圆锥曲线与方程知识点详细

合集下载

圆锥曲线与方程知识点总结

圆锥曲线与方程知识点总结

圆锥曲线与方程知识点总结圆锥曲线是平面上的一类曲线,由以下方程定义:Ax^2 +By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0。

其中A、B、C、D、E、F、G、H、I、J是常数,且A、B、C不全为0。

圆锥曲线包括椭圆、双曲线和抛物线等。

1. 椭圆:椭圆是圆锥曲线中的一种类型,由以下方程定义:Ax^2 +By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0。

若B^2 - 4AC < 0,则为椭圆。

椭圆是一个封闭的曲线,其特点是到两个焦点的距离和固定。

椭圆在几何中有重要的应用,如椭圆的焦点在天文学中用于描述行星和卫星的轨道。

2. 双曲线:双曲线是圆锥曲线中的一种类型,由以下方程定义:Ax^2 +By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0。

若B^2 - 4AC > 0,则为双曲线。

双曲线有两个分支,其特点是到两个焦点的距离差固定。

双曲线在几何中也有广泛的应用,如描述光线在反射和折射中的路径。

3. 抛物线:抛物线是圆锥曲线中的一种类型,由以下方程定义:Ax^2 +By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0。

若B^2 - 4AC = 0,则为抛物线。

抛物线是一个开口向上或向下的曲线,与焦点的距离等于到准线的距离。

抛物线在物理学、工程学和建筑学等领域中有重要的应用,如描述抛物面的形状。

4. 圆锥曲线的性质:(i) 对称性:圆锥曲线可以关于x轴、y轴、z轴和原点对称。

(ii) 焦点:圆锥曲线有1个或2个焦点,焦点是与曲线特定性质相关的重要点。

(iii) 准线:圆锥曲线有1条或2条准线,准线是与曲线特定性质相关的重要线。

(iv) 渐近线:双曲线有两条渐近线,抛物线有一条渐近线。

圆锥曲线方程知识点总结

圆锥曲线方程知识点总结

圆锥曲线方程知识点总结圆锥曲线是解析几何中的重要内容,它包括圆、椭圆、双曲线和抛物线四种曲线。

在学习圆锥曲线的方程时,我们需要掌握各种曲线的标准方程、一般方程以及一些重要的性质和定理。

接下来,我们将对圆锥曲线方程的知识点进行总结,希望能够帮助大家更好地理解和掌握这一部分内容。

首先,我们来看圆的方程。

圆的标准方程是(x-a)² + (y-b)² = r²,其中(a, b)为圆心坐标,r为半径。

而圆的一般方程是x² + y² + Dx + Ey + F = 0,其中D、E、F为常数。

在解析几何中,我们需要掌握如何由标准方程转化为一般方程,以及如何由已知条件确定圆的方程。

其次,我们来看椭圆的方程。

椭圆的标准方程是(x/a)² + (y/b)² = 1,其中a和b 分别为椭圆在x轴和y轴上的半轴长。

椭圆的一般方程是Ax² + By² + Cx + Dy + E = 0,其中A、B、C、D、E为常数。

在学习椭圆的方程时,我们需要了解椭圆的离心率、焦点、长轴、短轴等重要概念,以及它们之间的关系。

接着,我们来看双曲线的方程。

双曲线分为两种类型,一种是横轴为对称轴的双曲线,另一种是纵轴为对称轴的双曲线。

横轴为对称轴的双曲线的标准方程是(x/a)² (y/b)² = 1,而纵轴为对称轴的双曲线的标准方程是(y/b)² (x/a)² = 1。

双曲线的一般方程也是由这些标准方程推导而来,我们需要掌握如何进行转化和确定双曲线的方程。

最后,我们来看抛物线的方程。

抛物线分为两种类型,一种是开口向上的抛物线,另一种是开口向下的抛物线。

开口向上的抛物线的标准方程是y² = 2px,开口向下的抛物线的标准方程是y² = -2px。

抛物线的一般方程也可以由这些标准方程推导而来,我们需要了解抛物线的焦点、准线、顶点等重要性质。

2023年高考数学复习:圆锥曲线的方程与性质

2023年高考数学复习:圆锥曲线的方程与性质
所以 c2=5a2,所以 e= 5.
3 考点三 抛物线的几何性质
PART THREE
核心提炼
抛物线的焦点弦的几个常见结论:
设AB是过抛物线y2=2px(p>0)的焦点F的弦,
若A(x1,y1),B(x2,y2),α是弦AB的倾斜角,则 (1)x1x2=p42,y1y2=-p2. (2)|AB|=x1+x2+p=si2np2α . (3)|F1A|+|F1B|=2p. (4)以线段 AB 为直径的圆与准线 x=-p2相切.
规律 方法
(1)在“焦点三角形”中,常利用正弦定理、余弦定理,结合椭圆
(或双曲线)的定义,运用平方的方法,建立与|PF1|·|PF2|的联系. (2)确定椭圆和双曲线的离心率的值及范围,其关键就是确立一个关 于a,b,c的等量关系或不等关系,然后用a,c代换b,进而求 ac 的值. (3)求双曲线渐近线方程的关键在于求ba或ab的值,也可将双曲线方程 中等号右边的“1”变为“0”,然后因式分解得到.
考向1 椭圆、双曲线的几何性质
例 2 (1)已知椭圆 C:ax22+by22=1(a>b>0)的左、右焦点分别为 F1,F2, 短轴长为 2,O 为坐标原点,点 P 在 C 上且|OP|=c(c 为椭圆 C 的半焦
距),直线 PF2 与 C 交于另一个点 Q,若 tan∠F1QF2=34,则椭圆 C 的长 轴长为
(2)(2021·全国乙卷)设 B 是椭圆 C:ax22+by22=1(a>b>0)的上顶点,若 C 上的
任意一点 P 都满足|PB|≤2b,则 C 的离心率的取值范围是
A.
22,1
B.12,1

