初中数学几何基本图形+初中数学图形与几何
人教版初中数学七年级上册第四章 几何图形初步 几何图形 教学课件 立体图形与平面图形形(第2课时)
![人教版初中数学七年级上册第四章 几何图形初步 几何图形 教学课件 立体图形与平面图形形(第2课时)](https://img.taocdn.com/s3/m/1add39f9d05abe23482fb4daa58da0116c171f2e.png)
4.1 几何图形
4.1.1 立体图形与平面图形 (第2课时)
导入新知
题西林壁 ——苏轼
横看成岭侧成峰,远近高低各不同. 不识庐山真面目,只缘身在此山中.
导入新知
【想一想】“横看成岭侧成峰”一句中,蕴含了怎样的数学 道理?
素养目标
3.在平面图形和立体图形互相转换的过程中,初 步建立空间观念.
2. 知道一些简单的立体图形的展开图.
1. 初步体会从不同的方向观察同一个物体可能 会看 到不同的平面图形,能识别简单物体从正面看、从 左面看、从上面看的平面图形.
探究新知 知识点 1 从不同方向看同一个物体
他们为什么会出现争执?
这是数字“9”。 这是数字“6”。
探究新知 如图,把茶壶放在桌面上,那么下面五幅图片分别
是从哪个方向看得到的?
从正面看 从右面看 从左面看 从后面看别是从什么方向看的?
1
背面
2
顶部
3
4
正面
5右
侧
左 侧
探究新知 排一排
一辆汽车从小明的面前经过,小明拍摄了一组照片. 请按照汽车被摄入镜头的先后顺序给下面的照片编号, 并与同伴进行交流.
探究新知
从左面看
巩固练习
分别画出圆柱体、圆锥及球体的从正面、左面、上面 看到的图形.
巩固练习
从正面看 从左面看
从上面看
探究新知
知识点 2 立体图形的展开图
将一个正方体的表面沿某些棱剪开,能展成哪些平面图形?
友情提示: 沿着棱剪,展开后是 一个平面图形.
探究新知
正方体的展开图
1
2
34
5
6
7
8
图形与几何初中知识点总结
![图形与几何初中知识点总结](https://img.taocdn.com/s3/m/6d994911492fb4daa58da0116c175f0e7cd119a7.png)
图形与几何初中知识点总结图形与几何是初中数学的一个重要部分,其中包括平面图形、空间图形、几何相似、三角形、圆等知识点。
本文将对这些知识点进行总结。
一、平面图形1.矩形:四边都是直角的四边形,对边平行且相等。
周长为2a+2b,面积为ab。
2.正方形:四边均相等,对边是平行且相等的。
周长为4a,面积为a²。
3.平行四边形:对边平行,且相等。
周长为2a+2b,面积为ah。
4.梯形:两个底分别是a和b,两腰分别是c和d,高为h。
周长为a+b+c+d,面积为(h/2)×(a+b)。
5.菱形:四边均相等,对角线相等且平分角。
周长为4a,面积为(d1×d2)/2。
二、空间图形1.立方体:六个面都是正方形,每个角都是直角。
体积为a³,表面积为6a²。
2.正方体:六个面都是正方形,每个角都是直角。
体积为a³,表面积为6a²。
3.长方体:六个面都是矩形,每个角都是直角。
体积为ab×h,表面积为2ab+2ah+2bh。
4.棱锥:一个底是正方形,其他部分都是四个三角形。
体积为(a²h)/3,表面积为a√(a²+4h²)+2a²。
5.棱柱:底面为正方形,侧面是矩形。
体积为a²h,表面积为2a²+4ah。
6.圆锥:底面是圆形,侧面为三角形。
体积为(πr²h)/3,表面积为πr(r+√(r²+h²))。
7.圆柱:底面是圆形,侧面为矩形。
体积为πr²h,表面积为2πr²+2πrh。
三、几何相似几何相似是指两个图形的形状相似,但是大小不同。
当两个图形相似时,它们的对应边长成比例,对应角度相等。
1.相似三角形:两个三角形如果它们的对应角度相等,并且对应边长成比例,那么它们是相似的。
如果两个三角形相似,那么它们的面积也成比例。
2.黄金分割:在一个等边三角形中,将一条边分成两个线段,他们的比为黄金分割比1:1.618。
初中数学常见的几何图形名称
![初中数学常见的几何图形名称](https://img.taocdn.com/s3/m/00f86ee981eb6294dd88d0d233d4b14e84243e75.png)
初中数学常见的几何图形名称1.点(Point):在几何学中,点是最基本的几何对象,不具有大小和形状,仅有位置。
2.直线(Line):直线是由无限多个点连成的,它没有弯曲或弯折。
3.线段(Line Segment):线段是由两个端点和它们之间所有点构成的部分。
4.射线(Ray):射线是由一个起点和一个方向组成的直线。
5.角(Angle):两条射线共享一个起点所形成的图形。
6.三角形(Triangle):由三条边和三个顶点组成的图形。
7.直角三角形(Right Triangle):一个内角为90度的三角形。
8.直观三角形(Obtuse Triangle):一个内角大于90度的三角形。
9.锐角三角形(Acute Triangle):所有内角都小于90度的三角形。
10.等腰三角形(Isosceles Triangle):两边长度相等的三角形。
11.等边三角形(Equilateral Triangle):所有边长度相等的三角形。
12.四边形(Quadrilateral):由四条边和四个顶点组成的图形。
13.矩形(Rectangle):具有四个直角的四边形。
14.平行四边形(Parallelogram):具有两对平行边的四边形。
15.正方形(___):具有四个相等边和四个直角的四边形。
16.梯形(Trapezoid):具有一对平行边的四边形。
17.圆(Circle):由一条连续曲线上所有点的集合组成的图形。
18.弧(Arc):是圆上的一部分,由两个端点和圆弧之间的弦构成。
19.扇形(Sector):是圆心角和圆弧所围成的区域。
20.椭圆(Ellipse):离两个固定点距离之和等于常数的点的集合。
以上是初中数学中常见的几何图形和名称说明。
了解这些概念将有助于学生在学习几何学时更好地理解和应用。
图形与几何初中知识点总结
![图形与几何初中知识点总结](https://img.taocdn.com/s3/m/acbdba46f02d2af90242a8956bec0975f465a4dd.png)
图形与几何初中知识点总结图形与几何是数学中的一个重要分支,主要研究形状、大小以及它们之间的关系。
在初中阶段,学生将会接触到一系列的图形和几何知识。
本文将对这些初中图形与几何的知识点进行总结。
一、平面图形1. 三角形:三边的关系、内角和、直角三角形、等腰三角形等。
2. 四边形:平行四边形、矩形、正方形、菱形等。
3. 多边形:五边形、六边形、正多边形等。
4. 圆:圆的半径、直径、弧长、面积等。
二、空间图形1. 立体图形:长方体、正方体、圆柱体、圆锥体、正棱柱等。
2. 进一步了解这些立体图形的表面积、体积和侧面积的计算方法。
三、相似与全等1. 相似:两个图形形状相同,但大小可能不同。
学生需要了解相似三角形的判定条件,以及相似图形的比例关系。
2. 全等:两个图形既形状相同,又大小相同。
学生需要了解全等图形的性质和判定条件,以及如何做全等图形的对应构造。
四、坐标系与平面直角坐标系1. 坐标系的概念:了解平面上的点如何用坐标来表示。
2. 平面直角坐标系:了解直角坐标系的构建方法,以及如何通过坐标计算两点之间的距离和斜率。
五、角与角的计算1. 角的概念:了解角的定义,以及如何用角度和弧度来表示角。
2. 角的运算:了解角的加法、减法、相等和互补关系等。
六、直线与曲线1. 平行线和垂直线的概念:了解直线之间的平行和垂直关系。
2. 直线与曲线的交点:了解直线和圆的交点性质,以及如何通过已知条件求解交点问题。
七、投影与旋转1. 投影的概念:了解正交投影和斜投影的概念,以及投影的性质和相关计算方法。
2. 旋转的概念:了解平面上图形的旋转概念,以及旋转的性质和相关计算方法。
八、对称与镜像1. 对称的概念:了解平面上的图形对称性,以及对称图形的性质和判断方法。
2. 镜像的概念:了解平面上的图形镜像关系,以及镜像图形的构造方法。
九、尺规作图1. 基本作图:了解使用尺规作图工具(直尺和圆规)进行基本图形的作图。
