三角函数角度对照表

合集下载

每一个角度的三角函数值表

每一个角度的三角函数值表

(1)特殊角三角函数值sin0=0sin30=0.5sin45=0.7071 二分之根号2sin60=0.8660 二分之根号3sin90=1cos0=1cos30=0. 二分之根号3cos45=0. 二分之根号2cos60=0.5cos90=0tan0=0tan30=0. 三分之根号3tan45=1tan60=1. 根号3tan90=无cot0=无cot30=1. 根号3cot45=1cot60=0. 三分之根号3cot90=0(2)0°~90°的任意角的三角函数值,查三角函数表。

(见下)(3)锐角三角函数值的变化情况(i)锐角三角函数值都是正值(ii)当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小)余弦值随着角度的增大(或减小)而减小(或增大)正切值随着角度的增大(或减小)而增大(或减小)余切值随着角度的增大(或减小)而减小(或增大)(iii)当角度在0°≤α≤90°间变化时,0≤sinα≤1, 1≥cosα≥0,当角度在0°<α<90°间变化时,tanα>0, cotα>0.“锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。

从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段。

在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教科书安排了一章的内容,就是本章“锐角三角函数”。

在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程。

无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。

附:三角函数值表sin0=0,sin15=(√6-√2)/4 ,sin30=1/2,sin45=√2/2,sin60=√3/2,sin75=(√6+√2)/2 ,sin90=1,sin105=√2/2*(√3/2+1/2)sin120=√3/2sin135=√2/2sin150=1/2sin165=(√6-√2)/4sin180=0sin270=-1sin360=0sin1=0. sin2=0. sin3=0.sin4=0.41253 sin5=0. sin6=0.sin7=0. sin8=0. sin9=0.sin10=0. sin11=0.65448 sin12=0.sin13=0. sin14=0. sin15=0.sin16=0. sin17=0.27367 sin18=0.49474sin19=0.71567 sin20=0.56687 sin21=0.sin22=0.5912 sin23=0.92737 sin24=0.sin25=0. sin26=0.90774 sin27=0.sin28=0.58908 sin29=0. sin30=0.sin31=0.00542 sin32=0.32049 sin33=0.5027 sin34=0.07468 sin35=0.1046 sin36=0.24731 sin37=0.20483 sin38=0.56583 sin39=0.98375 sin40=0.65392 sin41=0.05073 sin42=0.88582 sin43=0.24985 sin44=0.89972 sin45=0.65475 sin46=0.86511 sin47=0.91705 sin48=0.73941 sin49=0.27719 sin50=0.8978 sin51=0.69708 sin52=0.67219 sin53=0.72928 sin54=0.49474 sin55=0.89918 sin56=0.50417 sin57=0.54239 sin58=0.6426 sin59=0.21122 sin60=0.44386 sin61=0.93957 sin62=0.89269 sin63=0.83678 sin64=0.9167 sin65=0.66499 sin66=0.26009 sin67=0.24404 sin68=0.67873 sin69=0.72017 sin70=0.59083 sin71=0.93167 sin72=0.51535 sin73=0.30354 sin74=0.83189 sin75=0.90683 sin76=0.59965 sin77=0.52352 sin78=0.38057 sin79=0.7664 sin80=0.2208 sin81=0.51378 sin82=0.15704 sin83=0.1322 sin84=0.82733 sin85=0.17455 sin86=0.98242 sin87=0.45738 sin88=0.90958 sin89=0.63913sin90=1cos1=0.63913 cos2=0.90958 cos3=0.45738 cos4=0.98242 cos5=0.17455 cos6=0.82733 cos7=0.1322 cos8=0.15704 cos9=0.51378cos10=0.2208 cos11=0.7664 cos12=0.38057 cos13=0.52352 cos14=0.59965 cos15=0.90683 cos16=0.83189 cos17=0.30355 cos18=0.51535 cos19=0.93168 cos20=0.59084 cos21=0.72017 cos22=0.67874 cos23=0.24404 cos24=0.26009 cos25=0.66499 cos26=0.9167 cos27=0.83679 cos28=0.8927 cos29=0.93957 cos30=0.44387 cos31=0.21123 cos32=0.6426 cos33=0.5424 cos34=0.50417 cos35=0.89918 cos36=0.49474 cos37=0.72928 cos38=0.67219 cos39=0.69709 cos40=0.8978 cos41=0.2772 cos42=0.73942 cos43=0.91705 cos44=0.86512 cos45=0.65476 cos46=0.89974 cos47=0.24985 cos48=0.88582 cos49=0.05074 cos50=0.65394 cos51=0.98375 cos52=0.56583 cos53=0.20484 cos54=0.24731 cos55=0.10462 cos56=0.07468 cos57=0.50272 cos58=0.32049 cos59=0.00544 cos60=0.00001 cos61=0.63371 cos62=0. cos63=0.95468cos64=0. cos65=0. cos66=0.58004cos67=0.92737 cos68=0.59122 cos69=0.cos70=0.56688 cos71=0. cos72=0.cos73=0. cos74=0. cos75=0.cos76=0. cos77=0. cos78=0.cos79=0. cos80=0. cos81=0.cos82=0. cos83=0. cos84=0.cos85=0. cos86=0. cos87=0.cos88=0. cos89=0.72836cos90=0tan1=0. tan2=0. tan3=0.tan4=0. tan5=0. tan6=0.tan7=0.29046 tan8=0. tan9=0.tan10=0. tan11=0. tan12=0.00221tan13=0.55631 tan14=0. tan15=0.11227tan16=0.88079 tan17=0. tan18=0.29063tan19=0. tan20=0. tan21=0.54158tan22=0.51568 tan23=0.96047 tan24=0.85361 tan25=0.49986 tan26=0.58614 tan27=0.44288 tan28=0.14788 tan29=0.2769 tan30=0.96257 tan31=0.75604 tan32=0.93275 tan33=0.75104 tan34=0.24265 tan35=0.97097 tan36=0.53609 tan37=0.27942 tan38=0.67174 tan39=0.50072 tan40=0.72799 tan41=0.62267 tan42=0.78399 tan43=0.76618 tan44=0.70739 tan45=0.99999 tan46=1.05693 tan47=1.46826 tan48=1.91927 tan49=1.10092 tan50=1.421 tan51=1.5051 tan52=1.30785 tan53=1.04098 tan54=1.11733 tan55=1.21144 tan56=1.27403 tan57=1.45827 tan58=1.10506 tan59=1.05173 tan60=1.88767 tan61=1.14235 tan62=1.63318 tan63=1.51503 tan64=2.9296 tan65=2.95586 tan66=2.4215 tan67=2.3753 tan68=2.62946 tan69=2.38023 tan70=2.46216 tan71=2.5822 tan72=3.52526 tan73=3.41404 tan74=3.09087 tan75=3.88776 tan76=4.58455 tan77=4.4153 tan78=4.8456 tan79=5.0307 tan80=5.7707 tan81=6.5041 tan82=7.4207 tan83=8.4593 tan84=9.2587 tan85=11.132 tan86=14.1942 tan87=19.816 tan88=28.5515 tan89=57.9144tan90=无取值。