C.0,
2
2
D.0,12

圆锥曲线公式及知识点总结

圆锥曲线公式及知识点总结

圆锥曲线公式及知识点总结圆锥曲线的统一定义:到定点的距离与到定直线的距离的商是常数e的点的轨迹。

数学里有很多公式,为了帮助大家更好的学习数学,小编特地为大家整理了圆锥曲线公式及知识点总结,希望对大家的数学学习有帮助。

圆锥曲线公式:椭圆1、中心在原点,焦点在x轴上的椭圆标准方程:其中x²/a²+y²/b²=1,其中a>b>0,c²=a²-b²2、中心在原点,焦点在y轴上的椭圆标准方程:y²/a²+x²/b²=1,其中a>b>0,c²=a²-b²参数方程:x=acosθ;y=bsinθ(θ为参数,0≤θ≤2π)圆锥曲线公式:双曲线1、中心在原点,焦点在x轴上的双曲线标准方程:x²/a-y²/b²=1,其中a>0,b>0,c²=a²+b².2、中心在原点,焦点在y轴上的双曲线标准方程:y²/a²-x²/b²=1,其中a>0,b>0,c²=a²+b².参数方程:x=asecθ;y=btanθ(θ为参数)圆锥曲线公式:抛物线参数方程:x=2pt²;y=2pt(t为参数)t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0直角坐标:y=ax²+bx+c(开口方向为y轴,a≠0)x=ay²+by+c(开口方向为x轴,a≠0)离心率椭圆,双曲线,抛物线这些圆锥曲线有统一的定义:平面上,到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。

且当01时为双曲线。

圆锥曲线公式知识点总结圆锥曲线椭圆双曲线抛物线标准方程x²/a²+y²/b²=1(a>b>0)x²/a²-y²/b²=1(a>0,b>0)y²=2px(p>0)范围x∈[-a,a]x∈(-∞,-a]∪[a,+∞)x∈[0,+∞)y∈[-b,b]y∈Ry∈R对称性关于x轴,y轴,原点对称关于x轴,y轴,原点对称关于x轴对称顶点(a,0),(-a,0),(0,b),(0,-b)(a,0),(-a,0)(0,0)焦点(c,0),(-c,0)(c,0),(-c,0) (p/2,0)【其中c²=a²-b²】【其中c²=a²+b²】准线x=±a²/cx=±a²/cx=-p/2渐近线——————y=±(b/a)x—————离心率。

(完整版)《圆锥曲线》主要知识点

(完整版)《圆锥曲线》主要知识点

圆锥曲线与方程知识要点一、椭圆方程. 1、椭圆的定义:平面内与两个定点尸卜F 2,点P 满足IP 用+1尸/2∣=2α>2∣,则点P 的轨迹是 平面内与两个定点尸八F 2,点尸满足IP 居|+|Pq=2z=∣FE ∣,则点尸的轨迹是 平面内与两个定点尸I 、F 2,点P 满足IPFJ+1PKI=2〃<忻八|,则点P 的轨迹是 2X 2V 2若户是椭圆:-τ+J=I 上的点为焦点,若NF1P 户产氏则AT//2的面积为ab3、点与椭圆、直线与椭圆的位置关系9 2⑴点Pa0,比)与椭圆E+g=1(α>b>0)的位置关系:①点尸在椭圆上O;②点P 在椭圆内部=;③点P 在椭圆外部Q.(2)直线尸履+〃?与椭圆,+方=1(α>Z>O)的位置关系判断方法:消y 得一个一元二次方程是: _____________________________________________________v(3)弦长公式:设直线方程为),=履+加(%0),椭圆方程为/+方=1(α>b>0)或方+∕=1(α>b>0),直线与椭圆的两个交点为A(X1,yι),3(X2,)力则∣A8∣=N(为一7)2+(小一”)2,Λ∖AB∖=7(X1X2)2+(如一g)2=<1+F∙d(X1-X2)2=y∣I+*7(X1+切)4_¥1囚,或HB1=d(i>1⅛2)+(上_1)2=[]+、•'(%_")2=^1+.XJ(>1+>2)2_领/其中,即+“2,汨M 或“+”,V”的值,可通过由直线方程与椭圆方程联立消去y或X后得到关于X或y的一元二次方程得到.2 2(4)直线/:y=Ax+m与椭圆:二+与=1(α>/?>0)的两个交点为Aa1,y),8(如力),a'b~弦A8的中点M(X0,州),则2=(用X0,州表示)二、双曲线方程.1、双曲线的定义:平面内与两个定点尸I、F2,点尸满足归/JTPgh2々<囚尸21则点尸的轨迹是平面内与两个定点尸卜尸2,点尸满足仍PJTPW=2α>巴川,则点P的轨迹是平面内与两个定点尸1、尸2,点P满足归尸]|-|尸/』=2〃=|尸尸小则点P的轨迹是21等轴双曲线:双曲线“2_,2=±『称为等轴双曲线,其渐近线方程为,离心率《=2 2(2)共渐近线的双曲线系方程:二-1?=”之0°)的渐近线方程为_________________a~Zr如果双曲线的渐近线为±±2=0时,它的双曲线方程可设为 ____________________ .ab(3)从双曲线一个焦点到一条渐近线的距离等于.3、直线与双曲线的位置关系r2V2(1)一般地,设直线/:y=kxΛ-m……①双曲线C:^-p=1(α>O,bX))……②把①代入②得关于X的一元二次方程为.①当〃一"仆=O时,直线/与双曲线的渐近线,直线与双曲线C.②当/一/炉和时,/>0=直线与双曲线有公共点,此时称直线与双曲线:/=0=直线与双曲线有公共点,此时称直线与双曲线:/<0=直线与双曲线公共点,此时称直线与双曲线.注意:直线和双曲线只有一个公共点时,直线不一定与双曲线相切,当直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点.AB的中点M(xo>h),则A=(用必,yo表示)三、抛物线方程.1、抛物线的定义平面内与一个定点尸和一条定直线/(不经过点F)的点的轨迹叫做抛物线.点尸叫做抛物线的,直线/叫做抛物线的.思考1:平面内与一个定点F和一条定直线/(/经过点F),点的轨迹是2、抛物线的性质:3、抛物线的焦点弦的性质1.如图,A8是抛物线y2=2pMp>0)过焦点尸的一条弦,设Aa∣,》)、8(及,工),AB的中点MX°,并),相应的准线为/.(1)以AB为直径的圆必与准线/的位置关系是:(2)HB1=(焦点弦长用中点M的坐标表示);(3)若直线AB的倾斜角为α,则∣A8∣=(焦点弦长用倾斜角为α表示);如当α=90。

