弹性模量表示)比例极限应力与应变比值(用Ef11、压缩模量指在应力—应变曲线的线性围压缩应力与压缩应变的比值。

由于直线与横坐标的交点一般不通过原点,因此可用直线上两点的应力差与对应的应变差之比表示(用E表示)e12、弹性模量在负荷—伸长曲线的初始直线部分,材料所承受的应力与产生相应的应变之比(用E表示)13、压缩变形指试样在压缩负荷左右下高度的改变量(用∆h表示)14、压缩应变指试样的压缩变形除以试样的原始高度(用ε表示)15、断纹剪切强度指沿垂直于板面的方向剪断的剪切强度。

16、剪切应力试验过程中任一时刻试样在单位面积上所承受的剪切负荷。

17、压缩应力指在压缩试验过程中的任何时刻,单位试样的原始横截面积上所承受的压缩负荷(用σ表示)18、拉伸应力为试样在外作用力下在计量标距围,单位初始横截面上所承受的拉伸力(用σ表示)19、热性能高聚物的热性能是其与热或温度有关的性能的总称。

自增强----提高聚合物强度的有效方法

自增强----提高聚合物强度的有效方法

自增强----提高聚合物强度的有效方法丁江平 10042791 理优044 任课教师:唐颂超摘要:本文介绍了提高聚合物强度的一种方法----自增强的概念。

重点介绍了超级拉伸、固相等静压挤、等通道转角挤压等固相形变法自增强工艺,对这些工艺的特点及其对产品性能的影响作了详细的介绍。

也提到了聚合物高压注射自增强方法、熔体挤出自增强法、旋转挤出自增强法和熔体振动成型中的自增强等熔体加工法自增强工艺。

文章特别介绍了等通道转角挤压后的自增强聚丙烯的性能。

关键词:自增强;固相形变法;熔体加工法;等通道转角挤压;聚丙烯近年来,某些特殊领域如航空工业、国防尖端工业等领域的发展对聚合物材料的性能提出了更高的要求,如高强度、高模量、轻质等,各种特定要求的高强度聚合物的开发研制越来越显迫切。

聚合物物理机械性能的重要指标是模量和强度。

聚合物材料与金属和陶瓷相比,它的实际模量及强度值远远未达到其理论值,而金属和陶瓷却已做到实际模量和理论值接近或相等,见表1。

表1 聚合物材料的实际模量及强度值与其理论值的比较弹性模量/GPa拉伸强度/MPa实际值实际值材料理论值纤维常规聚合物 理论值纤维 常规聚合物 聚乙烯 聚丙烯 尼龙66 玻璃 钢 铝300 50 160 80 210 76100(33%) 20(40%) 5(3%) 80(100%) 210(100%) 76(100%) 1(0.33%) 1.6(3.2%) 2(1.3%) 70(87.5%) 210(100%) 76(100%)27000 16000 27000 11000 21000 7600 1500(5.5%) 1300(8.1%) 1700(6.3%) 4000(36%) 4000(19%) 800(10.5%) 30(0.1%) 38(0.24%) 50(0.18%) 55(0.5%) 1400(6.7%) 600(7.9%)聚合物材料的实际模量和强度远远低于聚合物中C—C、C—H键的强度,这主要是由于聚合物材料内部大分子链的无规排列,使分子链本身的高强度并没有转化为制品的高强度。

实验15- 材料力学性能及热性能测试实验

实验15- 材料力学性能及热性能测试实验

实验15材料力学性能及热性能测试实验15-1聚合物拉伸性能测试——电子拉力机测定聚合物材料的应力-应变曲线聚合物在拉力下的应力-应变测试是一种广泛使用的最基础的力学试验。

聚合物的应力-应变曲线提供力学行为的许多重要线索,从而得到有用的表征参数(杨氏模量、屈服应力、屈服伸长率、破坏应力、极限伸长率、断裂能)以评价材料抵抗载荷、抵抗变形和吸收能量的性质优劣;从宽广的试验温度和试验速度范围内测得的应力-应变曲线,有助于判断聚合物材料的强弱、硬软、韧脆和粗略估计聚合物所处的状态与拉伸取向过程,以及为设计和应用部门选取最佳材料提供科学依据。

电子拉力试验机是将聚合物材料的刺激(载荷)和响应(变形)由换能装置转变为电信号传入计算机,经计算处理可得应力-应变曲线。

电子拉力机除了应用于力学试验中最常用的拉伸试验外,还可进行压缩、弯曲、剪切、撕裂、剥离以及疲劳、应力松弛等各种力学试验,是测定和研究聚合物材料力学行为和机械性能的有效手段。

一、实验目的1.熟悉电子拉力机的使用方法;2.测定聚合物的载荷-时间曲线,判断不同聚合物的拉伸性能特征,了解测试条件对测试结果的影响;3.绘制应力-应变曲线,测定其屈服强度、拉伸强度、断裂强度和断裂伸长率。

二、实验原理拉伸性能是聚合物力学性能中最重要、最基本的性能之一。

拉伸性能的好坏,可以通过拉伸实验来检测。

拉伸实验是在规定的试验温度、湿度和速度条件下,对标准试样沿纵轴方向施加静态拉伸负荷,直到试样被拉断为止。

用于聚合物应力-应变曲线测定的电子拉力试验机是将试样上施加的载荷、形变通过压力传感器和形变测量装置转变成电信号记录下来,经计算机处理后,测绘出试样在拉伸形变过程中的拉伸应力-应变曲线。