(完整版)三角函数特殊角值表

(完整版)三角函数特殊角值表

角度 函数 0 30 45 60 90 120 135 150 180 270 360 角a 的弧度0 π/6 π/4 π/3 π/2 2π/3 3π/4 5π/6 π 3π/2 2π sin 0 1/2 √2/2 √3/2 1 √3/2 √2/2 1/2 0 -1 0 cos 1 √3/2 √2/2 1/2 0 -1/2 -√2/2 -√3/2 -1 0 1 tan√3/31√3-√3-1-√3/31、图示法:借助于下面三个图形来记忆,即使有所遗忘也可根据图形重新推出: sin30°=cos60°=21,sin45°=cos45°=22, tan30°=cot60°=33, tan 45°=cot45°=1正弦函数 sinθ=y/r 余弦函数 cosθ=x/r 正切函数 tanθ=y/x 余切函数 cotθ=x/y 正割函数 secθ=r/x 余割函数 cscθ=r/y2、列表法:说明:正弦值随角度变化,即0˚ 30˚ 45˚ 60˚ 90˚变化;值从02122 23 1变化,其余类似记忆.3、规律记忆法:观察表中的数值特征,可总结为下列记忆规律:① 有界性:(锐角三角函数值都是正值)即当0°<α<90°时,则0<sin α<1; 0<cos α<1 ; tan α>0 ; cot α>0。

②增减性:(锐角的正弦、正切值随角度的增大而增大;余弦、余切值随角度的增大而减小),即当0<A <B <90°时,则sin A <sin B ;tan A <tan B ; cos A >cos B ;cot A >cot B ;特别地:若0°<α<45°,则sin A <cos A ;tan A <cot A 若45°<A <90°,则sin A >cos A ;tan A >cot A . 4、口决记忆法:观察表中的数值特征 正弦、余弦值可表示为2m 形式,正切、余切值可表示为3m 形式,有关m 的值可归纳成顺口溜:一、二、三;三、二、一;三九二十七.30˚ 123145˚ 1212 60˚ 3函数名正弦余弦正切余切正割余割符号sin cos tan cot sec csc正弦函数sin(A)=a/c余弦函数cos(A)=b/c正切函数tan(A)=a/b余切函数cot(A)=b/a其中a为对边,b为邻边,c为斜边三角函数对照表三角函数SIN COS TAN 三角函数SIN COS TAN 0°0 1 0 90° 1 0 无1°0.0174 0.9998 0.0174 89°0.9998 0.0174 57.2899 2°0.0348 0.9993 0.0349 88°0.9993 0.0348 28.6362 3°0.0523 0.9986 0.0524 87°0.9986 0.0523 19.0811 4°0.0697 0.9975 0.0699 86°0.9975 0.0697 14.3006 5°0.0871 0.9961 0.0874 85°0.9961 0.0871 11.4300 6°0.1045 0.9945 0.1051 84°0.9945 0.1045 9.5143 7°0.1218 0.9925 0.1227 83°0.9925 0.1218 8.1443 8°0.1391 0.9902 0.1405 82°0.9902 0.1391 7.1153 9°0.1564 0.9876 0.1583 81°0.9876 0.1564 6.3137 10°0.1736 0.9848 0.1763 80°0.9848 0.1736 5.6712 11°0.1908 0.9816 0.1943 79°0.9816 0.1908 5.1445 12°0.2079 0.9781 0.2125 78°0.9781 0.2079 4.7046 13°0.2249 0.9743 0.2308 77°0.9743 0.2249 4.3314 14°0.2419 0.9702 0.2493 76°0.9702 0.2419 4.0107 15°0.2588 0.9659 0.2679 75°0.9659 0.2588 3.7320二倍角的正弦、余弦和正切公式三倍角的正弦、余弦和正切公式sin 22sin cos cos 2cos 2sin 22cos 2112sin 2αααααααα==-=-=-2tan tan 21tan 2ααα=--sin 33sin 4sin 3cos34cos33cos .3tan tan 3tan 313tan 2αααααααααα=-=--=--三角函数的和差化积公式 三角函数的积化和差公式sin sin 2sincos 22sin sin 2cos sin22cos cos 2cos cos22cos cos 2sin sin22αβαβαβαβαβαβαβαβαβαβαβαβ+-+=⋅+--=⋅+-+=⋅+--=-⋅[][][][]1sin cos sin()sin()21cos sin sin()sin()21cos cos cos()cos()21sin sin cos()cos()2αβαβαβαβαβαβαβαβαβαβαβαβ⋅=++-⋅=+--⋅=++-⋅=-+--化asinα ±bcosα为一个角的一个三角函数的形式(辅助角的三角函数的公式)22sin cos sin()a x b x a b x φ±=+±其中φ角所在的象限由a 、b 的符号确定,φ角的值由tan ba φ=确定六边形记忆法:图形结构“上弦中切下割,左正右余中间1”;记忆方法“对角线上两个函数的积为1;阴影三角形上两顶点的三角函数值的平方和等于下顶点的三角函数值的平方;任意一顶点的三角函数值等于相邻两个顶点的三角函数值的乘积。

三角函数特殊角度表

三角函数特殊角度表

三角函数特殊角度表
这是一个三角函数特殊角度表,其中包含了一些特殊角度的正弦值、余弦值和正切值。

这些角度的值相对较为简单和常见,在三角函数计算和应用中经常被使用。

通过使用这个表格,可以方便地找到这些特殊角度的三角函数值,从而简化计算过程。

说明:
- 角度以度(°)和弧度(rad)两种形式给出。

- 正弦值、余弦值和正切值分别对应三角函数sin、cos和tan。

- 0°的三角函数值为0,90°的正弦值为1,余弦值为0,正切值为无穷大。

请注意,在实际应用中,角度可以是任意的实数,并且三角函数值可以通过计算器或数学软件来获得精确结果。

但特殊角度的三角函数值是一些重要的常数,对于初学者而言,掌握这些值可以帮助理解和应用三角函数。

希望这份三角函数特殊角度表能对你有所帮助!。

每一个角度的三角函数值表

每一个角度的三角函数值表

(1)特殊角三角函数值sin0=0sin30=0.5sin45=0.7071 二分之根号2sin60=0.8660 二分之根号3sin90=1cos0=1cos30=0.866025404 二分之根号3cos45=0.707106781 二分之根号2cos60=0.5cos90=0tan0=0tan30=0.577350269 三分之根号3tan45=1tan60=1.732050808 根号3tan90=无cot0=无cot30=1.732050808 根号3cot45=1cot60=0.577350269 三分之根号3cot90=0(2)0°~90°的任意角的三角函数值,查三角函数表。

(见下)(3)锐角三角函数值的变化情况(i)锐角三角函数值都是正值(ii)当角度在0°~90°间变化时,正弦值随着角度的增大(或减小)而增大(或减小)余弦值随着角度的增大(或减小)而减小(或增大)正切值随着角度的增大(或减小)而增大(或减小)余切值随着角度的增大(或减小)而减小(或增大)(iii)当角度在0°≤α≤90°间变化时,0≤sinα≤1, 1≥cosα≥0,当角度在0°<α<90°间变化时,tanα>0, cotα>0.“锐角三角函数”属于三角学,是《数学课程标准》中“空间与图形”领域的重要内容。

