初中数学热点:图形运动问题的分析
图形运动的分类方法

图形运动的分类方法作者:王睿郭娟来源:《数学教学通讯·初等教育》2013年第12期[摘要] 本文主要讲解中考常考的图形运动类问题中“面的平移”重叠部分的面积问题. 本文提出了解决此类问题的有效解法——时间轴分类法,用此方法解题的关键是找到各关键点的进出“动图形”的时刻.[关键词] 定图形;动图形;关键点;时间轴;运动图形运动型问题是数学中考的热点,也是中考的难点,更是考查学生综合能力的关键题目. 初中数学的运动问题可分为三大类:平移、对称和旋转. 平移又可细分为点的平移、线的平移和面(图形)的平移;对称可分为轴对称和中心对称. 如:■近年来,运动问题中考查“重叠部分面积”的试题不计其数,但无论教师怎么讲,学生怎么练,该类题的得分率都不高,原因是学生极易出现漏解. 那如何让学生避免漏解呢?下面就“面的平移”中关于重叠部分的面积问题(下面简称为平移型面积问题)进行讲解.■ 难点分析平移型面积问题的难点有两个:一是分类,即判断需要将整个运动过程分成几种情况;二是求解析式,即如何表示面积(实质是如何表示线段的长).本文只解决第一个难点——如何分类.■ 类型分析本文只研究两个图形的平移问题,我们先来明确几个定义:(1)动图形和定图形:把平移的图形称为“动图形”,把另一个不动的图形称为“定图形”.(2)平移方向:记为l.(3)图形的高:图形在与平移方向l垂直的方向(记为l■)上的高.例如:△ABC沿射线BC向右平移,则平移方向l与直线BC平行(如图1所示),l■与直线BC垂直(如图2所示). 于是△ABC在l■方向上的高即为点A到BC的距离(线段AD 的长,如图3所示).■ 关键点关键点通常是指动图形的顶点. 笔者将平移型面积问题按两个图形高的大小分为三类:(1)动图形和定图形的高相等.(2)动图形的高大于定图形的高.(3)动图形的高小于定图形的高.■ 解决方法———时间轴分类法1. 类型一:动图形和定图形的高相等例1?摇(2006重庆中考改编)如图4所示,一张三角形纸片ABC,∠ACB=90°,AC=8,BC=6,沿斜边AB的中线CD把这张纸片剪成△AC■D■和△BCD两个三角形.将纸片△AC■D■沿直线DB方向以每秒一个单位长度的速度向右平移(点A,D■,D,B始终在同一直线上,初始位置时点D■与点D重合,点C■与点C重合),当点A与点B重合时,停止平移. 设平移距离DD■为x,△AC■D■与△BCD重叠部分的面积为y,请写出y与x的函数关系式,以及自变量的取值范围.■?摇如何分类呢?下面介绍时间轴分类的操作步骤:(1)第一步,求整个运动持续的时间,画出时间轴.根据“当点A与点B重合时,停止平移”可求得运动持续的时间为10秒,可画出时间轴,如图5所示.■(2)第二步,找出动图形的关键点,求出每个点进出定图形的时间.①动图形有三个顶点,即本题的关键点有三个,为点A,C■,D■.②各关键点进出定图形的时刻如下表:■(3)第三步,补全时间轴. 将第二步中求得的时刻画到第一步的时间轴上,如图6所示. 由图6知时间轴被分成了两部分,所以确定该运动过程将分两种情况进行讨论.■(4)第四步,画出时间轴上各时刻对应的图形,如图7、图8、图9所示(通常t=0都不画).■■■(5)第五步,画出介于第三步中每两个时刻之间(即时段)的任意时刻的图形,如图10和图11所示.■■注:①自变量的取值范围中,“=”前后都可以取.②只有第五步的图需要画到解答过程中.2. 类型二:动图形的高大于定图形的高例2 (2013广东)有一副直角三角板,在三角板ABC中,∠BAC=90°,AB=AC=6;在三角板DEF中,∠FDE=90°,DF=4,DE=4■. 将这副直角三角板按图12所示的位置摆放,即点B与点F重合,边BA与FD在同一条直线上.现固定三角板ABC,将三角板DEF沿射线BA方向平行移动,当点F运动到点A时停止运动. 设BF=x,两块三角板重叠部分的面积为y,求y与x的函数解析式,并求出相应的x的取值范围.■“不等高”的问题如何解决呢?变不等高问题为等高问题,而其转化的原则为“就低不就高”.定图形△ABC的高为AC的长,动图形△DEF的高为DE的长,根据“就低不就高”的原则,此时应将动图形△BDE“变低”. 步骤如下:(1)第一步,确定定图形△ABC和动图形△DEF.(2)第二步,根据平移方向,将“高”图形变“低”,转化成“等高模式”.根据平移方向向上,确定左边界为AB所在的直线l■,右边界为直线l■(过点C作平移方向的平行线l■),则动图形夹在左、右边界的梯形FDGH就和定图形△ABC等高了,如图13所示.■于是可以看成定图形△ABC和动图形梯形FDGH的平移过程,余下步骤就按例1的步骤进行分类,主要步骤如下:①画出时间轴:如图14所示.■②列出时刻表(假定移动的速度为每秒一个单位长度,在数值上,时间与BF的长相等):■③补全时间轴,如图15所示.■④画出各时刻的图形,如图16、图17、图18、图19所示.■■■■⑤画出各时段的图形,如图20、图21、图22所示.■■■3.?摇类型三:动图形的高小于定图形的高此类问题直接用例1的步骤完成即可. 下题是很多考生都没能做对的题,你觉得应该分几种情况呢?例3 (2012重庆中考改编)如图23所示,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=2,BC=6,AB=3. E为BC边上一点,且BE=2,以BE为边作正方形BEFG,顶点F恰好落在对角线AC上. 将正方形BEFG沿BC方向向右平移,记平移中的正方形BEFG为正方形B′EFG,当点E与点C重合时停止平移.设平移的距离为x,正方形B′EFG与△ADC重叠部分的面积为S,请直接写出S与x之间的函数关系式,并写出自变量x的取值范围.■分析(1)列出时刻表(假定移动的速度为每秒一个单位长度,在数值上,时间与平移距离x的值相等):■(2)画出各时段的图形,如图24、图25、图26、图27所示.■■■■■ 小结本文所阐述的方法是将动态问题静态化,对于初中生学习运动问题有较强的辅助作用. 不过对于平移型面积问题还有两个图形同为动图形、两个图形不同底等情况,在学习过程中也要学会灵活运用和转化.。
初中数学动点问题归纳-初中教育精选

题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系; 分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点31、(2009年齐齐哈尔市)直线 y = -— x+6与坐标轴分别交于 A B 两点,动点P 、Q 同时从O 点出发,4同时到达 A 点,运动停止.点 Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O - B-A 运动. (1)直接写出A 、B 两点的坐标;(2)设点Q 的运动时间为t 秒,4OPQ 的面积为S, 的函数关系式;,一一 48 , .................... (3)当$= 一时,求出点P 的坐标,并直接写出以点5坐标.解:1、A (8, 0)B (0, 6)22、当 0vtv3 时,S=t当 3v tv 8 时,S=3/8(8-t)t提示:第(2)问按点P 到拐点B 所有时间分段分类;。
P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OM 边。
然后画出各类 的图形,根据图形性质求顶点坐标。
2、(2009年衡阳市)如图,AB 是。
O 的直径,弦 BC=2cm ,/ ABC=60 o. (1)求。
O 的直径;(2)若D 是AB 延长线上一点,连结 CD,当BD 长为多少时,CD 与。
O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点 F 以1cm/s 的速度从B 点出发沿 BC 方向运动,设运动时间为 t(s)(0 <t <2),连结EF,当t 为何值时,△ BEF 为直角三角形.动点问题O 、P 、Q 为顶点的平行四边形的第四个顶点第(3)问是分类讨论:已知三定点求出S 与t 之间图(3)3、(2009重庆某江)如图,已知抛物线y=a(x—1)2+3J3(a*0)经过点A(—2, 0),抛物线的顶点为D,过O作射线OM // AD .过顶点D平行于x轴的直线交射线OM于点C , B在x轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P从点O出发,以每秒1个长度单位的速度沿射线OM运动,设点P运动的时间为t(s).问当t为何值时,四边形DAOP分别为平行四边形?直角梯形?等腰梯形?(3)若OC =OB ,动点P和动点Q分别从点O和点B同时出发,分别以每秒1单位和2个长度单位的速度沿OC和BO运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为t (s),连接PQ ,当t为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ的长.注意:发现并充分运用特殊角/ DAB=60当^OPC面积最大时,四边形BCPQ勺面积最小。
初中数学论文:浅析中考几何图形滚动问题的求解.doc

线长为 (结果保留准确值).浅析中考几何图形滚动问题的求解摘要:图形的旋转是新课标的重要内容,当几何图形旋转中心沿着一定轨迹进行运 动就产生了滚动问题,它既有利于考查学生的动手操作能力和空间思维能力,又培养了 学生的创新意识和综合运用知识的能力,因此成为近年来中考命题的热点。
几何图形可 以沿着一条直线无滑动地翻滚,也可以沿另一图形内部边缘无滑动翻滚,还可以沿另一 个图形外部边缘无滑动翻滚;这个几何图形可以是内角相等的多边形,也可以是圆,还 可以是扇形。
本文着重探讨近几年中考数学题目中几何图形上点在无滑动翻滚过程中经 过路线长的解法规律,及滚动过程图形位置变化规律。
关健词:无滑动翻滚路线长规律浅析中考几何图形滚动问题的求解纵观近几年中考数学试题,我们发现关于几何图形滚动的问题还真不少,几何图形 可以沿着一条直线无滑动地翻滚,也可以沿另一图形内部边缘无滑动翻滚,还可以沿另 一个图形外部边缘无滑动翻滚;这个几何图形可以是内角相等的多边形,也可以是圆, 还可以是扇形。
如何求解中考几何图形滚动的这些问题?下面通过举例加以分析解决。
一、滚动过程中图形上点经过的路线长(一)沿着一条直线无滑动翻滚 口 』 c例1. (1) (2008四川达州市).如图所 ,// \ /、\ / \示,边长为2的等边三角形木块,沿水平 [/ '、、/ '、、AC B A 线J 滚动,则上点从开始至结束所走过的路(2)(2009 黄冈市)矩形 ABC 。
的边 AB=8, AD=6,现/ V 将矩形A8CD 放在直线/上且沿着/向右作无滑动地 D rAT\ fT " I翻滚,半它翻滚至类似开始的位置时(如 4__一"匚一"卜/(3)如图,将边长为2cm 的正六边形ABCDEF60 180 ttx2图所示),则顶点人所经过的路线长是 的6条边沿直线m 向右滚动(不滑动),当正六边形滚动一•周时,顶点A 所经过的路线 长是 o[分析]这是同一系列题目,如右图可知:三角形每次翻滚的角度为120度,矩形每 次翻滚的角度为90度,正六边形每次翻滚60度,三个几何图形每次都是翻滚它的一个 外角度数;三角形滚动一周,A 点走了 2个弧长,圆心角都是120度,但半径分别是AC 和AB 。
第三章第02讲 图形的旋转(8类热点题型讲练)(原卷版)--初中数学北师大版8年级下册