圆锥曲线方程知识点总结

圆锥曲线方程知识点总结

圆锥曲线方程知识点总结一、圆锥曲线的基本方程椭圆的标准方程如下:$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. (a > b > 0)$$其中椭圆的长轴为$2a$,短轴为$2b$,焦距为$\sqrt{a^2 - b^2}$,离心率为$c/a$。

双曲线的标准方程如下:$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. (a > 0, b > 0)$$其中双曲线的两个分支的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$。

抛物线的标准方程如下:$$x^2 = 4ay. (a > 0)$$其中抛物线的焦点为$(0, a)$,顶点为$(0, 0)$。

二、圆锥曲线的参数方程圆锥曲线还可以用参数方程表示。

以椭圆为例,其参数方程为:$$\begin{cases}x = a \cos \theta, \\y = b \sin \theta. \\\end{cases}$$其中$\theta$的取值范围为$[0, 2\pi]$。

双曲线和抛物线的参数方程也可以类似地表示。

三、圆锥曲线的极坐标方程圆锥曲线还可以用极坐标方程表示。

以椭圆为例,其极坐标方程为:$$r = \frac{ab}{\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}}.$$其中$r$为极径,$\theta$为极角。

双曲线和抛物线的极坐标方程也可以类似地表示。

四、圆锥曲线的性质1. 圆锥曲线关于坐标轴的对称性:- 椭圆关于$x$轴和$y$轴都对称;- 双曲线关于$x$轴和$y$轴都对称;- 抛物线关于$y$轴对称。

2. 圆锥曲线的焦点、直径、离心率等:- 椭圆的焦点到中心的距离为$c = \sqrt{a^2 - b^2}$,离心率为$e = c/a$;- 双曲线的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$,离心率为$e = c/a$;- 抛物线的焦点到中心的距离为$c = a$,离心率为$e = 1$。

第3章圆锥曲线的方程知识点汇总

第3章圆锥曲线的方程知识点汇总

p 2
x p 2
x p 2
y p 2
y p 2
过抛物线的焦点且垂直于对称轴的弦称为通径: HH 2 p
AB x1 x2 p 参数 p 表示焦点到准线的距离, p 越大,开口越阔
谢谢观看!
A1 a,0 、 A2 a,0
A1 0, a 、 A2 0,a
实轴的长 2a
虚轴的长 2b
关于 x 轴、 y 轴对称,关于原点中心对称
F1 c,0 、 F2 c,0
F1 0, c 、 F2 0,c
F1F2 2c (c2 a2 b2)
3.2 双曲线
a,b, c 关系
离心率
渐近线方程 焦点到渐近线
图形
标准方程
顶点 离心率 对称轴
y2 2 px
y2 2 px
x2 2 py
x2 2 py
p 0
p 0
p 0
p 0
0, 0
e 1
x轴
y轴
3.3 抛物线
范围
焦点
准线方程
通径 焦点弦长
公式
参数 p 的
几何意义
x0
x0
y0
y0
F
p 2
,
0
F
p 2
,
0
F
0,
p 2ቤተ መጻሕፍቲ ባይዱ
F
0,
第3章 圆锥曲线的方程知识点汇总
3.1 椭圆
定义 焦点的位置
平面内与两个定点 F1 、 F2 的距离的和等于常数 2a (大于| F1F2 | 2 c )的点的
轨迹叫椭圆,两个定点叫椭圆的焦点,两焦点间的距离叫做椭圆的焦距.
焦点在 x 轴上
焦点在 y 轴上
图形

高二圆锥曲线与方程知识点

高二圆锥曲线与方程知识点

高二圆锥曲线与方程知识点在高二数学学习中,圆锥曲线与方程是一个重要的知识点,它涉及到二元一次方程、抛物线、椭圆和双曲线等内容。

掌握这些知识点不仅能够帮助我们解决实际问题,也是高中数学学习的基础。

本文将从二元一次方程和三种圆锥曲线入手,详细介绍高二圆锥曲线与方程的相关知识点。

一、二元一次方程1. 二元一次方程的基本形式是:Ax + By + C = 0,其中A、B、C是已知数,且A和B不同时为零。

2. 当A和B同时为零时,方程没有解。

3. 当A或B有且只有一个为零时,方程有唯一解。

4. 当A和B都不为零时,方程有无数解,这类方程表示一条直线。

二、抛物线1. 抛物线的标准方程是:y = ax² + bx + c,其中a≠0,a、b、c为常数。

2. 抛物线开口方向由a的正负决定,a>0表示抛物线开口向上,a<0表示抛物线开口向下。

3. 抛物线的顶点坐标为(-b/2a, c-b²/4a)。

4. 抛物线的对称轴与x轴平行,方程为x = -b/2a。

三、椭圆1. 椭圆的标准方程是:(x-h)²/a² + (y-k)²/b² = 1,其中a、b分别表示椭圆长半轴和短半轴的长度,(h, k)表示椭圆的中心坐标。

2. 椭圆是关于x轴和y轴对称的。

3. 椭圆的焦点到中心的距离称为焦距,焦距的长度等于椭圆的长半轴长度。

4. 椭圆的离心率ε = c/a,其中c表示焦距的长度。

四、双曲线1. 双曲线的标准方程是:(x-h)²/a² - (y-k)²/b² = 1,其中a、b分别表示双曲线横轴和纵轴的半轴长度,(h, k)表示双曲线的中心坐标。

