初中数学图形的认识定理与公式

合集下载

初中数学概念公式归纳

初中数学概念公式归纳

初中数学概念公式归纳初中数学概念公式是指在学习初中数学过程中,所学习到的各种概念和公式的总结和归纳。

这些概念和公式是数学基础知识的重要组成部分,是学习数学的基石。

下面将从初中数学的各个章节,简要地总结和归纳相关的概念和公式。

1.数与式-数的读法:读整数、分数、小数-定义整数的正负性、分数的大小比较-常见整数、分数与小数的运算-简便运算法则:乘法分配律、加法交换律、加法结合律-运算顺序:用括号确定运算顺序-求算式的值2.代数式-代数式的定义和基本概念(字母、常数、系数、幂)-代数式的运算(加减乘除)-因式、倍式、约分、分式-代数式的化简3.方程与不等式-方程的定义和基本概念(未知数、等号、解)-方程的解的基本概念(方程有唯一解、有无穷多解、无解)-一元一次方程的解的求解方法(凑、消、移项、等价方程)-不等式的定义和基本概念(大于、小于、大于等于、小于等于)-一元一次不等式的解的求解方法(加减法、乘除法)4.图形的认识-点、线、面的定义和基本概念-直线的性质(平行、垂直、交点)-各种图形的基本概念(三角形、四边形、多边形)-圆的基本概念(半径、直径、弧长、面积)-直角三角形、等腰三角形的性质-各种图形的周长和面积的计算公式5.相似与全等-相似和全等的概念和判定条件-相似三角形的性质(对应角相等、对应边成比例)-全等三角形的性质(对应边相等、对应角相等)-面积比例和周长比例6.三角形的计算-正弦定理、余弦定理、正切定理-面积公式:海伦公式、高度公式、正弦公式、面积比例公式-解三角形问题:根据已知条件求解未知量-直线与平行线的性质(内角和、同旁内角、同位角、对顶角、平行线的判定条件)7.数据的分析-数据的搜集、整理、归纳、展示方法-数据的概率与统计分析-统计图的绘制和解读(条形图、折线图、饼图)-统计指标的计算和比较(平均数、中位数、众数、范围)综上所述,初中数学概念公式的归纳可以涵盖数与式、代数式、方程与不等式、图形的认识、相似与全等、三角形的计算以及数据的分析等各个方面。

七年级上册数学图形初步认识知识点总结

七年级上册数学图形初步认识知识点总结

七年级上册数学图形初步认识知识点总结图形是指在一个二维空间中可以用轮廓划分出若干的空间形状,图形是空间的一部分不具有空间的延展性,它是局限的可识别的形状。

下面是整理的七年级上册数学图形初步认识知识点,仅供参考希望能够帮助到大家。

七年级上册数学图形初步认识知识点1.我们把实物中抽象的各种图形统称为几何图形。

2.有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形。

3.有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形。

4.将由平面图形围成的立体图形表面适当剪开,可以展开成平面图形,这样的平面图形称为相应立体图形的展开图。

5.几何体简称为体。

6.包围着体的是面,面有平的面和曲的面两种。

7.面与面相交的地方形成线,线和线相交的地方是点。

8.点动成面,面动成线,线动成体。

9.经过探究可以得到一个基本事实:经过两点有一条直线,并且只有一条直线。

简述为:两点确定一条直线(公理)。

10.当两条不同的直线有一个公共点时,我们就称这两条直线相交,这个公共点叫做它们的交点。

11.点M把线段AB分成相等的两条线段AM和MB,点M叫做线段AB的中点。

12.经过比较,我们可以得到一个关于线段的基本事实:两点的所有连线中,线段最短。

简单说成:两点之间,线段最短。

(公理)13.连接两点间的线段的长度,叫做这两点的距离。

14.角∠也是一种基本的几何图形。

15.把一个周角360等分,每一份就是1度的角,记作1°;把一度的角60等分,每一份叫做1分的角,记作1′;把1分的角60等分,每一份叫做1秒的角,记作1〃。

16.从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线。

17.如果两个角的和等于90°(直角),就是说这两个叫互为余角,即其中的每一个角是另一个角的余角。

18.如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角19.等角的补角相等,等角的余角相等。

七年级数学平面图形及其位置关系

七年级数学平面图形及其位置关系
将扇形看作是一个三角形和一个弓形的组合, 三角形的面积是 1/2 * 底 * 高,弓形的面积 可以通过微积分的方法求得,最终得到扇形 面积公式。
06 空间位置关系初步认识
空间中点、直线、平面位置关系描述
• 中点:连接两点线段的中点,将线段等分为两部分 。
• 直线:由无数个点组成,且任意两点都在该直线上 。直线可以无限延伸,没有端点。
• 平面:由无数个点组成,且任意三点不共线。平面 可以无限延展,没有边界。
• 位置关系描述:点和直线可以有三种位置关系—— 点在直线上、点在直线外、点在直线的延长线上。 两直线可以有三种位置关系——平行、相交、重合 。直线和平面可以有三种位置关系——直线在平面 内、直线与平面相交、直线与平面平行。
空间距离计算方法介绍
直角三角形勾股定理应用
勾股定理
在直角三角形中,两直角边的平 方和等于斜边的平方。
勾股定理的逆定理
如果三角形的三边长a,b,c满 足a²+b²=c²,那么这个三角形
是直角三角形。
勾股定理的应用
用于求解直角三角形中的未知边 长或角度,以及解决一些实际问
题如最短路径问题等。
三角形全等条件及证明方法
全等三角形的定义
定义法
判定定理
两条直线相交成直角时,这两条直线 互相垂直。
在同一平面内,如果两条直线都垂直 于同一条直线,那么这两条直线互相 垂直。
性质法
利用平行线的性质,若两条直线分别 与第三条直线垂直,则这两条直线互 相垂直。
平行四边形中平行与相交关系
1 2
平行四边形定义
两组对边分别平行的四边形叫做平行四边形。
射线
有一个固定端点,另一端 无限延伸。
线段
有两个端点,长度有限, 可以度量。

完整版)北师大版初中数学定理、公式汇编

完整版)北师大版初中数学定理、公式汇编

完整版)北师大版初中数学定理、公式汇编初中数学定理、公式汇编第一篇数与代数第一节数与式一、实数1.实数的分类:整数(包括正整数、负整数)和分数(包括有限小数和无限循环小数)都是有理数,如:-3,1/2,0.231,0.…,无理数如π,√2等;无限不循环小数如0.xxxxxxxx01…(两个1之间依次多1个0)等。

有理数和无理数统称为实数。

2.数轴:规定了原点、正方向和单位长度的直线叫做数轴。

实数和数轴上的点一一对应。

3.绝对值:在数轴上表示数a的点到原点的距离叫做数a的绝对值,记作|a|。

正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.如:|-3|=3,|3.14-π|=π-3.14.4.相反数:符号不同、绝对值相等的两个数,叫做互为相反数。

a的相反数是-a,-a的相反数是a。

5.有效数字:一个近似数,从左边第一个不是0的数字起,到最后一个数字止,所有的数字都叫做这个近似数的有效数字。

如:0.精确到0.001得0.060,结果有两个有效数字6、0.6.科学记数法:把一个数写成a×10^n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法。