从应力-应变曲线上可得到材料的各项拉伸性能指标值:如拉伸强度、拉伸断裂应力、拉伸屈服应力、偏置屈服应力、拉伸弹性模量、断裂伸长率等。

通过拉伸试验提供的数据,可对高分子材料的拉伸性能做出评价,从而为质量控制,按技术要求验收或拒绝验收产品,研究、开发与工程设计及其他项目提供参考。

塑料的冲击性能和塑料的韧性

塑料的冲击性能和塑料的韧性

塑料的冲击性能和塑料的韧性在某些塑料中,冲击强度低是一个很大的弱点,例如PVC、PS、PP等。

尤其是PVC性脆,在光照下降解,加工温度下发生热降解,几乎成为一种无用的材料。

但是,在PVC中加入改性剂,就可变成为可以接受的材料。

通过在PVC中加入大量的增塑剂就可以获得极广泛的用途。

随着科学技术的发展,出现了软质塑料和硬质塑料,当时的塑料要么柔而软,要么硬而脆。

软质塑料使用寿命短,由于增塑剂的挥发和材料在大气中老化降解而变脆成为硬质塑料。

而硬质塑料因为缺乏足够的韧性给塑料工业带来毁灭性的威胁,塑料工业就要开始发展革新性的产品。

开发高分子量和低挥发量、或低抽取性的增塑剂挽救了软质和硬质塑料制品,主要是苯乙烯类的产品开发。

它们因开发在聚合物结构中引入橡胶组分的技术获新生。

塑料添加剂的开发,可改善塑料生产工艺和提高产品性能。

其中增塑剂、稳定剂、冲击改性剂是有利于塑料冲击性能的改善。

以下就材料的韧性和刚性及反映材料韧性的冲击性能的测试作一些叙述。

1.韧性和刚性韧性和刚性是对立的概念。

在力学中有刚度和柔度两个物理量。

“刚度”是指物体发生单位形变时所需要的力的大小;“柔度”则指物体在单位力下所发生的形变大小。

可以看出,“刚度”越大的物体,越不容易发生变形(表现在伸长率很小);“柔度”越大的物体越容易发生变形(表现在伸长率较大)。

一种理想状态,物体的刚度趋近于无穷大(或者物体受力作用其变形小到可以忽略的程度),我们就称该物体为刚体。

在力学分析时,可以不考虑其自身形变。

因此,刚性是反映物体形变难易程度的一个属性。

韧性的材料比较柔软,它的拉伸断裂伸长率、抗冲击强度较大;硬度、拉伸强度和拉伸弹性模量相对较小。

而刚性材料它的硬度、拉伸强度较大;断裂伸长率和冲击强度就可能低一些;拉伸弹性模量就较大。

弯曲强度反应材料的刚性大小,弯曲强度大则材料的刚性大,反之则韧性大。

在ASTMD790弯曲性能标准试验方法中说,这些测试方法适合于刚性材料也适合于半刚性材料。

聚合物复合材料性能及测试标准

聚合物复合材料性能及测试标准

精品文档1.拉伸性能聚合物复合材料性能解释以及测试标准指南1拉伸性能包括拉伸强度,弹性模量、泊松比、断裂伸长率等。

对于如高压容器、高压管、叶片等产品,必须要测出聚合物复合材料的拉伸性能,才能进行产品设计及检验。

GB/T1447 对于不同的聚合物复合材料,拉伸性能试验方法是不同。

对于普通的,用国标进行测试;对于定向纤维增强的,用国标进行测试;对于缠绕成型的,用国标GB/T1458进行测试。

使用最多的是进行测试;对于拉挤成型的,用国标GB/T13096-1GB/T33541 GB/T1447。

型、,对于不同成型工艺复合材料,又规定不同形状的拉伸试样,有带R 国标GB/T1447使用拉伸试验机或万能试验按规定的加载速度对试样施加拉伸载荷直到试直条型及哑铃型。

应变曲线的直线样破坏。

用破坏载荷除以试样横截面面积则为拉伸强度。

从测出的应力----破坏时的应变称为断裂伸长试样横向应变与纵向应变比为泊松比。

段的斜率则为弹性模量,率。

的应力。

1N/mm2(兆帕)表示,1MPa相当于单位面积上的力,称为应力,通常用MPa 应变是单位长度的伸长量,是没有量刚(单位)的。

玻璃钢,11:不同的现代复合材料其拉伸性能大不一样,以玻璃纤维增强的玻璃钢为例:)(250-350:1玻璃钢,拉伸强度为(MPa,弹性模量为10-16)GPa;4)拉伸强度为(200-250,800MPa)15-22GPa;单向纤维的玻璃钢(如缠绕),拉伸强度大于MPa,弹性模量为(DMCGPa;弹性模量为,(5-8)40-80SMC弹性模量大于24GPa;材料,拉伸强度为()MPa 。