从《数学课程标准》看,中学数学把三角学内容分成两个部分,第一部分放在义务教育第三学段,第二部分放在高中阶段。

在义务教育第三学段,主要研究锐角三角函数和解直角三角形的内容,本套教科书安排了一章的内容,就是本章“锐角三角函数”。

在高中阶段的三角内容是三角学的主体部分,包括解斜三角形、三角函数、反三角函数和简单的三角方程。

无论是从内容上看,还是从思考问题的方法上看,前一部分都是后一部分的重要基础,掌握锐角三角函数的概念和解直角三角形的方法,是学习三角函数和解斜三角形的重要准备。

三角函数表

三角函数表

三角函数表
在数学领域中,三角函数是一类描述角和三角形边之间关系的函数。

主要有正
弦函数、余弦函数和正切函数等。

这些函数在数学和物理学中扮演着重要的角色,广泛应用于各种领域中。

下面是三角函数表,列出了各角度下正弦、余弦和正切的数值:
角度(°)正弦值余弦值正切值
0 0 1 0
30 0.5 0.866 0.577
45 0.707 0.707 1
60 0.866 0.5 1.732
90 1 0 无穷大
除了上表中列举的角度外,三角函数在整个数轴上都有定义。

在单位圆中,三
角函数的定义与三角形的三个边的比例有关。

正弦函数代表了对边与斜边的比值,余弦函数代表了邻边与斜边的比值,而正切函数代表了对边与邻边的比值。

三角函数在解决三角形相关问题、波动问题等方面有着广泛应用。

在物理学中,三角函数也经常出现,比如在描述波动、振动等现象时,三角函数是不可或缺的工具。

总的来说,三角函数是数学中的一大重要概念,深入理解三角函数将有助于我
们更好地理解和应用数学知识,进而解决实际问题。

希望通过这份三角函数表,读者能对三角函数有更清晰的认识。

三角函数度数表

三角函数度数表

三角函数度数表三角函数度数表是用来查询不同角度的三角函数值的常用表格,由此查询结果能够对对比、计算更加准确有效地完成任务。

下面我们将详细介绍三角函数度数表的基本用法:三角函数度数表由360°以上一分,以下分为9个格子拼成,每个格子分别填入其角度的余数、正弦、余弦、正切的值,根据需要查询某个固定角度,第一行的余数就显示了角度,沿着余数走到正弦、余弦、正切,就可以获得相应的三角函数值了。

以下是常见三角函数度数表:角度余数正弦余弦正切0°0 0 1.0000 0.00001° 1 0.0175 0.9998 0.01752° 2 0.0349 0.9994 0.03473° 3 0.0523 0.9986 0.05244° 4 0.0698 0.9976 0.06985° 5 0.0872 0.9962 0.08736° 6 0.1045 0.9945 0.10477°7 0.1219 0.9925 0.12228°8 0.1392 0.9903 0.14589°9 0.1564 0.9877 0.157110°10 0.1736 0.9848 0.1736以此类推,以90度为一个角度区间,360度整体循环直到余数为0,就是整个三角函数度数表,利用这个三角函数度数表,就可以准确快速地计算出某角度的三角函数值,有效提高工作效率。

此外,三角函数度数表虽然只是一本参考书,但仍有很多用处。

许多数学计算都会应用到三角函数,而有了三角函数度数表,就可以更准确快捷地找到三角函数值,不仅在数学计算上有用,还可以在科学、工程、天文、物理等各个领域极大地提高工作效率。

常用正弦余弦正切值表

常用正弦余弦正切值表

常用正弦余弦正切值表常用正弦余弦正切值表在数学学习中,我们经常需要使用三角函数中的正弦、余弦、正切值进行计算。

以下是常用的正弦余弦正切值表,希望对读者有所帮助。

正弦值表:角度正弦值0° 030° 0.545°0.707160° 0.86690° 1120° 0.866135° 0.7071150° 0.5180° 0余弦值表:角度余弦值0° 130° 0.86645°0.707160° 0.590° 0120° -0.5135° -0.7071150° -0.866180° -1正切值表:角度正切值0° 030° 1.73245° 160° 0.577490°无穷大(不存在)120° -0.5774135° -1150° -1.732180° 0上述表格中,为了方便记忆,我们可以把特定角度上的正弦、余弦、正切值(例如0、30、45、60、90)记住,由此可以推知其他角度上的值。

同时,需要注意的是,在计算过程中,若是角度不属于含有特殊值的角度,则需要借助计算器使用三角函数求出在计算的角度上的三角函数值。

除了正弦、余弦、正切函数之外,还有它们的倒数函数、余割函数和正割函数等,它们在数学的应用领域中有着广泛的应用。

对于初学者来说,要把握好三角函数的基础知识,理解其定义和性质,才能更好地应用到实际计算中去。

总之,掌握常用三角函数的正弦、余弦、正切值表对于数学学习和实际应用都非常重要。

我们要不断地巩固和深入理解,以提高自己的数学素养。

特殊角度的三角函数值对照表

特殊角度的三角函数值对照表

特殊角度的三角函数值对照表特殊角度的三角函数值对照表是一个非常重要的数学工具,它帮助我们快速计算一些特定角度的正弦、余弦和正切值。

在三角函数中,特殊角度是指那些可以被简化表示的角度,例如30度、45度、60度等。

下面将为大家详细介绍一张特殊角度的三角函数值对照表。

角度(度)角度(弧度)正弦值余弦值正切值0001030π/61/2√3/2√3/345π/4√2/2√2/2160π/3√3/21/2√390π/210无穷首先,角度为0度时的三角函数值是比较特殊的。

正弦值为0,因为正弦函数在0处为最小值,然后会向正无穷方向增加。

余弦值为1,因为余弦函数在0处为最大值,然后会向负无穷方向减小。

正切值为0,因为正切函数的周期是180度,所以正切在0度处还没有开始一个周期。

接下来,角度为30度时的三角函数值可以通过三角函数的定义和特殊角度三角函数值得出。

正弦值为1/2,因为30度的正弦函数值在三角函数表中是已知的。

余弦值为√3/2,因为30度的余弦函数值是正弦值的补余,通过勾股定理可以得到。

正切值为√3/3,通过反正切函数(arctan)可以得到。

角度为45度时的三角函数值是较为常见的特殊角度,也是勾股定理中的一条基本关系。

正弦值为√2/2,通过正弦函数在45度处的值可以得到。

余弦值为√2/2,因为余弦函数在45度处与正弦函数相等。

正切值为1,因为正切函数是正弦函数与余弦函数的商。

角度为60度时的三角函数值也可以通过特殊角度三角函数值和勾股定理得到。

正弦值为√3/2,余弦值为1/2,正切值为√3、角度为90度时的正弦值为1,余弦值为0,正切值为无穷。

在使用特殊角度的三角函数值对照表时,可以根据所给的角度,通过查表快速得出三角函数的值。

这对于在数学、物理等领域进行各种计算和推导时非常有用。

需要注意的是,特殊角度三角函数值表给出的值是近似值,通常保留到小数点后几位,具体的计算则需要使用科学计算器或计算机进行精确计算。

完整的三角函数值表

完整的三角函数值表

完整的三角函数值表三角函数值表是数学中一个重要的表格,它记录了各种角度的正弦、余弦和正切的数值。

对于学习三角函数和解决数学问题来说,掌握三角函数值表是非常有帮助的。

下面是一个完整的三角函数值表,包括角度从0度到90度的正弦、余弦和正切的数值。

在三角函数值表中,我们通常使用度来表示角度。

角度是一个物体相对于某个参考点或参考方向旋转的量度。

下面是角度从0度到90度的三角函数值表:角度(度)正弦余弦正切0 0 1 01 0.017452406 0.999847695 0.0174550642 0.034899497 0.999390827 0.0349207693 0.052335956 0.998629535 0.0524077794 0.069756474 0.99756405 0.069926815 0.087155743 0.996194698 0.0874886646 0.104528463 0.994521895 0.1051042357 0.121869343 0.992546152 0.122784568 0.139173101 0.990268069 0.1405408349 0.156434465 0.987688341 0.1583844410 0.173648178 0.984807753 0.1763269811 0.190808995 0.981627183 0.19438030912 0.207911691 0.978147601 0.21255656113 0.224951054 0.974370065 0.23086819114 0.241921896 0.970295726 0.24932800215 0.258819045 0.965925826 0.26794919216 0.275637356 0.961261696 0.28674538517 0.292371705 0.956304756 0.30573068118 0.309016994 0.951056516 0.32491969619 0.325568154 0.945518576 0.34432761320 0.342020143 0.939692621 0.36397023430 0.5 0.866025404 0.57735026945 0.707106781 0.707106781 160 0.866025404 0.5 1.73205080890 1 0 undefined在三角函数值表中,正弦的值可以直接读取,表示角度对应的比值。