如:=4.07×10^5,0.=4.3×10^-5.7.大小比较:正数大于0,负数小于0,两个负数,绝对值大的反而小。

8.数的乘方:求相同因数的积的运算叫做乘方,乘方运算的结果叫做幂。

9.平方根:一般地,如果一个数x的平方等于a,即x^2=a,那么这个数a就叫做x的平方根(也叫做二次方根式)。

一个正数有两个平方根,它们互为相反数;只有一个平方根,它是本身;负数没有平方根。

10.开平方:求一个数a的平方根的运算,叫做开平方。

11.算术平方根:一般地,如果一个正数x的平方等于a,即x^2=a,那么这个正数x就叫做a的算术平方根,√a的算术平方根是正数。

12.立方根:一般地,如果一个数x的立方等于a,即x^3=a,那么这个数x就叫做a的立方根(也叫做三次方根),正数的立方根是正数,负数的立方根是负数,0的立方根是0.13.开立方:求一个数a的立方根的运算叫做开立方。

初中数学几何图形的认识

初中数学几何图形的认识

初中数学几何图形的认识1、点,线,面点,线,面:①图形是由点,线,面构成的。

②面与面相交得线,线与线相交得点。

③点动成线,线动成面,面动成体。

展开与折叠:①在棱柱中,任何相邻的两个面的交线叫做棱,侧棱是相邻两个侧面的交线,棱柱的所有侧棱长相等,棱柱的上下底面的形状相同,侧面的形状都是长方体。

②N棱柱就是底面图形有N条边的棱柱。

截一个几何体:用一个平面去截一个图形,截出的面叫做截面。

视图:主视图,左视图,俯视图。

多边形:他们是由一些不在同一条直线上的线段依次首尾相连组成的封闭图形。

弧、扇形:①由一条弧和经过这条弧的端点的两条半径所组成的图形叫扇形。

②圆可以分割成若干个扇形。

2、角线:①线段有两个端点。

②将线段向一个方向无限延长就形成了射线。

射线只有一个端点。

③将线段的两端无限延长就形成了直线。

直线没有端点。

④经过两点有且只有一条直线。

比较长短:①两点之间的所有连线中,线段最短。

②两点之间线段的长度,叫做这两点之间的距离。

角的度量与表示:①角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。

②一度的1/60是一分,一分的1/60是一秒。

角的比较:①角也可以看成是由一条射线绕着他的端点旋转而成的。

②一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。

始边继续旋转,当他又和始边重合时,所成的角叫做周角。

③从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

平行:①同一平面内,不相交的两条直线叫做平行线。

②经过直线外一点,有且只有一条直线与这条直线平行。

③如果两条直线都与第3条直线平行,那么这两条直线互相平行。

垂直:①如果两条直线相交成直角,那么这两条直线互相垂直。

②互相垂直的两条直线的交点叫做垂足。

③平面内,过一点有且只有一条直线与已知直线垂直。

垂直平分线:垂直和平分一条线段的直线叫垂直平分线。

垂直平分线垂直平分的一定是线段,不能是射线或直线,这根据射线和直线可以无限延长有关,再看后面的,垂直平分线是一条直线,所以在画垂直平分线的时候,确定了2点后(关于画法,后面会讲)一定要把线段穿出2点。

初中数学(几何)知识点总结

初中数学(几何)知识点总结

初中数学(几何)知识点总结图形的初步认识考点一、直线、射线和线段1、几何图形分类:2、点、线、面、体(1)几何图形的组成(2)点动成线,线动成面,面动成体。

3、直线的概念:4、射线的概念:5、线段的概念:6、点、直线、射线和线段的表示7、直线的性质8、线段的性质9、线段垂直平分线的性质定理及逆定理考点二、角1、角的相关概念:平角、直角、锐角、钝角、余角、补角。

2、角的表示3、角的度量4、角的性质5、角的平分线及其性质:考点三、相交线1、相交线中的角:临补角,对顶角,同位角,内错角,同旁内角。

2、垂线:垂足,垂线的性质。

考点四、平行线1、平行线的概念2、平行线公理及其推论3、平行线的判定:4、平行线的性质考点五、命题、定理、证明1、命题的概念:2、命题的分类(按正确、错误与否分)3、公理4、定理:用推理的方法判断为正确的命题叫做定理。

5、证明:判断一个命题的正确性的推理过程叫做证明。

考点六、投影与视图1、投影:投影的定义、平行投影、中心投影。

2、视图:主视图、俯视图、左视图。

三角形考点一、三角形1三角形的概念:2、三角形中的主要线段:角平分线、中线、高线。

3、三角形的稳定性:4、三角形的特性与表示5、三角形的分类6、三角形的三边关系定理及推论7、三角形的内角和定理及推论8、三角形的面积:考点二、全等三角形1、全等三角形的概念2、全等三角形的表示和性质3、三角形全等的判定4、全等变换(1)平移变换(2)对称变换(3)旋转变换。

考点三、等腰三角形1、等腰三角形的性质2、等腰三角形的判定3、三角形中的中位线四边形考点一、四边形的相关概念1、四边形:2、对角线:3、四边形的不稳定性:4、四边形的内角和定理及外角和定理5、多边形的内角和定理、外角和定理:6、多边形的对角线条数的计算公式:考点二、平行四边形1、平行四边形的概念:2、平行四边形的性质3、平行四边形的判定4、两条平行线的距离:5、平行四边形的面积:考点三、矩形1、矩形的概念2、矩形的性质3、矩形的判定4、矩形的面积:S矩形=长×宽=ab考点四、菱形1、菱形的概念2、菱形的性质3、菱形的判定4、菱形的面积:考点五、正方形1、正方形的概念:2、正方形的性质3、正方形的判定4、正方形的面积:考点六、梯形1、梯形的相关概念、分类:2、梯形的判定3、等腰梯形的性质4、等腰梯形的判定5、梯形的面积6、梯形中位线定理解直角三角形考点一、直角三角形的性质1、直角三角形的两个锐角互余:2、在直角三角形中,30°角所对的直角边等于斜边的一半。

人教版初中数学公式大全

人教版初中数学公式大全

人教版初中数学公式大全人教版初中数学公式大全人教版初中数学公式大全:1、同旁内角互补,两直线平行2、两直线平行,同位角相等3、两直线平行,内错角相等4、两直线平行,同旁内角互补5、定理三角形两边的和大于第三边6、推论三角形两边的差小于第三边7、三角形内角和定理三角形三个内角的和等于1808、推论1直角三角形的两个锐角互余9、推论2三角形的一个外角等于和它不相邻的两个内角的和10、推论3三角形的一个外角大于任何一个和它不相邻的内角11、全等三角形的对应边、对应角相等12、边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等13、角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等14、推论(AAS)有两角和其中一角的对边对应相等的两个三角形全等15、边边边公理(SSS)有三边对应相等的两个三角形全等相等30、逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上31、线段的垂直平分线可看作和线段两端点距离相等的所有点的集合32、定理1关于某条直线对称的两个图形是全等形33、定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线34、定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上35、逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称36、勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a^2+b^2=c^237、勾股定理的逆定理如果三角形的三边长a、b、c有关系a^2+b^2=c^2,那么这个三角形是直角三角形38、定理四边形的内角和等于36039、四边形的外角和等于36040、多边形内角和定理n边形的内角的和等于(n-2)18041、推论任意多边的外角和等于36042、平行四边形性质定理1平行四边形的对角相等43、平行四边形性质定理2平行四边形的对边相等44、推论夹在两条平行线间的平行线段相等45、平行四边形性质定理3平行四边形的对角线互相平分46、平行四边形判定定理1两组对角分别相等的四边形是平行四边形47、平行四边形判定定理2两组对边分别相等的四边形是平行四边形48、平行四边形判定定理3对角线互相平分的四边形是平行四边形49、平行四边形判定定理4一组对边平行相等的四边形是平行四边形50、圆是定点的距离等于定长的点的集合51、圆的内部可以看作是圆心的距离小于半径的点的集合52、圆的外部可以看作是圆心的距离大于半径的点的集合53、同圆或等圆的半径相等54、到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆55、和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线56、到已知角的两边距离相等的点的轨迹,是这个角的平分线57、到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线58、定理不在同一直线上的三点确定一个圆。