2. 组合作图:了解使用尺规作图工具进行更复杂图形的作图,如平分角、作已知角的整倍角等。
初中几何图形知识点整理
![初中几何图形知识点整理](https://img.taocdn.com/s3/m/9739579dba4cf7ec4afe04a1b0717fd5360cb235.png)
初中几何图形知识点整理在初中数学的学习中,几何图形是一个重要的组成部分。
它不仅能够帮助我们更好地理解和描述现实世界中的物体和空间关系,还能锻炼我们的逻辑思维和空间想象力。
接下来,就让我们一起对初中几何图形的知识点进行一个全面的整理。
一、点、线、面、体点是构成几何图形的最基本元素,没有大小和形状。
线是由无数个点组成的,分为直线和曲线。
直线没有端点,可以向两端无限延伸;曲线则是弯曲的线。
面是由线围成的,分为平面和曲面。
平面是平整的,曲面则是弯曲的。
体是由面围成的,有长方体、正方体、圆柱体、圆锥体、球体等。
二、线段、射线、直线线段有两个端点,长度可以测量。
射线有一个端点,可以向一端无限延伸,长度不可测量。
直线没有端点,可以向两端无限延伸,长度不可测量。
线段的性质:两点之间,线段最短。
三、角角是由公共端点的两条射线组成的图形。
这个公共端点叫做角的顶点,这两条射线叫做角的边。
角的度量单位是度、分、秒。
1 度=60 分,1 分=60 秒。
角的分类:锐角(小于 90 度)、直角(等于 90 度)、钝角(大于90 度小于 180 度)、平角(等于 180 度)、周角(等于 360 度)。
四、相交线两条直线相交,会形成四个角。
对顶角相等,邻补角互补。
垂线:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。
垂线的性质:过一点有且只有一条直线与已知直线垂直。
点到直线的距离:从直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。
五、平行线在同一平面内,不相交的两条直线叫做平行线。
平行线的判定方法:1、同位角相等,两直线平行。
2、内错角相等,两直线平行。
3、同旁内角互补,两直线平行。
平行线的性质:1、两直线平行,同位角相等。
2、两直线平行,内错角相等。
3、两直线平行,同旁内角互补。
六、三角形三角形是由不在同一直线上的三条线段首尾顺次相接所组成的图形。
初二数学知识点图形总结
![初二数学知识点图形总结](https://img.taocdn.com/s3/m/a06e4f7930126edb6f1aff00bed5b9f3f90f72e0.png)
初二数学知识点图形总结在初中数学学习中,图形是一个非常重要的知识点。
从初中开始,学生开始学习各种图形的性质、面积、周长等相关知识。
在这篇总结中,我将对初二数学中常见的图形知识点进行总结,包括几何图形的基本概念、性质、计算以及实际应用等方面。
1. 点、线、面和图形在几何学中,点、线、面和图形是最基本的概念。
点是最基本的图形要素,它没有大小。
线是由无数个点连接起来的,它只有长度没有宽度。
面是由无数个线段围成的,它有长宽。
图形是由无数个点、线段、线和面组成的,它是我们能够看到的几何形状。
2. 角的概念与性质在图形中,角是一个基本的概念,它是由两条射线共同端点构成的几何形状。
角的大小可以用角的度数来表示,度数是角的一个重要性质。
此外,角还有直角、锐角、钝角等不同类型。
3. 直线、射线和线段这三者在图形中是常见的概念。
直线是一条没有始末的线,射线是有一个始点无穷远射出的线,线段是有始末的部分。
在初中的学习中,多会涉及到这三种概念的运用与计算。
4. 三角形的性质在初中数学中,三角形是最基本的几何图形之一,它有许多性质和定理。
比如三角形内角和为180度,三角形的边长关系等。
5. 四边形的性质四边形也是一个常见的图形,在初中数学中对它的性质也会有所涉及,比如四边形的各种类型、性质和计算等等。
6. 圆的性质圆是一个基础的几何图形,它的性质有很多,比如圆的直径、半径、圆心等。
在初中数学中,学生需要掌握圆的面积、周长等相关计算方法。
7. 直角三角形的性质直角三角形是一个特殊的三角形,在初中数学中,它有一些特殊的性质和定理,比如毕达哥拉斯定理等。
学生需要掌握直角三角形的边长关系和角度关系。
8. 多边形的性质多边形是由若干条线段组成的图形,它有不同种类,如三角形、四边形、五边形等。
在初中数学中,学生需要学习多边形的各种性质和结论,包括计算多边形的面积、周长等。
9. 对称图形对称图形是一个重要的几何概念,它在日常生活与图形学中有着广泛的应用。
初中数学几何知识点归纳
![初中数学几何知识点归纳](https://img.taocdn.com/s3/m/7be4a1dad1d233d4b14e852458fb770bf78a3b93.png)
初中数学几何知识点归纳一、几何基础知识1. 点、线、面- 点:没有大小,只有位置。
- 线:由无数个点组成,有长度,没有宽度。
- 面:由无数条线组成,有长度和宽度。
2. 直线、射线、线段- 直线:无限延伸,没有端点。
- 射线:有一个端点,向一个方向无限延伸。
- 线段:有两个端点,长度有限。
3. 角- 邻角:有共同顶点和边的两个角。
- 对顶角:两条射线共享一个公共点,形成的两个角。
- 平行线:在同一平面内,永不相交的两条直线。
二、平面图形1. 三角形- 等边三角形:三条边长度相等。
- 等腰三角形:至少有两条边长度相等。
- 直角三角形:有一个90度的角。
- 钝角三角形:有一个大于90度的角。
- 锐角三角形:所有角都小于90度。
2. 四边形- 正方形:四条边长度相等,四个角都是直角。
- 长方形:对边平行且相等,四个角都是直角。
- 平行四边形:对边平行。
- 梯形:至少有一组对边平行。
3. 圆- 圆心:圆的中心点。
- 半径:圆心到圆上任意一点的距离。
- 直径:通过圆心的最长线段,等于半径的两倍。
三、几何图形的性质1. 三角形的性质- 内角和:三角形内角和为180度。
- 海伦公式:已知三边长度,可以计算三角形的面积。
2. 四边形的性质- 正方形的性质:对角线相等且互相平分。
- 长方形的性质:对角线相等且互相平分。
- 平行四边形的性质:对角线互相平分。
3. 圆的性质- 圆周率:圆的周长与直径的比值,用π表示。
- 圆的面积:π乘以半径的平方。
四、几何图形的计算1. 面积计算- 三角形面积:底乘高除以2。
- 四边形面积:长乘宽(正方形和长方形);梯形的上下底之和乘高除以2。
- 圆的面积:π乘以半径的平方。
2. 周长计算- 三角形周长:三边之和。
- 四边形周长:四边之和(正方形和长方形);梯形的上下底之和加上两腰之和。
- 圆的周长:2π乘以半径。
3. 体积计算- 圆柱体积:底面积乘以高。
- 圆锥体积:1/3乘以底面积乘以高。
初中数学几何图形知识点掌握归纳
![初中数学几何图形知识点掌握归纳](https://img.taocdn.com/s3/m/bfc8b93b7dd184254b35eefdc8d376eeafaa1744.png)
初中数学几何图形知识点掌握归纳初一上册数学几何图形初步知识点归纳1.几何图形:点、线、面、体这些可帮助人们有效的刻画错综复杂的世界,它们都称为几何图形。
从实物中抽象出的各种图形统称为几何图形。
有些几何图形的各部分不在同一平面内,叫做立体图形。
有些几何图形的各部分都在同一平面内,叫做平面图形。
虽然立体图形与平面图形是两类不同的几何图形,但它们是互相联系的。
2.几何图形的分类:几何图形一般分为立体图形和平面图形。
3.直线:几何学基本概念,是点在空间内沿相同或相反方向运动的轨迹。
从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。
求两条直线的.交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有一解时,二直线相交于一点。
常用直线与X轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。
4.射线:在欧几里德几何学中,直线上的一点和它一旁的部分所组成的图形称为射线或半直线。
