人教版数学高二人教 《合情推理与演绎推理 名师教案

合集下载

数学选修《合情推理与演绎推理》高中教案

数学选修《合情推理与演绎推理》高中教案

数学选修《合情推理与演绎推理》高中教案数学选修《合情推理与演绎推理》高中教案高中学生仅仅想学是不够的,还必须会学,要讲究科学的学习方法,提高学习效率,才能变被动学习为主动学习,才能提高学习成绩。

下面就和一起看看有关数学选修《合情推理与演绎推理》高中教案。

学习目标1. 能利用归纳推理与类比推理进行一些简单的推理;2. 掌握演绎推理的基本方法,并能运用它们进行一些简单的推理;3. 体会合情推理和演绎推理的区别与联系.学习过程一、课前准备复习1:归纳推理是由到的推理.类比推理是由到的推理.合情推理的结论 .复习2:演绎推理是由到的推理.演绎推理的结论 .复习3:归纳推理是由到的推理.类比推理是由到的推理.合情推理的结论 .复习4:演绎推理是由到的推理.演绎推理的结论 .二、新课导学※ 典型例题例1 观察(1)(2)由以上两式成立,推广到一般结论,写出你的推论.变式:已知:通过观察上述两等式的规律,请你写出一般性的命题,并给出的证明.例2 在中,若,则,则在立体几何中,给出四面体性质的猜想.变式:命题正三角形内任一点到三边的距离等于常数,对正四面体是否有类似的结论?例3:已知等差数列的公差为d ,前n项和为,有如下性质:类比上述性质,在等比数列中,写出类似的性质.例4 判断下面的推理是否正确,并用符号表示其中蕴含的推理规则:已知是5的倍数,可知或者m+1是5的倍数,或者5m+1是5的倍数;因为5m+1不是5的倍数,所以m+1是5的倍数。

※ 动手试试练1.若数列的通项公式,记,试通过计算的值,推测出练2.代数中有乘法公式.:再以乘法运算继续求:观察上述结果,你能做出什么猜想?练3. 若三角形内切圆半径为r,三边长为a,b,c,则三角形的面积,根据类比思想,若四面体内切球半径为R,四个面的面积为,则四面体的体积V= .三、总结提升※ 学习小结1. 合情推理;结论不一定正确.2. 演绎推理:由一般到特殊.前提和推理形式正确结论一定正确.※ 当堂检测(时量:5分钟满分:10分)计分:1. 由数列,猜想该数列的第n项可能是().A. B. C. D.2.下面四个在平面内成立的结论①平行于同一直线的两直线平行②一条直线如果与两条平行线中的一条垂直,则必与另一条相交③垂直于同一直线的两直线平行④一条直线如果与两条平行线中的一条相交,则必与另一条相交在空间中也成立的为().A.①②B. ③④C. ②④D.①③3.在数列中,已知,试归纳推理出 .4. 用演绎推理证明函数是增函数时的大前提是().A.增函数的定义B.函数满足增函数的定义C.若,则D.若,则5. 设平面内有n条直线,其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用表示这n条直线交点的个数,则= ;当n4时,= (用含n 的数学表达式表示).课后作业1.判别下列推理是否正确:(1)如果不买彩票,那么就不能中奖。

人教版高二数学“演绎推理”教案

人教版高二数学“演绎推理”教案

人教版高二数学“演绎推理”教案【导语】增加内驱力,从思想上重视高二,从心理上强化高二,使克服高考的这个关键环节过硬起来,是“志存高远”这四个字在高二年级的全部说明。

作者高二频道为正在拼搏的你整理了《人教版高二数学“演绎推理”教案》期望你爱好!【篇一】教学目标:1.了解演绎推理的含义。

2.能正确地运用演绎推理进行简单的推理。

3.了解合情推理与演绎推理之间的联系与差别。

教学重点:正确地运用演绎推理、进行简单的推理。

教学难点:了解合情推理与演绎推理之间的联系与差别。

教学进程:一、复习:合情推理归纳推理从特别到一样类比推理从特别到特别从具体问题动身――视察、分析比较、联想――归纳。

类比――提出料想二、问题情境。

视察与摸索1.所有的金属都能导电铜是金属,所以,铜能够导电2.一切奇数都不能被2整除,(2100+1)是奇数,所以,(2100+1)不能被2整除。

3.三角函数都是周期函数,tan是三角函数,所以,tan是周期函数。

提出问题:像这样的推理是合情推理吗?二、学生活动:1.所有的金属都能导电←————大条件铜是金属,←-----小条件所以,铜能够导电←――结论2.一切奇数都不能被2整除←————大条件(2100+1)是奇数,←――小条件所以,(2100+1)不能被2整除。

←―――结论3.三角函数都是周期函数,←——大条件tan是三角函数,←――小条件所以,tan是周期函数。

←――结论三、建构数学演绎推理的定义:从一样性的原理动身,推出某个特别情形下的结论,这种推理称为演绎推理。

1.演绎推理是由一样到特别的推理;2.“三段论”是演绎推理的一样模式;包括(1)大条件——已知的一样原理;(2)小条件——所研究的特别情形;(3)结论——据一样原理,对特别情形做出的判定.三段论的基本格式M—P(M是P)(大条件)S—M(S是M)(小条件)S—P(S是P)(结论)3.三段论推理的根据,用集合的观点来知道:若集合M的所有元素都具有性质P,S是M的一个子集,那么S中所有元素也都具有性质P。

高中数学选修1-2《合情推理与演绎推理》教案

高中数学选修1-2《合情推理与演绎推理》教案

高中数学选修1-2《合情推理与演绎推理》教案教学内容:高中数学选修1-2《合情推理与演绎推理》教学时长:2-3课时教学目标:1.能够理解合情推理和演绎推理的概念和区别。

2.掌握合情推理和演绎推理的思维方法和技巧,能够应用到相关问题中。

3.能够运用数学语言和符号描述和表示合情推理和演绎推理的过程和结果。

教学重点:1.合情推理和演绎推理的概念和区别。

2.合情推理和演绎推理的思维方法和技巧。

3.运用数学语言和符号描述和表示合情推理和演绎推理的过程和结果。

教学难点:1.如何灵活运用合情推理和演绎推理的思维方法和技巧。

2.如何运用数学语言和符号描述和表示合情推理和演绎推理的过程和结果。

教学方法:多媒体展示、讲授、思维导图、案例分析。

教学过程:第一步:导入1.使用多媒体展示相关图片或视频引起学生的兴趣,并让学生讨论所展示的内容有哪些思维方法和技巧。

2.老师讲述实际生活中所涉及到的一些思维方法和技巧,并引导学生思考其作用和意义。

第二步:知识讲解1.合情推理:1)定义:合情推理是基于类比关系,通过类比来得出结论的一种思维方法。

它通常涉及到对某种事物或现象进行比较,从而得出与其有相似性或联系的结论,并用此结论进行推理或预测。

2)例子:老师在课堂上讲述一个问题,学生可以通过类比关系来引申出自己的想法,从而得出更深层次的结论。

2.演绎推理:1)定义:演绎推理是基于逻辑关系,通过前提与规则推导出结论的一种思维方法。

它的基本思路是从已知的前提出发,根据规则逐步推导,达到得出结论的目的。

2)例子:在证明一个定理时,需要根据已知条件和推论规则,逐步推导,得出结论,这就是演绎推理的典型应用。

第三步:案例分析1.老师给学生展示几个有关合情推理和演绎推理的案例,让学生思考并回答:1)这个问题中是否涉及到合情推理和演绎推理?2)涉及到的是合情推理还是演绎推理?3)为什么这个问题可以用合情推理或演绎推理进行解决?第四步:巩固练习1.老师设计一些具体的演绎推理和合情推理的例子,让学生解决问题,并展示解题过程和思路。

人教版数学高二新课标 《合情推理》名师教案

人教版数学高二新课标 《合情推理》名师教案
让学生体会“数学来源于生活”。创造和谐积极的学习气氛。



介绍四幅图的大致内容,说明推理在现实生活中是到处存在的。
引导学生做一些简单的推理:
1.由铜、铁、铝、金、银等金属都能导电,猜想:一切金属都能导电.
2.由三角形内角和为 ,凸四边形内角和 ,凸五边形内角和为 ,猜想:凸 边形内角和为 .
3.地球上有生命,火星具有一些与地球类似的特征,猜想:火星上也有生命.
某市
高中数学学习状态问卷调查
对数学
的印象
数学学习
的目的
生动活泼
严肃枯燥发Βιβλιοθήκη 问题解决问题甲学校
19%
71%
11%
89%
乙学校
7%
75%
23%
77%
丙学校
16%
64%
21%
79%
丁学校
25%
53%
16%
84%
根据这四所学校的情况,你能推测全市高中生对数学的印象吗?
教师通过评价学生推测的结论引入推理的概念。
教师补充:给你们一列数,第一个数是2,第二个数是4,第三个数是6,第四个会是什么呢?
对比这些归纳推理的例子,能深入挖掘他们的共同特征吗?
二、归纳推理的概念:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征,或者由个别事实概栝出一般结论,(简称归纳)
部分推出整体,个别推出一般
学生分小组讨论:
将学生划分为两大部分,一部分讨论生活中运用归纳推理例子,一部分讨论学习中使用归纳推理的例子。
学生举例之后教师总结
组织学生进行分组讨论,引导学生从生活和学习两大方面对归纳推理的应用进行举例。
分组讨论降低了概念学习的难度,使学生能够更多的围绕重点展开探索和研究。

高中数学_2[1].1《合情推理与演绎推理-演绎推理》教案_新人教选修1-2高二

高中数学_2[1].1《合情推理与演绎推理-演绎推理》教案_新人教选修1-2高二

演绎推理教学目标:(1)知识与能力:了解演绎推理的含义及特点,会将推理写成三段论的形式(2)过程与方法:了解合情推理和演绎推理的区别与联系(3)情感态度价值观:了解演绎推理在数学证明中的重要地位和日常生活中的作用,养成言之有理论证有据的习惯。

教学重点:演绎推理的含义与三段论推理及合情推理和演绎推理的区别与联系教学难点:演绎推理的应用教具:导学案、课件教学方法:自学指导法教学设计一、导入新课现在冰雪覆盖的南极大陆,地质学家说它们曾在赤道附近,是从热带飘移到现在的位置的,为什么呢?原来在它的地底下,有着丰富的煤矿,煤矿中的树叶表明它们是阔叶树。