初中数学几何知识点和题型归纳总复习

初中数学几何知识点和题型归纳总复习

著名的欧拉公式:
V+F-E=2
多面体可以按面数来分类,如下列图形中:
四面体
六面体
八面体
画立体图形
观察 立体图
三视图
主视图 左视图
俯视图
例1:画出以下立体图形的三视立体图形图
正方体
长方体
三棱柱
四棱锥
三棱柱
五棱锥
归纳:正方体 的表面展开图 有以下11种。你能看 出有什么规律吗











7部分,11部分,
1.度量法 2.叠合法 用尺规法作一条线段等于已知线段。
3.线段中点的定义和简单作法。



A
AC
C
CB
1
B
AB
2
或 AB=2AC=2CB
用一个大写字母表示点, 用二个大写字母表示线, 用三个大写字母表示角,
A
B Co
1
ɑ
∠ABC ∠O ∠1 ∠ɑ
角度的转化: 1°=60′ 1′=60〞 1°=3600〞
当将这个图案折起来组成一 个正方体时,数字____会3与数字2 所在的平面相对的平面上。
12 34 56
点和线
A 点A — 用一个大写字母表示。
线
线段 射线
直线
学会区分没有
直线、射线、线段的比较
名称
直线
射线
线段
图形
表示法
a
A
BO C
线段AB 、线 射线OC、 段BA、线段a 射线l
l
l
AB
直线AB、直
3 直线的基本性质:经过两点有一条直 线,并且只有一条直线.

初三数学知识点总结大全(热门6篇)

初三数学知识点总结大全(热门6篇)

初三数学知识点总结大全(热门6篇)初三数学知识点总结大全第1篇1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

8、多边形的内角:多边形相邻两边组成的角叫做它的内角。

9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做多边形覆盖平面(平面镶嵌)。

镶嵌的条件:当围绕一点拼在一起的几个多边形的内角加在一起恰好组成一个时,就能拼成一个平面图形。

13、公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的外角和:多边形的外角和为360°。

⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形、②边形共有条对角线。

初三数学知识点总结大全第2篇平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A 的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

初中数学图形与变换的定理与公式

初中数学图形与变换的定理与公式

初中数学图形与变换的定理与公式
图形与变换
图形的轴对称
轴对称的基本性质:对应点所连的线段被对称轴平分;
等腰三角形、矩形、菱形、等腰梯形、正多边形、圆是轴对称图形;
图形的平移
图形平移的基本性质:对应点的连线平行且相等;
图形的旋转
图形旋转的基本性质:对应点到旋转中心的距离相等,对应点与旋转中心的距离相等、对应点与旋转中心连线所成的角彼此相等;平行四边形、矩形、菱形、正多边形〔边数是偶数〕、圆是中心对称图形;
图形的相似
比例的基本性质:如果,那么,如果,那么
相似三角形的设别方法:①两组角对应相等;②两边对应成比例且夹角对应相等;③三边对应成比例
相似三角形的性质:①相似三角形的对应角相等;②相似三角形的对应边成比例;③相似三角形的周长之比等于相似比;④相似三角形的面积比等于相似比的平方;
相似多边形的性质:
①相似多边形的对应角相等;②相似多边形的对应边成比例;
③相似多边形的面积之比等于相似比的平方;
图形的位似与图形相似的关系:两个图形相似不一定是位似图形,两个位似图形一定是相似图形;
Rt△ABC中,&ang;C=,SinA=,cosA=, tanA=,
CotA=
特殊角的三角函数值:
Sin&alpha;Cos&alpha;tan&alpha;1Cot&alpha;1。

七年级数学定理概念公式大全

七年级数学定理概念公式大全

一、有理数(一)有理数1、有理数的分类:按有理数的定义分类:按有理数的性质符号分类:正整数正整数整数零正有理数有理数负整数正分数正分数有理数 0分数负整数负整数负有理数负分数2、正数和负数用来表示具有相反意义的数。

(二)数轴1、定义:规定了原点、正方向和单位长度的直线叫做数轴。

2、数轴的三要素是:原点、正方向、单位长度。

(三)相反数1、定义:只有符号不同的两个数互为相反数。

2、几何定义:在数轴上分别位于原点的两旁,到原点的距离相等的两个点所表示的数,叫做互为相反数。

3、代数定义:只有符号不同的两个数叫做互为相反数,0的相反数是0。

(四)绝对值1、定义:在数轴上表示数a的点与原点的距离叫做数a的绝对值。

2、几何定义:一个数a的绝对值就是数轴上表示数a的点与原点的距离。

3、代数定义:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0。

a (a>0),即对于任何有理数a,都有|a|= 0(a=0)–a(a<0)4、绝对值的计算规律:(1)互为相反数的两个数的绝对值相等.(2)若|a|=|b|,则a =b或a =-b.(3)若|a|+|b|=0,则|a|=0,且|b|=0.相关结论:(1)0的相反数是它本身。

(2)非负数的绝对值是它本身。

(3)非正数的绝对值是它的相反数。

(4)绝对值最小的数是0。

(5)互为相反数的两个数的绝对值相等。

(6)任何数的绝对值都是它的正数或0,即|a|≥0。

(五)倒数1、定义:乘积为“1”的两个数互为倒数。

2、求法:颠倒这个数的分子和分母。

3、a(a≠0)的倒数是1a.有理数的运算一、有理数的加法法则:1、同号两数相加,取相同的符号,并把绝对值相加;2、绝对值不等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

3、一个数同零相加,仍得这个数;4、两个互为相反数的两个数相加得0。

二、有理数的减法法则:减去一个数,等于加上这个数的相反数。

北师大版初中七上数学公式(表格)

北师大版初中七上数学公式(表格)

(七上)第一章 丰富的图形世界项目概念及例题 解析|思考知识框架本章的主要内容是图形的初步认识,从生活周围熟悉的物体入手,对物体的形状的认识从感性逐步上升到抽象的几何图形.通过从不同方向看立体图形和展开立体图形,初步认识立体图形与平面图形的联系.在此基础上,认识一些简单的平面图形——直线、射线、线段和角. 定理投影与视图 1、投影 投影的定义:用光线照射物体,在地面上或墙壁上得到的影子,叫做物体的投影。