5.线段:指一个或一个以上不同线素组成一段连续的或不连续的图线,如实线的线段或由“长划、短间隔、点、短间隔、点、短间隔”组成的双点长划线的线段。
线段有如下性质:两点之间线段最短。
6. 两点间的距离:连接两点间线段的长度叫做这两点间的距离。
7. 端点:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。
线段用表示它两个端点的字母或一个小写字母表示,有时这些字母也表示线段长度,记作线段AB或线段BA,线段a。
其中AB表示直线上的任意两点。
8.直线、射线、线段区别:直线没有距离。
射线也没有距离。
因为直线没有端点,射线只有一个端点,可以无限延长。
9.角:具有公共端点的两条不重合的射线组成的图形叫做角。
这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。
初中数学基本几何图形大全
![初中数学基本几何图形大全](https://img.taocdn.com/s3/m/31900d5d4431b90d6c85c7d2.png)
初中数学基本图形大全基本图形分析归类:类型一:圆中基本图形D⊥AB;弧BD;⑤弧AC=弧BCAB非直径。
、C、D四点共圆·2R(钝角△也适用)=(不能直接用,可构造R2)8、(弧AC=弧EC ) ⇒AM=CM=FM ;AC=EC;AE CD 21=; ABAD AE AM AC ⋅=⋅=2;BF OM 21=9∽CDE, △ABD ∽△AEC ∽BED,·AC=AD ·AE,AE ·DE=BE ·CEBAD ∠cos 2 关注∠BAC 为特殊角时图形的 10 AC 、AB 的对称点在⊙O 上,11DC 切⊙O 于C 点 知二推一12 ,BO ⊥DE , ∠DEF=90°-21∠A 13 14CE 切⊙O 于点E,知二推一15⇒C △PDE=PA+PB ∠DOE=)180(21P ∠-16 ①EA 切⊙O 于点A AE ∥CF ③AP=EP 知二推一17、 △ABD 、△ACE 为等边△⇒ BE=CD,BE 、CD 相交所成锐角为60° 18、正方形ABDE 、正方形ACFG ⇒EC=BG ,BG ⊥CE注:条件可为等腰Rt △19、①AD 平分∠CAB, ②DE ∥AC,③AE=DE 知二推一20、 △ABC 为等腰Rt △,AE 平分∠CAB ,BD ⊥AD⇒AE=2BD21、⇒C △ADE=AB+ACA B C DEA B C D E F G A B CD E A B C D E A B C D E M22、 △ACD 、△BCE 为等边△,A 、C 、B 三点共线⇒ △ACE ≌△DCB , △ACM ≌△DCN , △MCE ≌△NCB AE=BD,AM=DN,EM=BN,CM=CN,AE 、BD 相交所成锐角为60° AO=DO+CO,BO=EO+CO,OM+ON=OC,OC 平分∠AOB 注:△BCE 旋转时,结论有变化。
图形与几何初中知识点总结
![图形与几何初中知识点总结](https://img.taocdn.com/s3/m/c2570844854769eae009581b6bd97f192279bf9c.png)
图形与几何初中知识点总结几何学是数学的一个重要分支,主要研究图形的性质、变化和关系。
在初中阶段,学生接触到了许多与图形和几何相关的知识点。
本文将对初中阶段的图形与几何知识进行总结和归纳,帮助学生更好地理解和掌握这些知识点。
一、点、线和面1. 点:点是几何学的基本要素,没有具体大小和形状。
2. 线段:由两个点确定的一条有限长的直线。
3. 直线:没有端点的无限延伸线段。
4. 射线:有一个端点且无限延伸的线段。
5. 面:平面是由无数个无厚度的点组成的,具有无限延伸的二维空间。
二、基本图形1. 点、线、面的组合:通过点、线和面的组合可以构成不同的图形,如三角形、四边形和多边形等。
2. 三角形:三角形是由三条线段组成的图形。
根据边的长度可分为等边三角形、等腰三角形和普通三角形。
3. 四边形:四边形是由四条线段组成的图形。
常见的四边形有矩形、正方形、平行四边形和菱形等。
4. 圆:圆是由与一个固定点的距离相等的所有点组成的图形。
圆的核心要素是半径、直径和圆心。
三、角和角的性质1. 角:角是由两条辐射于同一个端点的线段组成的。
常见的角有直角、锐角和钝角。
2. 角的度量和表示:角的度量单位是度(°),通常用角度符号°表示角的大小。
3. 角的性质:如内角和外角的关系、相邻角、对顶角、同位角等。
四、相似图形1. 相似图形:具有相同形状但不一定相同大小的图形称为相似图形。
相似图形有相似比例关系。
2. 判定相似的条件:常用的判定相似的条件包括AAA相似判定、AA相似判定和SAS相似判定等。
五、三角形的性质1. 三角形的内角和:任意三角形的三个内角和为180°。
2. 等腰三角形的性质:等腰三角形的两底角相等,两边相等。
3. 直角三角形的性质:直角三角形中,直角边上的高是另一直角边的中线。
六、平行线与相交线1. 平行线与交线:如果两条线在同一个平面上,且不相交,那么这两条线是平行线。
2. 与平行线相交的角:如果两条平行线被一条第三条线相交,所形成的对应角、内错角和同旁内角相等。
初中数学48个几何模型及题型
![初中数学48个几何模型及题型](https://img.taocdn.com/s3/m/654bc758c381e53a580216fc700abb68a982ad31.png)
初中数学的几何模型是学生学习数学时的重要内容之一,通过学习几何模型和解题,可以帮助学生对几何知识有更深层次的理解,提高数学解题能力。
本文将介绍初中数学中常见的48个几何模型及其相关题型,希望可以帮助学生系统地掌握几何知识。
一、直线和角1. 直线概念直线是由一点不停地延伸而成的。
在平面几何中,直线没有宽度和厚度,只有长度。
2. 角的概念两条相交直线之间的夹角叫做角。
角可以分为锐角、直角、钝角和平角。
3. 直线和角相关题型- 计算夹角的大小- 判断角的种类二、多边形1. 三角形三角形是最简单的多边形,其内角和为180度。
根据边的长度和角的大小,可以分为等腰三角形、等边三角形、直角三角形等不同种类。
2. 四边形四边形是具有四条边的几何图形,常见的四边形有矩形、正方形、平行四边形和菱形等。
3. 多边形相关题型- 计算多边形的内角和- 判断多边形的种类三、圆1. 圆的概念圆是由一个点到另一个点距离恒定的点的集合。
其中,点到圆心的距离为半径,圆上任意两点之间的距离称为弦。
2. 圆的性质圆的直径是圆的两个相对的端点,圆的周长和面积分别为2πr和πr²。
3. 圆相关题型- 计算圆的周长和面积- 判断圆的种类四、平面图形的平移、旋转和对称1. 平移平移是指将一个物体按照一定的规则移动到另一位置,移动前后的图形位置关系不变。
学生需要了解不同平移的规律和图形的位置关系。
2. 旋转旋转是指以某一点为中心,按一定角度将图形进行旋转。
学生需要掌握图形旋转的规律和性质。
3. 对称对称是指一个图形绕某条直线或点对称,对称轴可以分为水平对称轴、垂直对称轴和斜对称轴。
五、三视图和展开图1. 三视图三视图是指物体分别从正视图、侧视图和俯视图所得的图形。
学生需要根据给定的三视图还原出物体的整体图形。
2. 展开图展开图是将立体图形按一定规则展开成平面图形。
学生需要了解展开图的规律和方法。
六、空间图形1. 空间图形的概念空间图形是三维几何中的图形,包括圆柱、圆锥、球体、棱体等。
图形与几何初中知识点总结
![图形与几何初中知识点总结](https://img.taocdn.com/s3/m/6a3fabc7cd22bcd126fff705cc17552706225e4c.png)
图形与几何初中知识点总结图形与几何是数学中的一个重要分支,主要涉及平面图形的性质、图形的相似关系、几何变换等内容。
通过学习图形与几何,可以培养学生的空间想象力、逻辑思维和解决问题的能力。
以下是对初中图形与几何知识点的总结:一、基本概念1. 点、线、面的概念:- 点:没有长度、宽度和高度,只有位置的概念。
- 线:由无数个点组成,没有宽度和高度,只有方向和长度的概念。
- 面:由无数条线组成,有长度和宽度,没有高度。
2. 平面图形的分类:- 线段:由两个端点确定的线段。
- 射线:有一个端点和一个方向的线段。