从繁茂的阔叶树可以推知当时有温暖湿润的气候。

所以南极大陆曾经在温湿的热带。

被人们称为世界屋脊的西藏高原上,一座座高山高入云天,巍然屹立。

西藏高原南端的喜马拉雅山横空出世,雄视世界。

珠穆郎玛峰是世界第一高峰,登上珠峰顶,一览群山小。

谁能想到,喜马拉雅山所在的地方,曾经是一片汪洋,高耸的山峰的前身,竟然是深不可测的大海。

地质学家是怎么得出这个结论的呢?科学家们在喜马拉雅山区考察时,曾经发现高山的地层中有许多鱼类、贝类的化石。

还发现了鱼龙的化石。

地质学家们推断说,鱼类贝类生活在海洋里,在喜马拉雅山上发现它们的化石,说明喜马拉雅山曾经是海洋。

科学家们研究喜马拉雅变迁所使用的方法,就是一种名叫演绎推理的方法。

二、讲授新课(学生阅读课本,找到定义)1.演绎推理:从一般性的原理出发,推出某个特殊情况下的结论的推理方法。

2.演绎推理的一般模式分析喜马拉雅山所在的地方,曾经是一片汪洋推理过程:鱼类、贝类、鱼龙,都是海洋生物,它们世世代代生活在海洋里……大前提在喜马拉雅山上发现它们的化石……小前提喜马拉雅山曾经是海洋……结论三段论(1)大前提……已知的一般原理(2)小前提……所研究的特殊情况(3)结论……根据一般原理,对特殊情况作出的判断3.练习把下列推理写成三段论的形式(1)太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此冥王星以椭圆形轨道绕太阳运行;(2)在一个标准大气压下,水的沸点是100°C,所以在一个标准大气压下把水加热到100°C时,水会沸腾;(3)一切奇数都不能被2整除,)12(100+不能被2整除;2(100+是奇数,所以)1(4)三角函数都是周期函数,αtan是周期函数;tan是三角函数,因此α(6)两条直线平行,同旁内角互补。

高中数学选修《合情推理与演绎推理》教案

高中数学选修《合情推理与演绎推理》教案

高中数学选修《合情推理与演绎推理》教案一、教学目标1. 让学生理解合情推理与演绎推理的定义及意义。

2. 培养学生运用合情推理与演绎推理解决数学问题的能力。

3. 引导学生掌握合情推理与演绎推理的基本方法。

二、教学内容第一章:合情推理1. 合情推理的定义及分类2. 合情推理的方法:归纳推理、类比推理、归纳猜想3. 合情推理在数学中的应用第二章:演绎推理1. 演绎推理的定义及分类2. 演绎推理的方法:演绎法、反证法、归纳法3. 演绎推理在数学中的应用三、教学方法1. 采用讲授法讲解合情推理与演绎推理的基本概念和方法。

2. 通过例题展示合情推理与演绎推理在数学问题解决中的应用。

3. 组织学生进行小组讨论,分享解题心得,培养学生的合作能力。

四、教学步骤1. 引入新课:介绍合情推理与演绎推理的定义及意义。

2. 讲解合情推理:讲解归纳推理、类比推理、归纳猜想的方法,并通过例题展示其在数学中的应用。

3. 讲解演绎推理:讲解演绎法、反证法、归纳法的方法,并通过例题展示其在数学中的应用。

4. 练习与巩固:布置适量练习题,让学生巩固所学知识。

5. 总结与拓展:总结合情推理与演绎推理的方法及应用,引导学生思考如何在生活中运用这些方法。

五、教学评价1. 课后作业:检查学生对合情推理与演绎推理方法的掌握情况。

2. 课堂练习:观察学生在课堂练习中的表现,了解他们的学习进度。

3. 小组讨论:评估学生在小组讨论中的参与程度及合作能力。

4. 期中期末考试:全面评估学生对选修内容的掌握情况。

六、教学内容第三章:合情推理与演绎推理的综合应用1. 合情推理与演绎推理在数学证明中的应用2. 合情推理与演绎推理在数学问题解决中的应用3. 合情推理与演绎推理在数学探究活动中的应用第四章:常见的错误与误解1. 合情推理与演绎推理中的常见错误2. 如何避免合情推理与演绎推理中的错误与误解3. 正确评价合情推理与演绎推理的结果七、教学方法1. 通过案例分析,让学生了解合情推理与演绎推理在实际应用中的重要性。