平行投影:由平行光线(如太阳光线)形成的投影称为平行投影。

中心投影:由同一点发出的光线所形成的投影称为中心投影。

2、视图 当我们从某一角度观察一个实物时,所看到的图像叫做物体的一个视图。

物体的三视图特指主视图、俯视图、左视图。

主视图:在正面内得到的由前向后观察物体的视图,叫做主视图。

俯视图:在水平面内得到的由上向下观察物体的视图,叫做俯视图。

左视图:在侧面内得到的由左向右观察物体的视图,叫做左视图,有时也叫做侧视图。

补充本章书涉及的数学思想:1.分类讨论思想。

在过平面上若干个点画直线时,应注意对这些点分情况讨论;在画图形时,应注意图形的各种可能性。

2.方程思想。

在处理有关角的大小,线段大小的计算时,常需要通过列方程来解决。

3.图形变换思想。

在研究角的概念时,要充分体会对射线旋转的认识。

在处理图形时应注意转化思想的应用,如立体图形与平面图形的互相转化。

4.化归思想。

在进行直线、线段、角以及相关图形的计数时,总要划归到公式n(n-1)/2的具体运用上来。

学生正确认识有理数的概念,在实际生活和上,理解正负数、相反数、绝对值的意义所在。

重点利用有理数的运算法则解决实际问题。

初中数学定义、定理、公理、公式汇编

初中数学定义、定理、公理、公式汇编

初中数学定义、定理、公理、公式汇编一、空间与图形(一)图形的认识★(1)直线、线段、射线、角1. 过两点有且只有一条直线.(简:两点确定一直线)2.两点之间线段最短垂线的性质:1.过一点有且只有一条直线和已知直线垂直2. 直线外一点与直线上各点连接的所有线段中,垂线段最短. (简:垂线段最短)线段垂直平分线的性质、判定1. 定理:线段垂直平分线上的点和这条线段两个端点的距离相等 .2.逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.3.线段的垂直平分线可看作和线段两端点距离相等的所有点的集合.角1.同角或等角的补角相等.2.同角或等角的余角相等.3.对顶角的性质:对顶角相等角的平分线的性质、判定性质:在角的平分线上的点到这个角的两边的距离相等.判定:到一个角的两边的距离相同的点,在这个角的平分线上.★(2)相交线与平行线平行线的判断1.平行公理经过直线外一点,有且只有一条直线与这条直线平行.2.如果两条直线都和第三条直线平行,这两条直线也互相平行(简:平行于同一直线的两直线平行)3.同位角相等,两直线平行.4.内错角相等,两直线平行.5.同旁内角互补,两直线平行.平行线的性质1.两直线平行,同位角相等.2.两直线平行,内错角相等.3.两直线平行,同旁内角互补.★(3)三角形三角形三边的关系三角形两边的和大于第三边、三角形两边的差小于第三边.三角形角的关系1. 三角形内角和定理三角形三个内角的和等于180°.2.直角三角形的两个锐角互余.3.三角形的一个外角等于和它不相邻的两个内角的和.4. 三角形的一个外角大于任何一个和它不相邻的内角.全等三角形的性质、判定(至少要找一条边)1.全等三角形的对应边、对应角相等.2.边角边公理(SAS)3. 角边角公理( ASA)4.推论(AAS)5. 边边边公理(SSS)6. 斜边、直角边公理(HL).等腰三角形的性质①等腰三角形的两个底角相等;②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)③推论3:等边三角形的各角都相等,并且每一个角都等于60° .等腰三角形判定1.等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)2.三个角都相等的三角形是等边三角形.3.有一个角等于60°的等腰三角形是等边三角形.直角三角形的性质:①直角三角形的两个锐角互为余角;②直角三角形斜边上中线等于斜边的一半;③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);④直角三角形中︒30角所对的直角边等于斜边的一半;直角三角形的判定:①有两个角互余的三角形是直角三角形;②如果三角形的三边长a、b 、c有下面关系222cba=+,那么这个三角形是直角三角形(勾股定理的逆定理)。

七年级所有的数学公式和定理

七年级所有的数学公式和定理

七年级数学主要内容包括数的性质、整数与有理数、几何图形的认识、比例与百分数、方程与不等式等等。

下面是七年级数学中常见的公式和定理:1.数的性质-互质的定义:若两个数的最大公因数为1,则称这两个数互质。

-因数与倍数的定义:若整数a除以整数b,商可整数,则称b是a的因数,a是b的倍数。

- 最大公因数和最小公倍数的性质:若a和b是任意两个正整数,则有ab = (最大公因数) × (最小公倍数)。

-分数的定义:分数通常写成两个整数a和b的比较,a叫分子,b叫分母。

2.整数与有理数-整数的按位数加减法、乘除法:按位数对齐后进行运算,根据正负数规则确定结果的符号。

-有理数的四则运算:有理数的加减法可根据正负数规则实施运算,乘除法按分数的乘积和商求解。

3.几何图形的认识-直线与线段:直线是具有相同方向和无限延伸的线段;线段是直线的有限部分。

-平行线与垂直线:平行线是在同一个平面内永不相交的线;垂直线是相交成直角的两条相交线。

-等边三角形:三条边相等的三角形。

-直角三角形和勾股定理:直角三角形是其中一条边是直角的三角形;勾股定理是指直角三角形的两条直角边平方和等于斜边平方的定理。

-三角形周长和面积公式:三角形的周长是指三边的和,面积是底边长×高÷2-平行四边形和矩形的性质:平行四边形的对边相等且平行;矩形的对边相等且平行,且四个角都是直角。

-二维图形的旋转轴对称图形和中心对称图形。

4.比例与百分数-比例与比例的性质:两个有理数的对等比例叫比例;比例式写作a:b=c:d,称a、d为比例的两个极限项,b、c为比例的两个中项;比例的性质有误差没有、保持比例相等等。

-百分数与百分比:百分数是指分母为100的分数;百分比指其中一事物与总体之间数量关系的百分数。

5.方程与不等式-解一元一次方程:根据等式的运算性质,将未知数移到一边,已知数移到另一边,得到等式的解。

-解一元一次不等式:根据不等式的性质,可以用移项法、合并同类项的方式求解。

初中数学知识总结大全 第十三章 图形的初步认识 (编辑:靳军强)

初中数学知识总结大全 第十三章 图形的初步认识 (编辑:靳军强)

第十三章图形的基本认识一、几何图形与点、线、面、体1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形。