2. 双曲线是关于x轴和y轴对称的。

3. 双曲线的焦点到中心的距离称为焦距,焦距的长度等于双曲线的横半轴长度。

4. 双曲线的离心率ε = c/a,其中c表示焦距的长度。

五、总结通过学习高二圆锥曲线与方程的知识点,我们可以应用它们解决一些实际问题。

圆锥曲线知识点总结

圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线是平面上的一类重要的几何曲线,由易知,它们具有各种各样的性质和特点,广泛应用于数学、物理、工程等领域。

下面将对圆锥曲线的基本概念、方程及其性质进行简要总结。

一、圆锥曲线的基本概念圆锥曲线是由平面和圆锥交于一条封闭曲线形成的曲线。

根据圆锥和平面的位置关系,可以分为椭圆、抛物线和双曲线三类。

(一)椭圆当切割平面与圆锥的两部分相交时,形成椭圆。

椭圆有两个焦点,与这两个焦点的距离之和是常数。

椭圆的方程常用标准方程表示为:(x/a)² + (y/b)² = 1,其中a和b分别表示椭圆的长轴和短轴长度。

(二)抛物线当切割平面与圆锥的一部分相交时,形成抛物线。

抛物线是一条对称曲线,其开口方向由切割平面的位置决定。

抛物线的方程常用标准方程表示为:y = ax²,其中a为常数。

(三)双曲线当切割平面与圆锥的两部分不相交时,形成双曲线。

双曲线有两个焦点,与这两个焦点的距离之差是常数。

双曲线的方程常用标准方程表示为:(x/a)² - (y/b)² = 1,其中a和b分别表示双曲线的长轴和短轴长度。

二、圆锥曲线的方程(一)椭圆的一般方程椭圆的一般方程为:Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C、D、E和F为常数。

(二)抛物线的一般方程抛物线的一般方程为:Ay² + Bx + C = 0,其中A、B和C为常数。

(三)双曲线的一般方程双曲线的一般方程为:Ax² + Bxy + Cy² + Dx + Ey + F = 0,其中A、B、C、D、E和F为常数,且B² - 4AC > 0。

三、圆锥曲线的性质(一)椭圆的性质1. 椭圆是一个闭合曲线,对称于x轴和y轴。

2. 椭圆的长轴和短轴分别与x轴和y轴平行。

3. 椭圆有两个焦点,对称于椭圆的长轴上。

圆锥曲线知识点总结

圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线是二维平面上的几何图形,由直角圆锥与一个平面相交而产生。

它在数学、物理、工程和计算机图形等领域具有广泛的应用。

本文将对圆锥曲线的基本概念、方程、性质和应用进行总结。

一、基本概念1. 定义:圆锥曲线可以分为三种类型,即椭圆、抛物线和双曲线。

它们的定义分别是:- 椭圆:平面上到两个定点的距离之和等于常数的点的集合。

- 抛物线:平面上到一个定点的距离等于定直线的距离的点的集合。

- 双曲线:平面上到两个定点的距离之差等于常数的点的集合。

2. 方程形式:圆锥曲线可以以各种形式的方程表示。

常见的方程形式包括标准方程、参数方程和极坐标方程。

二、椭圆1. 基本性质:椭圆是一个闭合的曲线,两个焦点之间的距离是常数,而离心率小于1。

椭圆对称于两个坐标轴,并且具有两个主轴和两个焦点。

2. 椭圆的方程:椭圆的标准方程是(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)是椭圆的中心坐标,a和b分别是两个半轴的长度。

3. 参数方程:椭圆的参数方程是x = h + a*cos(t),y = k + b*sin(t),其中t是参数的角度。

4. 极坐标方程:椭圆的极坐标方程是r = (a*b) / sqrt((b*cos(t))² + (a*sin(t))²),其中r是极径,t是极角。

5. 应用:椭圆在日常生活中有多种应用,例如天体运动的轨道、水平仪和椭圆形浴缸等。

三、抛物线1. 基本性质:抛物线是一个开放的曲线,焦点和直线称为准线。

抛物线对称于准线,并且具有一个顶点。

2. 抛物线的方程:抛物线的标准方程是y = a*x² + b*x + c,其中a、b和c是常数。

3. 参数方程:抛物线的参数方程是x = t,y = a*t² + b*t + c,其中t是参数。

4. 极坐标方程:抛物线没有显式的极坐标方程。

5. 应用:抛物线在物理学、工程学和天文学中有多种应用,例如抛物线反射器、天体运动的近似模型和喷泉水流的轨迹等。

圆锥曲线知识点总结

圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线是解析几何中的重要内容,由平面与一个双曲面、椭圆面或者抛物线面相交而得到。

在高中数学课程中,学习圆锥曲线是必不可少的。

本文将对圆锥曲线的定义、基本方程、性质和应用进行总结。

一、圆锥曲线的定义圆锥曲线就是平面与一个双曲面、椭圆面或者抛物线面相交而得到的曲线,在平面上的图像可以呈现出不同的形状。

二、圆锥曲线的基本方程1. 双曲线:双曲线的基本方程为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$。