最新人教版高中数学选修1-2《合情推理与演绎推理》示范教案2

最新人教版高中数学选修1-2《合情推理与演绎推理》示范教案2

2.1.2 演绎推理整体设计教材分析《演绎推理》是高中数学中的基本思维过程,是根据一个或几个已知的判断来确定一个新的判断的思维过程,也是人们学习和生活中经常使用的思维方式,是正确进行逻辑推理必不可少的基础知识,是高考热点.演绎推理具有证明结论、整理和构建知识体系的作用,是公理体系中的基本推理方法.本节内容相对比较抽象,教学中应紧密结合已学过的生活实例和数学实例,让学生了解演绎推理的含义,并在上一节学习的基础上,了解合情推理与演绎推理之间的联系与差异,同时纠正推理过程中可能犯的典型错误,增强学生的好奇心,激发出潜在的创造力,使学生能正确应用合情推理和演绎推理去进行一些简单的推理,证明一些数学结论.课时划分1课时.教学目标1.知识与技能目标了解演绎推理的含义,了解合情推理与演绎推理之间的联系与差别,能正确地运用演绎推理,进行简单的推理.2.过程与方法目标了解和体会演绎推理在日常生活和学习中的应用,培养学生的逻辑推理能力,使学生学会观察,大胆猜想,敢于归纳、挖掘其中所包含的推理思路和思想;明确演绎推理的基本过程,提高学生的创新能力.3.情感、态度与价值观通过本节课的学习,体验推理源于实践,又应用于实践的思想,激发学生学习的兴趣,培养学生勇于探索、创新的个性品质.重点难点重点:正确地运用演绎推理进行简单的推理证明.难点:了解合情推理与演绎推理之间的联系与差别.教学过程引入新课观察与思考:新学期开始了,班里换了新的老师,他们是林老师、王老师和吴老师,三位老师分别教语文、数学、英语.已知:每个老师只教一门课;林老师上课全用汉语;英语老师是一个学生的哥哥;吴老师是一位女教师,她比数学老师活泼.问:三位老师各上什么课?活动设计:让学生带着浓厚的兴趣,先独立思考,然后小组交流.引导分析:启发学生把自己的思考过程借助于下列表格展示出来,从而解决问题.注意与学生交流.学情预测:开始学生的回答可能不全面、不准确,但在其他学生的不断补充、纠正下,会趋于准确.活动结果:林老师——数学,王老师——英语,吴老师——语文.设计意图本着“兴趣是最好的老师”的原则,结合生活中具体的实例,激发学生学习的兴趣,让学生体会“数学来源于生活”,创造和谐积极的学习气氛,体会演绎推理的现实意义.探究新知判断下列推理是合情推理吗?分析推理过程,明确它们的推理形式.(1)所有的金属都能导电,铜是金属,所以,铜能够导电.(2)一切奇数都不能被2整除,(2100+1)是奇数,所以,(2100+1)不能被2整除.(3)三角函数都是周期函数,tanα是三角函数,所以,tanα是周期函数.活动设计:学生口答,教师板书.学情预测:学生积极思考片刻,有学生举手回答且回答准确.活动结果:以上推理不是合情推理,它们的推理形式如下:(1)所有的金属都能导电,第一段铜是金属,第二段所以,铜能够导电.第三段(2)一切奇数都不能被2整除,第一段(2100+1)是奇数,第二段所以,(2100+1)不能被2整除.第三段(3)三角函数都是周期函数,第一段tanα是三角函数,第二段所以,tanα是周期函数.第三段提出问题:对于上面的三个推理,它们的推理形式有什么特点?活动设计:学生独立思考,并自由发言.学情预测:通过观察和分析,学生有足够的能力来解决上面所提问题.活动结果:上面的例子都有三段,是以一般的判断为前提,得出一些个别的、具体的判断:(1)所有的金属都能导电,大前提铜是金属,小前提所以,铜能够导电.结论(2)一切奇数都不能被2整除,大前提(2100+1)是奇数,小前提所以,(2100+1)不能被2整除.结论(3)三角函数都是周期函数,大前提tanα是三角函数,小前提所以,tanα是周期函数.结论教师:演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.1.演绎推理是由一般到特殊的推理;2.“三段论”是演绎推理的一般模式,包括(1)大前提——已知的一般原理;(2)小前提——所研究的特殊情况;(3)结论——根据一般原理,对特殊情况做出的判断.设计意图通过对演绎推理概念的学习,体会以“三段论”模式来说明演绎推理的特点,从中概括出演绎推理的推理过程,对演绎推理是一般到特殊的推理有一个直观的认识,训练和培养学生的演绎推理能力.理解新知提出问题:在应用“三段论”进行推理的过程中,得到的推理结论一定正确吗?为什么?例如:(1)所有阔叶植物都是落叶的,葡萄树是阔叶植物,所以,葡萄树都是落叶的.(2)因为所有边长都相等的凸多边形是正多边形,而菱形是所有边长都相等的凸多边形,所以菱形是正多边形.(3)英雄难过美人关,我难过美人关,所以,我是英雄.活动设计:学生独立思考,先有学生自由发言,然后教师小结并形成新知.学情预测:学生们在积极思考,对(2)(3)两个小题的结论产生分歧,意见不统一.活动结果:(1)推理形式正确,前提正确,结论正确.(2)推理形式正确,大前提错误,结论错误.(3)推理形式错误(大、小前提没有连接起来),结论错误.教师:通过上面的学习,学生们对演绎推理和“三段论”模式都有了更深的了解,其中特别注意:(1)三段论的基本格式M—P(M是P)(大前提)S—M(S是M)(小前提)S—P(S是P)(结论)(2)三段论推理的依据,用集合的观点来理解:若集合M的所有元素都具有性质P,S 是M的一个子集,那么S中所有元素也都具有性质P.(3)在演绎推理中,只有前提和推理形式都正确,结论才是正确的.设计意图通过所举的例子,教师可以了解学生对演绎推理和三段论模式的理解程度,明确概念的内涵和外延,加深理解,及时更正学生在认识推理中产生的错误和偏差.提出问题:合情推理与演绎推理有什么区别与联系?活动设计:学生独立思考,先由学生自由发言,然后教师小结并形成新知.活动结果:设计意图通过比较合情推理与演绎推理的区别与联系,有助于学生更清晰地理解和掌握这两种推理方法,并能灵活应用.运用新知例1如图,在锐角三角形ABC 中,AD ⊥BC ,BE ⊥AC ,D ,E 是垂足,求证:AB 的中点M 到D ,E 的距离相等.思路分析:根据三段论的推理过程进行证明.证明:(1)因为有一个内角是直角的三角形是直角三角形,——大前提 在△ABC 中,AD ⊥BC ,即∠ADB =90°,——小前提 所以△ABD 是直角三角形.——结论(2)因为直角三角形斜边上的中线等于斜边的一半,——大前提 因为DM 是直角三角形ABD 斜边上的中线,——小前提 所以DM =12AB.——结论同理EM =12AB.所以DM =EM.点评:通过对上述问题的证明,挖掘其中包含的推理思路,使学生明确演绎推理的基本过程,突出演绎推理中的“大前提”“小前提”和“结论”.巩固练习由①正方形的对角线相等;②平行四边形的对角线相等;③正方形是平行四边形,根据“三段论”推理得出一个结论,则这个结论是( )A .正方形的对角线相等B .平行四边形的对角线相等C .正方形是平行四边形D .其他 答案:A例2证明函数f(x)=-x 2+2x 在(-∞,1)内是增函数.思路分析:证明本例所依据的大前提是:在某个区间(a ,b)内,如果f ′(x)>0,那么函数y =f(x)在这个区间内单调递增.小前提是f(x)=-x 2+2x 在(-∞,1)内有f ′(x)>0,这是证明本例的关键. 证明:f ′(x)=-2x +2,因为当x ∈(-∞,1)时,有1-x>0, 所以f ′(x)=-2x +2=2(1-x)>0,于是,根据“三段论”,可知f(x)=-x 2+2x 在(-∞,1)内是增函数.点评:通过对上述问题的证明,挖掘其中包含的推理思路,使学生明确演绎推理的基本过程,并加深对演绎推理的认识.教师:许多学生能写出证明过程,但不一定非常清楚证明的逻辑规则,因此在表述证明过程时往往显得杂乱无章,通过这两个例子的教学,应当使这种状况得到改善.变练演编(1)已知a ,b ,m 均为正实数,且b<a ,求证:b a <b +ma +m.(2)已知△ABC 的三条边分别为a ,b ,c ,则1+ <1+.思路分析:(1)中根据演绎推理的证明过程进行证明;(2)中不必证明,答案不唯一. 证明:(1)不等式两边乘以同一个正数,不等式仍成立,——大前提 b<a ,m>0,——小前提 所以mb<ma.——结论不等式两边加上同一个数,不等式仍成立,——大前提 mb<ma ,ab =ab ,——小前提所以ab +mb<ab +ma ,即b(a +m)<a(b +m).——结论 不等式两边除以同一个正数,不等式仍成立,——大前提 b(a +m)<a(b +m),a(a +m)>0,——小前提 所以,b (a +m )a (a +m )<a (b +m )a (a +m ),即b a <b +m a +m .——结论(2)c 1+c <a +b 1+a +b (答案不唯一,例如a1+a <c +b 1+c +b). 点评:通过证明(1)中不等式成立,感知条件与结论的不唯一性,例如:已知a ,b ,m 均为正实数,若a<b ,求证:a b <a +mb +m .(2)中加强学生思维的灵活性、分析问题的深刻性.活动设计:学生讨论交流并回答问题,老师对不同的合理答案给予肯定,将所有发现的结论一一列举,并由学生予以评价.设计意图通过变练演编,使学生对演绎推理的认识不断加深,同时培养学生逻辑思维的严谨性. 达标检测1.下列表述正确的是( )①归纳推理是由部分到整体的推理;②归纳推理是由一般到一般的推理;③演绎推理是由一般到特殊的推理;④类比推理是由特殊到一般的推理;⑤类比推理是由特殊到特殊的推理.A .①②③B .②③④C .②④⑤D .①③⑤2.有这样一段演绎推理“有些有理数是真分数,整数是有理数,则整数是真分数”,结论显然是错误的,是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误3.有一段演绎推理是这样的:“直线平行于平面,则平行于平面内的所有直线;已知直线b 平面α,直线a 平面α,直线b ∥平面α,则直线b ∥直线a ”,结论显然是错误的,这是因为( )A .大前提错误B .小前提错误C .推理形式错误D .非以上错误 答案:1.D 2.C 3.A 课堂小结 1.知识收获:(1)演绎推理的定义:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理.演绎推理是由一般到特殊的推理.(2)“三段论”是演绎推理的一般模式,包括 大前提——已知的一般原理; 小前提——所研究的特殊情况;结论——根据一般原理,对特殊情况做出的判断.2.方法收获:利用演绎推理判断进行证明的方法与步骤:①找出大前提;②找出小前提;③根据“三段论”推出结论.3.思维收获:培养和训练学生严谨缜密的逻辑思维.布置作业课本本节练习1、2、3.补充练习基础练习1.把“函数y=x2+x+1的图象是一条抛物线”恢复成三段论.2.下面说法正确的有()(1)演绎推理是由一般到特殊的推理;(2)演绎推理得到的结论一定是正确的;(3)演绎推理的一般模式是“三段论”形式;(4)演绎推理的结论的正误与大前提、小前提和推理形式有关.A.1个B.2个C.3个D.4个3.下列几种推理过程是演绎推理的是()A.5和22可以比较大小B.由平面三角形的性质,推测空间四面体的性质C.东升高中高二年级有15个班,1班有51人,2班有53人,3班有52人,由此推测各班都超过50人D.预测股票走势图4.已知△ABC,∠A=30°,∠B=60°,求证:a<b.证明:∵∠A=30°,∠B=60°,∴∠A<∠B,∴a<b,画线部分是演绎推理的()A.大前提B.小前提C.结论D.三段论5.用演绎推理法证明y=x是增函数时的大前提是______.答案:1.解:二次函数的图象是一条抛物线(大前提),函数y=x2+x+1是二次函数(小前提),所以,函数y=x2+x+1的图象是一条抛物线(结论).2.C 3.A 4.B 5.增函数的定义拓展练习6.S为△ABC所在平面外一点,SA⊥平面ABC,平面SAB⊥平面SBC.求证:AB⊥BC.证明:如图,作AE⊥SB于E.∵平面SAB⊥平面SBC,∴AE⊥平面SBC,∴AE⊥BC.又∵SA⊥平面ABC,∴SA⊥BC.∵SA∩AE=A,SA⊂平面SAB,AE⊂平面SAB,∴BC⊥平面SAB.∵AB 平面SAB,∴AB⊥BC.设计说明由于这节课概念性、理论性较强,一般的教学方式会使学生感到枯燥乏味,为此,激发学生的学习兴趣是上好本节课的关键.教学中始终要注意以学生为主,让学生在自我思考、相互交流中去总结概念“下定义”,去体会概念的本质属性.学生对于演绎推理和三段论的理解,需要经过一定时间的体会,先给出学生常见问题的解决步骤,结合以前所学的知识来解决问题,在教学中经常借助这些概念表达、阐述和分析问题.引导学生从日常生活中的推理问题出发,激发学生的学习兴趣,结合学生熟知的旧知识归纳新知识,同时在应用新知的过程中,将所学的知识条理化,使学生的认知结构更趋于合理.备课资料例1小王、小刘、小张参加了今年的高考,考完后在一起议论.小王说:“我肯定考上重点大学.”小刘说:“重点大学我是考不上了.”小张说:“要是不论重点不重点,我考上肯定没问题.”发榜结果表明,三人中考取重点大学、一般大学和没考上大学的各有一个,并且他们三个人的预言只有一个人是对的,另外两个人的预言都同事实恰好相反.可见() A.小王没考上,小刘考上一般大学,小张考上重点大学B.小王考上一般大学,小刘没考上,小张考上重点大学C.小王没考上,小刘考上重点大学,小张考上一般大学D.小王考上一般大学,小刘考上重点大学,小张没考上解析:根据推理知识得出结论.答案:C例2已知直线l、m,平面α、β,且l⊥α,m∥β,给出下列四个命题:(1)若α∥β,则l⊥m;(2)若l⊥m,则α∥β;(3)若α⊥β,则l∥m;(4)若l∥m,则α⊥β.其中正确命题的个数是()A.1 B.2C.3 D.4解析:根据演绎推理的定义,逐一判断结论的正误.由直线和平面、平面和平面平行和垂直的判定定理、性质定理,可知应选B.答案:B点评:以准确、完整地理解条件为基础,才能判断命题的正误.例3函数y=f(x)在(0,2)上是增函数,函数y=f(x+2)是偶函数,则f(1),f(2.5),f(3.5)的大小关系是______.解析:根据函数的性质进行判断.∵函数y=f(x)在(0,2)上是增函数,∴0<x+2<2,即-2<x<0.∴函数y=f(x+2)在(-2,0)上是增函数.又∵函数y=f(x+2)是偶函数,∴函数y=f(x+2)在(0,2)上是减函数.由图象可得f(2.5)>f(1)>f(3.5).故应填f(2.5)>f(1)>f(3.5).答案:f(2.5)>f(1)>f(3.5)点评:根据函数的基本性质,结合三段论的推理模式可得.例4已知lg2=m,计算lg0.8.分析:利用所学的推理知识解决问题.解:lga n=nlga(a>0),——大前提lg8=lg23,——小前提lg8=3lg2.——结论lg ab=lga-lgb(a>0,b>0),——大前提lg0.8=lg 810,——小前提所以lg0.8=lg8-1=3lg2-1=3m-1.——结论点评:找出三段论的大前提与小前提即可得到答案.(设计者:李小青)。

人教版高中选修2-22.1合情推理与演绎推理教学设计

人教版高中选修2-22.1合情推理与演绎推理教学设计

人教版高中选修2-22.1合情推理与演绎推理教学设计一、教学背景本次教学适用于人教版高中选修2-22.1《数学与现实》这一模块中,合情推理与演绎推理的教学内容。

该模块旨在让学生能够运用数学知识分析现实生活中的问题,培养学生的数学思维、逻辑思维和创新意识,提高其实际应用数学的能力。

二、教学目标1.了解合情推理与演绎推理的概念和原理,掌握相关的数学知识和技能。

2.能够通过理论知识和实际问题的分析,运用合情推理和演绎推理方法解决实际问题和应用问题。

3.能够处理实际问题中的信息、转换问题描述方式,建立合理的数学模型,运用数学方法求解问题。

4.提高学生的数学思维能力和解决问题的能力,为以后的学习和工作打下基础。

三、教学内容本次教学将涉及以下内容:1.合情推理和演绎推理的概念和原理2.数学和现实生活中的联系3.运用合情推理和演绎推理方法解决实际问题4.转换问题描述方式,建立数学模型,运用数学方法求解问题1.导入引出本节课的主要内容,引入合情推理和演绎推理的概念和原理,让学生了解其基本概念和相关知识点。

2.课堂教学(1)合情推理•了解合情推理的定义和相关定理•通过数学题目,让学生感知合情推理的应用(2)演绎推理•了解演绎推理的定义和相关定理•通过数学题目,让学生感知演绎推理的应用(3)数学与现实生活中的联系•分析数学知识在现实生活中的应用,让学生了解其重要性(4)应用合情推理和演绎推理解决实际问题•引导学生分析实际问题,理解合情推理和演绎推理的应用•通过实例和数学题目,让学生掌握应用合情推理和演绎推理解决实际问题的方法(5)建立数学模型,运用数学方法求解问题•教授建立数学模型的步骤和方法,让学生掌握建立模型的能力•通过实例和数学题目,让学生学会运用数学方法求解问题的方法3.教学总结进行本节课的总结和归纳,让学生对本节课的内容有一个系统的认识和掌握。

1.学生是否了解合情推理和演绎推理的概念和原理。

2.学生是否能够将知识应用于实际问题的解决中。

人教A版高中数学选修合情推理与演绎推理演绎推理教案

人教A版高中数学选修合情推理与演绎推理演绎推理教案

普通高中课程标准实验教科书—数学选修2-2[人教版A]2.1.2演绎推理教学目标:结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

教学重点:掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

教学过程一、复习二、引入新课1.假言推理假言推理是以假言判断为前提的演绎推理。

假言推理分为充分条件假言推理和必要条件假言推理两种。

(1)充分条件假言推理的基本原则是:小前提肯定大前提的前件,结论就肯定大前提的后件;小前提否定大前提的后件,结论就否定大前提的前件。

(2)必要条件假言推理的基本原则是:小前提肯定大前提的后件,结论就要肯定大前提的前件;小前提否定大前提的前件,结论就要否定大前提的后件。

2.三段论三段论是指由两个简单判断作前提和一个简单判断作结论组成的演绎推理。

三段论中三个简单判断只包含三个不同的概念,每个概念都重复出现一次。

这三个概念都有专门名称:结论中的宾词叫“大词”,结论中的主词叫“小词”,结论不出现的那个概念叫“中词”,在两个前提中,包含大词的叫“大前提”,包含小词的叫“小前提”。