)GPa4-620-60材料,拉伸强度为()MPa,弹性模量为(1. 2弯曲性能往往用弯曲性能来进行原材料,弯曲性能是很重要的,同时,一般产品普遍存在弯曲载荷,成型工艺参数,产品使用条件因素等的选择。

精品文档.精品文档进行进行测试;对于拉挤材料,用国标GB/T13096.2 弯曲性能,一般采用国标GB/T1449GB/T3356进行测试。

astm e446标准

astm e446标准

astm e446标准一、简介ASTME446标准是一套用于评估塑料材料冲击性能的测试方法,也称为塑料冲击测试标准。

该标准由美国材料与试验协会(ASTM)制定,被广泛认为是塑料材料性能测试的标准方法之一。

二、测试方法1.样品准备:ASTME446标准规定了样品的大小和形状,通常为直径5.08毫米(0.2英寸)的圆柱形或圆片形。

样品数量通常为至少3个,每个样品应有不同的取向。

2.设备:测试设备包括冲击机和加载器,以及用于测量样品变形和能量的测量系统。

冲击机的能量通常为5焦耳以上,以确保测试的准确性和可靠性。

3.试验过程:首先将样品安装在冲击机上,然后在一定的高度(通常为1米或3英尺)将样品扔向样品,测量样品的变形和能量吸收。

根据测试结果,可以将样品分为不同的等级,以评估其冲击性能。

4.结果分析:ASTME446标准提供了详细的评分系统,根据样品的变形程度和能量吸收能力,可以将样品分为不同的等级。

这些等级通常用字母表示,如A、B、C、D等,分别代表不同的性能水平。

三、应用范围ASTME446标准适用于各种塑料材料,包括聚合物、复合材料、弹性体等。

该标准可用于评估塑料材料的抗冲击性能,从而确定其在特定应用中的适用性。

例如,汽车、家电、医疗、包装等领域中使用的塑料材料都需要进行冲击测试,以确保其安全性和可靠性。

四、常见问题与解决方法1.试验过程中出现误差:冲击试验中常见的误差包括设备故障、样品制备不当、环境因素等。

为避免这些误差,建议使用经过校准的冲击机,确保设备正常运行;正确制备样品,避免表面处理不当或尺寸偏差;确保试验环境符合标准要求,避免温度、湿度等环境因素对试验结果的影响。

2.试验结果不理想:如果试验结果不理想,可以检查试验过程中的各个步骤,查找可能的问题并进行修正。

此外,可以尝试使用不同规格的样品或不同配方的塑料材料进行重新测试,以获得更准确的结果。

总之,ASTME446标准是一套重要的塑料材料冲击性能测试方法,适用于各种塑料材料。

ASTM-D5420-10硬度平板塑料落锤冲击测试

ASTM-D5420-10硬度平板塑料落锤冲击测试

标准测试方法平面刚性塑料样品的抗冲击性的下落重量(加德纳影响)1.范围*1.1本试验方法包括相对值的测定根据裂纹所需的能量排列材料或破碎,硬塑料样品在各种规格撞锤受到落锤冲击的冲击条件。

1.2以SI单位表示的数值应视为标准。

括号中给出的值用于信息只要。

1.3本标准并不旨在解决所有的问题安全问题,如果有的话,与其使用相关。

它是本标准用户的责任,优先安全和健康实践,使用前监管限制的限制。

注1 - 没有类似或等效的ISO标准。

2.参考文件2.1 ASTM标准:2D618用于测试的调节塑料的实践D883与塑料相关的术语D1600关于质谱术语的缩写术语术语-ticsD2794有机涂层电阻测试方法快速变形的影响(影响)D3763高速穿刺性能试验方法塑料使用负载和位移传感器D4066尼龙注塑分选系统,材料(PA)D4226刚性聚乙烯的耐冲击性试验方法-(氯乙烯)(PVC)建筑产品D5628平,刚性的耐冲击性试验方法塑料标本通过落镖(Tup或下落质量)D5947固体物理尺寸测试方法塑料样品E171柔性屏障调节和测试实践打包E691进行实验室间研究的实践确定测试方法的精度剪切型故障,因为支撑板孔靠近冲击器的直径。