三角函数常用角度数值表

三角函数常用角度数值表

三角函数常用角度数值表以下是一些常用的三角函数角度数值表:| 三角函数 | 参数 | 数值 ||------|----------|----------|| 正弦函数 | $theta$ | $sin(theta)$ || 余弦函数 | $theta$ | $cos(theta)$ || 正切函数 | $theta$ | $tan(theta)$ || 割函数 | $theta$ | $sec(theta)$ || 模函数 | $theta$ | $csc(theta)$ |请注意,这里提供的是角度的值,而不是角度的弧度值。

在数值计算中,通常需要将角度转换为弧度值。

以下是一个示例:| 角度 | 正弦函数 | 余弦函数 | 正切函数 | 割函数 | 模函数 ||------|----------|----------|----------|----------|----------|| 0 | 0 | 0 | 1 | 0 | 0 || 1 | 0 | $frac{pi}{2}$ | 0 |$frac{pi}{4}$ | $frac{3pi}{4}$ || 2 | 0 | $frac{pi}{3}$ | $frac{1}{2}$ |$frac{pi}{6}$ | $frac{5pi}{12}$ || 3 | $frac{pi}{3}$ | $frac{pi}{2}$ | 0 | $frac{pi}{4}$ | $frac{7pi}{12}$ || 4 | $frac{pi}{4}$ | $frac{pi}{3}$ |$frac{1}{3}$ | $frac{5pi}{6}$ | $frac{9pi}{12}$ || 5 | 0 | $frac{pi}{5}$ | $frac{2}{3}$ | $frac{pi}{12}$ | $frac{11pi}{12}$ || 6 | 0 | $frac{pi}{6}$ | $frac{1}{6}$ | $frac{7pi}{12}$ | $frac{13pi}{12}$ || 7 | $frac{pi}{7}$ | $frac{pi}{6}$ | 1 | $frac{5pi}{12}$ | $frac{15pi}{12}$ || 8 | $frac{pi}{8}$ | $frac{pi}{7}$ |$frac{1}{7}$ | $frac{9pi}{12}$ | $frac{17pi}{12}$ || 9 | 0 | $frac{pi}{9}$ | $frac{2}{9}$ | $frac{8pi}{12}$ | $frac{19pi}{12}$ |这些数据可以用于计算各种三角函数,例如正弦、余弦、正切、割和模。