第02讲图形的旋转(8类热点题型讲练)1.掌握旋转的概念,了解旋转中心,旋转角,旋转方向,对应点的概念及其应用;2.掌握旋转的性质,应用概念及性质解决一些实际问题;(重点,难点)3.能够根据旋转的性质进行简单的旋转作图.知识点01旋转的概念(1)旋转的概念:把一个平面图形绕着平面内某一点O转动一定角度的变换.点O叫作旋转中心;转动的角度叫作旋转角;图形上点P旋转后得到点P’,这两个点叫作对应点.(2)旋转三要素:①旋转方向;②旋转中心;③旋转角度注:旋转中心可在任意位置.即可在旋转图形上,也可不在旋转图形上.知识点02旋转的性质旋转的性质:一个图形和它经过旋转所得到的图形中,对应点到旋转中心的距离相等;两组对应点分别与旋转中心连线所成的角相等.知识点03确定旋转中心确定旋转中心:由旋转的性质可得,对应点到旋转中心的距离相等,所以旋转中心位于对应点连线的垂直平分线上,即旋转中心是两对对应点所连线段的垂直平分线的交点.知识点04旋转作图旋转作图:在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.作图的步骤:(1)连接图形中的每一个关键点与旋转中心;(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;(4)连接所得到的各对应点.题型01判断生活中的旋转现象【例题】(2023上·内蒙古呼和浩特·九年级校考期中)下列运动形式属于旋转的是()A .足球在地上的滚动B .电梯的运行C .热气球点火升空D .钟摆的摆动【变式训练】1.(2023上·广西玉林·九年级统考期中)下列现象属于旋转的是()A .电梯的上下移动B .飞机起飞后冲向空中的过程C .幸运大转盘转动的过程D .笔直的铁轨上飞驰而过的火车2.(2023上·福建福州·九年级校考阶段练习)下列生活中的实例是旋转的是()A .钟表的指针的转动B .汽车在笔直的公路上行驶C .传送带上,瓶装饮料的移动D .足球飞入球网中题型02找旋转中心、旋转角、对应点【例题】(2023上·天津东丽·九年级校联考期中)如图,P 为正方形ABCD 内一点,1PC ,CDP △将绕点C 逆时针旋转得到CBE △,(1)旋转中心是______.旋转角为______度.(2)求PE 的长度.【变式训练】1.(2023上·辽宁大连·九年级统考期中)如图,四边形ABCD 是正方形,E 是CD 上的一点,ABF △是ADE V 的旋转图形.(1)由ADE V 顺时针旋转到△(2)连接EF ,判断并说明AEF △2.(2023上·湖南永州·八年级校考开学考试)(1)旋转中心为点,并求出旋转角=度;(2)求出BAE ∠的度数和AE 的长.题型03根据旋转的性质求解【变式训练】1.(2023上·浙江·九年级专题练习)如图,将若AD BE ,则CAE ∠的度数为2.(2024上·广东肇庆·九年级统考期末)∠与AC交于点G.若B题型04求绕原点旋转90°点的坐标【例题】(2023上·江苏苏州点B,则点B的坐标为2.(2023下·江苏泰州·八年级校联考阶段练习)点B到x轴的距离是8,将题型05求绕某点(非原点)旋转90°点的坐标【例题】(2023上·全国·将AC绕A点顺时针旋转【变式训练】2.(2023·湖北宜昌·统考模拟预测)如图,点点A 按逆时针方向旋转90︒得到线段题型06平面直角坐标系中旋转作图【例题】(2024上·吉林松原·九年级校联考期中)如图,方格纸中每个小正方形的边长都是1个单位长度,在方格纸中建立如图所示的平而直角坐标系,OAB 的顶点都在格点上,已知点()4,2A --,()2,6B --.(1)将OAB 向右平移4个单位长度得到111O A B △,请画出111O A B △;(2)将OAB 绕点O 顺时针旋转90︒,画出所得的22OA B △.【变式训练】1.(2023上·四川自贡·九年级校考期中)如图,正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系中,ABC 的三个顶点()5,5A ,()6,3B ,()2,1C 均在格点上,(1)画出将ABC 向下平移4个单位长度得到的111A B C △;(2)画出ABC 绕点C 逆时针旋转90︒后得到的22A B C ,并写出点2A 的坐标;2.(2024上·陕西延安·九年级统考期末)如图,网格中每个小正方形的边长都是单位1,ABC 是格点三角形.(1)画出将ABC 向右平移2个单位得到的111A B C △;(2)画出将ABC 绕点O 顺时针方向旋转90︒得到的222A B C △,并写出点2B 的坐标.题型07坐标与旋转规律问题【变式训练】1.(2023上·辽宁鞍山·九年级校考阶段练习)如图,在平面直角坐标系中,将11AB C △的位置,点B 、O 分别落在点1B 、1C 处,点1B 在x 轴上,再将的位置,点2C 在x 轴上,将112A B C V 绕点2C 顺时针旋转到222A B C △的位置,点()()B 2.(2023下.广西.七年级广西大学附属中学校考期中)如图,已知点向连续翻转241次,点A 依次落在点1A ,2A ,3A , (241)题型08旋转综合题——几何变换【例题】(2023上·北京朝阳·九年级校考期中)如图,在ABC 中,,BAC AB AC α∠==,点D 为BC 边上一点(不与点B 重合),连接AD ,将ABD △绕点A 逆时针旋转得到ACE △.(1)若80α=︒,写出旋转角及其度数;(2)当α度数变化时,DAE ∠与DCE ∠之间存在某种不变的数量关系.请你写出结论并证明.【变式训练】(1)将ADE V 绕A 点旋转到图2位置时,写出BD 、CE 的数量关系;(2)当90BAC ∠=︒时,将ADE V 绕A 点旋转到图3位置.①猜想BD 与CE 有什么数量关系和位置关系?请就图3的情形进行证明;②当点C 、D 、E 在同一直线上时,直接写出ADB ∠的度数.(1)【猜想】如图1,点E 在BC 上,点D 在AC 上,线段BE 与AD (2)【探究】:把DCE △绕点C 旋转到如图2的位置,连接AD ,(3)【拓展】:把DCE △绕点C 在平面内自由旋转,若6AC =,CE 时,直接写出BE 的长.一、单选题1.(2024上·安徽合肥·九年级统考期末)垃圾分类是对垃圾收集处置传统方式的改革,是对垃圾进行有效处置的一种科学管理方法.你认识垃圾分类的图标吗?请选出其中的旋转对称图形()A .可回收物B .有害垃圾C .厨余垃圾D .其他垃圾2.(2024上·河北唐山·七年级统考期末)如图,OAB 绕点O 逆时针旋转70︒,得到OCD ,若15AOB ∠=︒,则AOD ∠等于()A .85︒B .70︒C .55︒D .45︒3.(2024上·江西上饶·九年级统考期末)如图,将一块含有30︒的直角三角板ABC (假定90C ∠=︒,30B ∠=︒)绕顶点A 逆时针旋转100︒得到AB C ''△,则BB C ''∠等于()A .5︒B .10︒C .15︒D .20︒4.(2024上·广东肇庆·九年级统考期末)如图,将线段AB 绕点O 顺时针旋转90︒,得到线段A B '',那么()2,5A -的对应点A '的坐标是()A .()5,2-B .()2,5-C .()5,2D .()2,55.(2024上·山东烟台·八年级统考期末)如图,已知ABC 中,20CAB ∠=︒,30ABC ∠=︒,将ABC 绕A 点逆时针旋转50︒得到AB C ''△,以下结论:①BC B C ''=,②AC C B '' ,③C B BB '''⊥,④ABB ACC ''∠=∠,正确的有()A .①②③B .②③④C .①③④D .①②④二、填空题7.(2023上·安徽淮南·九年级统考期末)如图将为(,)a b ,则A 的坐标为.8.(2024上·辽宁大连·九年级统考期末)如图,将点B '恰在边AC 上,若2AB =9.(2024上·天津宁河·九年级统考期末)在平面直角坐标系中,点针旋转,得11A BO △,点A O ,为,点1A 的坐标为10.(2024上·辽宁盘锦·九年级校考期末)如图,D 为AB 的中点,点E 在是直角三角形时,AE '的长为三、解答题(1)将ABC 绕坐标原点O 顺时针旋转(2)求111A B C △的面积.12.(2024上·湖北武汉·九年级统考期末)点B 顺时针旋转90°到CBE '△的位置((1)判断BEE ' 的形状为(2)若2AE =,4BE =,13.(2024上·湖北武汉·九年级统考期末)如图,在Rt ABC △中,90ACB ∠=︒,将ABC 绕点C 顺时针旋转90︒得到DEC ,延长ED 交AB 于点F .(1)直接写出AFE ∠的度数;(2)若67.5A Ð=°,求证:2DE AF =.14.(2023上·陕西渭南·九年级统考期末)如图,将一个钝角ABC (其中120ABC ∠=︒)绕点B 顺时针旋转得111A B C △,使得C 点落在AB 的延长线上的点1C 处,连接1AA .(1)求证:1AA BC ∥;(2)若120A AC ∠=︒,求11AA C ∠的度数.15.(2024上·甘肃武威·九年级校联考期末)如图,在ABC 中,点E 在BC 边上,AE AB =,将线段AC 绕A 点旋转到AF 的位置,使得CAF BAE ∠=∠,连接EF 、EF 与AC 交于点G .(1)求证:BC EF =;(2)若64ABC ∠=︒,25ACB ∠=︒,求AGE ∠的度数.16.(2024上·浙江台州·九年级统考期末)如图,在ABC 中,90ACB ∠=︒,将ABC 绕点C 顺时针旋转得到DEC ,旋转角为α,CD ,DE 分别交AB 于点F ,G ,连接BD .(1)求证:AGD α∠=;(2)若2BC =,30a =︒,BD AC ∥.①求AB 的长;②连接AD ,BE ,AE ,求四边形ADBE 的面积.17.(2024上·陕西西安·七年级校考期末)如图,已知ABC 中,90B Ð=°,将ABC 沿着射线BC 方向平移得到DEF ,其中点A 、点B 、点C 的对应点分别是点D 、点E 、点F ,且CE DE =.(1)如图①,如果6AB =,3BC =,那么平移的距离等于______;(请直接写出答案)(2)如图②,将DEF 绕着点E 逆时针旋转90︒得到CEG ,连接AG ,如果AB a =,BC b =,求ACG 的面积;(3)如图③,在(2)题的条件下,分别以AB ,BC 为边向外作正方形,正方形的面积分别记为1S ,2S ,且满足1216S S -=,如果平移的距离等于8,求出ACG 的面积.(1)如图1,当EC 与BC 重合,30α=︒时,ACD ∠=;(2)如图2,三角形ABC 固定不动,将三角形CDE 绕点C 旋转,使点E 落到AB 的延长线上,当射线EC 平分DEA ∠时,求ECB ∠的度数;(3)三角形ABC 固定不动,将三角形CDE 绕点C 旋转,当25ACE ∠=︒且射线CD 平分。
动中求静,静中求解——初中数学动点问题探究

162动中求静,静中求解——初中数学动点问题探究★ 宋璐欣动点问题是初中数学的重要内容,动点问题的解决涉及的数学知识繁多,对于中学生而言具备一定难度。
本文就此展开了具体论述,从数学思想方法运用的角度为动点问题的解决提出了一些建议,以期改善学生数学学习效率。
近年来,初中数学动点问题成为中考热点,也同样是教师的教学难点之一。
动点问题不仅包含了“点”的知识,更需要涉猎“线”和“面”的知识点,往更深处研究,实际上就是在谈几何的问题。
长远来看,掌握动点问题的解决不仅是学生的重要学习任务,更是数学教师必须要解决的问题。
一、当前初中数学教学中动点问题解决所面临的困境(一)学生对数学概念认知模糊就教学实践来看,多数学生在遇到动点问题时,最大的问题出在审题不清上。
相比于一般的数学问题而言,动点问题中包含的数学概念既有常量又有变量,且它们之间的关系通常是隐性的,需要学生深入发掘。
部分学生在读题时不仅难以完整把握题目所给出的变量和常量,更不能发现其中隐含的数学关系,导致解题无能。
(二)缺乏空间思维的培养动点问题所描绘的数学情境是抽象的、不断变化的,思考和解题时都需要学生展开丰富的联想,但有的学生空间想象力有限,对于动点问题中的运动情境难以达到透彻的理解。
数学教师在平常的教学工作中也缺乏对学生空间思维的培养,学生学习状态趋于被动,更依赖于教师的帮助,而不愿意主动思考和探究,思维闭塞,这也是制约学生解答动点问题的主要原因之一。
(三)缺乏快速有效的解题思路不管面临任何类型的数学题目,学生首要找到解题思路,才能逐步找到解题出口,快速有效的答题。
就学生难以解答动点问题的根源看来,是他们对不同类型的数学题目及其解题方向没有真正地把握,所以在解题时没有方向,这也反映出学生的数学知识基础还不够扎实,数学素养有待提升。
二、解决动点问题的策略探究整合上述学生在解决动点问题时所面临的困境及原因后,初中数学教师就要对自身教学工作作出相应的调整,指导学生从以下方面探究解决对策:(一)以静制动,理清数量关系动点问题的关键虽然在于“动”,但学生也要避免思维上的局限,将视野完全集中于“动”的研究之上,这样就容易让学生无法感知一些静态的数学数量。
初中数学重点模型14 动点在四边形中的分类讨论(基础)