其中,a和b分别为椭圆的两个半轴。

2. 椭圆:椭圆的基本方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。

其中,a和b分别为椭圆的两个半轴。

3. 抛物线:抛物线的基本方程为:$y^2=2px$。

其中,p为抛物线的焦距。

三、圆锥曲线的性质1. 双曲线的性质:双曲线的两个分支镜像对称于原点,焦点到曲线的距离之差为常数。

双曲线还具有渐近线,即曲线趋近于两根直线。

2. 椭圆的性质:椭圆的两个焦点在椭圆的长轴上,且焦点到任意点的距离之和为常数。

此外,椭圆也具有主轴、短轴和焦距等重要概念。

3. 抛物线的性质:抛物线的焦点位于抛物线的顶点上,且焦点到抛物线上任意点的距离等于焦点到该点的法线距离。

四、圆锥曲线的应用1. 双曲线的应用:双曲线在电磁学中有广泛的应用,例如电磁波的传播、天线的辐射以及电磁场分布等方面。

2. 椭圆的应用:椭圆在力学、天文学和导航等领域有着重要的应用。

例如椭圆轨道运动的物体、天体运动规律的研究以及导航系统中的卫星轨道等。

3. 抛物线的应用:抛物线在物理学和工程学中有着广泛的应用。

例如自由落体运动、射击运动以及卫星的发射轨道等。

综上所述,圆锥曲线是解析几何中的重要内容,通过本文的总结,我们了解了圆锥曲线的定义、基本方程、性质和应用。

在学习过程中,我们需要深入理解每个曲线的特点和应用领域,为解决实际问题提供有力的数学工具。

希望本文对你对圆锥曲线的学习有所帮助。

圆锥曲线知识点 总结

圆锥曲线知识点 总结

圆锥曲线知识点总结1. 圆锥曲线的定义圆锥曲线是指平面内由圆锥截面形成的曲线。

圆锥曲线包括圆、椭圆、双曲线、抛物线等类型。

它们的定义方式如下:- 圆:如果平面内的一条曲线上到定点的距离恒定,那么这条曲线就是一个圆。

- 椭圆:平面内的一条曲线上到两个定点的距离之和恒定,这条曲线就是椭圆。

- 双曲线:平面内的一条曲线上到两个定点的距离之差恒定,这条曲线就是双曲线。

- 抛物线:平面内的一条曲线上到定点的距离等于到直线的距离,这条曲线就是抛物线。

2. 圆锥曲线的基本性质圆锥曲线具有一些共同的基本性质,对于不同的类型曲线具有不同的特点:- 对称性:圆锥曲线可能具有对称轴,可以对称于直线、坐标轴、原点或其他特定点。

- 过焦点性质:圆锥曲线上的任意一点到焦点的距离与到焦距的距离之和始终是一个固定值。

- 直径性质:圆锥曲线可能有两个焦点,双曲线、椭圆和抛物线有两个焦点,而圆只有一个焦点。

- 渐近线性质:双曲线和椭圆的曲线可能有渐近线,这些渐近线与曲线的某些特定方向趋近的直线。

3. 圆锥曲线的参数方程圆锥曲线可以用参数方程来表示。

参数方程是指用参数来表示一个函数或曲线的方程。

对于椭圆、双曲线等圆锥曲线,它们的参数方程可以表示为:- 椭圆:x=a*cos(t) ,y=b*sin(t) 0≤t≤2π- 双曲线:x=a*cosh(t) , y=b*sinh(t) -∞<t<+∞4. 圆锥曲线的极坐标方程圆锥曲线还可以用极坐标方程来表示。

极坐标方程是指用极坐标来表示一个函数或曲线的方程。

对于椭圆、双曲线等圆锥曲线,它们的极坐标方程可以表示为:- 椭圆:r(t)=a(1-e^2)/(1+e*cos(t))- 双曲线:r(t)=a(1+e*cos(t))5. 圆锥曲线的焦点和直径对于圆锥曲线来说,焦点和直径是它们的重要性质。

焦点是指椭圆、双曲线、抛物线曲线上的两个固定点,直径是指通过焦点的直线。

6. 圆锥曲线的渐近线部分圆锥曲线,如双曲线和椭圆,可能存在渐近线。

圆锥曲线与方程知识点详细

圆锥曲线与方程知识点详细

圆锥曲线与方程知识点详细圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线。

它们在数学、物理等领域都有着广泛的应用。

接下来,让我们详细了解一下圆锥曲线与方程的相关知识点。

一、椭圆1、定义平面内与两个定点$F_1$、$F_2$的距离之和等于常数(大于$|F_1F_2|$)的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距。

2、标准方程焦点在$x$轴上:$\frac{x^2}{a^2} +\frac{y^2}{b^2} =1$($a > b > 0$),其中$a$为椭圆的长半轴长,$b$为椭圆的短半轴长,$c =\sqrt{a^2 b^2}$为半焦距。

焦点在$y$轴上:$\frac{y^2}{a^2} +\frac{x^2}{b^2} =1$($a > b > 0$)。

3、椭圆的性质(1)范围:对于焦点在$x$轴上的椭圆,$a \leq x \leq a$,$b \leq y \leq b$;对于焦点在$y$轴上的椭圆,$b \leq x \leq b$,$a \leq y \leq a$。

(2)对称性:椭圆关于$x$轴、$y$轴和原点对称。

(3)顶点:焦点在$x$轴上的椭圆的顶点为$(\pm a, 0)$,$(0, \pm b)$;焦点在$y$轴上的椭圆的顶点为$(0, \pm a)$,$(\pm b, 0)$。

(4)离心率:$e =\frac{c}{a}$($0 < e < 1$),离心率反映了椭圆的扁平程度,$e$越接近$0$,椭圆越圆;$e$越接近$1$,椭圆越扁。

二、双曲线1、定义平面内与两个定点$F_1$、$F_2$的距离之差的绝对值等于常数(小于$|F_1F_2|$)的点的轨迹叫做双曲线。

这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距。

2、标准方程焦点在$x$轴上:$\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$,其中$a > 0$,$b > 0$,$c =\sqrt{a^2 + b^2}$。

高二数学圆锥曲线方程知识点归纳

高二数学圆锥曲线方程知识点归纳

高二数学圆锥曲线方程知识点归纳
高二数学圆锥曲线方程知识点归纳
在现实学习生活中,很多人都经常追着老师们要知识点吧,知识点就是一些常考的内容,或者考试经常出题的地方。