高中三角函数tan对照表

高中三角函数tan对照表

高中三角函数tan对照表sin(0°)=0.000000,cos(0°)=1.000000,tan(0°)=0.000000 sin(1°)=0.017452,cos(1°)=0.999848,tan(1°)=0.017455 sin(2°)=0.034899,cos(2°)=0.999391,tan(2°)=0.034921 sin(3°)=0.052336,cos(3°)=0.998630,tan(3°)=0.052408 sin(4°)=0.069756,cos(4°)=0.997564,tan(4°)=0.069927 sin(5°)=0.087156,cos(5°)=0.996195,tan(5°)=0.087489 sin(6°)=0.104528,cos(6°)=0.994522,tan(6°)=0.105104 sin(7°)=0.121869,cos(7°)=0.992546,tan(7°)=0.122785 sin(8°)=0.139173,cos(8°)=0.990268,tan(8°)=0.140541 sin(9°)=0.156434,cos(9°)=0.987688,tan(9°)=0.158384 sin(10°)=0.173648,cos(10°)=0.984808,tan(10°)=0.176327 sin(11°)=0.190809,cos(11°)=0.981627,tan(11°)=0.194380 sin(12°)=0.207912,cos(12°)=0.978148,tan(12°)=0.212557 sin(13°)=0.224951,cos(13°)=0.974370,tan(13°)=0.230868 sin(14°)=0.241922,cos(14°)=0.970296,tan(14°)=0.249328 sin(15°)=0.258819,cos(15°)=0.965926,tan(15°)=0.267949 sin(16°)=0.275637,cos(16°)=0.961262,tan(16°)=0.286745 sin(17°)=0.292372,cos(17°)=0.956305,tan(17°)=0.305731 sin(18°)=0.309017,cos(18°)=0.951057,tan(18°)=0.324920 sin(19°)=0.325568,cos(19°)=0.945519,tan(19°)=0.344328 sin(20°)=0.342020,cos(20°)=0.939693,tan(20°)=0.363970sin(21°)=0.358368,cos(21°)=0.933580,tan(21°)=0.383864 sin(22°)=0.374607,cos(22°)=0.927184,tan(22°)=0.404026 sin(23°)=0.390731,cos(23°)=0.920505,tan(23°)=0.424475 sin(24°)=0.406737,cos(24°)=0.913545,tan(24°)=0.445229 sin(25°)=0.422618,cos(25°)=0.906308,tan(25°)=0.466308 sin(26°)=0.438371,cos(26°)=0.898794,tan(26°)=0.487733 sin(27°)=0.453990,cos(27°)=0.891007,tan(27°)=0.509525 sin(28°)=0.469472,cos(28°)=0.882948,tan(28°)=0.531709 sin(29°)=0.484810,cos(29°)=0.874620,tan(29°)=0.554309 sin(30°)=0.500000,cos(30°)=0.866025,tan(30°)=0.577350 sin(31°)=0.515038,cos(31°)=0.857167,tan(31°)=0.600861 sin(32°)=0.529919,cos(32°)=0.848048,tan(32°)=0.624869 sin(33°)=0.544639,cos(33°)=0.838671,tan(33°)=0.649408 sin(34°)=0.559193,cos(34°)=0.829038,tan(34°)=0.674509 sin(35°)=0.573576,cos(35°)=0.819152,tan(35°)=0.700208 sin(36°)=0.587785,cos(36°)=0.809017,tan(36°)=0.726543 sin(37°)=0.601815,cos(37°)=0.798636,tan(37°)=0.753554 sin(38°)=0.615661,cos(38°)=0.788011,tan(38°)=0.781286 sin(39°)=0.629320,cos(39°)=0.777146,tan(39°)=0.809784 sin(40°)=0.642788,cos(40°)=0.766044,tan(40°)=0.839100 sin(41°)=0.656059,cos(41°)=0.754710,tan(41°)=0.869287 sin(42°)=0.669131,cos(42°)=0.743145,tan(42°)=0.900404sin(43°)=0.681998,cos(43°)=0.731354,tan(43°)=0.932515 sin(44°)=0.694658,cos(44°)=0.719340,tan(44°)=0.965689 sin(45°)=0.707107,cos(45°)=0.707107,tan(45°)=1.000000 sin(46°)=0.719340,cos(46°)=0.694658,tan(46°)=1.035530 sin(47°)=0.731354,cos(47°)=0.681998,tan(47°)=1.072369 sin(48°)=0.743145,cos(48°)=0.669131,tan(48°)=1.110613 sin(49°)=0.754710,cos(49°)=0.656059,tan(49°)=1.150368 sin(50°)=0.766044,cos(50°)=0.642788,tan(50°)=1.191754 sin(51°)=0.777146,cos(51°)=0.629320,tan(51°)=1.234897 sin(52°)=0.788011,cos(52°)=0.615661,tan(52°)=1.279942 sin(53°)=0.798636,cos(53°)=0.601815,tan(53°)=1.327045 sin(54°)=0.809017,cos(54°)=0.587785,tan(54°)=1.376382 sin(55°)=0.819152,cos(55°)=0.573576,tan(55°)=1.428148 sin(56°)=0.829038,cos(56°)=0.559193,tan(56°)=1.482561 sin(57°)=0.838671,cos(57°)=0.544639,tan(57°)=1.539865 sin(58°)=0.848048,cos(58°)=0.529919,tan(58°)=1.600335 sin(59°)=0.857167,cos(59°)=0.515038,tan(59°)=1.664279 sin(60°)=0.866025,cos(60°)=0.500000,tan(60°)=1.732051 sin(61°)=0.874620,cos(61°)=0.484810,tan(61°)=1.804048 sin(62°)=0.882948,cos(62°)=0.469472,tan(62°)=1.880726 sin(63°)=0.891007,cos(63°)=0.453990,tan(63°)=1.962611 sin(64°)=0.898794,cos(64°)=0.438371,tan(64°)=2.050304sin(66°)=0.913545,cos(66°)=0.406737,tan(66°)=2.246037 sin(67°)=0.920505,cos(67°)=0.390731,tan(67°)=2.355852 sin(68°)=0.927184,cos(68°)=0.374607,tan(68°)=2.475087 sin(69°)=0.933580,cos(69°)=0.358368,tan(69°)=2.605089 sin(70°)=0.939693,cos(70°)=0.342020,tan(70°)=2.747477 sin(71°)=0.945519,cos(71°)=0.325568,tan(71°)=2.904211 sin(72°)=0.951057,cos(72°)=0.309017,tan(72°)=3.077684 sin(73°)=0.956305,cos(73°)=0.292372,tan(73°)=3.270853 sin(74°)=0.961262,cos(74°)=0.275637,tan(74°)=3.487414 sin(75°)=0.965926,cos(75°)=0.258819,tan(75°)=3.732051 sin(76°)=0.970296,cos(76°)=0.241922,tan(76°)=4.010781 sin(77°)=0.974370,cos(77°)=0.224951,tan(77°)=4.331476 sin(78°)=0.978148,cos(78°)=0.207912,tan(78°)=4.704630 sin(79°)=0.981627,cos(79°)=0.190809,tan(79°)=5.144554 sin(80°)=0.984808,cos(80°)=0.173648,tan(80°)=5.671282 sin(81°)=0.987688,cos(81°)=0.156434,tan(81°)=6.313752 sin(82°)=0.990268,cos(82°)=0.139173,tan(82°)=7.115370 sin(83°)=0.992546,cos(83°)=0.121869,tan(83°)=8.144346 sin(84°)=0.994522,cos(84°)=0.104528,tan(84°)=9.514364 sin(85°)=0.996195,cos(85°)=0.087156,tan(85°)=11.430052 sin(86°)=0.997564,cos(86°)=0.069756,tan(86°)=14.300666sin(88°)=0.999391,cos(88°)=0.034899,tan(88°)=28.636253 sin(89°)=0.999848,cos(89°)=0.017452,tan(89°)=57.289962 sin(90°)=1.000000,cos(90°)=0.000000,tan(90°)=无意义sin(91°)=0.999848,cos(91°)=-0.017452,tan(91°)=-57.289962 sin(92°)=0.999391,cos(92°)=-0.034899,tan(92°)=-28.636253 sin(93°)=0.998630,cos(93°)=-0.052336,tan(93°)=-19.081137 sin(94°)=0.997564,cos(94°)=-0.069756,tan(94°)=-14.300666 sin(95°)=0.996195,cos(95°)=-0.087156,tan(95°)=-11.430052 sin(96°)=0.994522,cos(96°)=-0.104528,tan(96°)=-9.514364 sin(97°)=0.992546,cos(97°)=-0.121869,tan(97°)=-8.144346 sin(98°)=0.990268,cos(98°)=-0.139173,tan(98°)=-7.115370 sin(99°)=0.987688,cos(99°)=-0.156434,tan(99°)=-6.313752 