专题14 动点在四边形中的分类讨论【专题说明】动点问题是中考中非常重要的一类问题,也是中考中的热点问题。
动点问题体现了数学中变化的思想,分类讨论的思想,对学生综合运用知识的能力要求非常高。
四边形中的动点问题是一类非常重要的问题,它将三角形和平行四边形、矩形、菱形、正方形结合在一起进行考察。
一、解题基本思路解决动点问题的思路,要注意以下几点:1、设出未知数动点问题一般都是求点的运动时间,通常设运动时间为t2、动点的运动路径就是线段长度题目通常会给动点的运动速度例如每秒两个单位,那么运动路程就是2t个单位。
而2t也就是这个点所运动的线段长。
进而能表示其他相关线段的长度。
所以我们在做动点问题的时候,第一步就是把图形中的线段都用含t的代数式来表示。
3、方程思想求出时间动点问题通常都是用方程来解决,根据题目找到线段之间的等量关系,然后用含有t的代数式表示出来,列出方程求解出t的值。
4、难点是找等量关系这种题的难点是找到等量关系。
这个等量关系往往不是题目中用语言叙述出来的,而是同学们根据题型自己挖掘出来的等量关系,所以对同学们图形分解的能力以及灵活运用知识的能力要求非常高。
5、注意分类讨论因为点的运动的位置不同,形成的图形就不同,符合结论的情况可能就不止一种,所以做动点问题要注意分类讨论。
【精典例题】1、如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,x ),则AP=2x cm,CM=3x cm,DN=x2cm.若BQ=x cm(0(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x 为何值时,以P ,Q ,M ,N 为顶点的四边形是平行四边形;(3)以P ,Q ,M ,N 为顶点的四边形能否为等腰梯形?如果能,求x 的值;如果不能,请说明理由.【解析】(1)当点P 与点N 重合或点Q 与点M 重合时,以PQ ,MN 为两边,以矩形的边(AD 或BC )的一部分为第三边可能构成一个三角形. ①当点P 与点N 重合时,(舍去).因为BQ +CM =,此时点Q 与点M 不重合.所以符合题意. ①当点Q 与点M 重合时,.此时,不符合题意.故点Q 与点M 不能重合.所以所求x 的值为.(2)由(1)知,点Q 只能在点M 的左侧,①当点P 在点N 的左侧时,由,解得. 当x =2时四边形PQMN 是平行四边形.①当点P 在点N 的右侧时,由, 解得.当x =4时四边形NQMP 是平行四边形.所以当时,以P ,Q ,M ,N 为顶点的四边形是平行四边形.(3)过点Q ,M 分别作AD 的垂线,垂足分别为点E ,F .由于2x >x ,所以点E 一定在点P 的左侧. 若以P ,Q ,M ,N 为顶点的四边形是等腰梯形, 则点F 一定在点N 的右侧,且PE =NF , 即.解得.由于当x =4时, 以P ,Q ,M ,N 为顶点的四边形是平行四边形,所以,以P ,Q ,M ,N 为顶点的四边形不能为等腰梯形2、如图1,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (1, 0)、C (3, 0)、D (3, 4).以A 为顶点的抛212220211211x x x x +==-=--由,得,34(211)20x x +=-<211x =-320,5x x x +==由得22520DN x ==>211-220(3)20(2)x x x x -+=-+120()2x x ==舍去,220(3)(2)20x x x x -+=+-1210()4x x =-=舍去,24x x ==或223x x x x -=-120()4x x ==舍去,ABDCPQ MN物线y =ax 2+bx +c 过点C .动点P 从点A 出发,沿线段AB 向点B 运动,同时动点Q 从点C 出发,沿线段CD 向点D 运动.点P 、Q 的运动速度均为每秒1个单位,运动时间为t 秒.过点P 作PE ①AB 交AC 于点E .(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)过点E 作EF ①AD 于F ,交抛物线于点G ,当t 为何值时,①ACG 的面积最大?最大值为多少? (3)在动点P 、Q 运动的过程中,当t 为何值时,在矩形ABCD 内(包括边界)存在点H ,使以C 、Q 、E 、H 为顶点的四边形为菱形?请直接写出t 的值.图1 思路点拨1.把①ACG 分割成以GE 为公共底边的两个三角形,高的和等于AD . 2.用含有t 的式子把图形中能够表示的线段和点的坐标都表示出来.3.构造以C 、Q 、E 、H 为顶点的平行四边形,再用邻边相等列方程验证菱形是否存在. 满分解答(1)A (1, 4).因为抛物线的顶点为A ,设抛物线的解析式为y =a (x -1)2+4,代入点C (3, 0),可得a =-1.所以抛物线的解析式为y =-(x -1)2+4=-x 2+2x +3. (2)因为PE //BC ,所以2AP AB PE BC ==.因此1122PE AP t ==.所以点E 的横坐标为112t +. 将112x t =+代入抛物线的解析式,y =-(x -1)2+4=2144t -.所以点G 的纵坐标为2144t -.于是得到2211(4)(4)44GE t t t t =---=-+.因此22111()(2)1244ACG AGE CGE S S S GE AF DF t t t ∆∆∆=+=+=-+=--+. 所以当t =1时,①ACG 面积的最大值为1.(3)2013t =或20t =-考点伸展第(3)题的解题思路是这样的:因为FE //QC ,FE =QC ,所以四边形FECQ 是平行四边形.再构造点F 关于PE 轴对称的点H ′,那么四边形EH ′CQ 也是平行四边形.再根据FQ =CQ 列关于t 的方程,检验四边形FECQ 是否为菱形,根据EQ =CQ 列关于t 的方程,检验四边形EH ′CQ 是否为菱形.1(1,4)2E t t +-,1(1,4)2F t +,(3,)Q t ,(3,0)C .如图2,当FQ =CQ 时,FQ 2=CQ 2,因此2221(2)(4)2t t t -+-=.整理,得240800t t -+=.解得120t =-220t =+. 如图3,当EQ =CQ 时,EQ 2=CQ 2,因此2221(2)(42)2t t t -+-=.整理,得213728000t t -+=.(1320)(40)0t t --=.所以12013t =,240t =(舍去).图2 图33、如图1,在Rt①ABC 中,①C =90°,AC =6,BC =8,动点P 从点A 开始沿边AC 向点C 以每秒1个单位长度的速度运动,动点Q 从点C 开始沿边CB 向点B 以每秒2个单位长度的速度运动,过点P 作PD //BC ,交AB 于点D ,联结PQ .点P 、Q 分别从点A 、C 同时出发,当其中一点到达端点时,另一点也随之停止运动,设运动的时间为t 秒(t ≥0).(1)直接用含t 的代数式分别表示:QB =_______,PD =_______;(2)是否存在t 的值,使四边形PDBQ 为菱形?若存在,求出t 的值;若不存在,说明理由,并探究如何改变点Q 的速度(匀速运动),使四边形PDBQ 在某一时刻为菱形,求点Q 的速度; (3)如图2,在整个运动过程中,求出线段PQ 的中点M 所经过的路径长.图1 图2思路点拨1.菱形PDBQ 必须符合两个条件,点P 在①ABC 的平分线上,PQ //AB .先求出点P 运动的时间t ,再根据PQ //AB ,对应线段成比例求CQ 的长,从而求出点Q 的速度.2.探究点M 的路径,可以先取两个极端值画线段,再验证这条线段是不是点M 的路径. 满分解答(1)QB =8-2t ,PD =43t .(2)如图3,作①ABC 的平分线交CA 于P ,过点P 作PQ //AB 交BC 于Q ,那么四边形PDBQ 是菱形.过点P 作PE ①AB ,垂足为E ,那么BE =BC =8.在Rt①ABC 中,AC =6,BC =8,所以AB =10. 在Rt①APE 中,23cos 5AE A AP t ===,所以103t =.当PQ //AB 时,CQ CP CB CA =,即106386CQ-=.解得329CQ =.所以点Q 的运动速度为3210169315÷=.(3)以C 为原点建立直角坐标系.如图4,当t =0时,PQ 的中点就是AC 的中点E (3,0). 如图5,当t =4时,PQ 的中点就是PB 的中点F (1,4). 直线EF 的解析式是y =-2x +6.如图6,PQ 的中点M 的坐标可以表示为(62t -,t ).经验证,点M (62t -,t )在直线EF 上.所以PQ 的中点M 的运动路径长就是线段EF 的长,EF =25.图3图4 图5 图6考点伸展第(3)题求点M 的运动路径还有一种通用的方法是设二次函数: 当t =2时,PQ 的中点为(2,2).设点M 的运动路径的解析式为y =ax 2+bx +c ,代入E (3,0)、F (1,4)和(2,2),得930,4,42 2.a b c a b c a b c ++=⎧⎪++=⎨⎪++=⎩解得a =0,b =-2,c =6. 所以点M 的运动路径的解析式为y =-2x +6.4、如图1,在平面直角坐标系中,抛物线y =ax 2-2ax -3a (a <0)与x 轴交于A 、B 两点(点A 在点B 的左侧),经过点A 的直线l :y =kx +b 与y 轴负半轴交于点C ,与抛物线的另一个交点为D ,且CD =4AC .(1)直接写出点A 的坐标,并求直线l 的函数表达式(其中k 、b 用含a 的式子表示); (2)点E 是直线l 上方的抛物线上的动点,若①ACE 的面积的最大值为54,求a 的值; (3)设P 是抛物线的对称轴上的一点,点Q 在抛物线上,以点A 、D 、P 、Q 为顶点的四边形能否成为矩形?若能,求出点P 的坐标;若不能,请说明理由.图1 备用图 思路点拨1.过点E 作x 轴的垂线交AD 于F ,那么①AEF 与①CEF 是共底的两个三角形.2.以AD 为分类标准讨论矩形,当AD 为边时,AD 与QP 平行且相等,对角线AP =QD ;当AD 为对角线时,AD 与PQ 互相平分且相等.满分解答(1)由y=ax2-2ax-3a=a(x+1)(x-3),得A(-1, 0).由CD=4AC,得x D=4.所以D(4, 5a).由A(-1, 0)、D(4, 5a),得直线l的函数表达式为y=ax+a.(2)如图1,过点E作x轴的垂线交AD于F.设E(x, ax2-2ax-3a),F(x, ax+a),那么EF=y E-y F=ax2-3ax-4a.由S①ACE=S①AEF-S①CEF=11()() 22E A E C EF x x EF x x---=1()2C AEF x x-=21(34)2ax ax a--=21325()228a x a--,得①ACE的面积的最大值为258a-.解方程25584a-=,得25a=-.(3)已知A(-1, 0)、D(4, 5a),x P=1,以AD为分类标准,分两种情况讨论:①如图2,如果AD为矩形的边,那么AD//QP,AD=QP,对角线AP=QD.由x D-x A=x P-x Q,得x Q=-4.当x=-4时,y=a(x+1)(x-3)=21a.所以Q(-4, 21a).由y D-y A=y P-y Q,得y P=26a.所以P(1, 26a).由AP2=QD2,得22+(26a)2=82+(16a)2.整理,得7a2=1.所以a=P(1,.①如图3,如果AD为矩形的对角线,那么AD与PQ互相平分且相等.由x D+x A=x P+x Q,得x Q=2.所以Q(2,-3a).由y D+y A=y P+y Q,得y P=8a.所以P(1, 8a).由AD2=PQ2,得52+(5a)2=12+(11a)2.整理,得4a2=1.所以12a=-.此时P(14)-,.图1 图2 图3考点伸展第(3)题也可以这样解.设P(1,n).①如图2,当AD时矩形的边时,①QPD=90°,所以AM DNMD NP=,即5553a na-=-.解得235ana+=.所以P235(1,)aa+.所以Q3(4,)a-.将Q3(4,)a-代入y=a(x+1)(x-3),得321aa=.所以a=.①如图3,当AD为矩形的对角线时,先求得Q(2,-3a).由①AQD=90°,得AG QKGQ KD=,即32335aa a-=--.解得12a=-.5、如图1,已知抛物线C:y=-x2+bx+c经过A(-3,0)和B(0, 3)两点.将这条抛物线的顶点记为M,它的对称轴与x轴的交点记为N.(1)求抛物线C的表达式;(2)求点M的坐标;(3)将抛物线C平移到抛物线C′,抛物线C′的顶点记为M′,它的对称轴与x轴的交点记为N′.如果以点M、N、M′、N′为顶点的四边形是面积为16的平行四边形,那么应将抛物线C怎样平移?为什么?图1思路点拨1.抛物线在平移的过程中,M′N′与MN保持平行,当M′N′=MN=4时,以点M、N、M′、N′为顶点的四边形就是平行四边形.2.平行四边形的面积为16,底边MN=4,那么高NN′=4.3.M′N′=4分两种情况:点M′在点N′的上方和下方.4.NN′=4分两种情况:点N′在点N的右侧和左侧.满分解答(1)将A (-3,0)、B (0, 3)分别代入y =-x 2+bx +c ,得 930,3.b c c --+=⎧⎨=⎩解得b =-2,c =3. 所以抛物线C 的表达式为y =-x 2-2x +3.(2)由y =-x 2-2x +3=-(x +1)2+4,得顶点M 的坐标为(-1,4).(3)抛物线在平移过程中,M′N′与MN 保持平行,当M′N′=MN =4时,以点M 、N 、M ′、N ′为顶点的四边形就是平行四边形.因为平行四边形的面积为16,所以MN 边对应的高NN′=4.那么以点M 、N 、M ′、N ′为顶点的平行四边形有4种情况:抛物线C 直接向右平移4个单位得到平行四边形MNN ′M ′(如图2); 抛物线C 直接向左平移4个单位得到平行四边形MNN ′M ′(如图2);抛物线C 先向右平移4个单位,再向下平移8个单位得到平行四边形MNM ′N ′(如图3); 抛物线C 先向左平移4个单位,再向下平移8个单位得到平行四边形MNM ′N ′(如图3).图2 图3考点伸展本题的抛物线C 向右平移m 个单位,两条抛物线的交点为D ,那么①MM ′D 的面积S 关于m 有怎样的函数关系?如图4,①MM ′D 是等腰三角形,由M (-1,4)、M ′(-1+m , 4),可得点D 的横坐标为22m -. 将22m x -=代入y =-(x +1)2+4,得244m y =-+.所以DH =244m -.所以S =2311(4)2248m m m m -=-.图4。
中考数学动点问题专题讲解

动点及动图形的专题复习教案所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、应用勾股定理建立函数解析式)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.∴y =GP=32MP=233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴ACBD CE AB =,∴11x y =, ∴xy 1=. 2222233621419x x x MH PH MP +=-+=+= AEDCB 图2HM NGPOAB图1x y(2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立,∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 如三、应用求图形面积的方法建立函数关系式例4()如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
上海中考18题 图形的平移、翻折、旋转及点的运动(解析版)