- 直线:无限延伸的线段。
- 角:由两条射线共享一个端点组成。
- 三角形:由三条线段组成的图形。
- 四边形:由四条线段组成的图形。
- 多边形:由多条线段组成的图形。
二、图形的性质1. 三角形的性质:- 内角和:任意三角形的三个内角之和为180度。
- 外角和:任意三角形的三个外角之和为360度。
- 等边三角形:三条边相等的三角形,三个角也相等。
- 等腰三角形:两条边相等的三角形,两个对角线也相等。
2. 直角三角形的性质:- 直角三角形:有一个直角(90度)的三角形。
- 勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。
3. 平行四边形的性质:- 对角线:平行四边形的对角线互相平分。
- 对边和角:平行四边形的对边相等,对角线之间的角相等。
4. 正方形和长方形的性质:- 正方形:具有四条相等边和四个直角的四边形。
- 长方形:具有四个直角的四边形。
三、图形的相似关系1. 相似三角形的性质:- 对应角相等:两个三角形的对应角相等。
- 边比例相等:两个相似三角形的对应边的比例相等。
2. 相似四边形的性质:- 对应角相等:两个四边形的对应角相等。
- 边比例相等:两个相似四边形的对应边的比例相等。
四、几何变换1. 平移变换:- 定义:平移变换是指在平面上将图形按照一定的方向和距离进行移动。
- 性质:平移前后,图形的形状、大小和方向不变。
初中数学专题——几何
![初中数学专题——几何](https://img.taocdn.com/s3/m/17e09c3aeef9aef8941ea76e58fafab068dc4442.png)
初中数学专题——几何介绍几何是数学中的重要分支,主要研究空间、图形的形状、大小和相互关系。
在初中数学中,几何是一个重要的专题,涉及到的知识点较多。
基本概念在几何中,有一些重要的基本概念需要掌握:- 点:几何中最基本的几何对象,没有大小和形状,只有位置。
- 直线:由无数个点构成,没有宽度和厚度。
- 射线:由一个起始点和一个方向组成,无限延伸。
- 线段:由两个点确定,有固定的长度。
- 角:由两条射线共享一个起始点构成。
- 等边三角形:三边长度相等的三角形。
- 直角三角形:一个角为直角(90°)的三角形。
- 圆:由一个固定的中心和一条半径组成。
基本性质在几何中,有一些基本性质需要了解:- 直线上的两点可以确定一条直线;- 一条直线上的任意两点构成的线段是这条直线上最短的;- 三角形的内角和等于180°;- 直角三角形中,斜边的平方等于两直角边的平方和;- 三角形中,两边之和大于第三边;- 圆的周长等于直径的π倍;- 圆的面积等于半径的平方乘以π。
常见形状在初中几何中,有一些常见的形状需要熟悉:- 正方形:四条边长相等的四边形。
- 长方形:两对边分别相等的四边形。
- 三角形:三条边和三个内角的关系决定了不同的类型。
- 梯形:有两个平行边的四边形。
- 圆:所有点到圆心的距离相等的图形。
探索几何在研究几何时,可以进行一些探索性的研究活动来加深理解:1. 通过尺子、直尺等工具,自己画出各种形状,并测量它们的长度、面积等特征。
2. 观察周围的环境,找到一些具有几何特征的事物,比如建筑物、家具等,并描述它们的形状、大小等特征。
总结几何是初中数学中的重要专题,掌握几何的基本概念、基本性质以及常见形状对于研究数学有很大的帮助。
通过探索几何,可以加深对几何的理解,提高解题能力。
以上是关于初中数学专题——几何的简单介绍。
希望对你的学习有所帮助!。
初中数学八大基本图形几何模型及练习
![初中数学八大基本图形几何模型及练习](https://img.taocdn.com/s3/m/7ab21237b80d6c85ec3a87c24028915f804d84fb.png)
几何中的模型如同代数中的公式,是同学们快速解题的关键,如果平时多总结一些几何模型,对于几何的学习是非常有帮助的,一些学霸做题非常快,一部分原因就是如此。
今天来列举8个常考的几何模型,看到最后有惊喜!
一、相似三角形基本模型
相似三角形是几何证明中重要的应用之一,利用三角形相似可证明角相等、线段成比例(或等积式)以及求线段的长,所以能在复杂的图形中找到相似三角形的基本模型至关重要圆中得角相等的方法有很多,所以相似三角形常与圆相结合。
二、共顶点模型
又叫做手拉手模型,全等'、相似中最常见的一个类型。
三、半角模型
四、对角互补模型
邻边相等、对角互补 是典型的旋转模型。
五、一线三等角模型
六、弦图模型
七、中点模型
倍长中线、中位线 等都是很好的解题思路。
八、四点共圆模型
转发赠送此电子版。
初中数学中的立体几何与空间几何
![初中数学中的立体几何与空间几何](https://img.taocdn.com/s3/m/61dee186ba4cf7ec4afe04a1b0717fd5370cb261.png)
初中数学中的立体几何与空间几何立体几何和空间几何是初中数学中的重要内容之一。
通过学习这两个部分,学生可以深入了解三维空间中的图形特点和性质,培养几何思维和空间想象能力。
本文将从基本概念、图形分类、性质和应用等方面,介绍初中数学中的立体几何与空间几何知识。
一、基本概念立体几何是研究三维空间中的图形的学科,包括点、直线、平面以及由它们衍生的图形。
而空间几何则是研究空间中的几何性质和变换的学科,它是立体几何的延伸和拓展。
二、图形分类在立体几何中,常见的图形包括立方体、正方体、长方体、棱柱、棱锥、圆柱、圆锥和球体等。
这些图形都有各自的特点和性质,通过学习它们的属性可以更好地理解和应用。
三、性质研究在研究立体几何和空间几何时,我们常常关注图形的性质。
比如,立方体的六个面都是正方形,且相邻面是相等的;棱柱的底面和顶面是相等的,并且由直线和曲线连结而成;圆锥的底面是圆形,侧面由一个顶点和无数的直线段组成等等。
通过深入研究各个图形的性质,我们能够更好地理解它们的特点和规律。
四、应用领域立体几何和空间几何的知识在日常生活中有广泛的应用。
比如,在建筑设计中,需要根据建筑物的形状和结构原理进行规划和布局;在机械制造中,常常需要根据物体的形状和尺寸进行工艺设计和加工;在地理学中,通过研究地球的形状和地理要素的空间分布,可以获得地理信息等等。
立体几何与空间几何的知识在这些领域都具有重要的应用意义。
五、拓展学习除了学习立体几何和空间几何的基础知识外,学生还可以进一步拓展学习,探索更深层次的数学和几何问题。
比如,学习平行四边形的性质可以引申到学习向量的概念;学习三棱锥的表面积和体积计算可以应用到解决实际问题等等。
通过不断拓展学习,可以更好地应用数学知识解决实际问题。
综上所述,初中数学中的立体几何与空间几何是一门有趣且实用的学科。
通过学习它们,学生可以培养几何思维和空间想象力,提高数学素养和解决实际问题的能力。
希望通过本文的介绍,能够加深大家对立体几何与空间几何的理解,并激发对数学的兴趣和热爱。
初中数学 第4章 几何图形初步 教案及试题
![初中数学 第4章 几何图形初步 教案及试题](https://img.taocdn.com/s3/m/a844af5b844769eae009edea.png)