那么,都有哪些知识点呢?下面是店铺为大家整理的高二数学圆锥曲线方程知识点归纳,供大家参考借鉴,希望可以帮助到有需要的朋友。

1、椭圆:①方程(a0)注意还有一个;②定义: |PF1|+|PF2|=2a ③ e= ④长轴长为2a,短轴长为2b,焦距为2c; a2=b2+c2 ;
2、双曲线:①方程(a,b0) 注意还有一个;②定义: ||PF1|-|PF2||=2a ③e= ;④实轴长为2a,虚轴长为2b,焦距为2c;渐进线或c2=a2+b2
3、抛物线:①方程y2=2px注意还有三个,能区别开口方向; ②定义:|PF|=d焦点F( ,0),准线x=- ;③焦半径 ; 焦点弦=x1+x2+p;
4、直线被圆锥曲线截得的弦长公式:
5、注意解析几何与向量结合问题:1、 , . (1) ;(2) .
2、数量积的定义:已知两个非零向量a和b,它们的夹角为,则数量|a||b|cos叫做a与b的'数量积,记作ab,即
3、模的计算:|a|= . 算模可以先算向量的平方
4、向量的运算过程中完全平方公式等照样适用
【高二数学圆锥曲线方程知识点归纳】。

圆锥曲线知识点公式大全

圆锥曲线知识点公式大全

圆锥曲线知识点公式大全圆锥曲线是平面上的一类曲线,包括椭圆、双曲线和抛物线。

它们都可以由一个动点(焦点)和一条定点到动点距离与到一条给定直线距离之比(离心率)确定。

1.椭圆的定义方程:(x/a)² + (y/b)² = 1,其中a和b分别是椭圆的两条半轴的长度。

2.长轴和短轴:长轴的长度是2a,短轴的长度是2b。

焦距是c,满足c² = a² - b²。

3.离心率:离心率用e表示,e² = 1 - (b²/a²)。

离心率是一个衡量椭圆形状的指标,e=0表示圆。

4.双曲线的定义方程:(x/a)² - (y/b)² = 1或(y/b)² - (x/a)² = 1,其中a和b分别是双曲线的两条半轴的长度。

5.双曲线的焦点和离心率:双曲线有两个焦点和两条渐近线,焦点到双曲线上的任意一点的距离与焦距之差的绝对值恒等于离心率。

6.抛物线的定义方程:y² = 4ax或x² = 4ay,其中a是抛物线的焦点到准线的垂直距离。

7.抛物线的焦点和准线:焦点是抛物线上的一个特殊点,准线是与焦点对称的一条直线。

以上是圆锥曲线的基本知识点和公式。

除此之外,还有一些拓展的知识点:-增量曲线:当焦点和准线都在y轴上时,圆锥曲线的公式可以表达为任意形式的增量曲线,如二次抛物线、双曲线等。

-参数方程:圆锥曲线也可以用参数方程表示,其中x = x(t)和y = y(t)是关于参数t的函数,通常t的取值范围是一个区间。

-极坐标方程:圆锥曲线也可以用极坐标方程表示,其中r = r(θ)是关于极角θ的函数。

-高斯曲率:圆锥曲线在不同点处的曲率有所不同,而高斯曲率是描述曲面曲率性质的一个指标。

对于圆锥曲线来说,高斯曲率恒为常数。

希望以上信息能对你有所帮助!如果您还有其他问题,请随时提问。

圆锥曲线公式及知识点总结

圆锥曲线公式及知识点总结

2022圆锥曲线公式及知识点总结圆锥曲线公式及知识点总结圆锥曲线公式:椭圆1、中心在原点,焦点在x轴上的椭圆标准方程:其中x?/a?+y?/b?=1,其中ab0,c?=a?-b?2、中心在原点,焦点在y轴上的椭圆标准方程:y?/a?+x?/b?=1,其中ab0,c?=a?-b?参数方程:x=acosθ;y=bsinθ(θ为参数,0≤θ≤2π)圆锥曲线公式:双曲线1、中心在原点,焦点在x轴上的双曲线标准方程:x?/a-y?/b?=1,其中a0,b0,c?=a?+b?.2、中心在原点,焦点在y轴上的双曲线标准方程:y?/a?-x?/b?=1,其中a0,b0,c?=a?+b?.参数方程:x=asecθ;y=btanθ(θ为参数)圆锥曲线公式:抛物线参数方程:x=2pt?;y=2pt(t为参数)t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t可等于0直角坐标:y=ax?+bx+c(开口方向为y轴,a≠0)x=ay?+by+c(开口方向为x 轴,a≠0)离心率椭圆,双曲线,抛物线这些圆锥曲线有统一的定义:平面上,到定点的距离与到定直线的距离的比e是常数的点的轨迹叫做圆锥曲线。

且当0e1时为双曲线。

圆锥的具体构成圆锥的高:圆锥的顶点到圆锥的底面圆心之间的最短距离叫做圆锥的高;圆锥母线:圆锥的侧面展开形成的扇形的半径、底面圆周上任意一点到顶点的距离。

圆锥的侧面积:将圆锥的侧面沿母线展开,是一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长.圆锥的侧面积就是弧长为圆锥底面的周长×母线/2;没展开时是一个曲面。

圆锥有一个底面、一个侧面、一个顶点、一条高、无数条母线,且底面展开图为一圆形,侧面展开图是扇形。

圆锥体的展开图在绘制指定圆锥的展开图时,一般知道a(母线长)和d(底面直径)∵弧AB=⊙O的周长∴弧AB=πd∵弧AB=2πa(∠1/360°)∴2πa(∠1/360°)=πd∴2a(∠1/360°)=d将a,d带入2a(∠1/360°)=d得到∠1的值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

椭圆1、椭圆的第一定义:平面内一个动点P 到两个定点1F 、2F 的距离之和等于常数)2(2121F F a PF PF >=+ ,这个动点P 的轨迹叫椭圆.这两个定点叫椭圆的焦点,两焦点的距离叫作椭圆的焦距。