专题38 图形的平移、翻折、旋转及点的运动图形的平移、翻折、旋转及点的运动是初中数学图形的几种基本运动形式,是初中数学的重要内容之一.这类问题常常要运用“动”的思路去观察、分析、推理、猜想、探究相关图形的位置变化情况或图形的有关性质,对提高数学思维能力与发展空间观念有重要作用,也是近年的中考试题的一个热点.图形的平移、翻折、旋转有一个重要性质:任何图形经过平移、翻折、旋转后,除图形的位置发生变化外,图形的形状、大小保持不变.这个性质在解决图形运动的有关问题中常用.【例1】(2019•上海)如图,在正方形ABCD中,E是边AD的中点.将△ABE沿直线BE翻折,点A落在点F处,联结DF,那么∠EDF的正切值是.【分析】由折叠可得AE=FE,∠AEB=∠FEB,由折叠的性质以及三角形外角性质,即可得到∠AEB=∠EDF,进而得到tan∠EDF=tan∠AEB=ABAE=2.【解答】解:如图所示,由折叠可得AE=FE,∠AEB=∠FEB=12∠AEF,∵正方形ABCD中,E是AD的中点,∴AE=DE=12AD=12AB,∴DE=FE,∴∠EDF=∠EFD,又∵∠AEF是△DEF的外角,∴∠AEF=∠EDF+∠EFD,∴∠EDF=12∠AEF,∴∠AEB=∠EDF,∴tan∠EDF=tan∠AEB=ABAE=2.故答案为:2.【例2】(2020•静安区一模)如图,有一菱形纸片ABCD,∠A=60°,将该菱形纸片折叠,使点A恰好与CD的中点E重合,折痕为FG,点F、G分别在边AB、AD上,联结EF,那么cos∠EFB的值为.【分析】如图,连接BD.设BC=2a.在Rt△BEF中,求出EF,BF即可解决问题.【解答】解:如图,连接BD.设BC=2a.∵四边形ABC都是菱形,∴AB=BC=CD=AD=2a,∠A=∠C=60°,∴△BDC是等边三角形,∵DE=EC=a,∴BE⊥CD,∴BE=√BC2−EC2=√3a,∵AB∥CD,BE⊥CD,∴BE⊥AB,∴∠EBF=90°,设AF=EF=x,在Rt△EFB中,则有x2=(2a﹣x)2+(√3a)2,∴x =7a 4, ∴AF =EF =7a 4,BF =AB ﹣AF =a 4, ∴cos ∠EFB =BF EF =a 47a 4=17, 故答案为17. 【例3】(2020•闵行区一模)如图,在等腰△ABC 中,AB =AC =4,BC =6,点D 在底边BC 上,且∠DAC =∠ACD ,将△ACD 沿着AD 所在直线翻折,使得点C 落到点E 处,联结BE ,那么BE 的长为 .【分析】只要证明△ABD ∽△MBE ,得AB BM =BD BE ,只要求出BM 、BD 即可解决问题. 【解答】解:∵AB =AC ,∴∠ABC =∠C ,∵∠DAC =∠ACD ,∴∠DAC =∠ABC ,∵∠C =∠C ,∴△CAD ∽△CBA ,∴CA CB=CD AC , ∴46=CD 4, ∴CD =83,BD =BC ﹣CD =103,∵∠DAM =∠DAC =∠DBA ,∠ADM =∠ADB ,∴△ADM ∽△BDA ,∴AD BD =DM DA ,即83103=DM 83,∴DM =3215,MB =BD ﹣DM =65,∵∠ABM =∠C =∠MED ,∴A 、B 、E 、D 四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,∴ABBM =BDBE,∴BE=BM⋅DBAB=1.故答案为:1.1.(2020•青浦区一模)已知,在矩形纸片ABCD中,AB=5cm,点E、F分别是边AB、CD的中点,折叠矩形纸片ABCD,折痕BM交AD边于点M,在折叠的过程中,如果点A恰好落在线段EF上,那么边AD的长至少是cm.【分析】根据已知条件得到AE=DF=BE=CF,求得四边形AEFD是矩形,得到EF=AD,∠AEN=∠BEN=90°,根据折叠的性质得到BN=AB,根据直角三角形的性质得到∠BNE=30°,于是得到EN=√32BN=5√32,即可得到结论.【解答】解:如图,∵在矩形纸片ABCD中,点E、F分别是边AB、CD的中点,∴AE=DF=BE=CF,∴四边形AEFD是矩形,∴EF=AD,∠AEN=∠BEN=90°,∵折叠矩形纸片ABCD,折痕BM交AD边于点M,∴BN=AB,∵BE=12AB,∴BE=12BN,∴∠BNE=30°,∵AB=5cm,∴EN =√32BN =5√32, ∴EF ≥EN 时,点A 恰好落在线段EF 上,即AD ≥5√32, ∴边AD 的长至少是5√32, 故答案为:5√32.2.(2020•杨浦区一模)在Rt △ABC 中,∠A =90°,AC =4,AB =a ,将△ABC 沿着斜边BC 翻折,点A 落在点A 1处,点D 、E 分别为边AC 、BC 的中点,联结DE 并延长交A 1B 所在直线于点F ,联结A 1E ,如果△A 1EF 为直角三角形时,那么a = .【分析】当△A 1EF 为直角三角形时,存在两种情况:①当∠A 1EF =90°时,如图1,根据对称的性质和平行线可得:A 1C =A 1E =4,根据直角三角形斜边中线的性质得:BC =2A 1B =8,最后利用勾股定理可得AB 的长;②当∠A 1FE =90°时,如图2,证明△ABC 是等腰直角三角形,可得AB =AC =4.【解答】解:当△A 1EF 为直角三角形时,存在两种情况:①当∠A 1EF =90°时,如图1,∵△A 1BC 与△ABC 关于BC 所在直线对称,∴A 1C =AC =4,∠ACB =∠A 1CB ,∵点D ,E 分别为AC ,BC 的中点,∴D 、E 是△ABC 的中位线,∴DE ∥AB ,∴∠CDE =∠MAN =90°,∴∠CDE =∠A 1EF ,∴AC ∥A 1E ,∴∠ACB =∠A 1EC ,∴∠A 1CB =∠A 1EC ,∴A1C=A1E=4,Rt△A1CB中,∵E是斜边BC的中点,∴BC=2A1E=8,由勾股定理得:AB2=BC2﹣AC2,∴AB=√82−42=4√3;②当∠A1FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A1BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA1=45°,∴△ABC是等腰直角三角形,∴AB=AC=4;综上所述,AB的长为4√3或4;故答案为:4√3或4;3.(2020•崇明区一模)如图,在Rt△ABC中,∠C=90°,AB=10,AC=8,D是AC的中点,点E在边AB上,将△ADE沿DE翻折,使得点A落在点A′处,当A′E⊥AB时,则A′A=.【分析】分两种情形分别求解,作DF ⊥AB 于F ,连接AA ′.想办法求出AE ,利用等腰直角三角形的性质求出AA ′即可.【解答】解:如图,作DF ⊥AB 于F ,连接AA ′.在Rt △ACB 中,BC =√AB 2−AC 2=6,∵∠DAF =∠BAC ,∠AFD =∠C =90°,∴△AFD ∽△ACB ,∴DF BC =AD AB =AF AC , ∴DF 6=410=AF 8,∴DF =125,AF =165,∵A ′E ⊥AB ,∴∠AEA ′=90°,由翻折不变性可知:∠AED =45°,∴EF =DF =125, ∴AE =A ′E =125+165=285,∴AA ′=28√25, 如图,作DF ⊥AB 于F ,当 EA ′⊥AB 时,同法可得AE =165−125=45,AA ′=√2AE =4√25.故答案为28√25或4√25. 4.(2020•闵行区一模)已知正方形ABCD 的边长为2,如果将线段BD 绕着点B 旋转后,点D 落在BC 的延长线上的点E 处,那么tan ∠BAE = .【分析】由正方形ABCD 中四个内角为直角,四条边相等,求出BC 与DC 的长,利用勾股定理求出BD 的长,由旋转的性质可求BE 的长,即可求解.【解答】解;如图,∵正方形ABCD ,∴∠ABC =∠C =90°,在Rt △BCD 中,DC =BC =2,根据勾股定理得:BD =√AD 2+AB 2=√4+4=2√2,∵将线段BD 绕着点B 旋转后,点D 落在BC 的延长线上的点E 处,∴BE =BD =2√2,∴tan ∠BAE =BE AB =2√22=√2, 故答案为:√2.5.(2020•徐汇区一模)如图,在矩形ABCD 中,AB =3,AD =4,将矩形ABCD 绕着点B 顺时针旋转后得到矩形A 'BC 'D ',点A 的对应点A '在对角线AC 上,点C 、D 分别与点C '、D '对应,A ′D '与边BC 交于点E ,那么BE 的长是 .【分析】如图,过点B 作BF ⊥AC ,过点E 作EH ⊥AC ,由勾股定理可求AC =5,由面积法可求BF =125,由勾股定理可求AF =95,由旋转的性质可得AB =BA ',∠BAD =∠BA 'D '=90°,可求AA '=75,由等腰三角形的性质可求HC 的长,通过证明△EHC ∽△ABC ,可得BC AC =HC EC ,可求EC 的长,即可求解.【解答】解:如图,过点B 作BF ⊥AC ,过点E 作EH ⊥AC ,∵AB =3,AD =4,∠ABC =90°,∴AC =√AB2+BC 2=√9+16=5, ∵S △ABC =12AB ×BC =12AC ×BF ,∴3×4=5BF ,∴BF =125∴AF =√AB 2−BF 2=√9−14425=95, ∵将矩形ABCD 绕着点B 顺时针旋转后得到矩形A 'BC 'D ',∴AB =BA ',∠BAD =∠BA 'D '=90°,且BF ⊥AC ,∴∠BAC =∠BA 'A ,AF =A 'F =95,∠BA 'A +∠EA 'C =90°,∴A 'C =AC ﹣AA '=75,∵∠BA 'A +∠EA 'C =90°,∠BAA '+∠ACB =90°,∴∠ACB =∠EA 'C ,∴A 'E =EC ,且EH ⊥AC ,∴A 'H =HC =12A 'C =710, ∵∠ACB =∠ECH ,∠ABC =∠EHC =90°,∴△EHC ∽△ABC ,∴BC AC=HC EC ∴45=710EC∴EC =78,∴BE =BC ﹣EC =4−78=258, 故答案为:258.6.(2020•普陀区一模)如图,在Rt △ABC 中,∠C =90°,AC =5,sin B =513,点P 为边BC 上一点,PC=3,将△ABC 绕点P 旋转得到△A 'B 'C '(点A 、B 、C 分别与点A '、B '、C '对应),使B 'C '∥AB ,边A 'C '与边AB 交于点G ,那么A 'G 的长等于 .【分析】如图,作PH ⊥AB 于H .利用相似三角形的性质求出PH ,再证明四边形PHGC ′是矩形即可解决问题.【解答】解:如图,作PH ⊥AB 于H .在Rt △ABC 中,∠C =90°,AC =5,sin B =513,∴AC AB =513,∴AB =13,BC =√AB 2−AC 2=√132−52=12,∵PC =3,∴PB =9,∵∠BPH ∽△BAC ,∴PH AC =PB AB , ∴PH 5=913,∴PH =4513, ∵AB ∥B ′C ′,∴∠HGC ′=∠C ′=∠PHG =90°,∴四边形PHGC ′是矩形,∴CG ′=PH =4513, ∴A ′G =5−4513=2013, 故答案为2013.7.(2020•奉贤区一模)如图,已知矩形ABCD (AB >BC ),将矩形ABCD 绕点B 顺时针旋转90°,点A 、D 分别落在点E 、F 处,连接DF ,如果点G 是DF 的中点,那么∠BEG 的正切值是 .【分析】连接BD ,BF ,EG .利用四点共圆证明∠BEG =∠BFD =45°即可.【解答】解:连接BD ,BF ,EG .由题意:BD =BF ,∠DBF =90°,∵DG =GF ,∴BG ⊥DF ,∴∠BGF =∠BEF =90°,∴∴B ,G ,E ,F 四点共圆,∠BEG=∠BFD=45°,∴∠BEG的正切值是1.故答案为1.8.(2020•嘉定区一模)在△ABC中,∠ACB=90°,AB=10,cos A=35(如图),把△ABC绕着点C按照顺时针的方向旋转,将A、B的对应点分别记为点A'、B'.如果A'B'恰好经过点A,那么点A与点A'的距离为.【分析】如图,过点C作CE⊥A'B',由锐角三角函数可求AC=6,由旋转的性质可得AC=A'C=6,∠A'=∠BAC,即可求A'E的长,由等腰三角形的性质可求AA'的长.【解答】解:如图,过点C作CE⊥A'B',∵在△ABC中,∠ACB=90°,AB=10,cos∠BAC=3 5,∴AC=6,∵把△ABC绕着点C按照顺时针的方向旋转,∴AC=A'C=6,∠A'=∠BAC,∵cos∠A'=cos∠BAC=A′EA′C=35,∴A'E=18 5,∵AC=A'C,CE⊥A'B',∴AA '=2A 'E =365, 故答案我:365.9.(2020•金山区一模)如图,在Rt △ABC 中,∠ABC =90°,AB =2,BC =4,点P 在边BC 上,联结AP ,将△ABP 绕着点A 旋转,使得点P 与边AC 的中点M 重合,点B 的对应点是点B ′,则BB ′的长等于 .【分析】如图,延长AB '交BC 于E ,过点B '作B 'D ⊥AB 于点D ,由勾股定理可求AC 的长,由旋转的性质可求AP =AM =√5,∠P AB =∠CAE ,AB =AB '=2,通过证明△ABP ∽△CBA ,可得∠P AB =∠C ,可得CE =AE ,由勾股定理可求CE ,BE 的长,由相似三角形的性质可求B 'D ,BD 的长,即可求解.【解答】解:如图,延长AB '交BC 于E ,过点B '作B 'D ⊥AB 于点D ,∵∠ABC =90°,AB =2,BC =4,∴AC =√AB 2+BC 2=√16+4=2√5,∵点M 是AC 中点,∴AM =√5,∵将△ABP 绕着点A 旋转,使得点P 与边AC 的中点M 重合,∴AP =AM =√5,∠P AB =∠CAE ,AB =AB '=2,∵AP 2=AB 2+PB 2,∴PB =1,∵BA PB =2=BC AB ,且∠ABP =∠ABC =90°, ∴△ABP ∽△CBA ,∴∠C =∠CAE ,∴CE =AE ,∵AE 2=AB 2+BE 2,∴CE 2=4+(4﹣CE )2,∴CE =AE =52,∴BE =32,∵B 'D ∥BC ,∴△AB 'D ∽△AEB ,∴AB′AE =AD AB =B′D BE, ∴252=AD 2=B′D32, ∴AD =85,B 'D =65, ∴BD =25,∴BB '=√B′D2+BD 2=√3625+425=2√105, 故答案为:2√105. 10.(2020•松江区一模)如图,矩形ABCD 中,AD =1,AB =k ,将矩形ABCD 绕着点B 顺时针旋转90°得到矩形A ′BC ′D ′,联结AD ′,分别交边CD ,A ′B 于E 、F ,如果AE =√2D ′F ,那么k = .【分析】由矩形的性质和旋转的性质可求AD =A 'D '=1,AB =A 'B =k ,∠A '=∠DAB =90°=∠DCB =∠ABC ,通过证明△ADE ∽△F A 'D ',可得AD A′F =DE A′D′=AE D′F ,可求DE ,A 'F 的长,通过证明△A 'D 'F ∽△CEF ,由相似三角形的性质可求解.【解答】解:∵将矩形ABCD 绕着点B 顺时针旋转90°得到矩形A ′BC ′D ′,∴AD =A 'D '=1,AB =A 'B =k ,∠A '=∠DAB =90°=∠DCB =∠ABC ,∴∠A 'D 'F =∠FEC =∠DEA ,且∠D =∠A '=90°,∴△ADE ∽△F A 'D ',∴AD A′F =DE A′D′=AE D′F ,且AE =√2D ′F ,∴DE =√2A 'D '=√2,A 'F =1√2AD =√22, ∵∠A '=∠DCF =90°,∠A 'FD '=∠EFC ,∴△A 'D 'F ∽△CEF ,∴EC A′D′=FCA′F , ∴k−√21=k−1−√22√22∴k =√2+1,故答案为:√2+1.11.(2019•浦东新区二模)如图,已知在△ABC 中,AB =3,AC =2,∠A =45o ,将这个三角形绕点B 旋转,使点A 落在射线AC 上的点A 1处,点C 落在点C 1处,那么AC 1= .【分析】连接AC 1,由旋转的性质先证△ABA 1为等腰直角三角形,再证△AA 1C 1为直角三角形,利用勾股定理可求AC 1的长度.【解答】解:如图,连接AC 1,由旋转知,△ABC ≌△A 1BC 1,∴AB =A 1B =3,AC =A 1C 1=2,∠CAB =∠C 1A 1B =45°,∴∠CAB =∠CA 1B =45°,∴△ABA 1为等腰直角三角形,∠AA 1C 1=∠CA 1B +∠C 1A 1B =90°,在等腰直角三角形ABA 1中,AA 1=√2AB =3√2,在Rt △AA 1C 1中,AC1=√AA12+A1C12=√(3√2)2+22=√22,故答案为:√22.12.(2019•松江区二模)如图,已知Rt△ABC中,∠ACB=90°,AC=8,BC=6.将△ABC绕点B旋转得到△DBE,点A的对应点D落在射线BC上.直线AC交DE于点F,那么CF的长为.【分析】由题意,可得BD=AB=10,tan D=tan∠A=BCAC=34,所以CD=4,在Rt△FCD中,∠DCF=90°,tan D=CFCD=34,即CF4=34,可得CF=3.【解答】解:∵如图,已知Rt△ABC中,∠ACB=90°,AC=8,BC=6.∴AB=√62+82=10,tan∠A=BCAC=34,∵将△ABC绕点B旋转得到△DBE,点A的对应点D落在射线BC上,直线AC交DE于点F,∴BD=AB=10,∠D=∠A,∴CD=BD﹣BC=10﹣6=4,在Rt△FCD中,∠DCF=90°,∴tan D=CFCD=34,即CF4=34,∴CF=3.故答案为:3.13.(2019•长宁区二模)如图,在△ABC中,AB=AC=5,BC=8,将△ABC绕着点C旋转,点A、B的对应点分别是点A'、B',若点B'恰好在线段AA'的延长线上,则AA'的长等于.【分析】由旋转的性质可得AC=A'C=5,AB=A'B'=5,BC=B'C=8,由等腰三角形的性质可得AF=A'F,由勾股定理列出方程组,可求AF的长,即可求AA'的长.【解答】解:如图,过点C作CF⊥AA'于点F,∵旋转∴AC=A'C=5,AB=A'B'=5,BC=B'C=8∵CF⊥AA',∴AF=A'F在Rt△AFC中,AC2=AF2+CF2,在Rt△CFB'中,B'C2=B'F2+CF2,∴B'C2﹣AC2=B'F2﹣AF2,∴64﹣25=(5+AF)2﹣AF2,∴AF =75∴AA '=145故答案为:14514.(2019•奉贤区二模)如图,矩形ABCD ,AD =a ,将矩形ABCD 绕着顶点B 顺时针旋转,得到矩形EBGF ,顶点A 、D 、C 分别与点E 、F 、G 对应(点D 与点F 不重合).如果点D 、E 、F 在同一条直线上,那么线段DF 的长是 .(用含a 的代数式表示)【分析】连接BD ,证明Rt △EDB ≌Rt △CBD ,可得DE =BC =AD =a ,因为EF =AD =a ,根据DF =DE +EF 即可得出DF 的长.【解答】解:如图,连接BD ,∵将矩形ABCD 绕着顶点B 顺时针旋转,得到矩形EBGF ,且D 、E 、F 在同一条直线上,∴∠DEB =∠C =90°,BE =AB =CD ,∵DB =BD ,∴Rt △EDB ≌Rt △CBD (HL ),∴DE =BC =AD =a ,∵EF =AD =a ,∴DF =DE +EF =a +a =2a .故答案为:2a .15.(2019•青浦区二模)如图,在矩形ABCD 中,AB =3,E 为AD 的中点,F 为CD 上一点,且DF =2CF ,沿BE 将△ABE 翻折,如果点A 恰好落在BF 上,则AD = .【分析】连接EF,则可证明△EA′F≌△EDF,从而根据BF=BA′+A′F,得出BF的长,在Rt△BCF 中,利用勾股定理可求出BC,即得AD的长度.【解答】解:连接EF,∵点E、点F是AD、DC的中点,∴AE=ED,DF=2CF=2,由折叠的性质可得AE=A′E,∴A′E=DE,在Rt△EA′F和Rt△EDF中,{EA′=ED,EF=EF∴Rt△EA′F≌Rt△EDF(HL),∴A′F=DF=2,∴BF=BA′+A′F=AB+DF=3+2=5,在Rt△BCF中,BC=√BF2−CF2=√52−12=2√6.∴AD=BC=2√6.故答案为2√616.(2019•虹口区二模)如图,在矩形ABCD中,AB=6,点E在边AD上且AE=4,点F是边BC上的一个动点,将四边形ABFE沿EF翻折,A、B的对应点A1、B1与点C在同一直线上,A1B1与边AD交于点G,如果DG=3,那么BF的长为.【分析】由DG =3,CD =6可知△CDG 的三角函数关系,由△CDG 分别与△A 'EG ,△B 'FC 相似,可求得CG ,CB ',由勾股定理△CFB '可求得BF 长度.【解答】解:∵△CDG ∽△A 'EG ,A 'E =4∴A 'G =2∴B 'G =4由勾股定理可知CG '=3√5则CB '=3√5−4由△CDG ∽△CFB '设BF =xCB′B′F =GD CD∴3√5−4x =36解得x =6√5−8故答案为6√5−817.(2019•杨浦区二模)如图,点M 、N 分别在∠AOB 的边OA 、OB 上,将∠AOB 沿直线MN 翻折,设点O 落在点P 处,如果当OM =4,ON =3时,点O 、P 的距离为4,那么折痕MN 的长为 .【分析】由折叠的性质可得MN ⊥OP ,EO =EP =2,由勾股定理可求ME ,NE 的长,即可求MN 的长.【解答】解:设MN 与OP 交于点E ,∵点O、P的距离为4,∴OP=4∵折叠∴MN⊥OP,EO=EP=2,在Rt△OME中,ME=√OM2−OE2=2√3在Rt△ONE中,NE=√ON2−OE2=√5∴MN=ME﹣NE=2√3−√5故答案为:2√3−√5。
初中数学动点问题专题讲解