5.5几何GD的测试条件相同测试方法D3763中的那些。

5.6几何GE的测试条件相同那些在测试方法D4226,冲击头配置H.25。

5.7由于冲击试验的性质,选用测试方法和前锋必须有点随意。

考虑选择时的最终使用环境和要求可用的前锋几何。

但是,任何选择允许一个撞针几何形状,在这种考虑之后,ation。

注2 - 材料加工可对其产生重大影响开发塑料的物理性能。

请咨询相关材料加工指南标准6.干扰6.1落锤冲击试验结果取决于下落重量,撞击器和支撑件的几何形状。

从而,使用冲击试验只能获得材料的相对排名。

影响值不能被认为是绝对的,除非geom-试验设备和试样的试验应符合最终用途需求。

数据获得与不同几何,不能,一般来说,可以直接相互比较。

聚合物材料力学性能测试方法比较

聚合物材料力学性能测试方法比较

聚合物材料力学性能测试方法比较聚合物材料是一类具有高分子量的大分子化合物,具有良好的力学性能和化学稳定性,广泛应用于汽车、航空航天、电子、建筑等领域。

为了评估和比较不同聚合物材料的力学性能,科学家们开发了各种测试方法。

本文将比较几种常用的聚合物材料力学性能测试方法。

1. 拉伸测试方法拉伸测试是评估材料抗拉强度、断裂伸长率、弹性模量等力学性能的常见方法。

在拉伸测试中,材料在不断施加力的作用下,沿着其长度方向逐渐拉伸,记录下载荷和伸长量的变化。

通过伸长量与载荷之间的关系,可确定材料的力学性能。

2. 压缩测试方法压缩测试用于评估材料在受到压缩作用下的性能。

材料在压缩测试中受到垂直于其面积方向的力,并测量材料的应力应变关系。

通过压缩测试,可以确定材料的压缩强度、弹性模量等力学性能。

3. 弯曲测试方法弯曲测试是评估材料在受到弯曲力作用下的性能的方法。

材料在弯曲测试中受到两个力的作用,使其发生弯曲变形。

通过测量材料在不同载荷下的应变量和挠度,可以确定材料的弯曲强度、弯曲模量等力学性能。

4. 硬度测试方法硬度测试用于评估材料表面抗压、抗刮、抗穿刺等力学性能。

常用的硬度测试方法包括洛氏硬度测试、布氏硬度测试、维氏硬度测试等。

这些方法通过在材料表面施加一定的载荷,测量形成的痕迹的大小来评估材料的硬度。

5. 冲击测试方法冲击测试用于评估材料在受到突然冲击或冲击载荷下的性能。

常见的冲击测试方法包括冲击韧性试验、冲击强度试验等。

通过施加冲击载荷,测量材料的断裂韧性和抗冲击能力,可以评估材料的力学性能。

不同的聚合物材料力学性能测试方法有各自的优缺点,选择适合的方法取决于具体的测试需求。

拉伸、压缩和弯曲测试方法较为常用,适用于评估聚合物材料的静态力学性能。

硬度测试方法简单快捷,适用于快速比较不同材料的硬度。

而冲击测试方法则更适用于评估材料在受到突然冲击或冲击载荷下的性能。

除了选择合适的测试方法,还需要注意测试条件的标准化。

聚合物结构与性能测试

聚合物结构与性能测试

一、名词解释1. 大分子:是由大量原子组成的,具有相对高的分子质量或分子重量。

2. 取向度:指高聚物中的取向单元(分子链、构造单元、链段、微晶、微纤等)沿参考方向(如纤维中的纤维轴向)平行排列的程度。

3. 初期结晶:物质从液态(溶液或熔融状态)或气体形成晶体的过程。

4. 缚结分子:连结二个晶区的分子称为缚结分子5. 超分子结构:高分子链之间通过强的或弱的相互作用所形成的聚集体。

包括结晶度,取向度,晶粒尺寸和长周期。

6. 超强吸水高分子材料:也称为高吸水性树脂、超强吸水剂、高吸水性聚合物,是一种具有优异吸水能力和保水能力的新型功能高分子材料。

二、概念的区别与联系1. 质量结晶度与体积结晶度质量(重量)结晶度:表示结晶部分在总体中所占的重量百分数或重量分数。

体积结晶度:表示结晶部分在总体中所占的体积百分数或体积分数。

2. 无规共聚物与嵌段共聚物无规共聚物是指单体M1,M2在大分子链上无规排列,两单体在主链上呈随机分布,没有一种单体能在分子链上形成单独的较长链段的聚合物;嵌段共聚物是指将两种或两种以上性质不的共聚物链段连在一起制备而成的一种特殊聚合物。

3. 应力与应变应力是指受力物体截面内力的集度,即单位面积上的内力;应变是指材料受到外力的作用引起受力物体内任一点(单元体)因外力作用引起的形状和尺寸的相对改变。

应力=模量*应变4. 抗拉强度与初始模量抗拉强度,材料在拉伸断裂前所能够承受的最大拉应力。

对于理论弹性体来说,应力与应变的关系服从(Hook)定律模量E=δ/ε, 单位与应力相同。

高聚物属于粘弹体,但就纤维而言,当应变小于1%时,它的应力应变关系基本符合Hook定律,此时的模量通常称为初始模量。

&初始模量:纺织纤维拉伸初始模量一般定义为拉伸伸长为1%时应力的100倍。

三、根据结晶体条件的差异和聚乙烯可得到不同的结晶形态,请简单叙述下列各形态的结构特征及获得该形态的条件球晶:高聚物从浓溶液浓溶液析出或从熔体冷却结晶时,都倾向于生成比单晶更为复杂的多晶聚集体,最常见的呈球状,称为球晶。