3.关系推理指前提中至少有一个是关系判断的推理,它是根据关系的逻辑性质进行推演的。

可分为纯关系推理和混合关系推理。

纯关系推理就是前提和结论都是关系判断的推理,包括对称性关系推理、反对称性关系推理、传递性关系推理和反传递性关系推理。

(1)对称性关系推理是根据关系的对称性进行的推理。

(2)反对称性关系推理是根据关系的反对称性进行的推理。

(3)传递性关系推理是根据关系的传递性进行的推理。

(4)反传递性关系推理是根据关系的反传递性进行的推理。

4. 完全归纳推理是这样一种归纳推理:根据对某类事物的全部个别对象的考察,已知它们都具有某种性质,由此得出结论说:该类事物都具有某种性质。

完全归纳推理可用公式表示如下:具有(或不具有)性质P具有(或不具有)性质P……具有(或不具有)性质P(S1 S2……Sn是 S类的所有个别对象)所以,所有S都具有(或不具有)性质P可见,完全归纳推理的基本特点在于:前提中所考察的个别对象,必须是该类事物的全部个别对象。

人教A版高中数学选修合情推理与演绎推理合情推理教案

人教A版高中数学选修合情推理与演绎推理合情推理教案

普通高中课程标准实验教科书—数学选修2-2[人教版A]2.1.1合情推理教学目标:结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用教学重点:了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中的作用教学过程一、引入新课1归纳推理(一)什么是归纳推理归纳推理的前提是一些关于个别事物或现象的命题,而结论则是关于该类事物或现象的普遍性命题。

归纳推理的结论所断定的知识范围超出了前提所断定的知识范围,因此,归纳推理的前提与结论之间的联系不是必然性的,而是或然性的。

也就是说,其前提真而结论假是可能的,所以,归纳推理乃是一种或然性推理。

拿任何一种草药来说吧,人们为什么会发现它能治好某种疾病呢?原来,这是经过我们先人无数次经验(成功的或失败的)的积累的。

由于某一种草无意中治好了某一种病,第二次,第三次,……都治好了这一种病,于是人们就把这几次经验积累起来,做出结论说,“这种草能治好某一种病。

”这样,一次次个别经验的认识就上升到对这种草能治某一种病的一般性认识了。

这里就有着归纳推理的运用。

(二)归纳推理与演绎推理的区别和联系归纳推理与演绎推理的主要区别是:首先,从思维运动过程的方向来看,演绎推理是从一般性的知识的前提推出一个特殊性的知识的结论,即从一般过渡到特殊;而归纳推理则是从一些特殊性的知识的前提推出一个一般性的知识的结论,即从特殊过渡到一般。

其实,从前提与结论联系的性质来看,演绎推理的结论不超出前提所断定的范围,其前提和结论之间的联系是必然的,即其前提真而结论假是不可能的。

一个演绎推理只要前提真实并且推理形式正确,那么,其结论就必然真实。

而归纳推理(完全归纳推理除外)的结论却超出了前提所断定的范围,其前提和结论之间的联系不是必然的,而只具有或然性,即其前提真而结论假是有可能的。

也就是说,即使其前提都真也并不能保证结论是必然真实的。

2024-2025学年高中数学2.1合情推理与演绎推理2.1.1合情推理教案文新人教A版选修2-2

2024-2025学年高中数学2.1合情推理与演绎推理2.1.1合情推理教案文新人教A版选修2-2
答案:例如,要证明一个三角形内角和为180度,可以运用演绎推理。首先,根据三角形内角和定理,得出三角形内角和为180度。然后,通过具体的例子,如直角三角形,验证这个结论。
题型4:请总结合情推理的方法与技巧,并运用到一道数学题目中。
答案:合情推理的方法与技巧包括归纳、类比、假设等。例如,在解决一个代数问题时,可以通过观察已知条件和目标,提出假设,并通过验证假设来找到答案。
详细介绍每个案例的背景、特点和意义,让学生全面了解合情推理与演绎推理的多样性或复杂性。
引导学生思考这些案例对实际数学问题的影响,以及如何应用合情推理与演绎推理解决实际问题。
4.学生小组讨论(10分钟)
目标:培养学生的合作能力和解决问题的能力。
过程:
将学生分成若干小组,每组选择一个与合情推理与演绎推理相关的主题进行深入讨论。
展示一些关于合情推理与演绎推理的实例,让学生初步感受其在数学中的应用。
简短介绍合情推理与演绎推理的基本概念和重要性,为接下来的学习打下基础。
2.合情推理与演绎推理基础知识讲解(10分钟)
目标:让学生了解合情推理与演绎推理的基本概念、组成部分和原理。
过程:
讲解合情推理与演绎推理的定义,包括其主要组成元素或结构。
①学习效果评价:评价学生对合情推理与演绎推理的理解和应用能力。
②学习反思与改进:鼓励学生总结经验,提高解题技巧。
板书设计应注重清晰性、简洁性和艺术性,使用图表、图示、颜色等元素,使板书更具吸引力。同时,结合教学实际,适时调整板书内容,以适应学生的学习需求。
作业布置与反馈
1.作业布置
根据本节课的教学内容和目标,布置适量的作业,以便于学生巩固所学知识并提高能力。作业布置应涵盖本节课的主要知识点,包括合情推理与演绎推理的基本概念、特点、应用实例、方法技巧、步骤规范以及练习与实践等。以下是一些建议的作业题目:

人教版数学高二新课标 《合情推理》 名师教学设计

人教版数学高二新课标 《合情推理》 名师教学设计
思考:其他偶数是否也有类似的规律?
讨论:组织学生进行交流、探讨。
检验:2和4可以吗?为什么不行?
归纳:通过刚才的探究,由学生归纳“归纳推理”的定义及特点。
数学建构
●把从个别事实中推演出一般性结论的推理,称为归纳推理(简称归纳).
注:归纳推理的特点;
简言之,归纳推理是由部分到整体、由特殊到一般的推理。
例3
探究:上述结论都成立吗?
强调:归纳推理的结果不一定成立!——“一切皆有可能!”
例4已知数列{ }的第1项 ,且 (n=1,2,3,…),试归纳出这个数列的通项公式.
探索:先让学生独立进行思考。
活动:“千里走单骑” — 鼓励学生说出自己的解题思路。
活动:“圆桌会议” — 鼓励其他同学给予评价,对在哪里?错在哪里?还有没有更好的方法?
【设计意图】:提供一个舞台,让学生展示自己的才华,这将极大地调动学生的积极性,增强学生的荣誉感,培养学生独立分析问题和解决问题的能力,体现了“自主探究”,同时,也锻炼了学生敢想、敢说、敢做的能力。
【一点心得】:在“千里走单骑”和“圆桌会议”的探究活动中,教师一定要以“鼓励和表扬”为主,面带微笑,消除学生的恐惧感,提高学生的自信心.
引入:“阿基米德曾对国王说,给我一个支点,我将撬起整个地球!”
提问:大家认为可能吗?他为何敢夸下如此海口?理由何在?
探究:他是怎么发现“杠杆原理”的?
从而引入两则小典故:(图片展示-阿基米德的灵感)
:一个小孩,为何轻轻松松就能提起一大桶水?基于这两个发现,阿基米德大胆地猜想,然后小心求证,终于发现了伟大的“杠杆原理”。
§2.1.1.1合情推理
1.教学目标:
(1)知识与技能:
掌握归纳推理的技巧,并能运用解决实际问题。

人教版高中数学选修1-2第二章合情推理与演绎证明 同步教案

人教版高中数学选修1-2第二章合情推理与演绎证明 同步教案

①大前提——已知的一般原理;
②小前提——所研究的特殊情况;
③结论——根据一般原理,对特殊情况作出的判断.
例题精讲
【题型一、归纳推理】
【例1】观察下列等式:
可以推测:13+23+33+…+n3=________(n∈N*,用含有n的代数式表示).
方法总结:所谓归纳,就是由特殊到一般,因此在归纳时就要分析所给条件之间的变化规律,从而得到一般结论.
巩固训练
1、已知经过计算和验证有下列正确的不等式:3+17<210,7.5+12.5<210,8+2+12-2<210,根据以上不等式的规律,请写出一个对正实数m,n都成立的条件不等式________.
2、已知
111
()1()
23
f n n N
n+
=+++⋅⋅⋅+∈,经计算:
35
(2),(4)2,(8),
22
f f f
=>>(16)3,
f>
7
(32)
2
f>,
推测当2
n≥时,有__________________________.
3、观察(1)tan10tan20tan20tan60tan60tan101
++=(2)tan5tan10tan10tan75tan75tan51
++=。

高中数学选修《合情推理与演绎推理》教案

高中数学选修《合情推理与演绎推理》教案

高中数学选修《合情推理与演绎推理》教案第一章:合情推理概述1.1 推理的定义与分类引导学生理解推理的定义介绍合情推理与演绎推理的区别与联系举例说明合情推理在数学中的应用1.2 合情推理的方法介绍归纳推理、类比推理、归纳猜想等合情推理方法通过具体例子讲解各种合情推理方法的步骤与特点引导学生掌握合情推理的方法并能够运用到实际问题中第二章:演绎推理的基本形式2.1 演绎推理的定义与特点引导学生理解演绎推理的定义与特点强调演绎推理的逻辑严密性与结论的必然性2.2 演绎推理的基本形式介绍演绎推理的三段论形式及其结构引导学生理解假言推理、选言推理等演绎推理的基本形式通过例题讲解各种演绎推理形式的应用与解题步骤第三章:演绎推理的应用3.1 演绎推理在数学证明中的应用引导学生理解演绎推理在数学证明中的重要性通过具体例子讲解演绎推理在证明题中的应用与步骤3.2 演绎推理在解决实际问题中的应用介绍演绎推理在解决实际问题中的应用范围与方法通过具体例子讲解演绎推理在实际问题解决中的步骤与技巧第四章:合情推理与演绎推理的综合应用4.1 合情推理与演绎推理的综合案例分析提供综合案例,要求学生运用合情推理与演绎推理的方法进行分析与解答引导学生理解合情推理与演绎推理在不同情境下的作用与重要性4.2 合情推理与演绎推理的综合练习提供综合练习题目,要求学生运用合情推理与演绎推理的方法进行解答引导学生通过练习巩固合情推理与演绎推理的知识与技能第五章:推理能力培养5.1 推理能力的培养方法介绍推理能力的培养方法与技巧引导学生掌握推理能力的培养方法并能够运用到实际学习中5.2 推理能力的学习与应用提供推理能力的学习与应用题目,要求学生进行练习与解答引导学生通过练习与应用提高自己的推理能力并能够运用到实际问题中第六章:数学归纳法与合情推理6.1 数学归纳法的概念与步骤介绍数学归纳法的定义与基本步骤通过具体例子讲解数学归纳法的应用与解题技巧6.2 数学归纳法在合情推理中的应用引导学生理解数学归纳法在合情推理中的作用与重要性提供合情推理题目,要求学生运用数学归纳法进行解答与证明第七章:演绎推理与数学证明7.1 演绎推理在数学证明中的作用强调演绎推理在数学证明中的重要性通过具体例子讲解演绎推理在数学证明中的应用与步骤7.2 演绎推理在证明题中的综合应用提供证明题目,要求学生运用演绎推理的方法进行解答与证明引导学生通过练习巩固演绎推理在数学证明中的知识与技能第八章:逻辑推理与演绎推理8.1 逻辑推理的基本概念介绍逻辑推理的定义与基本概念强调逻辑推理在演绎推理中的重要性8.2 逻辑推理在演绎推理中的应用提供演绎推理题目,要求学生运用逻辑推理的方法进行解答与证明引导学生通过练习与应用提高逻辑推理在演绎推理中的能力第九章:演绎推理与问题解决9.1 演绎推理在问题解决中的作用强调演绎推理在问题解决中的重要性通过具体例子讲解演绎推理在问题解决中的应用与步骤9.2 演绎推理在实际问题解决中的综合应用提供实际问题题目,要求学生运用演绎推理的方法进行解答与解决引导学生通过练习与应用提高演绎推理在问题解决中的能力第十章:总结与提高10.1 合情推理与演绎推理的总结对本课程的合情推理与演绎推理进行总结与回顾强调合情推理与演绎推理在数学学习与问题解决中的重要性10.2 推理能力的进一步提高提供推理能力提高的练习与题目,要求学生进行解答与实践引导学生通过练习与实践不断提高自己的推理能力,并能够运用到实际学习中。