立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。

平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线。

面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体。

二、直线、射线和线段1、直线的概念一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。

2、射线的概念直线上一点和它一旁的部分叫做射线。

这个点叫做射线的端点。

3、线段的概念直线上两个点和它们之间的部分叫做线段。

这两个点叫做线段的端点。

4、点、直线、射线和线段的表示在几何里,我们常用字母表示图形。

一个点可以用一个大写字母表示。

一条直线可以用一个小写字母表示。

一条射线可以用端点和射线上另一点来表示。

一条线段可用它的端点的两个大写字母来表示。

注意:(1)表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。

(2)直线和射线无长度,线段有长度。

(3)直线无端点,射线有一个端点,线段有两个端点。

(4)点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。

②点在直线外,或者说直线不经过这个点。

5、直线的性质(1)直线公理:经过两个点有一条直线,并且只有一条直线。

它可以简单地说成:过两点有且只有一条直线。

(2)过一点的直线有无数条。

(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。

(4)直线上有无穷多个点。

(5)两条不同的直线至多有一个公共点。

6、线段的性质(1)线段公理:所有连接两点的线中,线段最短。

也可简单说成:两点之间线段最短。

(2)连接两点的线段的长度,叫做这两点的距离。

(3)线段的中点到两端点的距离相等。

初中数学常用概念公式和定理

初中数学常用概念公式和定理

初中数学重要的概念、公式和定理第一章 有理数正数:大于0的数叫正数负数:小于0的数叫负数有理数:整数和分数统称有理数数轴:规定了方向、原点、单位长度的一条直线; 相反数:只有符号不同的两个数叫相反数;例a a -与绝对值:数轴上一个数到原点的距离叫绝对值;负数正数〉〉0,两个负数,绝对值大的反而小性质:正数的绝对值是它本身,0的绝对值是0,负数的绝对值是他的相反数有理数的加法法则:1、同号两数相加,取相同的符号,并把它们的绝对值相加;2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对数减去较小的绝对值,互为相反数的两数相加得0;3、一个数同0相加,仍得这个数:加法交换律:两数相加,交换加数的位置,和不变;a b b a +=+加法结合律:三个数相加,先把前两数相加或先把后两个数相加,和不变;)(c b a c b a ++=++)( 减去一个数,等于 加上这个数的相反数;)(b a b a -+=-乘法法则:两数相乘同号得正,异号得负并把绝对值相乘;任何数同0相乘都得0; 倒数:乘积为1的两个数互为倒数;乘法交换律:两数相乘,交换因数的位置,积不变;ba ab =乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等;)()(bc a c ab =乘法分配率:一个数同两个数的和相乘,等于把这两个数分别同这个数相乘,再把积相加;ac ab c b a +=+)(有理数除法法则:除以一个不等于0的数,等于乘以这个数的倒数;)0(1≠•=÷b b a b a两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0;乘方:求n 个相同因数的积的运算叫乘方;乘方的结果最做幂;n a 叫做幂,其中a 叫底数,n 叫指数负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何非0次幂都是0;科学计数法:把一个数写成n a 10⨯的形式叫科学计数法;1≤a <10, n 为整数一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.如:精确到得,结果有两个有效数字6,0.有理数的混合运算:先算乘除、后算加减、有括号的先算括号、有乘方的先算乘方;第二章整式的加减单项式:数或字母的积叫单项式,单独的一个数或一个字母也叫单项式;单项式的系数:单项式中的数字因数;π不能看作字母单项式的次数:单项式中所有字母指数的和;多项式:几个单项式的和叫多项式;其中每个单项式叫多项式的项,来含字母的项叫常数项;多项式的次数:多项式里次数最高项的次数叫多项的次数;单项式和多项式统称整式;同类项:所含字母相同,并且相同字母的指数也相同的项叫同类项;常数项都是同类项合并同类项:字母部分不变,系数相加;把几个同类项合并成一项叫合并同类项; 去括号:括号前面是正号,去括号后括号内各项的符不变;括号前面是负号,去括号后括号内各项要变号;第三章一元一次方程方程:含有未知数的等式叫方程;一元一次方程:只含有一个未知数,并且未知数的最高次数是一次的方程叫一元一次方程;方程的解:使方程等号两边相等的未知数的值;等式的性质:1、等式两边加上减去同一个数或式子,结果仍相等;若ba=,则cbca±=±2、等式两边乘同一个数,或除以同一个来为0的数,结果仍相等;若ba=,则bcac=;若ba=,则)0(≠=ccbca解方程的一般步骤或方法:去分母;2、去括号;3、移项;4、合并同类项;5、系数化为1;6、检验分式方程第四章图形认识初步几何图形:从实物中抽象出的各种图形统称几何图形;立体图形:几何图形的各部分不都在同一平面内的图形叫立体图形;平面图形:几何图形的各部分都在同一平面内的图形叫立体图形;两点确定一条直线;两点之间,线段最短;同一平面内两直线的位置关系:相交、平行;角:由两条有公共端点的射线组成的图形叫角;或由一条射线绕端点旋转得到的图形;角的平分线:从角的顶点出发,把一个角分成两个相等的角的射线;余角:两角的和为90°,则称这两个角互为余角;同角或等角的余角相等;补角:两角的和为180°,则称这两个角互为补角;同角或等角的补角相等;第五章 相交线与平行线邻补角:有一条公共边,另一边互为反向延长线的两个角;对顶角:一个角的两边分别是另一个角两边的反向延长线的两个角;对顶角相等; 点到直线垂线段最短;过一点有且只有一条直线与已知直线垂直;同位角、内错角、同旁内角平行线的判定:1、同位角相等,两直线平行;2、内错角相等,两直线平行;3、同旁内角互补,两直线平行:平行线的性质:1、两直线平行,同位角相等;2、两直线平行,内错角相等;3、两直线平行,同旁内角互补:命题:判断一件事情的语句;分真命题和假命题;定理:经过推理证实是正确的命题叫定理;平移变换也叫平移:1、平移不改变图形的形状和大小;2、对应点的连线平行且相等:第六章 平面直角坐标系有序数对:把有顺序的两个数组成的数对叫做有序数对;点的坐标是一个有序数对;平面直角坐标系:平面内两条互相垂直、原点重合的数轴; 坐标k >0 ×1-横坐标x 向右移动k 个单位 向左移动k 个单位 关于纵轴y 轴对称 纵坐标y 向上移动k 个单位 向下移动k 个单位 关于横轴x 轴对称 坐标y x , 向右移动k 个单位,再向上移动k 个单位 向左移动k 个单位;再向下移动k 个单位关于原点0,0中心对称三角形:由不在同一直线上的三条线段首尾顺次相接而成的图形;分类:按边 按角: 三角形三边关系:三角形两边之和大于第三边三角形两边之差小于第三边三角形的高、中线、角平分线 三角形具有稳定性:三角形的内角和等于180°三角形外角:三角形的一个外角等于它不相邻的两个内角的和三角形的一个外角大于与它不相邻的任何一个内角多边形:由一些线段首尾顺次相接而成的图形;对角线:多边形不相邻顶点的连线段;正多边形:各角都相等,各边都相等的多边形多边形的内角和︒-=180)2(n多边形的内角和等于360°第八章 二元一次方程组二元一次方程:含有两个未知数,含有未知数的项的次数都是1的方程;{{三角形不等边三角形等腰三角形形底边和腰不相等的三角等腰三角形{⎪⎩⎪⎨⎧有一个角是钝角钝角三角形有一个角是直角直角三角形三个角都是锐角锐角三角形三角形:::二元一次方程组:具有相同未知数的两个二元一次方程合在一起,就组成一个二元一次方程组.使二元一次方程两边的值相等的未知数的值,叫做二元一次方程的解;两个二元一次方程组两个方程的公共解,叫做二元一次方程组的解;解二元一次方程组的方法:1、代入消元法; 2、加减消元法:第九章 不等式与不等式组不等式:用不等号表示大小关系的式子叫不等式;不等式解集:使不等式成立的未知数的取值范围叫不等式的解的集合;简称解集; 一元一次不等式:含有一个未知数,并且未知数的次数是一次的不等式叫一元一次不等式;不等式的性质:1、不等式两边加或减同一个数或式子,不等号的方向不变;如果a >b ,那么a ±c >b ±c . 2、不等式两边乘或除以同一个正数,不等号的方向不变;如果a >b , c >0,那么ac >bc .或 c b c a 〉 3、不等式两边乘或除以同一个负数,不等号的方向改变;a >b , c <0,那么ac <bc . 或 cb c a 〈 一个一元一次不等式组:具有相同未知数的两个一元一次不等式合在一起,就组成一个一元一次不等式组.