有机化学中的聚合物的性能与性能测试

有机化学中的聚合物的性能与性能测试

有机化学中的聚合物的性能与性能测试聚合物是由许多重复单元组成的高分子化合物,它们在有机化学领域扮演着重要的角色。

聚合物的性能对于其应用领域具有决定性的影响。

因此,准确评估聚合物的性能并进行性能测试对于研究和应用有机化学至关重要。

聚合物的性能包括力学性能、热性能、电学性能等多个方面。

力学性能是指聚合物的强度、硬度和柔韧性等特性。

热性能则关注聚合物在高温和低温下的稳定性和可用温度范围。

电学性能涉及到聚合物的导电性、介电性和电子输运性能等。

下面将分别介绍聚合物在这些性能方面的测试方法。

一、力学性能测试1. 抗拉强度和伸长率测试力学性能中最基本的指标是聚合物的抗拉强度和伸长率。

这些指标可以通过拉伸试验来测量。

拉伸试验使用一个拉伸机,将聚合物样品拉伸,测量拉伸前后的变形,从而计算出抗拉强度和伸长率。

2. 硬度测试硬度是聚合物抵抗局部永久形变的能力。

常用的硬度测试方法包括洛氏硬度测试和巴氏硬度测试。

这些测试方法通过测量在一定加载下产生的印痕大小来评估聚合物的硬度。

3. 冲击强度测试聚合物的冲击强度是评估其耐冲击性能的指标。

冲击强度测试常用的方法有Charpy冲击试验和Izod冲击试验。

这些试验使用标准冲击试验机,将标准形状的试样进行冲击,测量所产生的断裂面积来评估聚合物的冲击强度。

二、热性能测试1. 热分解温度测试热分解温度是指聚合物在高温下开始分解的温度。

热分解温度测试可以使用热重分析仪进行。

该仪器通过加热聚合物样品,并同时测量其质量的变化,从而确定热分解温度。

2. 玻璃化转变温度测试玻璃化转变温度是指聚合物在温度下从玻璃态转变为橡胶态的温度。

玻璃化转变温度测试可以使用差示扫描量热仪进行。

该仪器通过测量样品在加热和冷却过程中的热流量差异,从而确定玻璃化转变温度。

三、电学性能测试1. 电导率测试电导率是衡量聚合物导电性能的指标。

电导率测试可以使用四探针电阻率计进行。

该仪器利用四根探针对聚合物样品施加电流,测量电压差来计算电导率。

实验二十二 塑料常规力学性能测试

实验二十二  塑料常规力学性能测试

实验二十二塑料常规力学性能测试本实验包括:拉伸试验,压缩试验,静弯曲试验,剪切试验,冲击试验。

概述一、测试标准方法聚合物材料日新月异,种类繁多,根据其用途和力学状态,人们通常把它们分为塑料、橡胶、纤维三大类合成材料。

各类材料的性能要求、测试方法都不尽相同。

我们这里只介绍应用最广的塑料类聚合物材料的一些常规力学性能的通用测试方法。

这些方法操作简单,技术条件有严格的统一规定,测试较快。

其结果可作为不同材料的质量比较,生产上的品质控制和质量验收的依据,有的还可以作为应用中使用性能指标和工程设计的数据。

为了测试数据相比,要求测试方法的技术条件和操作方法统一化、标准化、设备仪器定型化。

根据这些方法的完善程度,国内外均分别划分为内部标准方法、企业标准方法、部(或局)标准方法和国家标准方法,甚至还有国际标准方法。

塑料类聚合物材料的常规力学性能测试方法在我国已逐步建立起了一套原化学工业部标准方法均须有关负责部门审查标准公布方才有效,国家标准由中华人民共和国龟甲标准总局审定发布。

二、影响测试结果的一些因素影响塑料测试结果的因素很多,由内在因素也有外在因素。

内在因素如:材料本身分子量的大小及分布不同,结构规整性,取向和结晶程度各异,内在存在的各种缺陷的多寡等。

外部因素如:试样在制备过程中加工条件的差别所引起的应力分布,机械缺陷等。

试验过程中温度、湿度的变化等等。

从测试角度来说,我们主要考虑与测试结果精度有关的因素。

这类因素也很多,如拉伸等试验中作用力速度即拉伸速度等,都必须严格控制没,否否则结果不能重复也不可比,给数据的分析、取用带来麻烦甚至可靠性也值得怀疑。

因此,各项测试都必须合理地规定技术条件,严格操作,使各种影响结果的因素所造成的误差趋于最小,这就是要制定标准试验方法的原因。

由于下列每种试验方法的影响因素还将分别讨论,这里仅就力学性能测试中共同的影响因素简单讨论一下。

(一)试样1、试样制备制备试样一般有两个途径:(1)从板、片、棒等制成品或半制成品上合理地切取材料,经一定的机械加工质量关系很大。

聚合物材料的动态力学性能测试.doc-中国聚合物网_高分子、高分子材料...

聚合物材料的动态力学性能测试.doc-中国聚合物网_高分子、高分子材料...

实验15 聚合物材料的动态力学性能测试在外力作用下,对样品的应变和应力关系随温度等条件的变化进行分析,即为动态力学分析。

动态力学分析能得到聚合物的动态模量( E′)、损耗模量(E″)和力学损耗(tanδ)。

这些物理量是决定聚合物使用特性的重要参数。

同时,动态力学分析对聚合物分子运动状态的反应也十分灵敏,考察模量和力学损耗随温度、频率以及其他条件的变化的特性可得到聚合物结构和性能的许多信息,如阻尼特性、相结构及相转变、分子松弛过程、聚合反应动力学等。