第四章几何图形初步基础知识通关4.1几何图形1.几何图形:长方体、圆柱、球、长(正)方形、圆、线段、点等,以及小学学习过的三角形、四边形等,都是从形形色色的物体外形中得出的,它们都是几何图形.2.立体图形:有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在内,它们是立体图形.3.平面图形:有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在内,它们是平面图形.4.展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成 .这样的平面图形称为相应立体图形的展开图.5.点、线、面、体:(1)体:长方体、正方体、圆柱、圆锥、球、棱柱、棱锥几何体.几何体也简称体;(2)面:包围着体的是面;(3)线:面和面相交的地方形成线;(4)点:线和线相交的地方是点.4.2直线、射线、线段6.两点确定一条直线:经过两点有一条直线,并且只有一条直线.简单说成:................7.交点:当两条不同的直线有一个公共点时,我们就称这两条直线,这个叫做它们的交点.8.尺规作图:在数学中,我们常限定用和作图,这就是尺规作图.9.中点:点 M 把线段 AB 分成的两条线段AM 与MB,点 M 叫做线段 AB 的中点.10.两点的所有连线中,最短.简单说成:两点之间,线段最短.11.距离:连接两点间的,叫做这两点的距离.4.3角12.角:角也是一种基本的几何图形.13.度、分、秒:(1)把一个周角 360 等分,每一份就是 1 度的角,记作;(2)把一度的角 60 等分,每一份叫做 1 分的角,记作;(3)把1 分的角60 等分,每一份叫做1 秒的角,记作 ..14.角的平分线:一般地,从一个角的顶点出发,把这个角分成两个的角的射线,叫做这个角的平分线.15.余角:一般地,如果两个角的和等于(直角),就说这两个角互为余角.16.补角:类似地,如果两个角的和等于(平角),就说这两个角互为补角.17.余角的性质:同角(等角)的余角 ....18.补角的性质:同角(等角)的补角 ....19.角的运算:如果一个角的度数是另两个角的度数的和,那么这个角就叫做另两个角的和;如果一个角的度数是另两个角的度数的差,那么这个角就叫做另两个角的差.4.4课题学习-设计制作长方体形状的包装纸盒单元检测一.选择题(共 10 小题)1.某正方体的每个面上都有一个汉字,如图所示的是它的展开图,那么在原正方体中,与“神“字所在面相对的面上的汉字是()A.认B.眼C.确D.过2.下列几何体中,其侧面展开图为扇形的是()A.B.C.D.3.下列说法错误的个数为()①57.18°=57°10′48″②三条直线两两相交,有三个交点③x=0 是一元一次方程④若线段 PA=PB,则点 P 是线段 AB 的中点⑤连接两点间的线段,叫做两点间的距离.A.1 个B.2 个C.3 个D.4 个4.在平面内有A、B、C、D 四点,过其中任意两点画直线,则最多可以画()A.4 条B.6 条C.8 条D.无数条5.下列换算中,错误的是()A.0.25°=900″B.16°5′24″=16.09°C.47.28°=47°16′48″D.80.5°=80°50′6.已知互为补角的两个角的差为 35°,则较大的角是()A.107.5°B.108.5°C.97.5°D.72.5°7.如图,在A、B 两处观测到 C 处的方位角分别是()A.北偏东65°,北偏西40°B.北偏东65°,北偏西50°C.北偏东25°,北偏西40°D.北偏东 35°,北偏西 50°8.如图,∠AOB=130°,射线 OC 是∠AOB 内部任意一条射线,OD、OE 分别是∠AOC、∠BOC 的角平分线,下列叙述正确的是()A.∠DOE 的度数不能确定B.∠AOD=∠EOCC.∠AOD+∠BOE=65°D.∠BOE=2∠COD9.将长方形纸片按如图所示的方式折叠,BC、BD 为折痕,若∠ABC=35°,则∠DBE 的度数为()A.55°B.50°C.45°D.60°10.在图所示的4×4 的方格表中,记∠ABD=α,∠DEF=β,∠CGH=γ,则()A.β<α<γB.β<γ<αC.α<γ<βD.α<β<γ二.填空题(共 10 小题)11.下面的几何体中,属于柱体的有个.12.已知角A 的余角比它的补角的还少10°,则∠A=.13.已知:∠A 的余角是 52°38',则∠A 的补角是.14.计算:48°59′+67°31′﹣21°12′=.15.如图所示,在一条笔直公路 l 的两侧,分别有 A、B 两个小区,为了方便居民出行,现要在公路 l 上建一个公共自行车存放点,使存放点到A、B 小区的距离之和最小,你认为存放点应该建在处(填“C”“E”或“D”),理由是.16.已知,在直线 AB 上有一点 C,BC=3cm,AB=8cm,M 为线段 AB 的中点,N 为线段 BC 的中点,则 MN=.17.如图,∠AOB=140°,如果点 A 在点O 的北偏东 20°,那么点 B 在点O 的南偏西°.第 17 题图第 18 题图18.如图,∠AOD=135°,∠AOC=75°,∠DOB=105°,则∠BOC=.19.正方体切去一个块,可得到如图几何体,这个几何体有条棱.20.已知 A、B、C 三点都在直线 l 上,AC 与BC 的长度之比为 2:3,D 是AB 的中点.若 AC=4cm,则 CD 的长为cm.三.解答题(共 5 小题)21.如图,B、C 两点把线段 MN 分成三部分,其比为 MB:BC:CN=2:3:4,点 P 是MN 的中点,PC =2cm,求 MN 的长.22.如图,已知OD 平分∠AOB,OE 在∠BOC 内,且∠BOE=∠EOC,∠AOC=170°.(1)若知∠AOB=70°,求∠EOC 的度数;(2)若知∠DOE=70°,求∠EOC 的度数.23.如图,已知四点A、B、C、D,请用尺规作图完成.(保留画图痕迹)(1)画直线 AB;(2)画射线 AC;(3)连接 BC 并延长 BC 到E,使得 CE=AB+BC;(4)在线段 BD 上取点 P,使 PA+PC 的值最小.24.已知线段AB=m(m 为常数),点C 为直线AB 上一点,点P、Q 分别在线段BC、AC 上,且满足CQ=2AQ,CP=2BP.(1)如图,当点C 恰好在线段AB 中点时,则PQ=(用含m 的代数式表示);(2)若点 C 为直线 AB 上任一点,则 PQ 长度是否为常数?若是,请求出这个常数;若不是,请说明理由;(3)若点C 在点A 左侧,同时点P 在线段AB 上(不与端点重合),请判断2AP+CQ﹣2PQ 与1 的大小关系,并说明理由.25.如图 1,将一副直角三角尺的顶点叠一起放在点 A 处,∠BAC=60°,∠DAE=45°,保持三角尺ABC 不动,三角尺 AED 绕点A 顺时针旋转,旋转角度小于 180°.(1)如图 2,AD 是∠EAC 的角平分线,直接写出∠DAB 的度数;(2)在旋转的过程中,当∠EAB 和∠DAC 互余时,求∠BAD 的值.四、附加题26.如果两个锐角的和等于 90°,就称这两个角互为余角.类似可以定义:如果两个角的差的绝对值等于 90°,就可以称这两个角互为垂角,例如:∠l=120°,∠2=30°,|∠1﹣∠2|=90°,则∠1 和∠2 互为垂角(本题中所有角都是指大于0°且小于180°的角).(1)如图,O 为直线 AB 上一点,OC 丄 AB 于点 O,OE⊥OD 于点 O,请写出图中所有互为垂角的角有;(2)如果有一个角的垂角等于这个角的补角的,求这个角的度数.27.P 是线段 AB 上一点,AB=12cm,C,D 两点分别从 P,B 同时向 A 点运动,且 C 点的运动速度为2cm/s,D 点的运动速度为 3cm/s,运动的时间为 ts.(1)如图若 AP=8cm,①运动 1s 后,求 CD 的长;②当 D 在线段 PB 上运动时,试说明线段 AC 和线段 CD 的数量关系;(2)如果t=2 时,CD=1.5cm,试探索 AP 的值.2.同一平面3.同一平面4.平面图形6.两点确定一条直线7.相交,公共点8.无刻度的直尺,圆规9.相等10.线段11.线段的长度13.1°,1′,1″14.相等15.90°16.180°17.相等18.相等一.选择题(共 10 小题)基础知识通关答案单元检测答案1.【分析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【解答】解:正方体的表面展开图,相对的面之间一定相隔一个正方形,“神”与“确”是相对面.故选:C.【知识点】2,42.【分析】根据特殊几何体的展开图,可得答案.【解答】解:A、圆柱的侧面展开图是矩形,故 A 错误;B、三棱柱的侧面展开图是矩形,故 B 错误;C、圆锥的侧面展开图是扇形,故 C 正确;D、三棱锥的侧面展开图是三角形,故 D 错误.故选:C.【知识点】2,43.【分析】依据度分秒的换算,相交线,一元一次方程的定义,线段的中点的定义、两点间的距离的概念进行判断即可.【解答】解:①57.18°=57°10′48″,正确;②三条直线两两相交,有一个或三个交点,错误;③x=0 是一元一次方程,正确;④若线段 PA=PB,则点 P 不一定是线段 AB 的中点,错误;⑤连接两点间的线段的长度,叫做两点间的距离,错误.故选:C.【知识点】7,9,11,134.