解不等式组的解集:几个不等式的解的公共部分,叫做不等式组的解集;解不等式组就是求它的解集;取两个不等式的公共解集:1、同大取大;2、同小取小;3、大于小的小于大的取之间;4、大于大的小于小的无解:第十章 数据的收集、整理与描述收集数据:整理数据:描述数据:列表法;条形图;扇形图:全面调查:对考察全体对象的调查;抽样调查:抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况的调查;总体:要考察的全体对象;个体:组成总体的每一个考察对象;样本:被抽取的个体组成一个样本;样本容量:样本中个体的数目;简单随机抽样:总体中的每一个个体都有相等的机会被抽到的抽样方法: 第十一章 全等三角形全等形:能够完全重合的两个图形;形状相同、大小相等全等三角形:能够完全重合的两个三角形;性质:对应边相等;对应角相等: 三角形的判定:SSS 、SAS 、ASA 、AAS 、Rt △HL角的平分线:性质:1、角的平分线上的点到角的两边的距离相等;2、到角两边距离相等的点在角的角的平分线上;第十二章 轴对称轴对称图形:如果一个图形沿一条直线折叠,直线两旁能互相重合;这条直线就是它的对称轴;把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那第说这两个图形关于这条直线对称;折叠后重合的点是对应点,叫做对称点;垂直平分线:经过线段中点并且垂直于这条线段的直线;线段垂直平分线上的点到这条线段两端距离相等;到线段两端距离相等的点在这条线段的垂直平分线上;轴对称图形的对称轴垂直平分对应点的连线;等腰三角形:两边相等的三角形;性质:1、两底角相等等边对等角、等角对等边;2、顶角平分线、底边上的中线、底边上的高相互重合三线合一:等边三角形正三角形:三边都相等的三角形;性质:三个内角都相等并且每一个内角都等于60°;判定:1、三个角都相等的三角形是等边三角形:2、有一个角是60°的等腰三角形是等边三角形:直角三角形中30°角所对的边等于斜边的一半;第十三章 实数算术平方根:如果一个正数x 的平方等于a a x =2,那么这个正数x 叫做a 的算术平方根;记为:a ,读作“根号a ”, a 叫做被开方数;0的算术平方根是0; 平方根二次方根:一个数的平方等于a ,那么这个数叫做a 的平方根或二次方根; 开平方:求一个数a 的平方根的运算叫做开平方;1、正数的两个平方根,它们互为相反数;2、0的平方3、根是0;负数没有平方根:立方根三次方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根开立方:求一个数的立方根的运算叫做开立方;用3a 表示,读作“三次根号a ”其中3叫根指数1、正数的立方根是正数;2、0的立方根是0;3、负数的立方根是0:{实数可以写成有限小数或无限循环小数的数有理数无理数无限不循环小数⎩⎨⎧按小数分数{{{实数正有理数正无理数负有理数负无理数正实数负理数按大小分类第十四章 一次函数变量:数值会发生变化的量;常量:数值始终不变的量;函数:如果在一个变化过程中有两个变量x 和y ,对于x 的每一个确定的值,y 都有一个唯一的值与它对应,我们就说x 是自变量,y 是x 的函数;表示函数的方法:列表法;解析法;图象法:一次函数:一般形式)0(≠+=k b kx y 正比列函数:0)0(≠≠=b k kx y 经过原点 图象:一条直线;画函数图象的步骤:列表、描点、连线;性质::x ,y ;k x ,y k 的增大而减小随时增大而增大随时00〈〉第十五 章整式的乘法与因式分解单项式×单项式:把它们的系数×系数、相同字母×相同字母单项式×多项式:用单项式去乘以多项式的每一项多项式×多项式:用一个多项式每一项乘以另一个多项式的每一项平方差公式:22))((b a b a b a -=-+完全平方公式:2222)(b ab a b a +±=±2222)(b ab a b a ++=+ 2222)(b ab a b a +-=-去括号:括号前面是正号,去括号后各项都不变号;括号前面是负号,去括号后各项都要变号:因式分解分解因式:把一个多项式化成几个整式的乘积的形式;方法:提公因式法和公式法;第十六 章分式分式:分母中含有字母的式子分式的基本性质:1、分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变;2、①同分母:分母不变,分子相加减;②异分母:先通分,变为同分母,再按同分母分式相加减进行运算;约分:根据分式的性质,约去分式的分子和分母的公因式;最简分式:分子分母没有公因式、分子分母中的系数都是整数、分子分母中没有分式;通分:把不同分母分式的分母化相同;最简公分母分式方程:分母中含有未知数的方程;第十七章 反比列函数反比列函数:一般形式:)0(≠=k x k y图象:双曲线 性质:1、k >0时,;x ,y 、的增大而减小随三象限图象在第一2、k <0时,;x ,y 、的增大而减大随四象限图象在第二第十八章 勾股定理勾股定理: 222,Rt c b a c ,b ,a =+∆那么斜边为中两直角边分别为勾股定理的逆定理:若三角形中,三边长222,,c b a c b a =+满足,那么,这个三角形是直角三角形第十九章平行四边形平行四边形:两组对边分别平行的四边形叫做平行四边形性质1、平行四边形的对角相等平行四边形性质定理2 、平行四边形的对边相等3、 平行四边形的对角线互相平分推论 夹在两条平行线间的平行线段相等判定定理判定:1、定义两组对边分别平行的四边形是平行四边形2、两组对角分别相等的四边形是平行四边形3、两组对边分别相等的四边形是平行四边形4、对角线互相平分的四边形是平行四边形5、一组对边平行相等的四边形是平行四边形三角形的中位线平行且等于第三边的一半;矩形:有一个角是直角的平行四边形;性质:1、矩形的四个角都是直角叫矩形2、 矩形的对角线相等判定:1、定义有一个角是直角的平行四边形是矩形定义2、有三个角是直角的四边形是矩形3、对角线相等的平行四边形是矩形菱形:有一组邻边相等的平行四边形是叫菱形性质:1、菱形的四条边都相等2、菱形的对角线互相垂直,并且每一条对角线平分一组对角菱形面积=对角线乘积的一半,ab :s 21=即判定1、四边都相等的四边形是菱形2、对角线互相垂直的平行四边形是菱形正方形:有一个角是直角有一组邻边相等的平行四边形是正方形性质1、正方形的四个角都是直角,四条边都相等2、正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角 梯形:有一组对边平行,另一组对边不平行的四边形叫做梯形;等腰梯形:两腰相等的梯形;直角梯形:有一个角是直角的梯形;性质1、等腰梯形在同一底上的两个角相等2、两条对角线相等判定1、两腰相等的梯形是等腰梯形2、在同一底上的两个角相等的梯形是等腰梯形3、对角线相等的梯形是等腰梯形 第二十章数据的代表nn n w w w w x w x w x x ++++++= 212112:加权平均数权:数据的重要程度;n n w w w ;x x x ;n ,,,,,,2121 每个数据的权这组数据为这组数据的个数中位数:一组数据按顺序排列,处于中间位置的数;众数:一组数据中出现次数最多的数据;极差:一组数据中最大数据与最小数据的差;⎥⎦⎤⎢⎣⎡-++-+-=---)()()(1212x x x x x x n :s n 方差方差越大,数据波动越大;方差越小,数据波动越小:标准差:⎥⎦⎤⎢⎣⎡-++-+-=---)()()(121x x x x x x n s n n x x x ;x ,,,21 这组数据为这组数据的平均数第二十一章二次根式 二次根式:形如)0(≥a a 的式子;“”称为二次根号;代数式:用基本运算符号把数和表示数的字母连接起来的式子;基本运算符号有:加、减、乘、除、乘方和开方最简二次根式:必须满足1、被开方数不含分母;2、被开方数中不含开得尽的因数或因式:二次根式的加减:先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并;第二十二章一元二次方程一元二次方程:只含有一个未知数,未知数的最高次数是二次的方程;一元二次方程的解也叫一元二次方程的根;一元二次方程的一般形式:)0(02≠=++a c b a c bx ax 为常数、、解一元二次方程的方法:1、配方法;2、公式法;3、因式分解法: 第二十三章旋转旋转:把一个图形绕着平面某一个点转动一个角度;旋转中心、旋转心方向、旋转角旋转图形:1、对应点到旋转中心的距离相等;2、对应点与旋转中心所连的夹角等于旋转角;3、旋转前、后图形全等:中心对称图形:把一个图形绕某一个点旋转180°,如果它能与另一个图形重合,那么这两个图形叫中心对称图形;也说这两个图形关于这个点中心对称,这个点叫对称中心.这时对应点也叫对称点;第二十四章圆圆:在一个平面内,线段绕它的一个端点旋转一周,另一个端点形成的图形叫做圆;圆心、半径弦:圆上任意两点的线段;经过圆心的弦叫做直径;弧:圆上任意两点间的部分;半圆、等圆、等弧垂径定理:垂直于弦的直径平分弦,并且平分缠绵民对的两条弧;平分弦不是直径的直径垂直于弦,并且平分缠绵民对的两条弧;同圆或等圆中,弦、弧、圆心角、圆周角中,任意一个量相等,则另外三个量也相等; 圆内接四边形对角互动补;如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形; 点和圆的位置关系:P 表示点、d ”读作等价于点P 在圆外⇔d >r ;点P 在圆外⇔d=r ;点P 在圆外⇔d <r ;不在同一直线上的三点确定一个圆;反证法:由矛盾断定所假设不正确,从而得到原命题成立;直线和圆的位置关系:l 表示直线、d 表示这条直线到圆心的距离、r 表示半径 直线l 和圆相交⇔d <r ;直线l 和圆相切⇔d=r ;直线l 和圆相离⇔d >r圆的切线:经过半径外端、垂直于半径的直线;圆的切线垂直于经过切点的半径 切线长:经过圆外一点作圆的切线,这点和切点之间的线段长;从圆外一点可以作圆的两条切线,它们的切 线长相等,这点和圆心的连线平分两条切线的夹角;多边形内切圆:与多边形各边都相切的圆;内切圆的圆心叫多边形的内心;圆与圆的位置关系:d 表示两圆心之间的距离、R 表示大圆半径、r 表示小圆半径、R >r外离⇔d >R+r外切⇔d=R+r相交⇔R-r <d <R+r内切⇔d=R-r内含⇔d >R-r多边形的中心:正多边形外接圆的圆心;多边形的半径:正多边形外接圆的半径;多边形的中心角:正多边形每一边所对的圆心角;多边形的边心距:中心到正多边形一边的距离; 弧长: 180R n l π=l 表示弧长、n 表示圆心角、R 表示圆的半径 扇形面积:lR R n S 213602== π扇形圆锥侧面积:lR S π=圆锥侧 第二十五章概率初步 n mP =列表法,树状图第二十六章二次函数二次函数:用二次式表示的函数;一般形式解析式:)0,,,(2≠++=a c b a c bx ax y 是常数 图象:抛物线 性质:a b ac a b x a y c bx ax y 44)2(222-++=++=化成 第二十七章相似相似图形:形状相同的图形;相似多边形:形状相同的多边形;相似多边形:对应边的比相等,对应角相等;对应边的比叫相似比;相似三角形的判定:SSS 、SAS 、AA;相似三角形:相似比=边长比=周长比=对应边上的高或中线、角平分线的比 面积比=相似比的平方位似:两个多边形不且相似,而且对应点的连线相交于一点,对应边互相平行,这个点叫做位似中心;第二十八章锐角三角函数特殊的三角函数值: 第二十九章投影与视图 投影:光线照射物体,在某个平面上得到的影子;中心投影:由同一点发出的光线形成的投影; 锐角a三角函数 30° 60°45° sinA cosAtanA正投影:投影线垂直于投影面产生的投影;视图:从某一角度观察一个物体,所看到的图象;三视图:主视图、俯视图、左视图画三视图:主视图与俯视图长对正、主视图与左视图高平齐、左视图与俯视图宽相等;。