1. 实验目的(1)了解聚合物黏弹特性,学会从分子运动的角度来解释高聚物的动态力学行为。

(2)了解聚合物动态力学分析(DMA)原理和方法,学会使用动态力学分析仪测定多频率下聚合物动态力学温度谱。

2. 实验原理高聚物是黏弹性材料之一,具有黏性和弹性固体的特性。

它一方面像弹性材料具有贮存械能的特性,这种特性不消耗能量;另一方面,它又具有像非流体静应力状态下的黏液,会损耗能量而不能贮存能量。

当高分子材料形变时,一部分能量变成位能,一部分能量变成热而损耗。

能量的损耗可由力学阻尼或内摩擦生成的热得到证明。

材料的内耗是很重要的,它不仅是性能的标志,而且也是确定它在工业上的应用和使用环境的条件。

如果一个外应力作用于一个弹性体,产生的应变正比于应力,根据虎克定律,比例常数就是该固体的弹性模量。

形变时产生的能量由物体贮存起来,除去外力物体恢复原状,贮存的能量又释放出来。

如果所用应力是一个周期性变化的力,产生的应变与应力同位相,过程也没有能量损耗。

假如外应力作用于完全黏性的液体,液体产生永久形变,在这个过程中消耗的能量正比于液体的黏度,应变落后于应力90o,如图2-61(a)所示。

聚合物对外力的响应是弹性和黏性两者兼有,这种黏弹性是由于外应力与分子链间相互作用,而分子链又倾向于排列成最低能量的构象。

在周期性应力作用的情况下,这些分子重排跟不上应力变化,造成了应变落后于应力,而且使一部分能量损耗。

聚合物锂电池测试方法和测试标准

聚合物锂电池测试方法和测试标准

项目测试方法达到要求快速充电在环境温度20±5℃的条件下,以200mA恒流充电至4.2V,再以4.2V恒压充电至电流将为4.3mA停止/额定容量在环境温度20±5℃的条件下,电芯在快速充电后1小时内以86mA放电至2.75V所放出的容量≥200mAh开路电压快速充电后24小时内测量≥4.1V 内部阻抗快速充电后用内阻仪测试≤150mΩ循环寿命在环境温度20±5℃的条件下,以200mA进行快速充放电300次的最后一次放电容量≥160mAh低温性能快速充电后在-20±2℃的条件下,以40mA放电的容量≥160mAh 高温性能快速充电后在55±2℃的条件下,以200mA放电的容量≥170mAh 放电平台在环境温度20±5℃的条件下,电芯在快速充电后1小时内以40mA放电至2.75V所放出的容量≥140mAh 荷电保持快速充电后在20±5℃下储存28天,再以40mA放电的容量≥170mAh项目测试方法达到要求恒定湿热性能电芯完全充电后放入温度40±2℃、相对湿度90-95%的恒湿恒热箱中搁置48小时,将电芯取出,在温度为20±5℃的条件下搁置2小时,目测电池外观,以200mAh放电的时间外观无明显鼓胀、锈蚀、冒烟,放电时间≥36min快速充电后,将电芯安装在振动台的台面上,按下面的频率和振幅在X、Y、Z三个方向上从10-55Hz循环扫描振动30min,扫描速率为1oct/min。

振动频率:10~30Hz,单振幅0.38mm;振动频率:30~55Hz,单振幅0.19mm电芯按4.2规定实验结束后,将电芯平均按X、Y、Z三个互相垂直轴向固定在台面上,按下面的要求进行实验:脉冲峰值加速度——100m/s 2;1.2 机械性能聚合物锂离子电池测试方法和测试标准聚合物锂离子电池测试方法和测试标准——402030(200mAh)1.1 电化学性能振动实验外观无明显损伤、开裂、漏液等现象,电芯电压≥3.6V碰撞实验电芯外观无明显损伤、开裂、漏液等现象,电芯电压≥3.6V每分钟碰撞次数——40~80;脉冲持续时间——16ms;总碰撞次数——1000±10自由跌落快速充电后,于1m高处自由跌落到置于水泥地面上的18~20mm厚的硬木板上,从X、Y、Z方向各跌落一次后,进行充放电循环,记录以200mA放电时间外观无明显损伤、开裂、漏液等现象,放电时间≥51min项目测试方法达到要求热冲击电芯快速充电并搁置2h后放置于热箱中,温度以(5±2℃)/min的速率升至130±2℃并保温30min不起火,不爆炸过充电将电芯快速充电并搁置24h后,以600mA恒流充电,直到电芯电压达到5V,电流将到接近零后电芯温度比峰值温度低约10℃不起火,不爆炸钉刺实验电芯快速充电后用一根直径为3~5mm的钢钉从电芯最大的面上穿透电芯不起火,不爆炸重物冲击将电芯快速充电并搁置24h后,用10kg的重锤自1m高度自由落下,冲击固定在夹具中的电芯不起火,不爆炸短路实验将电芯快速充电并搁置24h后,短路其正负极至电芯温度比峰值低约10℃不起火,不爆炸,电芯外表面温度不超过150℃制定:席涛东莞市久森新能源有限公司1.3 安全性能。