高中数学选修《合情推理与演绎推理》教案

高中数学选修《合情推理与演绎推理》教案

高中数学选修《合情推理与演绎推理》教案一、教学目标1. 让学生理解合情推理与演绎推理的定义及其相互关系。

2. 培养学生运用合情推理与演绎推理解决问题的能力。

3. 提高学生分析问题、解决问题的能力,培养学生的逻辑思维能力。

二、教学内容1. 合情推理与演绎推理的定义及特点。

2. 合情推理与演绎推理在数学中的应用。

3. 合情推理与演绎推理的练习题解析。

三、教学重点与难点1. 合情推理与演绎推理的定义及其相互关系。

2. 运用合情推理与演绎推理解决实际问题。

四、教学方法1. 采用讲授法,讲解合情推理与演绎推理的定义、特点及应用。

2. 运用案例分析法,分析实际问题中的合情推理与演绎推理。

3. 开展小组讨论,培养学生合作学习的能力。

五、教学过程1. 导入新课:通过生活中的实例,引导学生了解合情推理与演绎推理的概念。

2. 讲解合情推理与演绎推理的定义、特点及相互关系。

3. 案例分析:分析实际问题,展示合情推理与演绎推理的应用。

4. 练习题解析:讲解练习题,巩固所学知识。

5. 小组讨论:学生分组讨论,分享各自的理解和心得。

6. 总结归纳:对本节课的内容进行总结,强调合情推理与演绎推理在数学及生活中的重要性。

7. 布置作业:布置相关练习题,巩固所学知识。

六、教学策略与手段1. 运用多媒体教学,通过动画、图片等形式展示合情推理与演绎推理的过程,增强学生的直观感受。

2. 设计丰富的教学活动,如游戏、竞赛等,激发学生的学习兴趣。

3. 创设问题情境,引导学生主动探究,培养学生的独立思考能力。

七、教学评价1. 课堂问答:检查学生对合情推理与演绎推理的理解程度。

2. 练习题:评估学生运用合情推理与演绎推理解决问题的能力。

3. 小组讨论:观察学生在讨论中的表现,评价其合作学习的能力。

八、教学案例案例一:通过分析一道数学题,引导学生运用合情推理与演绎推理求解。

案例二:以生活中的问题为背景,让学生运用合情推理与演绎推理寻找解决方案。

人教版高中数学选修2-2教学案2.1合情推理与演绎推理(教师版)

人教版高中数学选修2-2教学案2.1合情推理与演绎推理(教师版)