初中数学几何公式大全

初中数学几何公式大全

初中数学几何公式大全初中几何公式:线1 同角或等角的余角相等2 过一点有且只有一条直线和已知直线垂直3 过两点有且只有一条直线4 两点之间线段最短5 同角或等角的补角相等6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行初中几何公式:角9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补初中几何公式:三角形15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于18018 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23 角边角公理有两角和它们的夹边对应相等的两个三角形全等24 推论有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理有三边对应相等的两个三角形全等26 斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合初中几何公式:等腰三角形30 等腰三角形的性质定理等腰三角形的两个底角相等31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于6034 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形初中几何公式:四边形48定理四边形的内角和等于36049四边形的外角和等于36050多边形内角和定理n边形的内角的和等于(n-2)18051推论任意多边的外角和等于36052平行四边形性质定理1 平行四边形的对角相等53平行四边形性质定理2 平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3 平行四边形的对角线互相平分56平行四边形判定定理1 两组对角分别相等的四边形是平行四边形57平行四边形判定定理2 两组对边分别相等的四边形是平行四边形58平行四边形判定定理3 对角线互相平分的四边形是平行四边形59平行四边形判定定理4 一组对边平行相等的四边形是平行四边形初中几何公式:矩形60矩形性质定理1 矩形的四个角都是直角61矩形性质定理2 矩形的对角线相等62矩形判定定理1 有三个角是直角的四边形是矩形63矩形判定定理2 对角线相等的平行四边形是矩形初中几何公式:菱形64菱形性质定理1 菱形的四条边都相等65菱形性质定理2 菱形的对角线互相垂直,并且每一条对角线平分一组对角66菱形面积=对角线乘积的一半,即S=(ab)267菱形判定定理1 四边都相等的四边形是菱形68菱形判定定理2 对角线互相垂直的平行四边形是菱形初中几何公式:正方形69正方形性质定理1 正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1 关于中心对称的两个图形是全等的72定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称初中几何公式:等腰梯形74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形初中几何公式:等分78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰80 推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边81 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)2 S=Lh83 (1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84 (2)合比性质如果a/b=c/d,那么(ab)/b=(cd)/d85 (3)等比性质如果a/b=c/d==m/n(b+d++n0),那么(a+c++m)/(b+d++n)=a/b86 平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例87 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88 定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89 平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91 相似三角形判定定理1 两角对应相等,两三角形相似(ASA)92 直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93 判定定理2 两边对应成比例且夹角相等,两三角形相似(SAS)94 判定定理3 三边对应成比例,两三角形相似(SSS)95 定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96 性质定理1 相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97 性质定理2 相似三角形周长的比等于相似比98 性质定理3 相似三角形面积的比等于相似比的平方99 任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值初中几何公式:圆101圆是定点的距离等于定长的点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三个点确定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1 ①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2 圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1 同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2 半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径119推论3 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d﹤r②直线L和⊙O相切d=r③直线L和⊙O相离d﹥r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线123切线的性质定理圆的切线垂直于经过切点的半径124推论1 经过圆心且垂直于切线的直线必经过切点125推论2 经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离d﹥R+r ②两圆外切d=R+r③两圆相交R-r﹤d﹤R+r(R﹥r)④两圆内切d=R-r(R﹥r) ⑤两圆内含d﹤R-r(R﹥r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)180/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形141正n边形的面积Sn=pnrn/2 p表示正n边形的周长142正三角形面积3a/4 a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360,因此k(n-2)180/n=360化为(n-2)(k-2)=4要练说,得练看。