sin(100°)=0.984808,cos(100°)=-0.173648,tan(100°)=-5.671282 sin(101°)=0.981627,cos(101°)=-0.190809,tan(101°)=-5.144554 sin(102°)=0.978148,cos(102°)=-0.207912,tan(102°)=-4.704630 sin(103°)=0.974370,cos(103°)=-0.224951,tan(103°)=-4.331476 sin(104°)=0.970296,cos(104°)=-0.241922,tan(104°)=-4.010781 sin(105°)=0.965926,cos(105°)=-0.258819,tan(105°)=-3.732051 sin(106°)=0.961262,cos(106°)=-0.275637,tan(106°)=-3.487414 sin(107°)=0.956305,cos(107°)=-0.292372,tan(107°)=-3.270853 sin(108°)=0.951057,cos(108°)=-0.309017,tan(108°)=-3.077684sin(109°)=0.945519,cos(109°)=-0.325568,tan(109°)=-2.904211 sin(110°)=0.939693,cos(110°)=-0.342020,tan(110°)=-2.747477 sin(111°)=0.933580,cos(111°)=-0.358368,tan(111°)=-2.605089 sin(112°)=0.927184,cos(112°)=-0.374607,tan(112°)=-2.475087 sin(113°)=0.920505,cos(113°)=-0.390731,tan(113°)=-2.355852 sin(114°)=0.913545,cos(114°)=-0.406737,tan(114°)=-2.246037 sin(115°)=0.906308,cos(115°)=-0.422618,tan(115°)=-2.144507 sin(116°)=0.898794,cos(116°)=-0.438371,tan(116°)=-2.050304 sin(117°)=0.891007,cos(117°)=-0.453990,tan(117°)=-1.962611 sin(118°)=0.882948,cos(118°)=-0.469472,tan(118°)=-1.880726 sin(119°)=0.874620,cos(119°)=-0.484810,tan(119°)=-1.804048 sin(120°)=0.866025,cos(120°)=-0.500000,tan(120°)=-1.732051 sin(121°)=0.857167,cos(121°)=-0.515038,tan(121°)=-1.664279 sin(122°)=0.848048,cos(122°)=-0.529919,tan(122°)=-1.600335 sin(123°)=0.838671,cos(123°)=-0.544639,tan(123°)=-1.539865 sin(124°)=0.829038,cos(124°)=-0.559193,tan(124°)=-1.482561 sin(125°)=0.819152,cos(125°)=-0.573576,tan(125°)=-1.428148 sin(126°)=0.809017,cos(126°)=-0.587785,tan(126°)=-1.376382 sin(127°)=0.798636,cos(127°)=-0.601815,tan(127°)=-1.327045 sin(128°)=0.788011,cos(128°)=-0.615661,tan(128°)=-1.279942 sin(129°)=0.777146,cos(129°)=-0.629320,tan(129°)=-1.234897 sin(130°)=0.766044,cos(130°)=-0.642788,tan(130°)=-1.191754sin(131°)=0.754710,cos(131°)=-0.656059,tan(131°)=-1.150368 sin(132°)=0.743145,cos(132°)=-0.669131,tan(132°)=-1.110613 sin(133°)=0.731354,cos(133°)=-0.681998,tan(133°)=-1.072369 sin(134°)=0.719340,cos(134°)=-0.694658,tan(134°)=-1.035530 sin(135°)=0.707107,cos(135°)=-0.707107,tan(135°)=-1.000000 sin(136°)=0.694658,cos(136°)=-0.719340,tan(136°)=-0.965689 sin(137°)=0.681998,cos(137°)=-0.731354,tan(137°)=-0.932515 sin(138°)=0.669131,cos(138°)=-0.743145,tan(138°)=-0.900404 sin(139°)=0.656059,cos(139°)=-0.754710,tan(139°)=-0.869287 sin(140°)=0.642788,cos(140°)=-0.766044,tan(140°)=-0.839100 sin(141°)=0.629320,cos(141°)=-0.777146,tan(141°)=-0.809784 sin(142°)=0.615661,cos(142°)=-0.788011,tan(142°)=-0.781286 sin(143°)=0.601815,cos(143°)=-0.798636,tan(143°)=-0.753554 sin(144°)=0.587785,cos(144°)=-0.809017,tan(144°)=-0.726543 sin(145°)=0.573576,cos(145°)=-0.819152,tan(145°)=-0.700208 sin(146°)=0.559193,cos(146°)=-0.829038,tan(146°)=-0.674509 sin(147°)=0.544639,cos(147°)=-0.838671,tan(147°)=-0.649408 sin(148°)=0.529919,cos(148°)=-0.848048,tan(148°)=-0.624869 sin(149°)=0.515038,cos(149°)=-0.857167,tan(149°)=-0.600861 sin(150°)=0.500000,cos(150°)=-0.866025,tan(150°)=-0.577350 sin(151°)=0.484810,cos(151°)=-0.874620,tan(151°)=-0.554309 sin(152°)=0.469472,cos(152°)=-0.882948,tan(152°)=-0.531709sin(153°)=0.453990,cos(153°)=-0.891007,tan(153°)=-0.509525 sin(154°)=0.438371,cos(154°)=-0.898794,tan(154°)=-0.487733 sin(155°)=0.422618,cos(155°)=-0.906308,tan(155°)=-0.466308 sin(156°)=0.406737,cos(156°)=-0.913545,tan(156°)=-0.445229 sin(157°)=0.390731,cos(157°)=-0.920505,tan(157°)=-0.424475 sin(158°)=0.374607,cos(158°)=-0.927184,tan(158°)=-0.404026 sin(159°)=0.358368,cos(159°)=-0.933580,tan(159°)=-0.383864 sin(160°)=0.342020,cos(160°)=-0.939693,tan(160°)=-0.363970 sin(161°)=0.325568,cos(161°)=-0.945519,tan(161°)=-0.344328 sin(162°)=0.309017,cos(162°)=-0.951057,tan(162°)=-0.324920 sin(163°)=0.292372,cos(163°)=-0.956305,tan(163°)=-0.305731 sin(164°)=0.275637,cos(164°)=-0.961262,tan(164°)=-0.286745 sin(165°)=0.258819,cos(165°)=-0.965926,tan(165°)=-0.267949 sin(166°)=0.241922,cos(166°)=-0.970296,tan(166°)=-0.249328 sin(167°)=0.224951,cos(167°)=-0.974370,tan(167°)=-0.230868 sin(168°)=0.207912,cos(168°)=-0.978148,tan(168°)=-0.212557 sin(169°)=0.190809,cos(169°)=-0.981627,tan(169°)=-0.194380 sin(170°)=0.173648,cos(170°)=-0.984808,tan(170°)=-0.176327 sin(171°)=0.156434,cos(171°)=-0.987688,tan(171°)=-0.158384 sin(172°)=0.139173,cos(172°)=-0.990268,tan(172°)=-0.140541 sin(173°)=0.121869,cos(173°)=-0.992546,tan(173°)=-0.122785 sin(174°)=0.104528,cos(174°)=-0.994522,tan(174°)=-0.105104sin(175°)=0.087156,cos(175°)=-0.996195,tan(175°)=-0.087489 sin(176°)=0.069756,cos(176°)=-0.997564,tan(176°)=-0.069927 sin(177°)=0.052336,cos(177°)=-0.998630,tan(177°)=-0.052408 sin(178°)=0.034899,cos(178°)=-0.999391,tan(178°)=-0.034921 sin(179°)=0.017452,cos(179°)=-0.999848,tan(179°)=-0.017455 sin(180°)=0.000000,cos(180°)=-1.000000,tan(180°)=-0.000000 sin(181°)=-0.017452,cos(181°)=-0.999848,tan(181°)=0.017455 sin(182°)=-0.034899,cos(182°)=-0.999391,tan(182°)=0.034921 sin(183°)=-0.052336,cos(183°)=-0.998630,tan(183°)=0.052408 sin(184°)=-0.069756,cos(184°)=-0.997564,tan(184°)=0.069927 sin(185°)=-0.087156,cos(185°)=-0.996195,tan(185°)=0.087489 sin(186°)=-0.104528,cos(186°)=-0.994522,tan(186°)=0.105104 sin(187°)=-0.121869,cos(187°)=-0.992546,tan(187°)=0.122785 sin(188°)=-0.139173,cos(188°)=-0.990268,tan(188°)=0.140541 sin(189°)=-0.156434,cos(189°)=-0.987688,tan(189°)=0.158384 