. 注意:若)(2121F F PF PF =+,则动点P 的轨迹为线段21F F ;若)(2121F F PF PF <+,则动点P 的轨迹无图形. 2、椭圆的标准方程1).当焦点在x 轴上时,椭圆的标准方程:12222=+b y a x )0(>>b a ,其中222b a c -=;2).当焦点在y 轴上时,椭圆的标准方程:12222=+bx a y )0(>>b a ,其中222b a c -=;注意:①在两种标准方程中,总有a >b >0,并且椭圆的焦点总在长轴上;②两种标准方程可用一般形式表示:221x y m n+= 或者 mx 2+ny 2=1 。

3、椭圆:12222=+by a x )0(>>b a 的简单几何性质(1)对称性:对于椭圆标准方程12222=+by a x )0(>>b a :是以x 轴、y 轴为对称轴的轴对称图形,并且是以原点为对称中心的中心对称图形,这个对称中心称为椭圆的中心。

(2)范围:椭圆上所有的点都位于直线a x ±=和b y ±=所围成的矩形内,所以椭圆上点的坐标满足a x ≤,b y ≤。

(3)顶点:①椭圆的对称轴与椭圆的交点称为椭圆的顶点。

②椭圆12222=+by a x )0(>>b a 与坐标轴的四个交点即为椭圆的四个顶点,坐标分别为)0,(1a A -,)0,(2a A ,),0(1b B -,),0(2b B 。

③线段21A A ,21B B 分别叫做椭圆的长轴和短轴,a A A 221=,b B B 221=。

a 和b 分别叫做椭圆的长半轴长和短半轴长。

(4)离心率:①椭圆的焦距与长轴长度的比叫做椭圆的离心率,用e 表示,记作aca c e ==22。

②因为)0(>>c a ,所以e 的取值范围是)10(<<e 。

e 越接近1,则c 就越接近a ,从而22c a b -=越小,因此椭圆越扁;反之,e 越接近于0,c 就越接近0,从而b 越接近于a ,这时椭圆就越接近于圆。

当且仅当b a =时,0=c ,这时两个焦点重合,图形变为圆,方程为a y x =+22。

注意:椭圆12222=+by a x 的图像中线段的几何特征(如下图):假设已知椭圆方程12222=+b y a x (0,0a b >>),且已知椭圆的准线方程为2a x c=±,试推导出下列式子:(提示:用三角函数假设P 点的坐标e PM PF PM PF ==22114、椭圆的另一个定义:到焦点的距离与到准线的距离的比为离心率的点所构成的图形。

即上图中有e PM PF PM PF ==22115、椭圆12222=+b y a x 与 12222=+bx a y )0(>>b a 的区别和联系标准方程12222=+b y a x )0(>>b a 12222=+bx a y )0(>>b a 图形性质焦点 )0,(1c F -,)0,(2c F ),0(1c F -,),0(2c F焦距 c F F 221= c F F 221= 范围a x ≤,b y ≤b x ≤,a y ≤对称性 关于x 轴、y 轴和原点对称顶点 )0,(a ±,),0(b ±),0(a ±,)0,(b ±轴长 长轴长=a 2,短轴长=b 2离心率)10(<<=e ace椭圆有两条对称轴,它们分别是两焦点的连线及两焦点连线段的中垂线; 椭圆都有四个顶点,顶点是曲线与它本身的对称轴的交点;离心率确定了椭圆的形状(扁圆形状),当离心率越接近于0,椭圆越圆;当离心率越接近于1时,椭圆越扁。

6.直线与椭圆的位置关系1.将直线方程与椭圆方程联立,消元后得到一元二次方程,然后通过判别式∆来判断直线和椭圆是否相交、相切或相离。

2.消元后得到的一元二次方程的根是直线和椭圆交点的横坐标或纵坐标,通常是写成两根之和与两根之积的形式,这是进一步解题的基础。

7.椭圆方程的求解方法1.要学会运用待定系数法来求椭圆方程,即设法建立,a b 或者,e c 中的方程组,要善于抓住条件列方程。

先定型,再定量,当焦点位置不确定时,应设椭圆的标准方程为12222=+b y a x (0a b >>)或22221y x a b +=(0a b >>);或者不必考虑焦点的位置,直接把椭圆的标准方程设为221x y m n+= 或者 mx 2+ny 2=1 (0,0,m n m n >>≠),这样可以避免讨论及繁杂的计算,当已知椭圆上的两点坐标时这种解题更方便。

但是需要注意的是m 和n (或者11m n和)谁代表2a ,谁代表2b 要分清。

不要忘记隐含条件和方程,例如:222a b c =+,ce a=等等。

不同的圆锥曲线有不同的隐含条件和方程,切勿弄混。

2.求解与椭圆几何性质有关的问题时要结合图形分析,即使画不出图形,思考时也要联想图形,注意数形结合法的使用,切勿漏掉一种情况。

【典型例题】 1、 椭圆的定义例1、已知F 1(-8,0),F 2(8,0),动点P 满足|PF 1|+|PF 2|=16,则点P 的轨迹为( )A 圆B 椭圆C 线段D 直线2、椭圆的标准方程例2、求满足以下条件的椭圆的标准方程(1)长轴长为10,短轴长为6; (2)长轴是短轴的2倍,且过点(2,1); (3) 经过点(5,1),(3,2) 3、离心率例3、椭圆22221(0)x ya ba b-=>>的左右焦点分别是F1、F2,过点F1作x轴的垂线交椭圆于P点。

若∠F1PF2=60°,则椭圆的离心率为_________ 4、最值问题例4、椭圆2214xy+=两焦点为F1、F2,点P在椭圆上,则|PF1|·|PF2|的最大值为_____,最小值为_____5、直线和椭圆例10、已知直线l:y=2x+m,椭圆C:22142x y+=,试问当m为何值时:(1)有两个不重合的公共点; (2)有且只有一个公共点; (3)没有公共点.双曲线一、知识点讲解(1)双曲线的定义:平面内与两个定点21,F F 的距离的差的绝对值等于常数(小于||21F F )的点的轨迹。