第7章平面图形的认识(二)知识点梳理苏科版七年级数学下册

第7章平面图形的认识(二)知识点梳理苏科版七年级数学下册

平面图形的认识(二)知识点梳理知识点一:认识三线八角如果两条线被第三条线所截,那么这两条线叫做被截线,这第三条线叫做截线。

这三条线一共可以组成八个角,简称三线八角。

同位角(F形):位于截线的同侧,被截线的同侧。

内错角(Z形):位于截线的两侧,被截线的内侧同旁内角(U形):位于截线的同侧,被截线的内侧注意:以上三种角都有一条公共边。

知识点二:两直线平行的判定条件1.同位角相等,两直线平行。

几何语言:∵∠1=∠2,∴AB∥CD。

2.内错角相等,两直线平行。

几何语言:∵∠1=∠2,∴AB∥CD。

3.同旁内角互补,两直线平行。

几何语言:∵∠1+∠2=180°,∴AB∥CD。

知识点四:平移1.概念:在平面内,把一个图形整体沿某一直线方向移动,会得到一个新的图形,图形的这种移动,叫作平移。

注意:平移改变的是图像的位置,不变的是图像的大小和形状。

2、平移的要素:方向、距离;3、平移作图的步骤:定、找、移、连。

①定:确定平移的方向和距离。

②找:找出表示图形的关键点。

③移:过关键点作平行且相等的线段,得到关键点的对应点。

④连:按原图形顺次连接对应点。

知识点五:三角形1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

知识点六:多边形1.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

2.多边形的内角:多边形相邻两边组成的角叫做它的内角。

多边形内角和定理:n 边形的内角的和等于: (n - 2)×180° 正多边形各内角度数为:n2)180-(n 3.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学图形的认识定理与公式
图形的认识
(1)角
角平分线的性质:角平分线上的点到角的两边距离相等,角的内部到两边距离相等的点在角平分线上。

(2)相交线与平行线
同角或等角的补角相等,同角或等角的余角相等;
对顶角的性质:对顶角相等
垂线的性质:
①过一点有且只有一条直线与已知直线垂直;
②直线外一点有与直线上各点连结的所有线段中,垂线段最短;
线段垂直平分线定义:过线段的中点并且垂直于线段的直线叫做线段的垂直平分线;
线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等,到线段两端点的距离相等的点在线段的垂直平分线;
平行线的定义:在同一平面内不相交的两条直线叫做平行线;
平行线的判定:
①同位角相等,两直线平行;
②内错角相等,两直线平行;
③同旁内角互补,两直线平行;
平行线的特征:
①两直线平行,同位角相等;
②两直线平行,内错角相等;
③两直线平行,同旁内角互补;
平行公理:经过直线外一点有且只有一条直线平行于已知直线。

(3)三角形
三角形的三边关系定理及推论:三角形的两边之和大于第三边,两边之差小于第三边;
三角形的内角和定理:三角形的三个内角的和等于;
三角形的外角和定理:三角形的一个外角等于和它不相邻的两个的和;
三角形的外角和定理推理:三角形的一个外角大于任何一个和它不相邻的内角;三角形的三条角平分线交于一点(内心);
三角形的三边的垂直平分线交于一点(外心);
三角形中位线定理:三角形两边中点的连线平行于第三边,并且等于第三边的一半;
全等三角形的判定:
①边角边公理(SAS)
②角边角公理(ASA)
③角角边定理(AAS)
④边边边公理(SSS)
⑤斜边、直角边公理(HL)
等腰三角形的性质:
①等腰三角形的两个底角相等;
②等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(三线合一)等腰三角形的判定:
有两个角相等的三角形是等腰三角形;
直角三角形的性质:
①直角三角形的两个锐角互为余角;
②直角三角形斜边上的中线等于斜边的一半;
③直角三角形的两直角边的平方和等于斜边的平方(勾股定理);
④直角三角形中角所对的直角边等于斜边的一半;
直角三角形的判定:
①有两个角互余的三角形是直角三角形;
②如果三角形的三边长a、b 、c有下面关系,那么这个三角形是直角三角形(勾股定理的逆定理)。

(4)四边形
多边形的内角和定理:n边形的内角和等于(n≥3,n是正整数);
平行四边形的性质:
①平行四边形的对边相等;
②平行四边形的对角相等;
③平行四边形的对角线互相平分;
平行四边形的判定:
①两组对角分别相等的四边形是平行四边形;
②两组对边分别相等的四边形是平行四边形;
③对角线互相平分的四边形是平行四边形;
④一组对边平行且相等的四边形是平行四边形。

矩形的性质:(除具有平行四边形所有性质外)
①矩形的四个角都是直角;
②矩形的对角线相等;
矩形的判定:
①有三个角是直角的四边形是矩形;
②对角线相等的平行四边形是矩形;
菱形的特征:(除具有平行四边形所有性质外)
①菱形的四边相等;
②菱形的对角线互相垂直平分,并且每一条对角线平分一组对角;
菱形的判定:
四边相等的四边形是菱形;
正方形的特征:
①正方形的四边相等;
②正方形的四个角都是直角;
③正方形的两条对角线相等,且互相垂直平分,每一条对角线平分一组对角;正方形的判定:
①有一个角是直角的菱形是正方形;
②有一组邻边相等的矩形是正方形。

等腰梯形的特征:
①等腰梯形同一底边上的两个内角相等
②等腰梯形的两条对角线相等。

等腰梯形的判定:
①同一底边上的两个内角相等的梯形是等腰梯形;
②两条对角线相等的梯形是等腰梯形。

平面图形的镶嵌:
任意一个三角形、四边形或正六边形可以镶嵌平面;
(5)圆
点与圆的位置关系(设圆的半径为r,点P到圆心O的距离为d):
①点P在圆上,则d=r,反之也成立;
②点P在圆内,则d<r,反之也成立;
③点P在圆外,则d>r,反之也成立;
圆心角、弦和弧三者之间的关系:在同圆或等圆中,圆心角、弦和弧三者之间只要有一组相等,可以得到另外两组也相等;
圆的确定:不在一直线上的三个点确定一个圆;
垂径定理(及垂径定理的推论):垂直于弦的直径平分弦,并且平分弦所对的两条弧;
平行弦夹等弧:圆的两条平行弦所夹的弧相等;
圆心角定理:圆心角的度数等于它所对弧的度数;
圆心角、弧、弦、弦心距之间的关系定理及推论:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦的弦心距相等;
推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦心距中有一组量相等,那么它们所对应的其余各组量分别相等;
圆周角定理:圆周角的度数等于它所对的弧的度数的一半;
圆周角定理的推论:直径所对的圆周角是直角,反过来,的圆周角所对的弦是直径;
切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线;
切线的性质定理:圆的切线垂直于过切点的半径;
切线长定理:从圆外一点引圆的两条切线,这一点到两切点的线段相等,它与圆心的连线平分两切线的夹角;
弧长计算公式:(R为圆的半径,n是弧所对的圆心角的度数,为弧长)
扇形面积:或(R为半径,n是扇形所对的圆心角的度数,为扇形的弧长)
弓形面积
(6)尺规作图(基本作图、利用基本图形作三角形和圆)
作一条线段等于已知线段,作一个角等于已知角;作已知角的平分线;作线段的垂直平分线;过一点作已知直线的垂线;
(7)视图与投影
画基本几何体(直棱柱、圆柱、圆锥、球)的三视图(主视图、左视图、俯视图);基本几何体的展开图(除球外)、根据展开图判断和设别立体模型;。

相关文档
最新文档