【分析】没有明确平面上四点是否在同一直线上,需要运用分类讨论思想.分四点在同一直线上,当三点在同一直线上,另一点不在这条直线上,当没有三点共线时三种情况讨论即可.【解答】解:分三种情况:1、四点在同一直线上时,只可画 1 条;2、当三点在同一直线上,另一点不在这条直线上,可画 4 条;3、当没有三点共线时,可画 6 条.所以最多可以画 6 条.故选:B.【知识点】6,75.【分析】直接利用度分秒转换法则分别计算得出答案.【解答】解:A、0.25°=15′=900″,正确,不合题意;B、16°5′24″=16°5.4′=16.09°,正确,不合题意;C、47.28°=47°16′48″,正确,不合题意;D、80.5°=80°30′,错误,符合题意.故选:D.【知识点】136.【分析】设较大的角为 x,根据互为补角的两个角的和等于 180°表示出较小的角,然后列出方程求解即可.【解答】解:设较大的角为 x,则较小的角为 180°﹣x根据题意得,x﹣(180°﹣x)=35°解得 x=107.5°故选:A.【知识点】167.【分析】根据方向角的定义即可判断.【解答】解:A 处观测到的 C 处的方向角是:北偏东 65°B 处观测到的C 处的方向角是:北偏西 50°.故选:B.【知识点】12,138.【分析】依据 OD、OE 分别是∠AOC、∠BOC 的平分线,即可得出∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°,结合选项得出正确结论.【解答】解:∵OD、OE 分别是∠AOC、∠BOC 的平分线∴∠AOD=∠COD,∠EOC=∠BOE又∵∠AOD+∠BOE+∠EOC+∠COD=∠AOB=130°∴∠AOD+∠BOE=∠EOC+∠COD=∠DOE=65°故选:C.【知识点】149.【分析】将一张长方形纸片按如图所示的方式折叠,BC,BD 为折痕,则∠CBD 的度数为 90°,然后根据平角的定义即可得到结论.【解答】解:∵一张长方形纸片沿 BC、BD 折叠∴∠ABC=∠A′BC,∠EBD=∠E′BD而∠ABC+∠A′BC+∠EBD+∠E′BD=180°∴∠A′BC+∠E′BD=180°×=90°即∠ABC+∠DBE=90°∵∠ABC=35°∴∠DBE=55°【知识点】1610.【分析】根据题意和图得出:∠DGC=∠DCG=45°,∠HGF=∠GHF=45°,再根据∠DGC+∠HGF+γ=180°,从而得出γ=90°,然后结合图观察出α>90°,β<90°,最后比较大小即可.【解答】解:由题意知:∠DGC=∠DCG=45°同理∠HGF=∠GHF∠=45°又∵∠DGC+∠HGF+γ=180°∴γ=90°由图可知α>90°,β<90°∴β<γ<α故选:B.【知识点】16二.填空题(共 10 小题)1.【分析】解这类题首先要明确柱体,椎体、球体的概念,然后根据图示进行解答.【解答】解:柱体分为圆柱和棱柱,所以柱体有第一个图形正方体、第三个图形圆柱、第五个图形六棱柱,第六个图形三棱柱共 4 个.故答案为:4.【知识点】212.【分析】根据题意和余角、补角的概念列出方程,解方程即可.【解答】解:设∠A=a由题意得90°﹣a=(180°﹣a)﹣10°,解得a=60°.故答案为:60°.【知识点】15,1613.【分析】根据一个角的补角比它的余角多 90°求解即可.【解答】解:∠A 的余角为:90°﹣∠A,∠α的补角为:180°﹣∠A∴∠A 的补角比∠A 的余角大 90°∴∠A 的补角为:52°38′+90°=142°38′故答案为:142°38′【知识点】15,1614.【分析】根据度分秒加减法计算法则进行解答.【解答】解:48°59′+67°31′﹣21°12′=116°30′﹣21°12′=95°18′.故答案为:95°18′【知识点】1315.【分析】根据两点之间线段最短可得公共自行车存放点的位置是 E 处.【解答】解:公共自行车存放点应该建在 B 处,理由是两点之间线段最短.故答案为:E,两点之间线段最短.【知识点】1016.【分析】根据中点的定义,可分别求出 AM、BN 的长度,点C 存在两种情况,一种在线段 AB 上,一种在线段 AB 外,分类讨论,即可得出结论.【解答】解:依题意可知,C 点存在两种情况,一种在线段 AB 上,一种在线段 AB 外.①C 点在线段 AB 上,如图 1:∵点 M 是线段 AB 的中点,点 N 是线段 BC 的中点,∴AM==4cm,BN==1.5cm, MN=AB﹣AM﹣BN=4﹣1.5=2.5cm;②C 点在线段 AB 外,如图 2::∵点 M 是线段 AB 的中点,点 N 是线段 BC 的中点∴AM==4cm,BN==1.5cmMN=AB﹣AM+BN=8﹣4+1.5=5.5cm综上得 MN 得长为 2.5cm 或 5.5cm故答案为:2.5cm 或5.5cm【知识点】917.【分析】结合图形,然后求出 OB 与西方的夹角的度数,即可得解.【解答】解:如图,根据题意得,∠AOC=20°,∠COD=90°∴∠BOD=∠AOB﹣∠AOC﹣∠COD=30°∴点 B 在点O 的南偏西 60°故答案为:60【知识点】15,1918.【分析】根据图中角与角之间的关系即可求出答案.【解答】解:∵∠AOD=135°,∠DOB=105°∴∠AOB=∠AOD﹣∠DOB=135°﹣105°=30°∵∠AOC=75°∴∠BOC=∠AOC﹣∠AOB=75°﹣30°=45°故答案为:45°.【知识点】1919.【分析】通过观察图形即可得到答案.【解答】如图,把正方体截去一个角后得到的几何体有 12 条棱.故答案为:12.【知识点】2,520.【分析】抓住 A、B、C 三点都在直线 l 上,没有给顺序也没有给图,基本确定题目多解;确定两条线段:AC=4,BC=6,画出图,根据题中的中点条件和和差关系即可解决问题【解答】解:∵AC 与BC 的长度之比为 2:3,AC=4 ∴BC=6如图,C 在AB 之间时,AB=AC+BC=10D 是AB 的中点,AD=DB=5CD=AD﹣AC=5﹣4=1如图,C 在AB 外面时,AB=BC﹣AC=2D 是AB 的中点,AD=DB=1CD=AD+AC=1+4=5故答案:1 或 5【知识点】9三.解答题(共 5 小题)21.【分析】根据比例设 MB=2x,BC=3x,CN=4x,然后表示出 MN,再根据线段中点的定义表示出PN,再根据 PC=PN﹣CN 列方程求出 x,从而得解.【解答】解:∵MB:BC:CN=2:3:4∴设 MB=2xcm,BC=3xcm,CN=4xcm∴MN=MB+BC+CN=2x+3x+4x=9xcm∵点 P 是MN 的中点∴PN=MN=xcm∴PC=PN﹣CN即x﹣4x=2解得 x=4所以,MN=9×4=36cm.【知识点】9,112.【分析】(1)可以设∠BOE 为x,根据条件列方程解决,求出∠BOE;(2)设∠BOE=a,则∠ECO=3a,根据条件列方程解决,求出∠BOE.【解答】解:∵∠AOC=170°,∠AOB=70°∴∠BOC=100°设∠BOE=x,则∠ECO=3x∴∠BOC=∠BOE+∠EOC=x+3x=100°∴x=25°∴∠EOC=25°(2)设∠BOE=a,则∠ECO=3a∵∠DOE=70°,OD 平分∠AOB∴∠AOD=∠BOD=∠DOE-∠BOE=70°﹣a∴∠AOC=2∠AOD+∠BOE+∠EOC=2(70°﹣a)+a+3a=170°∴a=15°∴∠EOC=3a=45°【知识点】14,1923.【分析】根据直线、射线、线段的概念、两点之间,线段最短画图即可.【解答】解:如图所画:【知识点】8,1024.【分析】(1)根据已知AB=m(m 为常数),CQ=2AQ,CP=2BP,以及线段的中点的定义解答;(2)根据已知AB=m(m 为常数),CQ=2AQ,CP=2BP;(3)根据题意,画出图形,求得 2AP+CQ﹣2PQ=0,即可得出 2AP+CQ﹣2PQ 与1 的大小关系.【解答】解:(1)∵CQ=2AQ,CP=2BP∴CQ=AC,CP=BC∵点 C 恰好在线段 AB 中点∴AC=BC=AB∵AB=m(m 为常数)∴PQ=CQ+CP=AC+ BC=×AB+ × AB= AB= m;故答案为:m;(2)∵CQ=2AQ,CP=2BP∴CQ=AC,CP=BC∵AB=m(m 为常数)∴PQ=CQ+CP=AC+ BC=×(AC+BC)=AB= m;故PQ 是一个常数,即是常数m;(3)如图:∵CQ=2AQ,∴2AP+CQ﹣2PQ=2AP+CQ﹣2(AP+AQ)=2AP+CQ﹣2AP﹣2AQ=CQ﹣2AQ=2AQ﹣2AQ=0∴2AP+CQ﹣2PQ<1.