中考动点专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH 中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中,22236x PH OP OH -=-=,∴2362121x OH MH -==. 在Rt △MPH 中,.∴y =GP=32MP=233631x +(0<x <6). (3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x .经检验,6=x 是原方程的根,且符合题意. ②GP=GH 时,2336312=+x ,解得0=x .经检验,0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°, ∴∠ABC=∠ACB=75°,∴∠ABD=∠ACE=105°. ∵∠BAC=30°,∠DAE=105°,∴∠DAB+∠CAE=75°,AEDCB图2HM NGPOAB图1又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC,∴AC BD CE AB =,∴11x y =,∴xy 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立, ∴290α-︒=αβ-,整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3.点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证:△ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP 的长. 解:(1)连结OD.根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP,∴△ADE ∽△AEP. (2)∵∠ABC=90°,AB=4,BC=3,∴AC=5.∵∠ABC=∠ADO=90°,∴OD ∥BC,∴53x OD =,54xAD =, ∴OD=x 53,AD=x 54.∴AE=x x 53+=x 58. ∵△ADE ∽△AEP,∴AE AD AP AE =,∴x x yx 585458=.∴x y 516=(8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP,∴∠PDE=∠PEC.∵∠FBP=∠DEP=90°,∠FPB=∠DPE, ∴∠F=∠PDE,∴∠F=∠FEC,∴CF=CE. ∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2),则CF=2. 类似①,可得CF=CE. ∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.A3(2)3(1)综上所述,当BF=1时,线段AP 的长为2或6. 三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H. ∵∠BAC=90°,AB=AC=22,∴BC=4,AH=21BC=2.∴OC=4-x . ∵AH OC S AOC⋅=∆21,∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2,∴222)2(2)1(x x -+=+.解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x ,∴222)2(2)1(-+=-x x .解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
初中生图形的运动教案

初中生图形的运动教案教学目标:1. 让学生理解图形运动的概念,掌握图形运动的基本性质和特点。
2. 培养学生观察、思考、表达和解决问题的能力。
3. 培养学生对图形运动的兴趣和好奇心,提高学生的审美能力。
教学重点:1. 图形运动的概念和基本性质。
2. 不同类型图形的运动特点。
教学难点:1. 图形运动的数学表达方法。
2. 图形运动的实际应用。
教学准备:1. 教学课件或黑板。
2. 图形运动的相关图片或实物。
3. 练习题和答案。
教学过程:一、导入(5分钟)1. 引导学生观察教室里的物体,找出它们在运动中的共同点和不同点。
2. 提问:你们听说过图形运动吗?你们对图形运动有什么了解?二、新课导入(10分钟)1. 介绍图形运动的概念:图形运动是指图形在平面内或空间内的移动,包括平移、旋转、翻转等。
2. 讲解图形运动的基本性质:图形运动不改变图形的大小和形状,只改变图形的位置和方向。
3. 举例说明不同类型图形的运动特点:a. 平移:图形在平面内沿直线移动,移动的距离和方向相同。
b. 旋转:图形绕某一点旋转,旋转的角度和方向相同。
c. 翻转:图形绕某一条直线或点翻转,翻转后的图形与原图形关于翻转轴对称。
三、课堂练习(10分钟)1. 让学生分组讨论,总结图形运动的特点和性质。
2. 每组选出一个图形,进行图形运动的设计和展示。
3. 邀请部分学生上台演示和讲解所设计的图形运动。
四、巩固知识(10分钟)1. 出示练习题,让学生独立完成。
2. 讲解答案,分析错误原因,及时纠正学生的错误。
五、拓展与应用(10分钟)1. 引导学生思考:图形运动在实际生活中有哪些应用?2. 举例说明:如服装设计、建筑设计、动画制作等。
3. 让学生尝试自己设计一个图形运动应用实例,并进行展示和讲解。
六、总结与反思(5分钟)1. 让学生回顾本节课所学内容,总结图形运动的概念、性质和特点。
2. 提问:你们觉得图形运动有什么意义和价值?3. 鼓励学生积极参与图形运动的相关活动,提高自己的审美和创新能力。
初中数学:图形运动问题的分析

初中数学:图形运动问题的分析 初中数学热点:图形运动问题的分析在这一理念的引导下,近几年上海市中考和毕业考加大了这方面的考察力度,特别是2019年上海市中考,这一部分的分值比前两年大幅度提高。
常见的图形运动有三种:旋转、平移和翻折。
运动变化问题正是利用它们变化图形的位置,引起条件或结论的改变,或者把分散的条件集中,以利于解题。
这类问题注重培养学生用动态的观点去看待问题,有利于学生空间想象能力和动手操作能力的锻炼,这类问题的解题关键在于如何〝静中取动〞或〝动中求静〞。
平移、旋转和翻折是几何变换中的三种基本变换。
所谓几何变换就是根据确定的法那么,对给定的图形(或其一部分)施行某种位置变化,然后在新的图形中分析有关图形之间的关系。
这类实体的特点是:结论开放,注重考查学生的猜想、探索能力;便于与其它只是相联系,解题灵活多变,能够考察学生分析问题和解决问题的能力;其中所含的数学思想和方法丰富,有数型结核方程的思想及数字建模,函数的思想,分类讨论的思想方法等。
为帮助广大考生把握好平移,旋转和翻折的特征,巧妙利用平移,旋转和翻折的知识来解决相关的问题,下面已近三年上海市毕业考,中考,中考预测卷为例说明其解法,供大家参考。
【一】平移在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
〝一定的方向〞称为平移方向,〝一定的距离〞称为平移距离。
例1在直角坐标平面内,点o为坐标原点,二次函数y=x2+(k-5) x-(k+4)的图象交x轴于点A(x1,0)点B(x2,0),且(x1+1)(x2+1) =8。
(1)求二次函数的【解析】式(2)将上述二次函数图像沿x轴向右平移两个单位,设平移后的图象与y轴交点为C,顶点为P,求△POC的面积。
分析:抛物线的运动问题只需抓住顶点和开口方向这两个要素的变化规律即可。
一般地总是先配方使之成为顶点式后再求解。
关于平移的变化规律是:平移―顶点改变(〝左加右减,上加下减〞),开口不变。
中考热点:(一)圆中动点“PA+...

中考热点:圆中动点“PA+kPB”型最值问题一、问题导读在初中数学中,有一类几何动点“PA+kPB”型最值问题,学生普遍感到“害怕”。
普通方法求解可能就会失效!当k=1时,可以转化为“将军饮马”模型,我们可以利用对称变换来处理。
而如果k不等于1的话,我们必须利用转换思路,截取线段灵活转化线段值,转化为常见求解模式。
二、典例精析类型1 探究圆中“PA+kPB”型的最值问题例1.如图,在平面直角坐标系中,点A、B的坐标分别为(﹣2,0),(2,0),点M是AO中点,⊙A 的半径为2.(1)若△PAB是直角三角形,则点P的坐标为______.(直接写出结果)(2)若PM⊥AB,则BP与⊙A有怎样的位置关系?为什么?(3)若点E的坐标为(0,3),那么⊙A上是否存在一点P,使PE+1/2PB最小,如果存在,求出这个最小值,如果不存在,简要说明理由.【解析】(1)分两种情形:①∠PAB=90°,②∠APB=90°分别求解即可解决问题;答案为(﹣2,2)或(﹣2,﹣2)或(﹣1,√3)或(﹣1,﹣√3).(2)求出PA,PB的长,利用勾股定理的逆定理证明即可;(3)如图,连接EM.∵PA=4,AMAB=4,∴PA=AMAB,∴PA/AM=AB/PA,∵∠PAM=∠BAP,∴△PAM∽△BAP,∴PM/PB=PA/AB=1/2,∴PM=1/2PB,∴PE+1/2PB=PE+PM,∵PE+PM≥EM,∴PE+PM的最小值为线段EM的长,∵E(0,3),∴OE=3,∴由勾股定理可求得EM=√10,∴PE+1/2PB的最小值为√10.【点评】本题属于属于圆综合题,考查了勾股定理以及逆定理,相似三角形的判定和性质,三角形的三边关系等知识,解题的关键是学会利用分类讨论的思想思考问题,学会构造相似三角形解决问题,学会用转化的思想思考问题,属于中考压轴题.例2.如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC 于点C,过点E作ED⊥AF,交AF的延长线于点D.(1)求证:DE是⊙O的切线;(2)若DE=3,CE=2,①求BC/AE的值;②若点G为AE上一点,求OG+1/2EG最小值.【解析】(1)根据切线的判定,连接过切点E的半径OE,利用等腰三角形和平行线性质即能证得OE⊥DE.(2)①观察DE所在的△ADE与CE所在的△BCE的关系,由等角的余角相等易证△ADE∽△BEC,即得BC/AE 的值.②先利用BC/AE的值和相似求出圆的直径,发现∠BAC=30°;利用30°所对直角边等于斜边一半,给EG构造以EG为斜边且有30°的直角三角形,把1/2EG转化到EP,再从P出发构造PQ=OG,最终得到三点成一直线时线段和最短的模型.解:①连接BE∵AB是⊙O直径∴∠AEB=90°∴∠BED=∠D=90°,∠BAE+∠ABE=90°∵BC是⊙O的切线,∴∠ABC=∠ABE+∠CBE=90°,∴∠BAE=∠CBE∵∠DAE=∠BAE,∴∠DAE=∠CBE,∴△ADE∽△BEC, ∴AE/BC=DE/CE,∵DE=3,CE=2,∴BC/AE=2/3②过点E作EH⊥AB于H,过点G作GP∥AB交EH于P,过点P作PQ∥OG交AB于Q,∴EP⊥PG,四边形OGPQ 是平行四边形,∴∠EPG=90°,PQ=OG∵BC/AE=2/3,∴设BC=2x,AE=3x,∴AC=AE+CE=3x+2∵∠BEC=∠ABC=90°,∠C=∠C,∴△BEC∽△ABC,∴BC/AC=CE/BC,∴BC =ACCE 即(2x)=2(3x+2),解得:x =2,x =﹣1/2(舍去)∴BC=4,AE=6,AC=8,∴sin∠BAC=BC/AC=1/2,∴∠BAC=30°∴∠EGP=∠BAC=30°,∴PE=1/2EG,∴OG+1/2EG=PQ+PE∴当E、P、Q在同一直线上(即H、Q重合)时,PQ+PE=EH最短∵EH=1/2AE=3,∴OG+1/2EG的最小值为3【点评】本题考查了等腰三角形和平行线性质,切线的判定和性质,相似的判定和性质,最短路径问题.第(1)题为常规题型较简单;第(2)①题关键是发现DE、CE所在三角形的相似关系;②是求出所有线段长后发现30°角,利用30°构造1/2EG,考查了转化思想.类型2 由已知含有PA+kPB型最值条件,探究圆的综合问题例3.如图,在△ACE中,CA=CE,∠CAE=30°,⊙O经过点C,且⊙O的直径AB在线段AE上.(1)试说明CE是⊙O的切线;(2)若△ACE中AE边上的高为h,试用含h的代数式表示⊙O的直径AB;(3)设点D是线段AC上任意一点(不含端点),连接OD,当1/2CD+OD的最小值为4√3时,求⊙O的直径AB的长.【解析】(1)连接OC,要证CE是⊙O的切线,只需证∠OCE=90°即可(2)过点C作CH⊥AB于H,连接OC,在Rt△OHC中运用三角函数即可求AB=4√3h/3AB;(3)作OF平分∠AOC,交⊙O于F,连接AF、CF、DF,先证明四边形AOCF是菱形,根据对称性可得DF =DO,过点D作DH⊥OC于H,DH=1/2DC,1/2DC+OD=DH+FD,根据两点之间线段最短可得:当F、D、H三点共线时,DH+FD最小,然后在Rt△OHF中运用三角函数求得AB的长.解:作OF平分∠AOC,交⊙O于F,连接AF、CF、DF则∠AOF=∠COF=1/2∠AOC=1/2(180°﹣60°)=60°.∵OA=OF=OC,∴△AOF、△COF是等边三角形,∴AF=AO=OC=FC,∴四边形AOCF是菱形,∴根据对称性可得DF=DO.过点D作DM⊥OC于M,∵OA=OC,∴∠OCA=∠OAC=30°,∴DM=DCsin∠DCM=DCsin30°=1/2DC,∴1/2CD+OD=DM+FD.根据两点之间线段最短可得:当F、D、M三点共线时,DM+FD(即1/2 CD+OD)最小,此时FM=OFsin∠FOM=√3/2OF=4√3,则OF=8,AB=2OF=16.∴当 CD+OD的最小值为4√3时,⊙O的直径AB的长为16.三、总结提升“PA+kPB”型最值问题问题核心解题思想就是“折转直”,通过截取构造等值线段,利用相似三角形、解直角三角形等,将问题利用这类问题常用定理:①三角形的三边关系:两边之和大于第三边,两边之差小于第三边;②两点间线段最短;③垂线段最短,从而求解问题。
(完整版)初中数学动点问题归纳

BB动点问题题型方法归纳动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、 相似三角形、平行四边形、梯形、特殊角或 其三角函数、线段或面积的最值。
下面就此问题的常见题型作简单介绍,解题方法、关键给以点拨。
一、三角形边上动点1、(2009年齐齐哈尔市)直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单 位长度,点P 沿路线O →B →A 运动. (1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间 的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.解:1、A (8,0) B (0,6)2、当0<t <3时,S=t2当3<t <8时,S=3/8(8-t)t提示:第(2)问按点P 到拐点B 所有时间分段分类;第(3)问是分类讨论:已知三定点O 、P 、Q ,探究第四点构成平行四边形时按已知线段身份不同分类-----①OP 为边、OQ 为边,②OP 为边、OQ 为对角线,③OP 为对角线、OQ 为边。
然后画出各类的图形,根据图形性质求顶点坐标。
2、(2009年衡阳市)如图,AB 是⊙O 的直径,弦BC=2cm , ∠ABC=60º.(1)求⊙O 的直径;(2)若D 是AB 延长线上一点,连结CD ,当BD 长为多少时,CD 与⊙O 相切;(3)若动点E 以2cm/s 的速度从A 点出发沿着AB 方向运动,同时动点F 以1cm/s 的速度从B 点出发沿BC 方向运动,设运动时间为)20)((<<t s t ,连结EF ,当t 为何值时,△BEF 为直角三角形.注意:第(3)问按直角位置分类讨论3、(2009重庆綦江)如图,已知抛物线(1)20)y a x a =-+≠经过点(2)A -,0,抛物线的顶点为D ,过O 作射线OM AD ∥.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC . (1)求该抛物线的解析式;(2)若动点P 从点O 出发,以每秒1个长度单位的速度沿射线OM 运动,设点P 运动的时间为()t s .问当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC OB =,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒1单位和2个长度单位的速度沿OC 和BO 之停止运动.设它们的运动的时间为t ()s ,连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长. 注意:发现并充分运用特殊角∠DAB=60°当△OPQ 面积最大时,四边形BCPQ 的面积最小。
初中的数学动点问题专题讲解

中考动点专题所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.2222233621419x x x MH PH MP +=-+=+=HM NGPOAB图1x y∴y =GP=32MP=233631x + (0<x <6).(3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴ACBD CE AB =,∴11x y =, ∴xy 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立, ∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP 的长. 解:(1)连结OD.根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠AEDCB 图2A3(2)3(1)ADO=90°, ∴OD ∥BC, ∴53x OD =,54xAD =, ∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x yx 585458=. ∴x y 516= (8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE, ∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE. ∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2), 则CF=2. 类似①,可得CF=CE. ∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述, 当BF=1时,线段AP 的长为2或6.三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x .∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21. AB CO 图8HC动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
初中数学专题07几何图形动点运动问题(解析版)