sin(190°)=-0.173648,cos(190°)=-0.984808,tan(190°)=0.176327 sin(191°)=-0.190809,cos(191°)=-0.981627,tan(191°)=0.194380 sin(192°)=-0.207912,cos(192°)=-0.978148,tan(192°)=0.212557 sin(193°)=-0.224951,cos(193°)=-0.974370,tan(193°)=0.230868 sin(194°)=-0.241922,cos(194°)=-0.970296,tan(194°)=0.249328 sin(195°)=-0.258819,cos(195°)=-0.965926,tan(195°)=0.267949 sin(196°)=-0.275637,cos(196°)=-0.961262,tan(196°)=0.286745sin(197°)=-0.292372,cos(197°)=-0.956305,tan(197°)=0.305731 sin(198°)=-0.309017,cos(198°)=-0.951057,tan(198°)=0.324920 sin(199°)=-0.325568,cos(199°)=-0.945519,tan(199°)=0.344328 sin(200°)=-0.342020,cos(200°)=-0.939693,tan(200°)=0.363970 sin(201°)=-0.358368,cos(201°)=-0.933580,tan(201°)=0.383864 sin(202°)=-0.374607,cos(202°)=-0.927184,tan(202°)=0.404026 sin(203°)=-0.390731,cos(203°)=-0.920505,tan(203°)=0.424475 sin(204°)=-0.406737,cos(204°)=-0.913545,tan(204°)=0.445229 sin(205°)=-0.422618,cos(205°)=-0.906308,tan(205°)=0.466308 sin(206°)=-0.438371,cos(206°)=-0.898794,tan(206°)=0.487733 sin(207°)=-0.453990,cos(207°)=-0.891007,tan(207°)=0.509525 sin(208°)=-0.469472,cos(208°)=-0.882948,tan(208°)=0.531709 sin(209°)=-0.484810,cos(209°)=-0.874620,tan(209°)=0.554309 sin(210°)=-0.500000,cos(210°)=-0.866025,tan(210°)=0.577350 sin(211°)=-0.515038,cos(211°)=-0.857167,tan(211°)=0.600861 sin(212°)=-0.529919,cos(212°)=-0.848048,tan(212°)=0.624869 sin(213°)=-0.544639,cos(213°)=-0.838671,tan(213°)=0.649408 sin(214°)=-0.559193,cos(214°)=-0.829038,tan(214°)=0.674509 sin(215°)=-0.573576,cos(215°)=-0.819152,tan(215°)=0.700208 sin(216°)=-0.587785,cos(216°)=-0.809017,tan(216°)=0.726543 sin(217°)=-0.601815,cos(217°)=-0.798636,tan(217°)=0.753554 sin(218°)=-0.615661,cos(218°)=-0.788011,tan(218°)=0.781286sin(219°)=-0.629320,cos(219°)=-0.777146,tan(219°)=0.809784 sin(220°)=-0.642788,cos(220°)=-0.766044,tan(220°)=0.839100 sin(221°)=-0.656059,cos(221°)=-0.754710,tan(221°)=0.869287 sin(222°)=-0.669131,cos(222°)=-0.743145,tan(222°)=0.900404 sin(223°)=-0.681998,cos(223°)=-0.731354,tan(223°)=0.932515 sin(224°)=-0.694658,cos(224°)=-0.719340,tan(224°)=0.965689 sin(225°)=-0.707107,cos(225°)=-0.707107,tan(225°)=1.000000 sin(226°)=-0.719340,cos(226°)=-0.694658,tan(226°)=1.035530 sin(227°)=-0.731354,cos(227°)=-0.681998,tan(227°)=1.072369 sin(228°)=-0.743145,cos(228°)=-0.669131,tan(228°)=1.110613 sin(229°)=-0.754710,cos(229°)=-0.656059,tan(229°)=1.150368 sin(230°)=-0.766044,cos(230°)=-0.642788,tan(230°)=1.191754 sin(231°)=-0.777146,cos(231°)=-0.629320,tan(231°)=1.234897 sin(232°)=-0.788011,cos(232°)=-0.615661,tan(232°)=1.279942 sin(233°)=-0.798636,cos(233°)=-0.601815,tan(233°)=1.327045 sin(234°)=-0.809017,cos(234°)=-0.587785,tan(234°)=1.376382 sin(235°)=-0.819152,cos(235°)=-0.573576,tan(235°)=1.428148 sin(236°)=-0.829038,cos(236°)=-0.559193,tan(236°)=1.482561 sin(237°)=-0.838671,cos(237°)=-0.544639,tan(237°)=1.539865 sin(238°)=-0.848048,cos(238°)=-0.529919,tan(238°)=1.600335 sin(239°)=-0.857167,cos(239°)=-0.515038,tan(239°)=1.664279 sin(240°)=-0.866025,cos(240°)=-0.500000,tan(240°)=1.732051sin(241°)=-0.874620,cos(241°)=-0.484810,tan(241°)=1.804048 sin(242°)=-0.882948,cos(242°)=-0.469472,tan(242°)=1.880726 sin(243°)=-0.891007,cos(243°)=-0.453990,tan(243°)=1.962611 sin(244°)=-0.898794,cos(244°)=-0.438371,tan(244°)=2.050304 sin(245°)=-0.906308,cos(245°)=-0.422618,tan(245°)=2.144507 sin(246°)=-0.913545,cos(246°)=-0.406737,tan(246°)=2.246037 sin(247°)=-0.920505,cos(247°)=-0.390731,tan(247°)=2.355852 sin(248°)=-0.927184,cos(248°)=-0.374607,tan(248°)=2.475087 sin(249°)=-0.933580,cos(249°)=-0.358368,tan(249°)=2.605089 sin(250°)=-0.939693,cos(250°)=-0.342020,tan(250°)=2.747477 sin(251°)=-0.945519,cos(251°)=-0.325568,tan(251°)=2.904211 sin(252°)=-0.951057,cos(252°)=-0.309017,tan(252°)=3.077684 sin(253°)=-0.956305,cos(253°)=-0.292372,tan(253°)=3.270853 sin(254°)=-0.961262,cos(254°)=-0.275637,tan(254°)=3.487414 sin(255°)=-0.965926,cos(255°)=-0.258819,tan(255°)=3.732051 sin(256°)=-0.970296,cos(256°)=-0.241922,tan(256°)=4.010781 sin(257°)=-0.974370,cos(257°)=-0.224951,tan(257°)=4.331476 sin(258°)=-0.978148,cos(258°)=-0.207912,tan(258°)=4.704630 sin(259°)=-0.981627,cos(259°)=-0.190809,tan(259°)=5.144554 sin(260°)=-0.984808,cos(260°)=-0.173648,tan(260°)=5.671282 sin(261°)=-0.987688,cos(261°)=-0.156434,tan(261°)=6.313752 sin(262°)=-0.990268,cos(262°)=-0.139173,tan(262°)=7.115370sin(263°)=-0.992546,cos(263°)=-0.121869,tan(263°)=8.144346 sin(264°)=-0.994522,cos(264°)=-0.104528,tan(264°)=9.514364 sin(265°)=-0.996195,cos(265°)=-0.087156,tan(265°)=11.430052 sin(266°)=-0.997564,cos(266°)=-0.069756,tan(266°)=14.300666 sin(267°)=-0.998630,cos(267°)=-0.052336,tan(267°)=19.081137 sin(268°)=-0.999391,cos(268°)=-0.034899,tan(268°)=28.636253 sin(269°)=-0.999848,cos(269°)=-0.017452,tan(269°)=57.289962 sin(270°)=-1.000000,cos(270°)=-0.000000,tan(270°)=无意义sin(271°)=-0.999848,cos(271°)=0.017452,tan(271°)=-57.289962 sin(272°)=-0.999391,cos(272°)=0.034899,tan(272°)=-28.636253 sin(273°)=-0.998630,cos(273°)=0.052336,tan(273°)=-19.081137 sin(274°)=-0.997564,cos(274°)=0.069756,tan(274°)=-14.300666 sin(275°)=-0.996195,cos(275°)=0.087156,tan(275°)=-11.430052 sin(276°)=-0.994522,cos(276°)=0.104528,tan(276°)=-9.514364 sin(277°)=-0.992546,cos(277°)=0.121869,tan(277°)=-8.144346 sin(278°)=-0.990268,cos(278°)=0.139173,tan(278°)=-7.115370 