【知识点】9,1125.【分析】(1)依据 AD 是∠EAC 的角平分线,即可得出∠DAE=∠CAD=45°,再根据∠BAC=60°,即可得到∠DAB 的度数;(2)分两种情况讨论,设∠BAD=α,依据∠EAB 和∠DAC 互余,列方程求解即可.【解答】解:(1)如图2,∵AD 是∠EAC 的角平分线∴∠DAE=∠CAD=45°∵∠BAC=60°∴∠DAB=60°﹣45°=15°;(2)分两种情况讨论:①如图,当∠EAB 和∠DAC 互余时,设∠BAD=α则∠BAE=45°﹣α,∠CAD=60°﹣α∴45°﹣α+60°﹣α=90°解得α=7.5°;②如图,当∠EAB 和∠DAC 互余时,设∠BAD=α则∠BAE=α﹣45°,∠CAD=α﹣60°∴α﹣45°+α﹣60°=90°解得α=97.5°;综上所述,当∠EAB 和∠DAC 互余时,∠BAD 的值为 7.5°或 97.5°.【知识点】14,15,19四、附加题26.【分析】(1)根据互为垂角的定义即可求解;(2)利用题中的“一个角的垂角等于这个角的补角的”作为相等关系列方程求解.【解答】解:(1)互为垂角的角有 4 对:∠EOB 与∠DOB,∠EOB 与∠EOC,∠AOD 与∠COD,∠AOD 与∠AOE;(2)设这个角的度数为x 度,则①当 0<x<90 时,它的垂角是(90+x)度,依题意有90+x=(180﹣x),解得x=30;②当 90<x<180 时,它的垂角是(x﹣90)度,依题意有x﹣90=(180﹣x),解得x=130.故这个角为 30 度或130 度.故答案为:∠EOB 与∠DOB,∠EOB 与∠EOC,∠AOD 与∠COD,∠AOD 与∠AOE.【知识点】15,18,1927.【分析】(1)①先求出 PB、CP 与DB 的长度,然后利用 CD=CP+PB﹣DB 即可求出答案.②用t表示出 AC、DP、CD 的长度即可证明 AC=2CD;(2)当 t=2 时,求出 CP、DB 的长度,由于没有说明 D 点在 C 点的左边还是右边,故需要分情况讨论.【解答】解:(1)①由题意可知:CP=2×1=2(cm),DB=3×1=3(cm)∵AP=8 cm,AB=12 cm∴PB=AB﹣AP=4 cm∴CD=CP+PB﹣DB=2+4﹣3=3(cm)②∴AP=8 cm,AB=12 cm∴BP=4 cm,AC=(8﹣2t)cm∴DP=(4﹣3t)cm∴CD=CP+DP=2t+4﹣3t=(4﹣t)cm.∴线段 AC 是线段 CD 的二倍.(2)当t=2 时,CP=2×2=4(cm),DB=3×2=6(cm)当点 D 在点C 的右边时,如图所示:∵CD=1.5 cm∴CB=CD+DB=7.5 cm∴AC=AB﹣CB=4.5 cm∴AP=AC+CP=8.5 cm.当点 D 在点 C 的左边时,如图所示:∴AD=AB﹣DB=6 cm∴AP=AD+CD+CP=11.5 cm综上所述:AP=8.5cm 或 AP=11.5cm【知识点】11。
初中数学(几何)知识点总结
![初中数学(几何)知识点总结](https://img.taocdn.com/s3/m/abb9765924c52cc58bd63186bceb19e8b8f6eca4.png)
初中数学(几何)知识点总结图形的初步认识考点一、直线、射线和线段1、几何图形:从实物中抽象出来的各种图形,包括立体图形和平面图形。
立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。
平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。
2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。
线:面和面相交的地方是线,分为直线和曲线。
面:包围着体的是面,分为平面和曲面。
体:几何体也简称体。
(2)点动成线,线动成面,面动成体。
3、直线的概念:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。
4、射线的概念:直线上一点和它一旁的部分叫做射线。
这个点叫做射线的端点。
5、线段的概念:直线上两个点和它们之间的部分叫做线段。
这两个点叫做线段的端点。
6、点、直线、射线和线段的表示在几何里,我们常用字母表示图形。
一个点可以用一个大写字母表示。
一条直线可以用一个小写字母表示。
一条射线可以用端点和射线上另一点来表示。
一条线段可用它的端点的两个大写字母来表示。
注意:(1)表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。
(2)直线和射线无长度,线段有长度。
(3)直线无端点,射线有一个端点,线段有两个端点。
(4)点和直线的位置关系有线面两种:①点在直线上,或者说直线经过这个点。
②点在直线外,或者说直线不经过这个点。
7、直线的性质(1)直线公理:经过两个点有一条直线,并且只有一条直线。
它可以简单地说成:过两点有且只有一条直线。
(2)过一点的直线有无数条。
(3)直线是是向两方面无限延伸的,无端点,不可度量,不能比较大小。
(4)直线上有无穷多个点。
(5)两条不同的直线至多有一个公共点。
8、线段的性质(1)线段公理:所有连接两点的线中,线段最短。
也可简单说成:两点之间线段最短。
(2)连接两点的线段的长度,叫做这两点的距离。
(3)线段的中点到两端点的距离相等。
初二数学中的几何与图形
![初二数学中的几何与图形](https://img.taocdn.com/s3/m/a9b1d03930b765ce0508763231126edb6f1a76b1.png)
初二数学中的几何与图形一、几何与图形的基本概念及性质在初中数学中,几何与图形是一个重要的内容。
它涉及到各种平面和立体图形的特征、性质以及它们之间的关系。
掌握了几何与图形的基本概念和相关性质,对于后续高中数学以及实际生活中解决问题都有着重要意义。
1. 点、线段和直线点是最基本的元素,没有大小也没有方向;而线段是由两个点A和B确定,并且具有长度;直线则可以认为是无限延伸又两边无界限。
2. 线段、射线和向量线段也可以看作为一个特殊类型的射线,它有起点和终点,并且在这两个端点之间具备方向;而射线只有起点没有终点,它也指示了唯一方向。
3. 角度角度通常用来描述两条射线之间围成部分,默认情况下我们使用正角(逆时针方向),但也可以表示为负角(顺时针方向)。
4. 多边形多边形是指由连续若干条直线段所围成且两两相连的封闭图形。
二、常见的几何图形及其性质除了基本概念外,初中数学还要求我们熟练掌握各种常见几何图形以及它们之间的关系和性质。
下面将介绍一些常见的几何图形和它们的特点。
1. 长方形长方形是由四条边组成,并且对角线长度相等、互相垂直。
它具备面积公式S=a*b,其中a和b分别表示长方形的两条边长。
2. 正方形正方形是一种特殊类型的长方形,具有四个相等长度的边以及四个互相垂直且长度也相等的对角线。
正方形具备面积公式S=a²,其中a表示正方形边长。
3. 三角形三角形是由三条线段所围成并且连接起来构成一个封闭多边形。
根据三条边之间的关系可以把三角形分为等腰、等辺和普通(无相同边或角)三种类型;根据内部锐/钝(或平)角的大小又能分别叫做锐/ 必克(或平)掉。
4. 圆形圆形是由一条线段连接自身两个端点所组成,并且与端点等距离的所有点构成。
圆具有面积公式S=πr²,其中r表示半径。
三、几何图形的计算方法掌握了几何图形的概念和性质之后,我们还需要学习如何计算它们的各种属性值。
在初中数学中,我们已经接触到了一些基本的计算公式,以下将介绍几种常见图形属性值的计算方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学几何基本图形初中数学图形与几何导读:就爱阅读网友为您分享以下“初中数学图形与几何”资讯,希望对您有所帮助,感谢您对的支持!