聚合物检测方法

聚合物检测方法

聚合物检测方法
1. 光谱分析:包括红外光谱(IR)、紫外可见光谱(UV-Vis)、核磁共振光谱(NMR)等。

这些方法可用于确定聚合物的化学结构、官能团、化学键等信息。

2. 分子量测定:通过凝胶渗透色谱(GPC)或质谱法(MS)等技术,可以测定聚合物的分子量分布、平均分子量和分子量分布宽度等参数。

3. 热分析:热重分析(TGA)、差示扫描量热法(DSC)等热分析技术可用于研究聚合物的热稳定性、熔点、玻璃化转变温度、热分解等特性。

4. 显微镜观察:使用光学显微镜或电子显微镜可以观察聚合物的形态、晶体结构、相分离等微观结构信息。

5. 力学性能测试:包括拉伸试验、弯曲试验、冲击试验等,用于评估聚合物的力学强度、韧性、弹性等性能。

6. 元素分析:通过元素分析仪可以测定聚合物中各元素的含量,例如碳、氢、氧、氮等元素的比例。

7. 流变性能测试:使用流变仪可以测量聚合物的黏度、弹性、熔体流动等流变学特性。

8. 老化试验:进行加速老化或自然老化试验,以评估聚合物在长期使用或暴露条件下的稳定性和耐久性。

这些方法可以单独或结合使用,根据具体的需求和应用选择合适的检测方法。

聚合物检测有助于评估材料的质量、性能和可靠性,对于材料科学研究、产品开发和质量控制具有重要意义。

高分子成型加工实验(转矩流变仪实验 )

高分子成型加工实验(转矩流变仪实验 )

负荷 2.160 0.325 2.160 5.000 10.000 21.600 5.000 10.000 10.000 0.325 1.200 2.160 3.800 5.000 0.325 1.200
标 准 试 验 条 件
常见塑料试验条件
塑料种类 聚乙烯 实验序号 塑料种类 1、2、3、 4、6 ABS 聚苯醚 聚碳酸酯 实验序号 7、9 12、14 16 塑料种类 聚甲醛 实验序号 3
4. 实验步骤
为便于对试样的测试结果进行比较, 称量 为便于对试样的测试结果进行比较,每次应称取 相同质量的试样。 相同质量的试样。 合上总电源开关,打开扭矩流变仪上的开关(这时手动 合上总电源开关,打开扭矩流变仪上的开关 这时手动 面 的指示灯变亮), 板上 STOP和PROGRAM的指示灯变亮 ,开启计算 和 的指示灯变亮 机; 10min后按下手动面板上的 后按下手动面板上的START,这时START上的指 ,这时 上的指 后按下手动面板上的 示灯变亮; 示灯变亮; 双击计算机桌面的转矩流变仪应用软件图标, 双击计算机桌面的转矩流变仪应用软件图标,然后按照 一系列的操作步骤( 一系列的操作步骤(由实验教师对照计算机向学生讲解 完成),通过这些操作,完成实验所需温度、 ),通过这些操作 完成),通过这些操作,完成实验所需温度、转子转速 及时间的设定; 及时间的设定;
5.思考题 思考题
的典型转矩- (1)图1-3为PVC的典型转矩-时间流变曲线。曲线上 ) 为 的典型转矩 时间流变曲线。 有三个峰。分别指出三个峰代表的意义。 有三个峰。分别指出三个峰代表的意义。 (2)转矩流变仪在聚合物成型加工中有哪些方面的应用? )转矩流变仪在聚合物成型加工中有哪些方面的应用? (3)加料量、转速、测试温度对实验结果有哪些影响? )加料量、转速、测试温度对实验结果有哪些影响?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验六聚合物的冲击性能测试
一、实验目的
1.了解高分子材料的冲击性能。

2.理解ZBC-4型简支梁冲击实验机测试聚合物冲击性能的基本原理,
熟悉其使用的基本操作。

二、实验原理
冲击性能测试在摆锤打击简支梁试样的中央,使试样受到冲击而断裂,试样断裂时单位宽度所消耗的冲击功即为冲击强度。

其原理是将试样安防在简支梁冲击机的规定位置上然后利用摆锤自由落下,对试样施加冲击弯曲负荷,使试样破裂。

用试样单位截面积所消耗的冲击功来评价材料的耐冲击韧性。

冲击试验的方法很多,根据实验温度可分为常温冲击、低温冲击和高温冲击三种,依据试样的受力状态,可分为摆锤式弯曲冲击(包括简支梁冲击GB1043和悬臂梁冲击GB1843),拉伸冲击、扭转冲击和剪切冲击;依据才用过的能量和冲击次数,可分为大能量的一次冲击(简称一次冲击试验或落锤冲击实验GB11548)和小能量的多次冲击实验(简称多次冲击实验),不同材料或不同用途可选择不同的冲击实验方法,由于各种试验方法中试样受力形式和冲击物的几何形状不一样,不同的试验方法所侧得的冲击强度结果不能相互比较。

实验时摆锤挂在机架的杨臂上,摆锤杆的中心线与通过摆锤杆轴心的铅垂线成一角度为α的扬角,此时摆锤具有一定的位能;然后计摆
锤自由落下,在它摆到最低点的瞬间其位能转变为动能;随着试样断裂成两部分,消耗了摆锤的冲击能并使其大大减速;摆锤的剩余能量使摆锤继续升高至—定高度,β为其升角。