其中:两个定点叫做双曲线的焦点,焦点间的距离叫做焦距。

注意:a PF PF 2||||21=-与a PF PF 2||||12=-(||221F F a <)表示双曲线的一支。

||221F F a =表示两条射线;||221F F a >没有轨迹;(2)双曲线的标准方程、图象及几何性质:(3)双曲线的渐近线:①求双曲线12222=-b y a x 的渐近线,可令其右边的1为0,即得02222=-b y a x ,因式分解得到0x y a b±=。

②与双曲线12222=-b y a x 共渐近线的双曲线系方程是λ=-2222y x ;(4)等轴双曲线为22221.注意定义中“陷阱问题1:已知12(5,0),(5,0)F F -,一曲线上的动点P 到21,F F 距离之差为6,则双曲线的方程为 2.注意焦点的位置: 问题2:双曲线的渐近线为x y 23±=,则离心率为 【典型例题】 1.定义题:1.某中心接到其正东、正西、正北方向三个观测点的报告:正西、正北两个观测点同时听到了一声巨响,正东观测点听到的时间比其他两观测点晚4s. 已知各观测点到该中心的距离都是1020m. 试确定该巨响发生的位置.(假定当时声音传播的速度为340m/ s :相关各点均在同一平面上)【解题思路】时间差即为距离差,到两定点距离之差为定值的点的轨迹是双曲线型的.2.如图2所示,F 为双曲线1169:22=-y x C 的左 焦点,双曲线C 上的点i P 与()3,2,17=-i P i 关于y 轴对称, 则F P F P F P F P F P F P 654321---++的值是( ) A .9 B .16 C .18 D .273. P 是双曲线)0,0(12222>>=-b a by a x 左支上的一点,F 1、F 2分别是左、右焦点,且焦距为2c ,则21F PF ∆的内切圆的圆心的横坐标为( ) (A )a -(B )b -(C )c -(D )c b a -+2.求双曲线的标准方程1.已知双曲线C 与双曲线162x -42y =1有公共焦点,且过点(32,2).求双曲线C 的方程.2.已知双曲线的渐近线方程是2xy ±=,焦点在坐标轴上且焦距是10,则此双曲线的方程为 ;3.与渐近线有关的问题1若双曲线)0,0(12222>>=-b a by a x 的焦点到渐近线的距离等于实轴长,则双曲线的离心率为 ( )A.2B.3C.5D.23.焦点为(0,6),且与双曲线1222=-y x 有相同的渐近线的双曲线方程是 ( )A .1241222=-y x B .1241222=-x y C .1122422=-x y D .1122422=-y x4.过点(1,3)且渐近线为x y 21±=的双曲线方程是 4.几何1.设P 为双曲线22112y x -=上的一点,12F F ,是该双曲线的两个焦点,若12||:||3:2PF PF =,则12PF F △的面积为( ) A . B .12 C. D .245.求弦1.双曲线122=-y x 的一弦中点为(2,1),则此弦所在的直线方程为 ( )A. 12-=x yB. 22-=x yC. 32-=x yD. 32+=x y抛物线知识点1.抛物线的定义满足以下三个条件的点的轨迹是抛物线: (1)在平面内;(2)动点到定点F 距离与到定直线l 的距离相等; (3)定点不在定直线上.知识点2.抛物线的标准方程和几何性质标准方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0) x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离图形顶点 O (0,0) 对称轴 y =0x =0焦点 F ⎝ ⎛⎭⎪⎫p 2,0 F ⎝ ⎛⎭⎪⎫-p 2,0 F ⎝⎛⎭⎪⎫0,p 2 F ⎝ ⎛⎭⎪⎫0,-p 2离心率 e =1 准线方程 x =-p 2x =p 2y =-p 2y =p 2范围 x ≥0,y ∈Rx ≤0,y ∈Ry ≥0,x ∈Ry ≤0,x ∈R开口方向向右向左向上向下焦半径(其中P (x 0,y 0)|PF |=x 0+p2|PF |=-x 0+p2|PF |=y 0+p2|PF |=-y 0+p2【典型例题】例1设P 是抛物线y 2=4x 上的一个动点.(1)求点P 到点A (-1,1)的距离与点P 到直线x =-1的距离之和的最小值; (2)若B (3,2),求|PB |+|PF |的最小值.变式练习1.(1)若点P 到直线y =-1的距离比它到点(0,3)的距离小2,则点P 的轨迹方程是________.(2)过抛物线y 2=4x 的焦点作直线l 交抛物线于A ,B 两点,若线段AB 中点的横坐标为3,则|AB |等于________. 变式练习2.(1)已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上一点,则△ABP 的面积为( )A .18B .24C .36D .48 变式练习3.1.已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点,若|FA |=2|FB |,求k 的值.【归纳总结】4个结论——直线与抛物线相交的四个结论已知抛物线y 2=2px (p >0),过其焦点的直线交抛物线于A ,B 两点,设A (x 1,y 1),B (x 2,y 2),则有以下结论:(1)|AB |=x 1+x 2+p 或|AB |=2psin 2α(α为AB 所在直线的倾斜角); (2)x 1x 2=p 24;(3)y 1y 2=-p 2;(4)过抛物线焦点且与对称轴垂直的弦称为抛物线的通径,抛物线的通径长为2p.3个注意点——抛物线问题的三个注意点(1)求抛物线的标准方程时一般要用待定系数法求p的值,但首先要判断抛物线是否为标准方程,若是标准方程,则要由焦点位置(或开口方向)判断是哪一种标准方程.(2)注意应用抛物线定义中的距离相等的转化来解决问题.(3)直线与抛物线有一个交点,并不表明直线与抛物线相切,因为当直线与对称轴平行(或重合)时,直线与抛物线也只有一个交点.注:椭圆、双曲线、抛物线的标准方程与几何性质─a x a,─b y b|x| a,y R x0。

相关文档
最新文档