课程简介
初中数学图形与几何
【课程简介】
本模块主要研讨数学课程标准修订稿中“初中数学空间与图形”部分的内容要求,目的是通过研讨,使教师们明确本模块内容的具体要求,并提出教学实施过程中的一些建议。
总体分为六个部分:
1. 图形与几何内容结构分析——主要探讨图形与几何部分的整体结构框架和三条主要线索;
2. 图形的性质内容与教学分析——主要探讨图形的性质部分的内容要求、与实验稿的变化以及教学实施中注意的问
1
题;
3. 图形的变化内容与教学分析——主要探讨图形的变化部分的内容要求、与实验稿的变化以及教学实施中注意的问题;
4. 图形与坐标内容与教学分析——主要探讨图形与坐标部分的内容要求、与实验稿的变化以及教学实施中注意的问题;
5. 空间观念与几何直观——主要探讨核心概念空间观念与几何直观的含义,以及在图形与几何的教学中如何培养学生的空间观念与几何直观能力;
6. 推理能力——主要探讨核心概念推理能力的含义,以及在图形与几何的教学中如何培养学生的推理能力。
课程既有理论指导,又有大量的教学实例,同时还有主讲教师间的相互交流,给教师们提供了较为广阔的思考空间。
【学习要求】
1(对“初中数学空间与图形”模块的内容结构和主线有清楚
2
的认识,能够说出这些线索之间的区别与联系;
2(了解图形的性质部分的研究的图形有哪些,认识图形的哪些方面,以及在这部分中是如何认识这些图形的;
3(体会图形的变化是研究图形的又一个途径和角度,明确它的学习意义,了解其内容组成;
4(体会图形与坐标是研究图形的又一个途径和角度,明确它的学习意义,了解其内容组成;
5(能够结合自己的教学实践,举出相应的实例,说明图形的性质、图形的变化和图形与坐标的教学经验和方法;
6(理解核心概念——空间观念、几何直观和推理能力的具体含义,体会它们与知识技能的区别和联系,能够借助具体实例说出培养学生上述能力的途径和方法。
专题讲座
初中数学图形与几何
刘晓玫(首师大数学,教授)
史炳星(北京教育学院,副教授 )
章巍(河北保定三中分校,高级教师 )
3
一、图形与几何内容结构分析
刘晓玫(主讲人):老师们好,下面我们这个模块讨论图形与几何的内容以及教学方面的问题。
我首先来介绍一下今天参加我们讨论的两位嘉宾:坐在我右边这位老师是北京教育学院的史炳星教授,坐在我左边的是保定三中的章巍老师,我是来自首都师范大学的刘晓玫。
我们这个模块一共有六个话题,首先我们来谈论第一个问题——图形与几何的总体结构和主要特点,以及和原来相比发生了哪些变化,我们先请史炳星老师介绍一下,这次标准修订,从整体框架上,图形与几何这些内容有哪些特点,哪些变化,
史炳星:原来课程标准实验稿的几何框架是按照图形的认识、图形与变换、图形与坐标和图形与证明四条主线来划分的,新的课程标准修订稿把四条主线变成三条主线,这三条主线分别是图形的性质、图形的变化、图形与坐标。
四条主线变成三条主线,首先是图形的性质这条主线基本上涵盖了原来图形的认识和图形与证明的内容,除了对一些基本图形的认识之外,还包含着对图形一些命题的证明,同时还发展了学生的空间观念和推理能力。
第二条主线是图形的变化,它的内容就比较丰富了,这里面包含了合同变换——图形的轴对称、图形的平移、图形的
4
旋转,以及图形的相似(包括位似),由于和相似关系密切,因此直角三角形的边角关系也包含其中,还有一类变换是仿射变换,在标准中呈现的标题就是投影。
这部分主要研究图形之间的关系,特别是从运动的观点和变化的角度来研究图形,这个方法本身也是十分重要的。
第三条主线叫做图形与坐标,它包含坐标与图形的位置,还有坐标与图形的运动,用坐标的方法刻画在图形的变换中所熟知的轴对称,图形的平移,图形的位似等等。
刘晓玫:刚才史老师介绍的框架里有一条主线叫图形与变化,原来我们叫图形与变换或图形的运动,但这次我们用的是变化,这是因为在这部分内容里,不光是数学上变换的东西,后面还有一些投影与视图的内容,另外解直角三角形也囊括在这里面,所以在这个里面叫变换显得不那么纯粹,叫运动,像解直角三角形这样的内容也有点牵强,我想用变化这个词可能能够比较好地把刚才那些问题给规避掉,所以就起了这样一个名字。
接下来我们进一步来看看,从具体的内容增减变化上,图形与几何这块又有哪些变化。
老师看了修订后的标准,首先会发现增加了打星号的内容,如关于相似三角形判定的演绎
5
证明,圆中的垂径定理、切线长定理等。
作为选取部分,反映了课程标准理念中的“不同的人在数学上得到不同的发展”,相当于给学生提供一个弹性的空间,对那些有余力、有兴趣的学生,给他进一步多学一点数学的机会,学生有选择性的学或者教师有选择性的教。
另外前面几讲中涉及的十个核心概念中,增加了一个叫几何直观。
因为我们这部分内容针对
的是图形,几何直观简单的说就是用图形说事,这在后面我们还会详细解读。
还有一些关于基本事实的增减变化等等。
章巍老师从教师的角度,对我们这个变化还有哪些感受,或者你发现哪些变化会引起老师们的注意,
章巍:刚才史教授和刘教授分别对课程标准修订稿中图形与几何这部分整体框架,以及具体的一些变换,跟大家做了介绍。
作为一线教师的话,这些变化需要我们重新去领悟和把握。
首先我觉得应该对这部分的内容结构有一个整体的认识和把握,你比如两位教授前面谈到的四条主线变成了三条主线,这三条主线不光是对具
体的学习内容的要求,更是从不同的角度,更多的维度对我们初中阶段的几何图形进行了
6
全方位的、立体化的研究,它可以看作图形研究不同的三个途径,比如说都是一个三角形,我既可以用欧式的综合几何的角度去认识它,也可以用变换的角度去认识,同样可以把它放在坐标系,从坐标的角度去认识它。
所以同样是这些图形,有这样三条主线,可能就丰富了我们对这些图形的理解。
理解好这一点,可以使大家更深刻的体会到几何课程对学生们的教育意义。
另外从史教授刚才的介绍可以看出,图形与几何这部分涵盖的内容很多的,我们老师在教学过程中,还要抓住一些核心内容,比如三角形是最基本的平面图形之一,如果掌握了,其他图形就可以考虑转化为三角形去处理了。
再有,虽然课程的具体内容发生一些变化,但是我个人感觉,修订稿所倡导的这种思想、理念,和实验稿是一脉相承的。
所以我们在教学中所提倡的让学生动手操作、鼓励发现、鼓励合作探究,以及在此基础上完成对所学内容的归纳,最后再通过演绎的方式去证明的教学方式,还是应该继续在日常教学当中提倡的。
刘晓玫:我在学习这个标准中还有几点体会,一是我觉得图形与坐标这部分内容,跟实验稿相比要求提高了。
比方说
7
轴对称、平移现在要放到坐标系当中,利用量化的办法进行研究,所以从思维层次上讲提高了。
从要求上看,这个步子确实比较大,所以希望老师们能够进一步研读标准,以达到能够准确地去把握。
刚才我想章巍老师有一点谈的得非常好,“图形和几何”这部分内容整体的定位和要求是没有大变化的,和原来标准基本是一致的。
所以我想也提这样一点建议,就是老师们在把握图形与几何这部分内容的时候,一定要有一个整体的观点。
因为一些老师容易有这样的倾向:好像几何更多的是演绎推理和证明,其他内容像附属品,花一点点时间学习学习就够了。
其实我们要看到,即使在证明这个方面,我们也希望能够把合情推理和演绎推理结合起来,注意标准中用“探索并证明……”,而不是仅仅去证明,尤其我们一直在提倡空间观念的培养、几何直观能力的发展,还有推理能力,都是我们几何学习中非常重要的。
希望老师能够整体认识和把握“图形与几何”的教育价值,这样才能使我们在对几何内容进行教学设计的时候,实现预期的目标。
那么,关于第一个话题“图形与几何”内容结构总体的介绍,我们就先谈到这儿,当然后面我们介绍具体内容的时候,还会让大家反过来体会内容的整体结构。
8
9。