加以W 表示探锤的质量.l 为探锤杆的长度,则摆锤的初始功0A 为:
(1cos )A Wl =-0α
(35--1) 若考虑冲断试样时克服的空气阻力和试佯断裂而飞出时所消耗的功,根据能量守恒定律,可用式(35—2)表示:
201(1cos )m 2
A Wl A A A =+++++αββυ (35--2) 通常,式(35—2)后三项都忽略不计,则可简单地把试样断裂时所消耗的功表示为:
0(cos cos )A Wl =+βα (35--3)
式中除β角外均为已知数。

因此,根据摆锤冲断试样后的升角β的数值即可从读数盘直接读取冲断试样时所消耗功的数值。

简支梁冲击试验是使用已加能量的把锤一次性冲击支承成水平梁的试样并使之破坏,冲击线应位于两支座(试样)的正中间.被测试样若为缺口试样,则冲击线应正对缺口;悬臂梁冲击试验则由已知能量的摆锤一次性冲击垂直固定成悬臂梁的试样的自由端,摆锤的冲击线与试样的夹且和试样缺口的中心线相隔—定距离。

根据摆锤的冲击前初始能量与冲击后摆锤的剩余能量之差,确定试样在破坏时所吸收的冲击能量,冲击能量除以冲击截面积,就得到试样的单位截面积所吸收的冲击能量.即冲击强度。

三、实验原料及主要的设备仪器
实验原料:注塑成型实验所得的样品
实验设备仪器:ZBC-4型简支梁冲击实验机和游标卡尺
四、实验步骤
1.实验准备
(1)试样的制备和外观检查,按GBl043--93规定进行;试样的状态调节和实验环境按GB2918规定执行。

(2)试样编号.对于无缺口试样.分别测出试样中部边缘和试样端部中心位置的宽度和厚度,并取其平均值为试样的宽度和厚度.准确至0.02mm;缺口试样应测量缺口处的剩余厚度.测量时应在缺口两端各测一次,取其算术平均值。

(3)熟悉冲击试验机,检查机座是否水平。

(4)在确认仪表的电源连线和信号连线连接无误后,按下控制盒后面的电源开关,使系统上电,上电后约2秒钟,液晶显示屏上显示应正常,否则应检查电气系统是否有故障。

(5)检查冲击试验机是否有规定的冲击速度.并根据试样破坏时所需的能量选择试验机摆锤,使消耗的能量在摆锤总能量的10%~85%内。

若符合这一能量范围的不止一个摆锤时,应该用最大能量的摆锤。

(6)调节刻度盘指针零点,使它在摆锤处于起始位置时与主动针接触。

进行空白实验.保证总摩擦损失不超过摆锤冲击试验机特性参数的规定.否则进行冲击试验机的校准。

2.实验步骤
(1)根据试样尺寸,进行实验机样条跨度L的调节,跨度数值根据试样类型进行选择,参照GB1043—1993执行。

(2)拾起并锁住摆锤,将试样按规定放置在两块撑块上,将面紧贴在直角支座的垂直面上.使冲击刀刃对准试样中心.缺口试样刀刃对准缺口背向的中心位置.如图3-6所示。

(3)选择试验方法:用“试验方法”键进行切换窗口显示。

选择所需要的试验方法。

试验方法包括简支梁和悬臂梁两种。

显示在显示窗口的右下角。

开机记忆上次选择的试验方法。

(4)选择量程:按“量程”键进行切换窗口显示,选择所需要的量程。

显示在显示窗口的中下部位。

(5)输入试样形状、编号、温度。

试样形状默认有缺口试样,试样温度默认值25℃;
按“试样形状”→“数字”→“确认”键,设置试样形状。

按“试样批号”→“数字”→“确认”键,设置试样批号。

按“试样温度”→“数字”→“确认”键,设置试样温度。

(6)预置试样长度、宽度、厚度和缺口深度。

按“试样长度”→“数字”→“确认”键,设置试样长度。

按“试样宽度”→“数字”→“确认”键,设置试样宽度。

按“试样厚度”→“数字”→“确认”键,设置试样厚度。

按“缺口深度”→“数字”→“确认”键,设置试样缺口深度。

默认值为0mm。

(7)待指针拨至满量程位置。

(8)扳动手柄抓钩,平稳释放摆锤.从能量度盘上读取试样吸收的冲击能量并记录。

五、实验注意事项
(1)摆锤举起后,人体各部分都不要伸到重锤下面及摆锤起始处。

(2)冲击实验时注意避免样条碎块伤人。

(3)扳手柄时,用力适当,切忌过猛。

(4)试样冲断后应及时捡回并观察断裂情况是否符合要求。

六、实验数据记录
缺口试样简支梁冲击强度αk
α
k =
A k
b∙d k
×103=
0.5172 J
2.76×9.45
×103=19.8 KJ/m2
式中 A k—缺口试样吸收的冲击能量,J。

b—试样的宽度,mm
d k—缺口试样缺口处剩余厚度,mm
七、实验误差分析
(1)本实验只进行了一次测试,存在的偶然误差较大。

(2)用游标卡尺测量试样的宽度和厚度存在一定的读数误差。

(3)试样的位置会影响试样冲击性能的测试
(4)环境因素的影响。

材料的冲击性能的测试依赖于温度。

相关文档
最新文档