合情推理与演绎推理____________________________________________________________________________________________________________________________________________________________________1.推理根据一个或几个已知的判断来确定一个新的判断,这种思维方式叫做推理.推理一般分为合情推理与演绎推理两类.2.合情推理3.(1)定义:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理;(2)特点:演绎推理是由一般到特殊的推理;(3)模式:三段论.“三段论”是演绎推理的一般模式,包括:题型一例1 设f (x )=13x +3,先分别求f (0)+f (1),f (-1)+f (2),f (-2)+f (3),然后归纳猜想一般性结论,并给出证明.思维启迪 解题的关键是由f (x )计算各式,利用归纳推理得出结论并证明. 解 f (0)+f (1)=130+3+131+3=11+3+13+3=3-12+3-36=33,同理可得:f (-1)+f (2)=33, f (-2)+f (3)=33,并注意到在这三个特殊式子中,自变量之和均等于1. 归纳猜想得:当x 1+x 2=1时,均为f (x 1)+f (x 2)=33. 证明:设x 1+x 2=1, ∵f (x 1)+f (x 2)=131x +3+132x +3=(31x +3)+(32x +3)(31x +3)(32x +3)=31x +32x +23321x x ++3(31x +32x )+3=31x +32x +233(31x +32x )+2×3=31x +32x +233(31x +32x +23)=33. 思维升华 (1)归纳是依据特殊现象推断出一般现象,因而由归纳所得的结论超越了前提所包含的范围.(2)归纳的前提是特殊的情况,所以归纳是立足于观察、经验或试验的基础之上的. (3)归纳推理所得结论未必正确,有待进一步证明,但对数学结论和科学的发现很有用.(1)观察下列等式 1=1 2+3+4=9 3+4+5+6+7=25 4+5+6+7+8+9+10=49照此规律,第五个等式应为________________________.(2)已知f (n )=1+12+13+…+1n (n ∈N *),经计算得f (4)>2,f (8)>52,f (16)>3,f (32)>72,则有______.答案 (1)5+6+7+8+9+10+11+12+13=81 (2)f (2n)>n +22(n ≥2,n ∈N *)解析 (1)由于1=12,2+3+4=9=32,3+4+5+6+7=25=52,4+5+6+7+8+9+10=49=72,所以第五个等式为5+6+7+8+9+10+11+12+13=92=81. (2)由题意得f (22)>42,f (23)>52,f (24)>62,f (25)>72,所以当n ≥2时,有f (2n)>n +22.故填f (2n )>n +22(n ≥2,n ∈N *).题型二 类比推理例2 已知数列{a n }为等差数列,若a m =a ,a n =b (n -m ≥1,m ,n ∈N *),则a m +n =nb -man -m.类比等差数列{a n }的上述结论,对于等比数列{b n }(b n >0,n ∈N *),若b m =c ,b n =d (n -m ≥2,m ,n ∈N *),则可以得到b m +n =________.思维启迪 等差数列{a n }和等比数列{b n }类比时,等差数列的公差对应等比数列的公比,等差数列的加减法运算对应等比数列的乘除法运算,等差数列的乘除法运算对应等比数列中的乘方开方运算.答案n-m d nc m解析设数列{a n}的公差为d,数列{b n}的公比为q.因为a n=a1+(n-1)d,b n=b1q n-1,a m+n =nb-man-m,所以类比得b m+n =n-m d nc m思维升华(1)进行类比推理,应从具体问题出发,通过观察、分析、联想进行对比,提出猜想.其中找到合适的类比对象是解题的关键.(2)类比推理常见的情形有平面与空间类比;低维的与高维的类比;等差数列与等比数列类比;数的运算与向量的运算类比;圆锥曲线间的类比等.(3)在进行类比推理时,不仅要注意形式的类比,还要注意方法的类比,且要注意以下两点:①找两类对象的对应元素,如:三角形对应三棱锥,圆对应球,面积对应体积等等;②找对应元素的对应关系,如:两条边(直线)垂直对应线面垂直或面面垂直,边相等对应面积相等.(1)给出下列三个类比结论:①(ab)n=a n b n与(a+b)n类比,则有(a+b)n=a n+b n;②log a(xy)=log a x+log a y与sin(α+β)类比,则有sin(α+β)=sin αsin β;③(a+b)2=a2+2ab+b2与(a+b)2类比,则有(a+b)2=a2+2a·b+b2.其中结论正确的个数是()A.0B.1C.2D.3(2)把一个直角三角形以两直角边为邻边补成一个矩形,则矩形的对角线长即为直角三角形外接圆直径,以此可求得外接圆半径r =a 2+b 22(其中a ,b 为直角三角形两直角边长).类比此方法可得三条侧棱长分别为a ,b ,c 且两两垂直的三棱锥的外接球半径R =________. 答案 (1)B (2)a 2+b 2+c 22解析 (1)①②错误,③正确.(2)由平面类比到空间,把矩形类比为长方体,从而得出外接球半径. 题型三 演绎推理例3 已知函数f (x )=-aa x +a (a >0,且a ≠1).(1)证明:函数y =f (x )的图象关于点(12,-12)对称;(2)求f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)的值.思维启迪 证明本题依据的大前提是中心对称的定义,函数y =f (x )的图象上的任一点关于对称中心的对称点仍在图象上.小前提是f (x )=-a a x +a (a >0且a ≠1)的图象关于点(12,-12)对称.(1)证明 函数f (x )的定义域为全体实数,任取一点(x ,y ), 它关于点(12,-12)对称的点的坐标为(1-x ,-1-y ).由已知得y =-a a x +a ,则-1-y =-1+a a x +a =-a xa x +a ,f (1-x )=-a a 1-x +a =-a a a x +a =-a ·a x a +a ·a x =-a xa x +a ,∴-1-y =f (1-x ),即函数y =f (x )的图象关于点(12,-12)对称.(2)解 由(1)知-1-f (x )=f (1-x ),即f (x )+f (1-x )=-1. ∴f (-2)+f (3)=-1,f (-1)+f (2)=-1,f (0)+f (1)=-1. 则f (-2)+f (-1)+f (0)+f (1)+f (2)+f (3)=-3.思维升华 演绎推理是由一般到特殊的推理,常用的一般模式为三段论,演绎推理的前提和结论之间有着某种蕴含关系,解题时要找准正确的大前提,一般地,若大前提不明确时,可找一个使结论成立的充分条件作为大前提.已知函数y =f (x ),满足:对任意a ,b ∈R ,a ≠b ,都有af (a )+bf (b )>af (b )+bf (a ),试证明:f (x )为R 上的单调增函数. 证明 设x 1,x 2∈R ,取x 1<x 2,则由题意得x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1), ∴x 1[f (x 1)-f (x 2)]+x 2[f (x 2)-f (x 1)]>0, [f (x 2)-f (x 1)](x 2-x 1)>0,∵x 1<x 2,∴f (x 2)-f (x 1)>0,f (x 2)>f (x 1). 所以y =f (x )为R 上的单调增函数.高考中的合情推理问题典例:(1) 古希腊毕达哥拉斯学派的数学家研究过各种多边形数,如三角形数1,3,6,10,…,第n 个三角形数为n (n +1)2=12n 2+12n ,记第n 个k 边形数为N (n ,k )(k ≥3),以下列出了部分k 边形数中第n 个数的表达式: 三角形数 N (n ,3)=12n 2+12n ,正方形数 N (n ,4)=n 2, 五边形数 N (n ,5)=32n 2-12n ,六边形数N (n ,6)=2n 2-n可以推测N (n ,k )的表达式,由此计算N (10,24)=____________.思维启迪 从已知的部分k 边形数观察一般规律写出N (n ,k ),然后求N (10,24).解析 由N (n ,4)=n 2,N (n ,6)=2n 2-n ,可以推测:当k 为偶数时,N (n ,k )=k -22n 2+4-k2n ,∴N (10,24)=24-22×100+4-242×10=1 100-100=1 000. 答案 1 000(2)(5分)若P 0(x 0,y 0)在椭圆x 2a 2+y 2b 2=1(a >b >0)外,过P 0作椭圆的两条切线的切点为P 1,P 2,则切点弦P 1P 2所在的直线方程是x 0x a 2+y 0y b 2=1,那么对于双曲线则有如下命题:若P 0(x 0,y 0)在双曲线x 2a 2-y 2b 2=1(a >0,b >0)外,过P 0作双曲线的两条切线,切点为P 1,P 2,则切点弦P 1P 2所在直线的方程是________.思维启迪 直接类比可得. 解析 设P 1(x 1,y 1),P 2(x 2,y 2), 则P 1,P 2的切线方程分别是 x 1x a 2-y 1y b 2=1,x 2x a 2-y 2y b 2=1. 因为P 0(x 0,y 0)在这两条切线上, 故有x 1x 0a 2-y 1y 0b 2=1,x 2x 0a 2-y 2y 0b2=1, 这说明P 1(x 1,y 1),P 2(x 2,y 2)在直线x 0x a 2-y 0yb 2=1上,故切点弦P 1P 2所在的直线方程是x 0x a 2-y 0yb 2=1.答案x 0x a 2-y 0yb 2=1 (3)(5分)在计算“1×2+2×3+…+n (n +1)”时,某同学学到了如下一种方法:先改写第k 项: k (k +1)=13[k (k +1)(k +2)-(k -1)k (k +1)],由此得1×2=13(1×2×3-0×1×2),2×3=13(2×3×4-1×2×3),n (n +1)=13[n (n +1)(n +2)-(n -1)n (n +1)].相加,得1×2+2×3+…+n (n +1)=13n (n +1)·(n +2).类比上述方法,请你计算“1×2×3+2×3×4+…+n (n +1)·(n +2)”,其结果为________. 思维启迪 根据两个数积的和规律猜想,可以利用前几个式子验证.解析 类比已知条件得k (k +1)(k +2)=14[k (k +1)(k +2)(k +3)-(k -1)k (k +1)(k +2)],由此得1×2×3=14(1×2×3×4-0×1×2×3),2×3×4=14(2×3×4×5-1×2×3×4),3×4×5=14(3×4×5×6-2×3×4×5),n (n +1)(n +2)=14[n (n +1)(n +2)(n +3)-(n -1)n (n +1)(n +2)].以上几个式子相加得:1×2×3+2×3×4+…+n (n +1)(n +2) =14n (n +1)(n +2)(n +3). 答案14n (n +1)(n +2)(n +3) 1.判断下面结论是否正确(请在括号中打“√”或“×”)(1)归纳推理得到的结论不一定正确,类比推理得到的结论一定正确. ( × ) (2)由平面三角形的性质推测空间四面体的性质,这是一种合情推理.( √ ) (3)在类比时,平面中的三角形与空间中的平行六面体作为类比对象较为合适.( × )(4)“所有3的倍数都是9的倍数,某数m 是3的倍数,则m 一定是9的倍数”,这是三段论推理,但其结论是错误的.( √ )(5)一个数列的前三项是1,2,3,那么这个数列的通项公式是a n =n (n ∈N +).( × ) (6)2+23=223, 3+38=338, 4+415=4415,…, 6+b a =6ba(a ,b 均为实数),则可以推测a =35,b =6.( √ ) 2.数列2,5,11,20,x ,47,…中的x 等于( )A.28B.32C.33D.27答案 B解析 5-2=3,11-5=6,20-11=9, 推出x -20=12,所以x =32.3.观察下列各式:55=3 125,56=15 625,57=78 125,…,则52 011的后四位数字为 ( )A.3 125B.5 625C.0 625D.8 125答案 D解析 55=3 125,56=15 625,57=78 125,58=390 625,59=1 953 125,可得59与55的后四位数字相同,…,由此可归纳出5m +4k 与5m (k ∈N *,m =5,6,7,8)的后四位数字相同,又2 011=4×501+7,所以52 011与57后四位数字相同为8125,故选D. 4. 观察下列等式 12=112-22=-3 12-22+32=6 12-22+32-42=-10照此规律,第n 个等式可为________. 答案 12-22+32-42+…+(-1)n +1n 2=(-1)n +1·n (n +1)2解析 观察等式左边的式子,每次增加一项,故第n 个等式左边有n 项,指数都是2,且正、负相间,所以等式左边的通项为(-1)n +1n 2.