sin(279°)=-0.987688,cos(279°)=0.156434,tan(279°)=-6.313752 sin(280°)=-0.984808,cos(280°)=0.173648,tan(280°)=-5.671282 sin(281°)=-0.981627,cos(281°)=0.190809,tan(281°)=-5.144554 sin(282°)=-0.978148,cos(282°)=0.207912,tan(282°)=-4.704630 sin(283°)=-0.974370,cos(283°)=0.224951,tan(283°)=-4.331476 sin(284°)=-0.970296,cos(284°)=0.241922,tan(284°)=-4.010781sin(285°)=-0.965926,cos(285°)=0.258819,tan(285°)=-3.732051 sin(286°)=-0.961262,cos(286°)=0.275637,tan(286°)=-3.487414 sin(287°)=-0.956305,cos(287°)=0.292372,tan(287°)=-3.270853 sin(288°)=-0.951057,cos(288°)=0.309017,tan(288°)=-3.077684 sin(289°)=-0.945519,cos(289°)=0.325568,tan(289°)=-2.904211 sin(290°)=-0.939693,cos(290°)=0.342020,tan(290°)=-2.747477 sin(291°)=-0.933580,cos(291°)=0.358368,tan(291°)=-2.605089 sin(292°)=-0.927184,cos(292°)=0.374607,tan(292°)=-2.475087 sin(293°)=-0.920505,cos(293°)=0.390731,tan(293°)=-2.355852 sin(294°)=-0.913545,cos(294°)=0.406737,tan(294°)=-2.246037 sin(295°)=-0.906308,cos(295°)=0.422618,tan(295°)=-2.144507 sin(296°)=-0.898794,cos(296°)=0.438371,tan(296°)=-2.050304 sin(297°)=-0.891007,cos(297°)=0.453990,tan(297°)=-1.962611 sin(298°)=-0.882948,cos(298°)=0.469472,tan(298°)=-1.880726 sin(299°)=-0.874620,cos(299°)=0.484810,tan(299°)=-1.804048 sin(300°)=-0.866025,cos(300°)=0.500000,tan(300°)=-1.732051 sin(301°)=-0.857167,cos(301°)=0.515038,tan(301°)=-1.664279 sin(302°)=-0.848048,cos(302°)=0.529919,tan(302°)=-1.600335 sin(303°)=-0.838671,cos(303°)=0.544639,tan(303°)=-1.539865 sin(304°)=-0.829038,cos(304°)=0.559193,tan(304°)=-1.482561 sin(305°)=-0.819152,cos(305°)=0.573576,tan(305°)=-1.428148 sin(306°)=-0.809017,cos(306°)=0.587785,tan(306°)=-1.376382sin(307°)=-0.798636,cos(307°)=0.601815,tan(307°)=-1.327045 sin(308°)=-0.788011,cos(308°)=0.615661,tan(308°)=-1.279942 sin(309°)=-0.777146,cos(309°)=0.629320,tan(309°)=-1.234897 sin(310°)=-0.766044,cos(310°)=0.642788,tan(310°)=-1.191754 sin(311°)=-0.754710,cos(311°)=0.656059,tan(311°)=-1.150368 sin(312°)=-0.743145,cos(312°)=0.669131,tan(312°)=-1.110613 sin(313°)=-0.731354,cos(313°)=0.681998,tan(313°)=-1.072369 sin(314°)=-0.719340,cos(314°)=0.694658,tan(314°)=-1.035530 sin(315°)=-0.707107,cos(315°)=0.707107,tan(315°)=-1.000000 sin(316°)=-0.694658,cos(316°)=0.719340,tan(316°)=-0.965689 sin(317°)=-0.681998,cos(317°)=0.731354,tan(317°)=-0.932515 sin(318°)=-0.669131,cos(318°)=0.743145,tan(318°)=-0.900404 sin(319°)=-0.656059,cos(319°)=0.754710,tan(319°)=-0.869287 sin(320°)=-0.642788,cos(320°)=0.766044,tan(320°)=-0.839100 sin(321°)=-0.629320,cos(321°)=0.777146,tan(321°)=-0.809784 sin(322°)=-0.615661,cos(322°)=0.788011,tan(322°)=-0.781286 sin(323°)=-0.601815,cos(323°)=0.798636,tan(323°)=-0.753554 sin(324°)=-0.587785,cos(324°)=0.809017,tan(324°)=-0.726543 sin(325°)=-0.573576,cos(325°)=0.819152,tan(325°)=-0.700208 sin(326°)=-0.559193,cos(326°)=0.829038,tan(326°)=-0.674509 sin(327°)=-0.544639,cos(327°)=0.838671,tan(327°)=-0.649408 sin(328°)=-0.529919,cos(328°)=0.848048,tan(328°)=-0.624869sin(329°)=-0.515038,cos(329°)=0.857167,tan(329°)=-0.600861 sin(330°)=-0.500000,cos(330°)=0.866025,tan(330°)=-0.577350 sin(331°)=-0.484810,cos(331°)=0.874620,tan(331°)=-0.554309 sin(332°)=-0.469472,cos(332°)=0.882948,tan(332°)=-0.531709 sin(333°)=-0.453990,cos(333°)=0.891007,tan(333°)=-0.509525 sin(334°)=-0.438371,cos(334°)=0.898794,tan(334°)=-0.487733 sin(335°)=-0.422618,cos(335°)=0.906308,tan(335°)=-0.466308 sin(336°)=-0.406737,cos(336°)=0.913545,tan(336°)=-0.445229 sin(337°)=-0.390731,cos(337°)=0.920505,tan(337°)=-0.424475 sin(338°)=-0.374607,cos(338°)=0.927184,tan(338°)=-0.404026 sin(339°)=-0.358368,cos(339°)=0.933580,tan(339°)=-0.383864 sin(340°)=-0.342020,cos(340°)=0.939693,tan(340°)=-0.363970 sin(341°)=-0.325568,cos(341°)=0.945519,tan(341°)=-0.344328 sin(342°)=-0.309017,cos(342°)=0.951057,tan(342°)=-0.324920 sin(343°)=-0.292372,cos(343°)=0.956305,tan(343°)=-0.305731 sin(344°)=-0.275637,cos(344°)=0.961262,tan(344°)=-0.286745 sin(345°)=-0.258819,cos(345°)=0.965926,tan(345°)=-0.267949 sin(346°)=-0.241922,cos(346°)=0.970296,tan(346°)=-0.249328 sin(347°)=-0.224951,cos(347°)=0.974370,tan(347°)=-0.230868 sin(348°)=-0.207912,cos(348°)=0.978148,tan(348°)=-0.212557 sin(349°)=-0.190809,cos(349°)=0.981627,tan(349°)=-0.194380 sin(350°)=-0.173648,cos(350°)=0.984808,tan(350°)=-0.176327sin(351°)=-0.156434,cos(351°)=0.987688,tan(351°)=-0.158384 sin(352°)=-0.139173,cos(352°)=0.990268,tan(352°)=-0.140541 sin(353°)=-0.121869,cos(353°)=0.992546,tan(353°)=-0.122785 sin(354°)=-0.104528,cos(354°)=0.994522,tan(354°)=-0.105104 sin(355°)=-0.087156,cos(355°)=0.996195,tan(355°)=-0.087489 sin(356°)=-0.069756,cos(356°)=0.997564,tan(356°)=-0.069927 sin(357°)=-0.052336,cos(357°)=0.998630,tan(357°)=-0.052408 sin(358°)=-0.034899,cos(358°)=0.999391,tan(358°)=-0.034921 sin(359°)=-0.017452,cos(359°)=0.999848,tan(359°)=-0.017455 sin(360°)=-0.000000,cos(360°)=1.00000,tan(360°)=-0.000000。

初中三角函数值对照表

初中三角函数值对照表

初中三角函数值对照表
一、正弦函数值对照表
正弦函数是一个周期为360度或2π的周期函数,其在各
个特定角度下的函数值如下表所示:
角度(°)030456090180270360
sin00.5√2/2√3/210-10
二、余弦函数值对照表
余弦函数也是一个周期为360度或2π的周期函数,其在
各个特定角度下的函数值如下表所示:
角度(°)030456090180270360
cos1√3/2√2/20.50-101
三、正切函数值对照表
正切函数在某些角度下会不存在(例如90度),在存在的角度下,其函数值如下表所示:
角度(°)0304560180270360
tan0√3/31√30无0
三角函数值对照表是初中阶段学习三角函数时非常重要的
参考资料,通过对照表的使用,学生可以更清晰地理解各个角度下正弦、余弦、正切函数的数值规律。

希望通过这份对照表,能够帮助初中同学更好地学习和掌握三角函数的知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档