专题七几何图形动点运动问题【考题研究】几何动点运动问题,是以几何知识和具体的几何图形为背景,渗透运动变化的观点,通过点、线、形的运动,图形的平移、翻折、旋转等把图形的有关性质和图形之间的数量关系位置关系看作是在变化的、相互依存的状态之中,要求对运动变化过程伴随的数量关系的图形的位置关系等进行探究.对学生分析问题的能力,对图形的想象能力,动态思维能力的培养和提高有着积极的促进作用.动态问题,以运动中的几何图形为载体所构建成的综合题,它能把几何、三角、函数、方程等知识集于一身,题型新颖、灵活性强、有区分度,受到了人们的高度关注,同时也得到了命题者的青睐,动态几何问题,常常出现在各地的中考数学试卷中.【解题攻略】几何动点运动问题通常包括动点问题、动线问题、面动问题,在考查图形变换(含三角形的全等与相似)的同时常用到的不同几何图形的性质,以三角形四边形为主,主要运用方程、函数、数形结合、分类讨论等数学思想.【解题类型及其思路】动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
)动点问题一直是中考热点,近几年考查探究运动中的特殊性:等腰三角形、直角三角形、相似三角形、平行四边形、梯形、特殊角或其三角函数、线段或面积的最值。
利用动点(图形)位置进行分类,把运动问题分割成几个静态问题,然后运用转化的思想和方法将几何问题转化为函数和方程问题,利用函数与方程的思想和方法将所解决图形的性质(或所求图形面积)直接转化为函数或方程。
解题类型:几何动点运动问题常见有两种常见类型:(1)利用函数与方程的思想和方法将所解决图形的性质直接转化为函数或方程;(2)根据运动图形的位置分类,把动态问题分割成几个静态问题,再将几何问题转化为函数和方程问题【典例指引】类型一【探究动点运动过程中线段之间的数量关系】【典例指引1】在△ABC中,∠ACB=45°,点D为射线BC上一动点(与点B、C不重合),连接AD,以AD为一边在AD右侧作正方形ADEF.(1)如果AB=AC,如图1,且点D在线段BC上运动,判断∠BAD∠CAF(填“=”或“≠”),并证明:CF⊥BD(2)如果AB≠AC,且点D在线段BC的延长线上运动,请在图2中画出相应的示意图,此时(1)中的结论是否成立?请说明理由;(3)设正方形ADEF的边DE所在直线与直线CF相交于点P,若AC=42,CD=2,求线段CP的长.【答案】(1)=,见解析;(2)AB≠AC时,CF⊥BD的结论成立,见解析;(3)线段CP的长为1或3 【解析】【分析】(1)证出∠BAC=∠DAF=90°,得出∠BAD=∠CAF;可证△DAB≌△F AC(SAS),得∠ACF=∠ABD=45°,得出∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(2)过点A作AG⊥AC交BC于点G,可得出AC=AG,易证△GAD≌△CAF(SAS),得出∠ACF=∠AGD =45°,∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.(3)分两种情况去解答.①点D在线段BC上运动,求出AQ=CQ=4.即DQ=4﹣2=2,易证△AQD∽△DCP,得出对应边成比例,即可得出CP=1;②点D在线段BC延长线上运动时,同理得出CP=3.【详解】(1)①解:∠BAD=∠CAF,理由如下:∵四边形ADEF是正方形∴∠DAF=90°,AD=AF∵AB=AC,∠BAC=90°∴∠BAD+∠DAC=∠CAF+∠DAC=90°∴∠BAD=∠CAF故答案为:=②在△BAD和△CAF中,AB ACBAD CAF AD AF=⎧⎪∠=∠⎨⎪=⎩∴△BAD≌△CAF(SAS)∴CF=BD∴∠B=∠ACF∴∠B+∠BCA=90°∴∠BCA+∠ACF=90°∴∠BCF=90°∴CF⊥BD(2)如图2所示:AB≠AC时,CF⊥BD的结论成立.理由如下:过点A作GA⊥AC交BC于点G则∠GAD=∠CAF=90°+∠CAD∵∠ACB=45°∴∠AGD=45°∴AC=AG在△GAD和△CAF中,AG ACGAD CAF AD AF=⎧⎪∠=∠⎨⎪=⎩,∴△GAD≌△CAF(SAS),∴∠ACF=∠AGD=45°,∴∠BCF=∠ACB+∠ACF=90°∴CF⊥BD.(3)过点A作AQ⊥BC交CB的延长线于点Q,①点D在线段BC上运动时,如图3所示:∵∠BCA=45°∴△ACQ是等腰直角三角形∴AQ=CQ=22AC=4∴DQ=CQ﹣CD=4﹣2=2∵AQ⊥BC,∠ADE=90°∴∠DAQ+∠ADQ=∠ADQ+∠PDC=90°∴∠DAQ=∠PDC∵∠AQD=∠DCP=90°∴△DCP∽△AQD∴CPDQ=CDAQ,即CP2=24解得:CP=1②点D在线段BC延长线上运动时,如图4所示:∵∠BCA=45°∴AQ=CQ=4∴DQ=AQ+CD=4+2=6∵AQ⊥BC于Q∴∠Q=∠F AD=90°∵∠C′AF=∠C′CD=90°,∠AC′F=∠CC′D ∴∠ADQ=∠AFC′则△AQD∽△AC′F∴CF⊥BD∴△AQD∽△DCP∴CPDQ=CDAQ,即CP6=24解得:CP=3综上所述,线段CP的长为1或3.【名师点睛】此题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质以及直角三角形的性质等知识;本题综合性强,证明三角形全等和三角形相似是解题的关键.【举一反三】如图1,点C在线段AB上,(点C不与A、B重合),分别以AC、BC为边在AB同侧作等边三角形ACD和等边三角形BCE,连接AE、BD交于点P(1)观察猜想:①线段AE与BD的数量关系为_________;②∠APC的度数为_______________(2)数学思考:如图2,当点C在线段AB外时,(1)中的结论①,②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明(3)拓展应用:如图3,分别以AC、BC为边在AB同侧作等腰直角三角形ACD和等腰直角三角形BCE,其中∠ACD=∠BCE=90°,CA=CD,CB=CE,连接AE=BD交于点P,则线段AE与BD的关系为________________【答案】(1)AE=BD.∠APC=60°;(2)成立,见详解;(3)AE=BD【解析】【分析】(1)观察猜想:①证明△ACE≌△DCB(SAS),可得AE=BD,∠CAE=∠BDC;②过点C向AE,BD作垂线,由三角形全等可得高相等,再根据角分线判定定理,推出PC平分∠APB,即可求出∠APC的度数;(2)数学思考:结论成立,证明方法类似;(3)拓展应用:证明△ACE≌△DCB(SAS),即可得AE=BD.【详解】解:(1)观察猜想:结论:AE=BD.∠APC=60°.理由:①∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB,∴△ACE≌△DCB(SAS),∴AE=BD;②由①得∠EAC=∠BDC,∵∠AOC=∠DOP,∴∠APB=∠AOC+∠EAC=180°-60°= 120°.过过点C向AE,BD作垂线交于点F与G∵由①知△ACE≌△DCB∴CF=CG∴CP为∠APB的角平分线∴∠APC=12APB∠=60°;(2)数学思考:结论仍然成立.①∵△ADC,△ECB都是等边三角形,∴CA=CD,∠ACD=∠ECB=60°,CE=CB,∴∠ACE=∠DCB∴△ACE≌△DCB(SAS),∴AE=BD;②由①得∠AEC=∠DBC,∴∠CEA+∠PEB=∠CBD+∠PEB=60°,∴∠APB=∠CBD+∠CBE+∠PEB=120°.过过点P向AC,BC作垂线交于点H与I∵由①知△ACE≌△DCB∴PH=PI∴CP为∠APB的角平分线∴∠APC=12APB∠=60°;(3)∵△ADC,△ECB都是等腰直角三角形,∴CA=CD,∠ACD=∠ECB=90°,CE=CB,∴∠ACB+∠BCE=∠ACB+∠ACD∴∠ACE=∠DCB∴△ACE≌△DCB(SAS),∴AE=BD.【点睛】本题属于四边形综合题,考查了等边三角形的性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.类型二【确定动点运动过程中的运动时间】【典例指引2】已知:如图,在平面直角坐标系中,长方形OABC的项点B的坐标是(6,4).(1)直接写出A点坐标(______,______),C点坐标(______,______);(2)如图,D为OC中点.连接BD,AD,如果在第二象限内有一点(),1P m,且四边形OADP的面积是ABC∆面积的2倍,求满足条件的点P的坐标;(3)如图,动点M 从点C 出发,以每钞1个单位的速度沿线段CB 运动,同时动点N 从点A 出发.以每秒2个单位的連度沿线段AO 运动,当N 到达O 点时,M ,N 同时停止运动,运动时间是t 秒()0t >,在M ,N 运动过程中.当5MN =时,直接写出时间t 的值.【答案】(1)()6,0A ,()0,4C (2)()18,1P -(3)1或3 【解析】 【分析】(1)根据矩形的性质和直角坐标系中点的确定,即可求出A 点坐标和C 点坐标;(2)根据四边形OADP 的面积是ABC ∆面积的2倍,列出关于m 的方程,解方程即可求出点P 的坐标; (3)由题意表示出ON =6-2t ,MC =t ,过点M 作ON 得垂线ME 交OA 于点E , 根据勾股定理列出关于t 的方程,求解即可. 【详解】(1)∵长方形OABC 的项点B 的坐标是(6,4), ∴BC =6,AB =4, ∴OA =6,OC =4, ∴A (6,0)C (0,4);(2)连接PD ,PO ,过点P 作PE ⊥OD ,交OD 于点E ,∵BC =6,AB =4; ∴11==64=1222ABC S AB BC ⋅⨯⨯△, ∵四边形OADP 的面积是ABC ∆面积的2倍, ∴四边形OADP 的面积是24, ∴==OADP S S S △OAD △ODP 四边形+11=2422OA OD PE OD ⋅⋅+ ∵D 为OC 中点, ∴OD =2;∵(),1P m 是第二象限的点, ∴PE =﹣m , ∴可列方程为1162+2m =22⨯⨯⨯⨯(﹣)24;解得m =﹣18, ∴()18,1P -(3)如图,过点M 作ON 的垂线ME 交OA 于点E ,由题意得ON =6-2t ,MC =t ()3t ≤0<; ∴ME =4,EN =6-3t 又∵5MN =,∴根据勾股定理可列方程为()22246t =5+-3,解方程得t =1或t =3 ∴当t =1或t =3时,5MN =. 【名师点睛】本题考查了矩形的性质和直角坐标系中点的确定,勾股定理等,利用方程思想解决问题是解题的关键【举一反三】如图,▱ABCD的对角线AC、BD相交于点O,AB⊥AC,AB=3,BC=5,点P从点A出发,沿AD以每秒1个单位的速度向终点D运动.连结PO并延长交BC于点Q.设点P的运动时间为t秒.(1)求BQ的长,(用含t的代数式表示)(2)当四边形ABQP是平行四边形时,求t的值(3)当点O在线段AP的垂直平分线上时,直接写出t的值.【答案】(1)BQ=5﹣t;(2)52秒;(3)t=165.【解析】【分析】(1)利用平行四边形的性质可证△APO≌△CQO,则AP=CQ,再利用BQ BC CQ=-即可得出答案;(2)由平行四边形性质可知AP∥BQ,当AP=BQ时,四边形ABQP是平行四边形,建立一个关于t的方程,解方程即可求出t的值;(3)在Rt△ABC中,由勾股定理求出AC的长度,进而求出AO的长度,然后利用ABC的面积求出EF 的长度,进而求出OE的长度,而AE可以用含t的代数式表示出来,最后在Rt AOE中利用勾股定理即可求值.【详解】解:(1)∵四边形ABCD是平行四边形,∴OA=OC,AD∥BC,∴∠P AO=∠QCO,∵∠AOP=∠COQ,∴△APO≌△CQO(ASA),∴AP=CQ=t,∵BC=5,∴BQ=BC-CQ=5﹣t;(2)∵AP ∥BQ ,当AP =BQ 时,四边形ABQP 是平行四边形, 即t =5﹣t ,t =52, ∴当t 为52秒时,四边形ABQP 是平行四边形;(3)t =165,如图,在Rt △ABC 中, ∵AB =3,BC =5,∴AC 2222534BC AC -=-= ∴AO =CO =12AC =2, 1122ABCSAB AC BC EF == AB AC BC EF ∴=∴3×4=5×EF , ∴125EF =, ∴65OE =,∵OE 是AP 的垂直平分线, ∴AE =12AP =12t ,∠AEO =90°, 由勾股定理得:AE 2+OE 2=AO 2,22216()()225t ∴+=165t ∴=或165t =-(舍去)∴当165t =秒时,点O 在线段AP 的垂直平分线上. 【点睛】本题主要考查了平行四边形的判定及性质以及动点问题,掌握平行四边形的判定及性质,以及勾股定理是解题的关键.类型三 【探究动点运动过程中图形的形状或图形之间的关系】【典例指引3】已知矩形ABCD 中,10cm AB =,20cm BC =,现有两只蚂蚁P 和Q 同时分别从A 、B出发,沿AB BC CD DA =--方向前进,蚂蚁P 每秒走1cm ,蚂蚁Q 每秒走2cm .问:(1)蚂蚁出发后△PBQ 第一次是等腰三角形需要爬行几秒? (2)P 、Q 两只蚂蚁最快爬行几秒后,直线PQ 与边AB 平行? 【答案】(1)蚂蚁出发后△PBQ 第一次是等腰三角形需要爬行103秒;(2)P 、Q 两只蚂蚁最快爬行20秒后,直线PQ ∥AB 【解析】 【分析】(1)首先设蚂蚁出发后△PBQ 第一次是等腰三角形需要爬行t 秒,可得方程:10-t =2t ,解此方程即可求得答案;(2)首先设P 、Q 两只蚂蚁最快爬行x 秒后,直线PQ ∥AB ,可得方程:x -10=50-2x ,解此方程即可求得答案. 【详解】(1)设蚂蚁出发后△PBQ 第一次是等腰三角形需要爬行t 秒, ∵四边形ABCD 是长方形, ∴∠B =90∘, ∴BP =BQ ,∵AP =tcm ,BQ =2tcm ,则PB =AB −AP =10−t (cm ), ∴10−t =2t ,解得:t=103,∴蚂蚁出发后△PBQ第一次是等腰三角形需要爬行103秒;(2)设P、Q两只蚂蚁最快爬行x秒后,直线PQ∥AB,∵AD∥BC,∴四边形ABPQ是平行四边形,∴AQ=BP,∴x−10=50−2x,解得:x=20,∴P、Q两只蚂蚁最快爬行20秒后,直线PQ∥AB;【名师点睛】此题考查了矩形的性质以及等腰三角形的性质.此题难度适中,注意掌握数形结合思想与方程思想的应用.【举一反三】如图,平面直角坐标系中,直线l分别交x轴、y轴于A、B两点(AO<AB)且AO、AB的长分别是一元二次方程x2-3x+2=0的两个根,点C在x轴负半轴上,且AB:AC=1:2.(1)求A、C两点的坐标;(2)若点M从C点出发,以每秒1个单位的速度沿射线CB运动,连接AM,设△ABM的面积为S,点M的运动时间为t,写出S关于t的函数关系式,并写出自变量的取值范围;(3)点P是y轴上的点,在坐标平面内是否存在点Q,使以A、B、P、Q为顶点的四边形是菱形?若存在,请直接写出Q点的坐标;若不存在,请说明理由.【答案】(1)A(1,0),C(-3,0);(2)23(023)33S t tS t t⎧=≤<⎪⎨=-⎪⎩(>)(3)存在,点Q的坐标为(-1,0),(1,2),(1,-2),(123).【解析】【分析】(1)根据方程求出AO 、AB 的长,再由AB :AC =1:2求出OC 的长,即可得到答案; (2)分点M 在CB 上时,点M 在CB 延长线上时,两种情况讨论S 与t 的函数关系式; (3)分AQ =AB ,BQ =BA ,BQ =AQ 三种情况讨论可求点Q 的坐标. 【详解】 (1)x 2-3x +2=0, (x -1)(x -2)=0, ∴x 1=1,x 2=2, ∴AO =1,AB =2, ∴A (1,0),OB ===,∵AB :AC =1:2, ∴AC =2AB =4, ∴OC =AC -OA =4-1=3, ∴C (-3,0).(2)∵3OB OC ==,∴22222312BC OB OC =+=+=, ∵2222416,24AC AB ====, ∴222AC AB BC =+,∴△ABC 是直角三角形,且∠ABC =90︒, 由题意得:CM =t ,BC=当点M 在CB 上时,1)2S t t =⨯=(0t ≤<, ②当点M 在CB 延长线上时,12(2S t t =⨯-=-t>.综上,(0 S t t S t t ⎧=≤<⎪⎨=-⎪⎩>. (3)存在,①当AB 是菱形的边时,如图所示,在菱形AP 1Q 1B 中,Q 1O =AO =1,∴ Q 1(-1,0),在菱形ABP 2Q 2中,AQ 2=AB =2,∴Q 2(1,2), 在菱形ABP 3Q 3中,AQ 3=AB =2,∴Q 3(1,-2); ②当AB 为菱形的对角线时,如图所示, 设菱形的边长为x ,则在Rt △AP 4O 中,22244AO P O AP += 2221(3)x x =+-,解得x =233, ∴Q 4(1,233). 综上,平面内满足条件的点Q 的坐标为(-1,0),(1,2),(1,-2),(1,233).【点睛】此题考查一次函数的综合运用、解一元二次方程,解题过程中注意分类讨论.类型四 【探究动点运动过程中图形的最值问题】【典例指引4】如图,抛物线y =ax 2﹣34x +c 与x 轴相交于点A (﹣2,0)、B (4,0),与y 轴相交于点C ,连接AC ,BC ,以线段BC 为直径作⊙M ,过点C 作直线CE ∥AB ,与抛物线和⊙M 分别交于点D ,E ,点P 在BC 下方的抛物线上运动.(1)求该抛物线的解析式;(2)当△PDE是以DE为底边的等腰三角形时,求点P的坐标;(3)当四边形ACPB的面积最大时,求点P的坐标并求出最大值.【答案】(1)y=38x2﹣34x﹣3;(2)P(3,﹣138);(3)点P(2,﹣3),最大值为12【解析】【分析】(1)用交点式设出抛物线的表达式,化为一般形式,根据系数之间的对应关系即可求解;(2)根据(1)中的表达式求出点C(0,-3),函数对称轴为:x=1,则点D(2,-3),点E(4,-3),当△PDE 是以DE为底边的等腰三角形时,点P在线段DE的中垂线上,据此即可求解;(3)求出直线BC的表达式,设出P、H点的坐标,根据四边形ACPB的面积=S△ABC+S△BHP+S△CHP进行计算,化为顶点式即可求解.【详解】(1)抛物线的表达式为:y=a(x+2)(x﹣4)=a(x2﹣2x﹣8),即﹣2a=﹣34,解得:a=38,故抛物线的表达式为:y=38x2﹣34x﹣3;(2)当x=0时,y=-3,故点C的坐标为(0,﹣3),函数对称轴为:x=242-+=1,∵CE∥AB∴点D(2,﹣3),点E(4,﹣3),则DE的中垂线为:x=242=3,当x=3时,y=38x2﹣34x﹣3=﹣138,故点P(3,﹣138);(3)设直线BC的解析式为y=kx+b,把B(4,0)C(0,﹣3)代入得:403k bb+=⎧⎨=-⎩解得:343 kb⎧=⎪⎨⎪=-⎩∴直线BC的表达式为:y=34x﹣3,故点P作y轴的平行线交BC于点H,设点P(x,38x2﹣34x﹣3),则点H(x,34x﹣3);四边形ACPB的面积=S△ABC+S△BHP+S△CHP=12⨯3×6+12⨯HP×OB=9+12×4×(34x﹣3﹣38x2+34x+3)=﹣3 4x2+3x+9=()23-2124x-+,∵﹣34<0,故四边形ACPB的面积有最大值为12,此时,点P(2,﹣3).【名师点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、圆的基本知识、面积的计算等,综合性强,掌握中点坐标公式及作辅助线的方法是关键.【举一反三】已知:如图.在△ABC中.AB=AC=5cm,BC=6cm.点P由B出发,沿BC方向匀速运动.速度为1cm/s.同时,点Q从点A出发,沿AC方向匀速运动.速度为1cm/s,过点P作PM⊥BC交AB于点M,过点Q作QN⊥BC,垂足为点N,连接MQ,若设运动时间为t(s)(0<t<3),解答下列问题:(1)当t为何值时,点M是边AB中点?(2)设四边形PNQM的面积为y(cm2),求出y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形PNQM:S△ABC=4:9?