等式右边的值的符号也是正、负相间,其绝对值分别为1,3,6,10,15,21,….设此数列为{a n },则a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,…,a n -a n -1=n ,各式相加得a n -a 1=2+3+4+…+n ,即a n =1+2+3+…+n =n (n +1)2.所以第n 个等式为12-22+32-42+…+(-1)n +1n 2=(-1)n +1n (n +1)2. 5.设等差数列{a n }的前n 项和为S n ,则S 4,S 8-S 4,S 12-S 8,S 16-S 12成等差数列.类比以上结论有设等比数列{b n }的前n 项积为T n ,则T 4,________,________,T 16T 12成等比数列.答案T 8T 4 T 12T 8解析 对于等比数列,通过类比,有等比数列{b n }的前n 项积为T n , 则T 4=a 1a 2a 3a 4,T 8=a 1a 2…a 8,T 12=a 1a 2…a 12, T 16=a 1a 2…a 16,因此T 8T 4=a 5a 6a 7a 8,T 12T 8=a 9a 10a 11a 12,T 16T 12=a 13a 14a 15a 16,而T 4,T 8T 4,T 12T 8,T 16T 12的公比为q 16,因此T 4,T 8T 4,T 12T 8,T 16T 12成等比数列._________________________________________________________________________________ _________________________________________________________________________________基础巩固A 组 专项基础训练 (时间:40分钟)一、选择题1. 观察下列各式:a +b =1,a 2+b 2=3,a 3+b 3=4,a 4+b 4=7,a 5+b 5=11,…,则a 10+b 10等于( )A.28B.76C.123D.199答案 C解析 观察规律,归纳推理.从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a 10+b 10=123. 2.定义一种运算“*”:对于自然数n 满足以下运算性质: (1)1*1=1,(2)(n +1)*1=n *1+1,则n *1等于( )A.nB.n +1C.n -1D.n 2答案 A解析 由(n +1)*1=n *1+1,得n *1=(n -1)*1+1=(n -2)*1+2=…=1*1+(n -1). 又∵1*1=1,∴n *1=n 3.下列推理是归纳推理的是( )A.A ,B 为定点,动点P 满足|P A |+|PB |=2a >|AB |,则P 点的轨迹为椭圆B.由a 1=1,a n =3n -1,求出S 1,S 2,S 3,猜想出数列的前n 项和S n 的表达式C.由圆x 2+y 2=r 2的面积πr 2,猜想出椭圆x 2a 2+y 2b 2=1的面积S =πab D.科学家利用鱼的沉浮原理制造潜艇 答案 B解析 从S 1,S 2,S 3猜想出数列的前n 项和S n ,是从特殊到一般的推理,所以B 是归纳推理,故应选B.4.已知△ABC 中,∠A =30°,∠B =60°,求证:a <b . 证明:∵∠A =30°,∠B =60°,∴∠A <∠B . ∴a <b ,其中,画线部分是演绎推理的( )A.大前提B.小前提C.结论D.三段论答案 B解析 由三段论的组成可得画线部分为三段论的小前提.5.若数列{a n }是等差数列,则数列{b n }(b n =a 1+a 2+…+a n n )也为等差数列.类比这一性质可知,若正项数列{c n }是等比数列,且{d n }也是等比数列,则d n 的表达式应为( )A.d n =c 1+c 2+…+c nnB.d n =c 1·c 2·…·c nnC.d n = n c n 1+c n 2+…+c n nnD.d n =n c 1·c 2·…·c n答案 D解析 若{a n }是等差数列,则a 1+a 2+…+a n =na 1+n (n -1)2d , ∴b n =a 1+(n -1)2d =d 2n +a 1-d2,即{b n }为等差数列;若{c n }是等比数列,则c 1·c 2·…·c n =c n 1·q 1+2+…+(n -1)=c n 1·q n (n -1)2, ∴d n =nc 1·c 2·…·c n =c 1·q n -12,即{d n }为等比数列,故选D.二、填空题6.仔细观察下面○和●的排列规律:○ ● ○○ ● ○○○ ● ○○○○ ● ○○○○○ ● ○○○○○○ ●……若依此规律继续下去,得到一系列的○和●,那么在前120个○和●中,●的个数是________. 答案 14解析 进行分组○●|○○●|○○○●|○○○○●|○○○○○●|○○○○○○●|……, 则前n 组两种圈的总数是f (n )=2+3+4+…+(n +1)=n (n +3)2,易知f (14)=119,f (15)=135,故n =14.7.若函数f (x )=x x +2(x >0),且f 1(x )=f (x )=xx +2,当n ∈N *且n ≥2时,f n (x )=f [f n -1(x )],则f 3(x )=________,猜想f n (x )(n ∈N *)的表达式为________. 答案x 7x +8 x (2n-1)x +2n解析 ∵f 1(x )=xx +2,f n (x )=f [f n -1(x )](n ≥2), ∴f 2(x )=f (x x +2)=x x +2(x x +2+2)=x3x +4.f 3(x )=f [f 2(x )]=f (x 3x +4)=x 3x +4(x 3x +4+2)=x7x +8.由所求等式知,分子都是x ,分母中常数项为2n ,x 的系数比常数项少1,为2n -1, 故f n (x )=x(2n -1)x +2n.8.在平面几何中,△ABC 的内角平分线CE 分AB 所成线段的比为AE EB =ACBC ,把这个结论类比到空间:在三棱锥A -BCD 中(如图所示),平面DEC 平分二面角A -CD -B 且与AB 相交于点E ,则类比得到的结论是________. 答案BE EA =S △BCDS △ACD解析 易知点E 到平面BCD 与平面ACD 的距离相等, 故V E -BCD V E -ACD =BE EA =S △BCD S △ACD . 三、解答题9.已知等差数列{a n }的公差d =2,首项a 1=5. (1)求数列{a n }的前n 项和S n ;(2)设T n =n (2a n -5),求S 1,S 2,S 3,S 4,S 5;T 1,T 2,T 3,T 4,T 5,并归纳出S n 与T n 的大小规律. 解 (1)由于a 1=5,d =2, ∴S n =5n +n (n -1)2×2=n (n +4).(2)∵T n =n (2a n -5)=n [2(2n +3)-5]=4n 2+n . ∴T 1=5,T 2=4×22+2=18,T 3=4×32+3=39, T 4=4×42+4=68,T 5=4×52+5=105.S 1=5,S 2=2×(2+4)=12,S 3=3×(3+4)=21, S 4=4×(4+4)=32,S 5=5×(5+4)=45. 由此可知S 1=T 1,当n ≥2时,S n <T n .归纳猜想:当n =1时,S n =T n ;当n ≥2,n ∈N 时,S n <T n .10.在Rt △ABC 中,AB ⊥AC ,AD ⊥BC 于D ,求证:1AD 2=1AB 2+1AC 2,那么在四面体ABCD 中,类比上述结论,你能得到怎样的猜想,并说明理由. 解 如图所示,由射影定理 AD 2=BD ·DC ,AB 2=BD ·BC , AC 2=BC ·DC , ∴1AD 2=1BD ·DC=BC 2BD ·BC ·DC ·BC =BC 2AB 2·AC 2. 又BC 2=AB 2+AC 2,∴1AD 2=AB 2+AC 2AB 2·AC 2=1AB 2+1AC2.猜想,四面体ABCD 中,AB 、AC 、AD 两两垂直,AE ⊥平面BCD , 则1AE 2=1AB 2+1AC 2+1AD 2. 证明:如图,连接BE 并延长交CD 于F ,连接AF . ∵AB ⊥AC ,AB ⊥AD , ∴AB ⊥平面ACD . ∴AB ⊥AF .在Rt △ABF 中,AE ⊥BF , ∴1AE 2=1AB 2+1AF 2. 在Rt △ACD 中,AF ⊥CD ,∴1AF 2=1AC 2+1AD 2,∴1AE 2=1AB 2+1AC 2+1AD2. B 组 专项能力提升 (时间:30分钟)1.给出下面类比推理命题(其中Q 为有理数集,R 为实数集,C 为复数集): ①“若a ,b ∈R ,则a -b =0⇒a =b ”类比推出“若a ,b ∈C ,则a -b =0⇒a =b ”;②“若a ,b ,c ,d ∈R ,则复数a +b i =c +d i ⇒a =c ,b =d ”类比推出“若a ,b ,c ,d ∈Q ,则a +b 2=c +d 2⇒a =c ,b =d ”;③若“a ,b ∈R ,则a -b >0⇒a >b ”类比推出“若a ,b ∈C ,则a -b >0⇒a >b ”.其中类比结论正确的个数是( )A.0B.1C.2D.3答案 C解析 ①②正确,③错误.因为两个复数如果不全是实数,不能比较大小. 2.设是R 的一个运算,A 是R 的非空子集.若对于任意a ,b ∈A ,有a b ∈A ,则称A 对运算封闭.下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是( ) A.自然数集 B.整数集 C.有理数集D.无理数集答案 C解析 A 错:因为自然数集对减法、除法不封闭;B 错:因为整数集对除法不封闭;C 对:因为任意两个有理数的和、差、积、商都是有理数,故有理数集对加、减、乘、除法(除数不等于零)四则运算都封闭;D 错:因为无理数集对加、减、乘、除法都不封闭.3.平面内有n 条直线,最多可将平面分成f (n )个区域,则f (n )的表达式为________.答案 n 2+n +22解析 1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;……,n 条直线最多可将平面分成1+(1+2+3+…+n )=1+n (n +1)2=n 2+n +22个区域.4.数列{a n }的前n 项和记为S n ,已知a 1=1,a n +1=n +2n S n(n ∈N *).证明:(1)数列{S nn }是等比数列;(2)S n +1=4a n .证明 (1)∵a n +1=S n +1-S n ,a n +1=n +2n S n ,∴(n +2)S n =n (S n +1-S n ), 即nS n +1=2(n +1)S n . 故S n +1n +1=2·S n n ,(小前提) 故{S nn }是以2为公比,1为首项的等比数列.(结论)(大前提是等比数列的定义,这里省略了) (2)由(1)可知S n +1n +1=4·S n -1n -1(n ≥2),∴S n +1=4(n +1)·S n -1n -1=4·n -1+2n -1·S n -1=4a n (n ≥2).(小前提) 又∵a 2=3S 1=3,S 2=a 1+a 2=1+3=4=4a 1, (小前提) ∴对于任意正整数n ,都有S n +1=4a n .(结论)5.对于三次函数f (x )=ax 3+bx 2+cx +d (a ≠0),给出定义:设f ′(x )是函数y =f (x )的导数,f ″(x )是f ′(x )的导数,若方程f ″(x )=0有实数解x 0,则称点(x 0,f (x 0))为函数y =f (x )的“拐点”.某同学经过探究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.若f (x )=13x 3-12x 2+3x -512,请你根据这一发现, (1)求函数f (x )=13x 3-12x 2+3x -512的对称中心;(2)计算f (12 013)+f (22 013)+f (32 013)+f (42 013)+…+f (2 0122 013).解 (1)f ′(x )=x 2-x +3,f ″(x )=2x -1,由f ″(x )=0,即2x -1=0,解得x =12.f (12)=13×(12)3-12×(12)2+3×12-512=1. 由题中给出的结论,可知函数f (x )=13x 3-12x 2+3x -512的对称中心为(12,1).(2)由(1),知函数f (x )=13x 3-12x 2+3x -512的对称中心为(12,1),所以f (12+x )+f (12-x )=2,即f (x )+f (1-x )=2.故f (12 013)+f (2 0122 013)=2,f (22 013)+f (2 0112 013)=2, f (32 013)+f (2 0102 013)=2, f (2 0122 013)+f (12 013)=2. 所以f (12 013)+f (22 013)+f (32 013)+f (42 013)+…+f (2 0122 013)=12×2×2 012=2 012.。