若存在,求出此时t的值;若不存在,说明理由;(4)是否存在某一时刻t,使四边形PNQM为正方形?若存在,求出此时t的值;若不存在,请说明理由.【答案】(1)当t为32s时,点M是AB中点;(2)y与t的函数关系式是y28675t=-+;(3)t的值为52s;(4)不存在,理由见解析. 【解析】【分析】(1)求出BD=3,根据BM BPAB BD=,即可求出时间t;(2)先判断出△MBP∽△ABD,进而得出MP,同理表示出QN和CN,然后利用梯形面积公式进行计算即可得出结论;(3)根据(2)中所求,结合面积之间的关系建立方程即可得出结论;(4)假设存在,先利用PM=QN求出t,进而求出PM,PN,判断出PM≠PN即可得出结论.【详解】解:(1)过点A作AD⊥BC于点D,∵PM⊥BC,∴PM∥AD,∴BM BP AB BD=,∵点M 是AB 中点 ∴12BM AB =, ∴12BP BD =, ∵AB = AC , ∴132BD CD BC ===, ∵BP =t , ∴132t =,解得:32t =, 即当t 为32s 时,点M 是AB 中点; (2)过点A 作AD ⊥BC 于点D , ∵PM ∥AD , ∴△MBP ∽△ABD , ∴MP BPAD BD=,∵4AD ==, ∴43MP t=, ∴43MP t =,同理,△QCN ∽△ACD , ∴CQ QN CNAC AD CD==, ∵5CQ t =-, ∴5543t QN CN-==, ∴()445=455QN t t =--,()335=355CN t t =--, ∴32=63355PN t t t --+=-,∴y =S 四边形PNQM =()21144284362235575MP QN PN t t t t ⎛⎫⎛⎫+⋅=+-⋅-=-+ ⎪ ⎪⎝⎭⎝⎭, 即y 与t 的函数关系式是y 28675t =-+; (3)若S 四边形PNQM :S △ABC =4:9,则y =49S △ABC ,∵S △ABC =11641222BC AD ⋅=⨯⨯=,∴2846=12759t -+⨯, 解得152t =,252t =-(不合题意,舍去), ∴t 的值为52s ; (3)若四边形PNQM 为正方形,则需满足PM = QN ,PM = PN ,当PM = QN 时,44=435t t -,解得:158t =, 当158t =时,PM =44155==3382t ⨯,PN =221593=3=5584t --⨯,∴PM ≠PN , ∴不存在. 【点睛】此题是四边形综合题,主要考查了相似三角形的判定和性质、等腰三角形的性质、勾股定理、梯形和三角形的面积公式、解一元二次方程以及正方形的性质等知识点,解本题的关键是用方程的思想解决问题.【新题训练】1.如图①,△ABC 是等边三角形,点P 是BC 上一动点(点P 与点B 、C 不重合),过点P 作PM ∥AC 交AB 于M ,PN ∥AB 交AC 于N ,连接BN 、CM .(1)求证:PM +PN =BC ;(2)在点P 的位置变化过程中,BN =CM 是否成立?试证明你的结论;(3)如图②,作ND ∥BC 交AB 于D ,则图②成轴对称图形,类似地,请你在图③中添加一条或几条线段,使图③成轴对称图形(画出一种情形即可).【答案】(1)见解析;(2)结论成立,理由见解析;(3)见解析【解析】【分析】(1)先证明△BMP,△CNP是等边三角形,再证明△BPN≌△MPC,从而PM=PB,PN=PC,可得PM+PN =BC;(2)BN=CM总成立,由(1)知△BPN≌△MPC,根据全等三角形的性质可得结论;(3)作ND∥BC交AB于N,作ME∥BC交AC于M,作EF∥AB交BC于F,连接DF即可.【详解】(1)证明:∵△ABC是等边三角形,∴AB=BC,∠ABC=∠ACB=60°,∵PM∥AC,PN∥AB,∴∠BPM=∠ACB=60°,∠CPN=∠ABC=60°,∴△BMP,△CNP是等边三角形,∴∠BPM=∠CPN=60°,PN=PC,PN=PC,∴∠BPN=∠MPC,∴△BPN≌△MPC,∴PM=PB,PN=PC,∵BP+PC=BC,∴PM+PN=BC;(2)BN=CM总成立,理由:由(1)知△BPN≌△MPC,∴BN=CM;(3)解:如图③即为所求.作ND∥BC交AB于N,作ME∥BC交AC于M,作EF∥AB交BC于F,连接DF,作直线AH⊥BC交BC 于H,同(1)可证△AND,△AME,△BPM,△CEF都是等边三角形,∴D与N,M与E,B与C关于AH对称.∴BM=CE,∴BM=CF,∴P与F关于AH对称,∴所做图形是轴对称图形.【点睛】本题属于三角形综合题,考查了等边三角形的性质与判定,全等三角形的判定和性质,轴对称图形的性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.2.如图,在矩形ABCD中,AB=18,AD=12,点M是边AB的中点,连结DM,DM与AC交于点G,点E,F分别是CD与DG上的点,连结EF,(1)求证:CG=2AG.(2)若DE=6,当以E,F,D为顶点的三角形与△CDG相似时,求EF的长.(3)若点E从点D出发,以每秒2个单位的速度向点C运动,点F从点G出发,以每秒1个单位的速度向点D运动.当一个点到达,另一个随即停止运动.在整个运动过程中,求四边形CEFG的面积的最小值.【答案】(1)证明见解析;(2) EF 1213;(3)S四边形CEFG最小=52.【解析】【分析】(1)利用矩形的性质及平行线的性质,可证得∠DCG=∠MAG,,∠CDG=∠AMG,△AGM∽△CGD,再利用相似三角形的对应边相等,可得比例线段,然后证明DC=AB=2AM,即可证得CG与AG的数量关系. (2)利用勾股定理,分别求出AC、DG的长,再分情况讨论:①当∠DEF=∠DCG时,△DEF∽△DCG;②当∠DEF=∠DGC时,△DEF∽△DGC,分别利用相似三角形的性质,得出对应边成比例,即可求出EF的长.(3)作GH⊥DC,FN⊥DC,易证△DNF∽△MAD,可证对应边成比例,求出NF的长,再根据S四边形CEFG=S△DCG-S△DEF,可得到S与t的函数解析式,再利用二次函数的性质,可求出四边形CEFG的面积的最小值.【详解】证明:(1)在矩形ABCD中,AB∥DC,∴∠DCG=∠MAG,∠CDG=∠AMG,∴△AGM∽△CGD,∴CG DC AG AM=∵点M是边AB的中点, ∴DC=AB=2AM,∴CGAG=2,CG即CG=2AG(2)在Rt△ADC中,由勾股定理得AC=2222AD CD1218613+=+=,由(1)得CG=2AG,CG=23AC=413,同理可得DG=10①当∠DEF=∠DCG时,△DEF∽△DCG∴EF DECG DC=即EF618413=,解得EF=4133②当∠DEF=∠DGC时,△DEF∽△DGC∴EF DECG DG=,即EF610413=,解得EF=12135(3)作GH⊥DC,FN⊥DC,设运动时间为t,则DF=DG-FG=10-t,DE=2t,∵∠DNF=∠DAM,∠NDF=∠AMD,∴△DNF∽△MAD∴DF FN DM DA = 即 10t FN 1512-= ,解得NF = 404t5- ∵S 四边形CEFG =S △DCG -S △DEF ()22211404t 4404=18122t t t 72=5523225555-⨯⨯⨯-⨯⨯=-+-+t ∴当t =5时,S 四边形CEFG 最小=52 【点睛】本题考查了矩形的性质,相似三角形的动点问题,以及二次函数的实际应用,熟练掌握矩形的性质判定相似三角形,然后利用相似三角形的性质求出边长并建立二次函数模型是解题的关键.3.知识链接:将两个含30°角的全等三角尺放在一起,让两个30°角合在一起成60°,经过拼凑、观察、思考,探究出结论“直角三角形中,30°角所对的直角边等于斜边的一半”.如图,等边三角形ABC 的边长为4cm ,点D 从点C 出发沿CA 向A 运动,点E 从B 出发沿AB 的延长线BF 向右运动,已知点D 、E 都以每秒0.5cm 的速度同时开始运动,运动过程中DE 与BC 相交于点P ,设运动时间为x 秒.(1)请直接写出AD 长.(用x 的代数式表示) (2)当△ADE 为直角三角形时,运动时间为几秒? (3)求证:在运动过程中,点P 始终为线段DE 的中点.【答案】(1)AD =4-0.5x ;(2)83;(3)证明见解析.【解析】 【详解】试题分析:(1)直接根据AD =AC -CD 求解;(2)设x 秒时,△ADE 为直角三角形,分别用含x 的式子表示出AD 和AE ,再根据Rt △ADE 中30°角所对的直角边等于斜边的一半得出x 的方程,求解即可;(3)作DG ∥AB 交BC 于点G ,证△DGP ≌△EBP 便可得. 解:(1)由AC =4,CD =0.5x ,得AD =AC -CD =4-0.5x ; (2)∵△ABC 是等边三角形,∴AB =BC =AC =4cm ,∠A =∠ABC =∠C =60°.设x 秒时,△ADE 为直角三角形,∴∠ADE =90°,CD =0.5x ,BE =0.5x ,AD =4-0.5x ,AE =4+0.5x , ∴∠AED =30°,∴AE =2AD , ∴4+0.5x =2(4-0.5x ),∴x =83.答:运动83秒后,△ADE 为直角三角形;(3)作DG ∥AB 交BC 于点G ,∴∠GDP =∠BEP ,∠CDG =∠A =60°,∠CGD =∠ABC =60°, ∴∠C =∠CDG =∠CGD ,∴△CDG 是等边三角形,∴DG =DC , ∵DC =BE ,∴DG =BE .在△DEP 和△EBP 中,∠GDP =BEP ,∠DPG =∠EPB ,DG =EB , ∴△DGP ≌△EBP ,∴DP =PE .∴在运动过程中,点P 始终为线段DE 的中点.4.如图所示,已知抛物线2(0)y ax a =≠与一次函数y kx b =+的图象相交于(1,1)A --,(2,4)-B 两点,点P 是抛物线上不与A ,B 重合的一个动点.(1)请求出a ,k ,b 的值;(2)当点P 在直线AB 上方时,过点P 作y 轴的平行线交直线AB 于点C ,设点P 的横坐标为m ,PC 的长度为L ,求出L 关于m 的解析式;(3)在(2)的基础上,设PAB ∆面积为S ,求出S 关于m 的解析式,并求出当m 取何值时,S 取最大值,最大值是多少?【答案】(1)1k =-,2b =-,1a =-;(2)22(12)L m m m =-++-<<;(3)当12m =时,S 取最大值,最大值为278【解析】 【分析】(1)把A 、B 坐标分别代入抛物线和一次函数解析式即可求出a 、b 、k 的值;(2)根据a 、b 、k 的值可得抛物线和直线AB 的解析式,根据P 点横坐标为m 可用m 表示P 、C 两点坐标,根据两点间距离公式即可得L 与m 的关系式;(3)如图,作AD ⊥PC 于D ,BE ⊥PC 于E ,根据PAB PAC PBC S S S ∆∆∆=+,可用m 表示出S ,配方求出二次函数的最值即可得答案. 【详解】(1)∵点A (-1,-1)在抛物线2(0)y ax a =≠图象上, ∴2(1)1a -=-, 解得:1a =-,∵点A (-1,-1)、B (2,-4)在一次函数y kx b =+的图象上,∴124k b k b -+=-⎧⎨+=-⎩, 解得12k b =-⎧⎨=-⎩,∴1k =-,2b =-,(2)∵1k =-,2b =-,a =-1,∴直线AB 的解析式为2y x =--,抛物线的解析式为2y x =-,∵点P 在抛物线上,点C 在直线AB 上,点P 横坐标为m ,PC //y 轴, ∴()2,P m m-,(,2)C m m --,∴L 关于m 的解析式:22(12)L m m m =-++-<<,(3)如图,作AD ⊥PC 于D ,BE ⊥PC 于E , ∴AD =m +1,BE =2-m , ∵PAB PAC PBC S S S ∆∆∆=+, ∴S =12PC ·AD +12PC ·BE ()()()()2211122222m m m m m m =+-+++--++ ()2322m m =-++ 233322m m =-++配方得:23127228S m ⎛⎫=--+ ⎪⎝⎭,∴当12m =时,S 取最大值,最大值为278【点睛】本题考查待定系数法求二次函数解析式及二次函数的最值,熟练运用配方法求二次函数的最值是解题关键. 5.已知:如图,在矩形ABCD 中,AC 是对角线,AB =6cm ,BC =8cm .点P 从点D 出发,沿DC 方向匀速运动,速度为1cm /s ,同时,点Q 从点C 出发,沿CB 方向匀速运动,速度为2cm /s ,过点Q 作QM ∥AB 交AC 于点M ,连接PM ,设运动时间为t (s )(0<t <4).解答下列问题:(1)当t 为何值时,∠CPM =90°; (2)是否存在某一时刻t ,使S 四边形MQCP =ABCD 1532S 矩形?若存在,求出t 的值;若不存在,请说明理由; (3)当t 为何值时,点P 在∠CAD 的角平分线上. 【答案】(1)t =125s 时,∠CPM =90°;(2)t =3s 时,S 四边形MQCP =ABCD 1532S 矩形;(3)当t =83s 时,点P在∠CAD 的平分线上. 【解析】 【分析】(1)首先证明QM =PC ,利用平行线分线段成比例定理构建方程即可解决问题. (2)根据S 四边形MQCP =ABCD1532S 矩形,构建方程即可解决问题. (3)如图1中,作PH ⊥AC 于H .证明△P AD ≌△P AH (AAS ),推出AD =AH =8,DP =PH ,设DP =PH =x ,在Rt △PCH 中,构建方程即可解决问题. 【详解】解:(1)∵四边形ABCD 是矩形, ∴AB =CD =6,BC =AD =8,∠D =90°,∴AC 10,∵∠CPM =∠D =90°, ∴PM ∥AD , ∵QM ∥AB ∥CD ,∴四边形PCQM 是平行四边形, ∴PC =QM =6﹣t ,∵QM AB =CQCB , ∴66t -=28t ,解得t =125,∴t =125s 时,∠CPM =90°.(2)∵S 四边形MQCP =ABCD15S 32矩形, ∴12•(6﹣t )•2t +12•2t •34×2t =1532×6×8,解得t =3或﹣15(舍弃), 答:t =3s 时,S 四边形MQCP =ABCD 15S 32矩形. (3)如图1中,作PH ⊥AC 于H .∵∠D =∠AHP =90°,AP =AP ,∠P AD =∠P AH , ∴△P AD ≌△P AH (AAS ),∴AD =AH =8,DP =PH ,设DP =PH =x , ∵AC =10, ∴CH =2,在Rt △PCH 中,∵PH 2+CH 2=PC 2, ∴t 2+22=(6﹣t )2, 解得t =83,答:当t =83s 时,点P 在∠CAD 的平分线上.【点睛】本题属于四边形综合题,考查了矩形的性质,平行线分线段成比例定理,勾股定理,全等三角形的判定和性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.6.在等边三角形ABC 中,点D 是BC 的中点,点E 、F 分别是边AB 、AC (含线段AB 、AC 的端点)上的动点,且∠EDF =120°,小明和小慧对这个图形展开如下研究:问题初探:(1)如图1,小明发现:当∠DEB =90°时,BE +CF =nAB ,则n 的值为 ;问题再探:(2)如图2,在点E、F的运动过程中,小慧发现两个有趣的结论:①DE始终等于DF;②BE与CF的和始终不变;请你选择其中一个结论加以证明.成果运用:(3)若边长AB=8,在点E、F的运动过程中,记四边形DEAF的周长为L,L=DE+EA+AF+FD,则周长L取最大值和最小值时E点的位置?【答案】(1)12;(2)①见解析;②见解析;(3)周长L取最大值时点E和点B重合或BE=4,取最小值时BE=2.【解析】【分析】(1)先利用等边三角形判断出BD=CD=12AB,进而判断出BE=12BD,再判断出∠DFC=90°,得出CF=12CD,即可得出结论;(2)①构造出△EDG≌△FDH(ASA),得出DE=DF,即可得出结论;②由(1)知,BG+CH=12AB,由①知,△EDG≌△FDH(ASA),得出EG=FH,即可得出结论;(3)由(1)(2)判断出L=2DE+12,再判断出DE⊥AB时,L最小,点F和点C重合时,DE最大,即可得出结论.【详解】解:(1)∵△ABC是等边三角形,∴∠B=∠C=60°,AB=BC,∵点D是BC的中点,∴BD=CD=12BC=12AB,∵∠DEB=90°,∴∠BDE=90°-∠B=30°,在Rt△BDE中,BE=12 BD,∵∠EDF=120°,∠BDE=30°,∴∠CDF=180°-∠BDE-∠EDF=30°,∵∠C=60°,∴∠DFC=90°,在Rt△CFD中,CF=12 CD,∴BE +CF =12BD +12CD =12BC =12AB , ∵BE +CF =nAB , ∴n =12, 故答案为:12; (2)如图,①过点D 作DG ⊥AB 于G ,DH ⊥AC 于H , ∴∠DGB =∠AGD =∠CHD =∠AHD =90°, ∵△ABC 是等边三角形, ∴∠A =60°,∴∠GDH =360°-∠AGD -∠AHD -∠A =120°, ∵∠EDF =120°, ∴∠EDG =∠FDH ,∵△ABC 是等边三角形,且D 是BC 的中点, ∴∠BAD =∠CAD , ∵DG ⊥AB ,DH ⊥AC , ∴DG =DH ,在△EDG 和△FDH 中,90DGE DHF DG DHEDG FDH ∠∠︒⎧⎪⎨⎪∠∠⎩====, ∴△EDG ≌△FDH (ASA ), ∴DE =DF ,即:DE 始终等于DF ;②同(1)的方法得,BG+CH=12 AB,由①知,△EDG≌△FDH(ASA),∴EG=FH,∴BE+CF=BG-EG+CH+FH=BG+CH=12 AB,∴BE与CF的和始终不变;(3)由(2)知,DE=DF,BE+CF=12 AB,∵AB=8,∴BE+CF=4,∴四边形DEAF的周长为L=DE+EA+AF+FD =DE+AB-BE+AC-CF+DF=DE+AB-BE+AB-CF+DE=2DE+2AB-(BE+CF)=2DE+2×8-4=2DE+12,∴DE最大时,L最大,DE最小时,L最小,当DE⊥AB时,DE最小,L最小,此时∠BDE=90°-60°=30°,BE=12BD=2,当点F和点C重合或点E和点B重合时,DE最大,点F和点C重合时,∠BDE=180°-∠EDF=120°=60°,∵∠B=60°,∴∠B=∠BDE=∠BED=60°,∴△BDE是等边三角形,∴BE=DE=BD=12AB=4,当点E和点B重合时,DE=BD=4,周长L有最大值,即周长L取最大值时点E和点B重合或BE=4,取最小值时BE=2.【点睛】本题是四边形综合题,考查等边三角形的性质,含30度角的直角三角形的性质,角平分线定理,全等三角形的判定和性质,构造出全等三角形是解题的关键.7.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.【答案】(1)8;(2)6;(3),40cm,80cm2.【解析】【分析】(1)当四边形ABQP是矩形时,BQ=AP,据此求得t的值;(2)当四边形AQCP是菱形时,AQ=AC,列方程求得运动的时间t;(3)菱形的四条边相等,则菱形的周长=4t,面积=矩形的面积-2个直角三角形的面积.【详解】(1)当四边形ABQP是矩形时,BQ=AP,即:t=16-t,解得t=8.答:当t=8时,四边形ABQP是矩形;(2)设t秒后,四边形AQCP是菱形8t t时,四边形AQCP为菱形.当AQ=CQ22解得:t=6.答:当t=6时,四边形AQCP是菱形;(3)当t=6时,CQ=10,则周长为:4CQ=40cm,面积为:10×8=80(cm2).8.如图,O为菱形ABCD对角线的交点,M是射线CA上的一个动点(点M与点C、O、A都不重合),过点A、C分别向直线BM作垂线段,垂足分别为E、F,连接OE,OF.。
(完整版)中考数学动点问题专题讲解

动点及动图形的专题复习教案所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想函数思想方程思想数形结合思想转化思想注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢下面结合中考试题举例分析.一、应用勾股定理建立函数解析式)如图1,在半径为6,圆心角为90°的扇形OAB的弧AB上,有一个动点P,PH⊥OA,垂足为H,△OPH的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围). (3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH 中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2. (2)在Rt △POH 中, 22236x PH OP OH -=-=, ∴2362121x OH MH -==. 在Rt △MPH 中,.∴y =GP=32MP=233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2. 二、应用比例式建立函数解析式例2如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°, ∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°.∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°,2222233621419x x x MH PH MP +=-+=+=AEDCB 图2HMNG POAB图1xy又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴AC BD CE AB =,∴11x y =, ∴xy 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立,∴290α-︒=αβ-, 整理得=-2αβ︒90. 当=-2αβ︒90时,函数解析式xy 1=成立. 如三、应用求图形面积的方法建立函数关系式例4()如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H.∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x .∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ).(2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21. ABCO图8HAB CDEOlA ′AB CDEO lF动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学热点:图形运动问题的分析
初中数学热点:图形运动问题的分析
在这一理念的引导下,近几年上海市中考和毕业考加大了这方面的考察力度,特别是2019年上海市中考,这一部分的分值比前两年大幅度提高。
常见的图形运动有三种:旋转、平移和翻折。
运动变化问题正是利用它们变化图形的位置,引起条件或结论的改变,或者把分散的条件集中,以利于解题。
这类问题注重培养学生用动态的观点去看待问题,有利于学生空间想象能力和动手操作能力的锻炼,这类问题的解题关键在于如何“静中取动”或“动中求静”。
平移、旋转和翻折是几何变换中的三种基本变换。
所谓几何变换就是根据确定的法则,对给定的图形(或其一部分)施行某种位置变化,然后在新的图形中分析有关图形之间的关系。
这类实体的特点是:结论开放,注重考查学生的猜想、探索能力;便于与其它只是相联系,解题灵活多变,能够考察学生分析问题和解决问题的能力;其中所含的数学思想和方法丰富,有数型结核方程的思想及数字建模,函数的思想,分类讨论的思想方法等。
为帮助广大考生把握好平移,旋转和翻折的特征,巧妙利用平移,旋转和翻折的知识来解决相关的问题,下面已近三年上海市毕业考,中考,中考预测卷为例说明其解法,供大家参考。
一、平移
在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。
“一定的方向”称为平移方向,“一定的距离”称为平移距离。
例1在直角坐标平面内,点o为坐标原点,二次函数
y=x2+(k-5)x-(k+4)的图象交x轴于点A(x1,0)点B(x2,0),且(x1+1)(x2+1)=8。
(1)求二次函数的解析式(2)将上述二次函数图像沿x轴向右平移两个单位,设平移后的图象与y轴交点为C,顶点为P,求△POC的面积。
分析:抛物线的运动问题只需抓住顶点和开口方向这两个要素的变化规律即可。
一般地总是先配方使之成为顶点式后再求解。
关于平移的变化规律是:平移―顶点改变(“左加右减,上加下减”),开口不变。
解:⑴由题意知x1,x2方程x2+(k-5)x-(k+4)=0的根则
x1+x2=5-kx1.x2=-(k+4)由(x1+1)(x2+1)=-8即
x1x2+(x1+x2)=-9得
解k=5则所求二次函数解析式为
⑵由题意,平移后的函数解析式为y=(x-2)2-9则点C的坐标为(0,-5),顶点P的坐标为(2,-9)所以△POC的面积
S=52=5二、翻折
翻折是指把一个图形按某一直线翻折180?后所形成的新的
图形的变化。
关于翻折还有二个基础知识点:
1、一个图形沿一条直线翻折,如果直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线就叫做这个图形的对称轴。
2、平面上的两个图形,将其中一个图形沿着一条直线翻折过去,如果它能够与另一个图形重合,那么说这两个图形关于这条直线对称,这条直线就是对称轴。
解这类题抓住翻折前后两个图形是全等的,弄清翻折后不变的要素。
翻折在三大图形运动中是比较重要的,考查得较多。
另外,从运动变化得图形得特殊位置探索出一般的结论或者从中
获得解题启示,这种由特殊到一般的思想对我们解决运动变化问题是极为重要的,值得大家留意。
比如2019年毕业考最后一题中函数和几何的综合题中的求定义域的问题,这里的特殊位置实际上就是运动中的一种“静态”要素。
三、旋转在平面内,将一个图形绕一个定点沿某个方向转动一个角度成为与原来相等的图形,这样的图形运动叫做图形的旋转,这个定点叫做旋转中心,图形转动的角叫做旋转角。
图形旋转时,图形中的每一点旋转的角都相等,都等于图形的旋转角。
一个图形绕着某一点旋转180,如果旋转后的图形与原来的图形重合,那么这个图形叫中心对称图形,这个点叫做对称中心。
例2如果一个正方形绕着它的中心旋转后与原图形重合,那么小于360的一个旋转角是度(2019年毕业考
解析:此题较为简单,属考查概念的基本题360/5=72,为72度
由此看出,近几年上海市中考,重点突出,试题贴近考生,贴近初中数学教学,在思想方面的考察上尤其突出。
特别是2019年中考,图形运动的思想(图形的旋转、翻折、平移三大运动)都一一考查到了。
因此在平时抓住这三种运动的特征和基本解题思路来指导我们的复习,将是一种事半功倍的好方法。
平移中,直线平移K不变,抛物线平移,a不变;翻折中,翻折前后二个图形全等及其推出的性质;旋转中,抓住旋转角。