最新人教版高中数学选修2-2第二章《合情推理与演绎推理》示范教案1

最新人教版高中数学选修2-2第二章《合情推理与演绎推理》示范教案1

第二章推理与证明本章概览教材分析本章的内容属于数学思维方法的范畴,把过去渗透在具体数学内容中的思维方法,以集中的、显性的形式呈现出来,使学生更加明确这些方法,并能在今后的学习中有意识地使用它们,以此培养学生言之有理、论证有据的习惯.本章将结合生活实例和学生已学过的数学实例,介绍两种基本的推理——合情推理与演绎推理;两类证明方法——直接证明和间接证明;学习数学归纳法的基本原理和步骤.课标要求(1)合情推理与演绎推理①了解合情推理的含义,能利用归纳和类比进行推理,体会合情推理在数学中的应用;②了解演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单的推理;③了解合情推理和演绎推理之间的联系和差异.(2)直接证明与间接证明①了解直接证明的两种基本方法——分析法和综合法;了解分析法和综合法的思考过程与特点;②了解间接证明的一种基本方法——反证法;了解反证法的思考过程与特点.(3)了解数学归纳法的原理,能用数学归纳法证明一些简单命题.教学建议1.教学中应尽量从学生已学过的数学实例和生活中的实例出发,从中挖掘、提炼出合情推理与演绎推理的含义和推理方法,帮助学生了解合情推理与演绎推理的含义,为学生示范如何规范地应用这两种推理解决问题.2.通过实例引导学生分析综合法、分析法和反证法的思考过程与特点,并归纳出操作流程框图,使他们在以后的学习生活中,能自觉地有意识地运用这些方法进行数学证明,养成言之有理、论证有据的好习惯.3.数学归纳法是一种特殊的直接证明的方法,第一部分主要内容是借助具体实例归纳出数学归纳法的基本原理、步骤;第二部分的重点是用数学归纳法证明一些简单的命题,通过对数学命题的证明巩固对数学归纳法原理的认识.课时分配本章约需9课时,具体分配如下:2.1合情推理与演绎推理2.1.1合情推理整体设计教材分析合情推理所蕴含的数学思想贯穿于高中数学的整个知识体系,但是作为一节内容出现在高中数学教材中尚属首次.合情推理是新课标教材的亮点之一,本节内容对合情推理的一般方法进行了必要的归纳和总结,同时也对后继知识的学习起到了引领的作用.教材的设计是对“观察发现、归纳类比、抽象概括、演绎证明”等数学思维方法的总结与归纳,使已学过的数学知识和思想方法系统化、明晰化.教材紧密地结合了已学过的数学实例和生活实例,避免了空泛地讲数学思想、方法;以变分散为集中,变隐性为显性的方式学习合情推理,是知识、方法、思维和情感的融合与促进,让学生在学知识的同时充分体会数学的发展过程.课时分配2课时.第1课时内容为归纳推理;第2课时内容为类比推理.第1课时教学目标1.知识与技能目标结合生活实例了解推理的含义;掌握归纳推理的结构和特点,能够进行简单的归纳推理;体会归纳推理在数学发现中的作用.2.过程与方法目标通过探索、研究、归纳、总结等方式,使归纳推理全方位地呈现在学生面前,让学生了解数学不单是现成结论的体系,结论的发现也是数学的重要内容,从而形成对数学较为完整的认识;培养学生发散思维能力,充分挖掘学生的创新思维能力.3.情感、态度与价值观通过学习本节课,培养学生实事求是、力戒浮夸的思维习惯,深化学生对数学意义的理解,激发学生的学习兴趣;认识数学的科学价值、应用价值和文化价值;通过探究学习培养学生互助合作的学习习惯,形成良好的思维方式和锲而不舍的钻研精神.重点难点重点:掌握归纳推理的特点和推理过程,体会归纳推理在科学发现中的作用.难点:归纳推理的应用;如何培养学生发现问题、解决问题的能力.教学过程引入新课某市为了解本市的高中生数学学习状态,对四所学校做了一个问卷调查,其中有两方面问题的统计数据如下:根据这四所学校的情况,你能推测全市高中生对数学的印象吗?活动设计:先让学生独立思考,然后小组交流,教师巡视指导,并注意与学生交流.学情预测:学生可能会说出很多不同的答案.教师提问:你的推测一定正确吗?活动结果:有的学生可能会说“正确”;有的学生可能会说“不正确”;有的学生可能会说“不确定”.教师:推测不一定正确.设计意图自然合理地提出问题,让学生体会“数学来源于生活”,创造和谐积极的学习气氛,为课堂结尾“数学是生动活泼的,发现问题是数学学习的一个重要目的”埋下伏笔.探究新知生活中我们经常会遇到这样的情形:看见柳树发芽,冰雪融化,……看见花凋谢了,树叶黄了,……看见乌云密布,燕子低飞,……引导学生做一些简单的推理:1.由铜、铁、铝、金、银等金属都能导电,猜想:一切金属都能导电.2.由三角形内角和为180°,凸四边形内角和为360°,凸五边形内角和为540°,猜想:凸n边形内角和为(n-2)·180°.提出问题:像上面这样的思维方式就是推理,请问你认为什么是推理?活动设计:学生先自由发言,教师逐步引导学生发现推理的结论是通过猜想得到的.学情预测:学生开始的回答可能不全面、不准确,但在其他同学的不断补充、纠正下,会趋于完善.活动结果:推理的概念:根据一个或几个已知的事实(或假设)来确定一个新的判断的思维方式就叫推理.注意:一个完整的推理是由前提和结论两部分构成的.设计意图从大量的生活实例出发,让学生充分体会推理的含义和推理的构成,使推理概念的形成更自然、更生动,并训练和培养学生的抽象概括和表达能力.看下面两个推理:1.金受热后体积膨胀;银受热后体积膨胀;铜受热后体积膨胀;铁受热后体积膨胀.由此猜想:金属受热后体积膨胀.2.1,1+3=4,1+3+5=9,1+3+5+7=16,1+3+5+7+9=25,……由此猜想:1+3+…+(2n-1)=n2.提出问题:这两个推理在思维方式上有什么共同特点?活动设计:学生先独立思考,然后分小组讨论.活动结果:共同特点:部分推出整体,个别推出一般.归纳推理的概念:根据一类事物的部分对象具有某种性质,推出该类事物的全部对象都具有这种性质的推理,或由个别事实概括出一般结论的推理,称为归纳推理(简称归纳).简言之,归纳推理是由部分到整体,由个别到一般的推理.设计意图引导学生观察两个推理的前提与结论,根据前提与结论的关系由学生作出进一步分类并尝试命名.提出问题:你在生活中遇到过归纳推理吗?(学生自由发言)活动设计:学生分小组讨论:将学生划分为两大部分,一部分学生讨论生活中运用归纳推理的例子,另一部分学生讨论学习中使用归纳推理的例子.学情预测:学生会举出大量的归纳推理的实例,也可能举出这样的例子:“地球上有生命,火星具有一些与地球类似的特征,猜想:火星上也有生命.”设计意图通过学生所举的例子,教师可以了解学生对归纳推理的理解程度,通过正反实例明确概念的内涵和外延,加深对关键词、重点词的理解,及时更正学生在认识理解中产生的偏差,巩固归纳推理的定义.理解新知教师举例:介绍歌德巴赫猜想.观察下列等式:3+7=10,3+17=20,13+17=30.你们能从中发现什么规律?学情预测:学生的回答可能很杂,甚至会五花八门.如果换一种写法呢?10=3+7,20=3+17,30=13+17.活动设计:学生先独立思考,然后学生分小组讨论.教师适时介入全班引导:提醒学生注意各等式左边的数是什么数?各等式右边是几个数?均是什么数?这反映了一个什么样的规律?活动结果:偶数=奇质数+奇质数.提出问题:这个规律对于其他偶数是否成立?可以先从几个较小的偶数开始,具体验证一下.活动设计:学生独立思考,独立举例.教师:全班学生交流研究成果.共同得到,第一个等于两个奇质数之和的偶数是6,即6=3+3.其他结果略.教师:根据上述过程,哥德巴赫大胆地猜想:“任何一个不小于6的偶数都等于两个奇质数之和”.从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功.但我国著名数学家陈景润、王元、潘承洞等均分别取得了很好的结果,做出了巨大的贡献.当然也曾经有人作了些具体的验证工作,例如:6=3+3,8=3+5,10=5+5=3+7,12=5+7,14=7+7=3+11,16=5+11,18=5+13,…,1 000=29+971,1 002=139+863,等等.有人对3.3×108以内且大过6的偶数一一进行验算,哥德巴赫猜想都成立,但依然没有严格的数学证明.因此,我们仍然不能说:“哥德巴赫猜想”成立,即这个规律对于其他偶数是否成立还不得而知.(教师还可以介绍其他学科中运用归纳推理得到的重要发现)提出问题:请同学们根据前面所列举的归纳推理的例子,总结归纳推理的作用.活动设计:全班学生先在老师的带领下共同回顾前面所列举的归纳推理的例子,然后独立思考,小组讨论后汇报结果.活动结果:归纳推理的作用:1.发现新事实;2.提供研究方向.设计意图通过学生主动探究规律,感受归纳推理对发现新事实、得出新结论的作用.在学生独立思考时教师不做任何提示,培养学生探究能力和合作精神.介绍费马猜想:已知221+1,222+1,223+1,224+1都是质数,运用归纳推理你能得出什么样的结论?教师:22n +1(n ∈N )都是质数,这就是著名的费马猜想.半个世纪后欧拉发现:225+1=4 294 967 297=641×6 700 417.这说明了什么?教师:费马猜想是不成立的.后来人们又发现226+1,227+1,228+1都是合数,又能得到什么样的结论?教师:任何形如22n +1(n ∈N ,n ≥6)的数都是合数.设计意图教师生动讲述欧拉发现第五个费马数的过程,激发学生的好奇心与求知欲,同时,通过“猜想——验证——再猜想”说明科学的进步与发展处在一个螺旋上升的过程,同时说明归纳推理的结论不一定正确,有待进一步证明.活动结果:归纳推理的一般步骤:1.通过观察个别情况发现某些相同性质;2.从已知的相同性质中推出一个表述明确的一般性命题;(即猜想)3.检验猜想.运用新知例题 已知数列{a n }的首项a 1=1,且有a n +1=a n a n +1,试归纳出数列的通项公式. 思路分析:数列的通项公式表示的是数列{a n }的第n 项与序号之间的对应关系.为此,我们先根据已知的递推公式,算出数列的前几项.解:当n =1时,a 1=1;当n =2时,a 2=11+1=12; 当n =3时,a 3=121+12=13;当n =4时,a 4=131+13=14. 观察可得,数列的前4项都等于相应序号的倒数,由此猜想,这个数列的通项公式为a n =1n. 点评:掌握归纳推理的一般步骤,进一步感受归纳推理的作用.我们通过归纳得到了关于数列的通项公式的一个猜想,虽然猜想是否正确还有待严格证明,但这个猜想可以为我们的研究提供一种方向.巩固练习设n 是自然数,则18(n 2-1)[1-(-1)n ]的值( ) A .一定是零 B .不一定是整数C .一定是偶数D .是整数但不一定是偶数答案:C变练演编设f(n)=n 2+n +11,n ∈N ,计算f(1)、f(2)、f(3)、f(4)、f(5)、…,你有什么发现? 思路分析:分别计算f(1)、f(2)、f(3)、f(4)、f(5)的具体数值,进行观察,发现这组数据的局部特征,从而对整体作出推断.解:当n =1时,f(1)=12+1+11=13;当n =2时,f(2)=22+2+11=17;当n =3时,f(3)=32+3+11=23;当n =4时,f(4)=42+4+11=31;当n =5时,f(5)=52+5+11=41.观察可得,f(1)、f(2)、f(3)、f(4)、f(5)都是质数,由此猜想,任何f(n)=n 2+n +11,n ∈N 都是质数.变式1:设f(n)=n 2+n ,n ∈N ,计算f(1)、f(2)、f(3)、f(4)、f(5)、…,你有什么发现? 变式2:设f(n)=n 2+n +11,n ∈N ,计算f(2)-f(1)、f(3)-f(2)、f(4)-f(3)、f(5)-f(4)、…,你有什么发现?变式3:设f(n)=n 2+n ,n ∈N ,计算f(2)-f(1)、f(3)-f(2)、f(4)-f(3)、f(5)-f(4)、…,你有什么发现?提出问题:归纳推理所得的结论有时是正确的,但有时也是错误的,那么我们为什么还要进行归纳推理呢?活动设计:学生自己进行计算研究,将所有发现的结果一一列举,并由学生相互之间予以评价.活动成果:变式1:f(n)(n ∈N )都是偶数;变式2:f(n +1)-f(n)=2(n +1)(n ∈N )都是偶数;变式3:f(n +1)-f(n)=2(n +1)(n ∈N )都是偶数.达标检测1.根据下面给出的数塔猜测123 456×9+7等于( )A .1 111 110 1×9+2=11B .1 111 111 12×9+3=111C .1 111 112 123×9+4=1 111D .1 111 113 1 234×9+5=11 1112.在数列{a n }中,a 1=1,且a n =12(a n -1+1a n -1)(n ≥2),试归纳出这个数列的通项公式. 3.观察下面的“三角阵”,试找出相邻两行数间的关系.11 11 2 11 3 3 11 4 6 4 1……1 10 45 …… 45 10 1答案:1.B2.数列的通项公式a n =1(n ∈N ).3.相邻两行数间的关系是每一行首尾的数都是1,其他的数等于上一行中与之相邻的两个数的和.课堂小结1.知识收获:了解了归纳推理的含义;2.方法收获:掌握了归纳推理的方法和步骤;3.思维收获:归纳推理是进行猜测发现结论、探索和提供思路的常用的思维方法. 布置作业1.课本习题2.1 A 组 1题、3题.2.实习作业:登陆网站,选择两个猜想探究来源.补充练习基础练习1.观察下列数列的特点1,2,2,3,3,3,4,4,4,4,…,第100项是( )A .10B .13C .14D .1002.由集合{a 1},{a 1,a 2},{a 1,a 2,a 3},…的子集个数归纳出集合{a 1,a 2,a 3,…,a n }的子集个数为( )A .nB .n +1C .2nD .2n -13.由710>58,911>810,1328>921,…,若a>b>0,m>0,则b +m a +m 与b a之间的大小关系为( ) A .相等 B .前者大C .后者大D .不确定4.1,13,17,115,131,…的一个通项公式a n =__________. 5.f(x)=12x +2,通过计算f(0)+f(1),f(-1)+f(2)的值,猜想f(-n)+f(n +1)=__________.答案:1.C 2.C 3.B 4.a n =12n-1(n ∈N *) 5.22 拓展练习6.观察以下各等式:sin 230°+cos 260°+sin30°·cos60°=34; sin 240°+cos 270°+sin40°·cos70°=34; sin 215°+cos 245°+sin15°·cos45°=34. 分析上述各式的共同特点,写出能反映一般规律的等式,并对等式的正确性加以证明. 解:反映一般规律的等式是sin 2θ+cos 2(θ+30°)+sinθ·cos(θ+30°)=34. 证明:sin 2θ+cos 2(θ+30°)+sinθ·cos (θ+30°)=sin 2θ+(cosθcos30°-sinθsin30°)2+sinθ(cosθcos30°-sinθsin30°)=sin 2θ+(32cosθ-12sinθ)2+sinθ(32cosθ-12sinθ) =sin 2θ+34cos 2θ+14sin 2θ-32cosθsinθ+32cosθsinθ-12sin 2θ =34(sin 2θ+cos 2θ)=34. 设计说明以问题驱动为指导,通过不断提出问题,研究问题,解决问题,使学生获得知识,完成教学.给学生创建一个开放、有活力、有个性的数学学习环境.感受数学美和发现规律的喜悦,激励学生更积极地去寻找规律、认识规律.同时让学生感受到只要做个有心人,发现规律并非难事.以学生熟悉的例子为载体,引导他们提炼、概括、归纳推理的含义和归纳推理的方法,自然合理地提出问题,让学生体会“数学来源于生活”.创造和谐积极的学习气氛.让学生通过直观感知、观察分析、归纳类比,形成由浅入深、由易到难、由特殊到一般的思维飞跃,并借助例题具体说明在数学发现的过程中应该如何应用归纳推理.备课资料哥德巴赫(1690.3.18~1764.11.20)是德国数学家;出生于格奥尼格斯别尔格;曾在英国牛津大学学习;原学法学,但由于在欧洲各国访问期间结识了贝努利家族,所以对数学研究产生了兴趣.1725年到了俄国,同年被选为彼得堡科学院院士;1725年~1740年担任彼得堡科学院会议秘书;1742年,移居莫斯科,并在俄国外交部任职.1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个质数(只能被1和它本身整除的数)之和.如6=3+3,12=5+7等等.哥德巴赫猜想(Goldbach Conjecture)大致可以分为两个猜想(前者为“二重哥德巴赫猜想”,后者为“三重哥德巴赫猜想”):(1)每个不小于6的偶数都可以表示为两个奇质数之和;(2)每个不小于9的奇数都可以表示为三个奇质数之和.连欧拉这样首屈一指的数学家都不能证明其正确性,这个猜想便引起了许多数学家的注意.从哥德巴赫提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功.当然也曾经有人作了些具体的验证工作,例如:6=3+3,8=3+5,10=5+5=3+7,12=5+7,14=7+7=3+11,16=5+11,18=5+13,…….有人对3.3×108以内且大于6的偶数一一进行验算,哥德巴赫猜想都成立.但还没有严格的数学证明.目前“最佳”的结果是中国数学家陈景润于1966年证明的,称为陈氏定理:“任何充分大的偶数都是一个质数与一个自然数之和,而后者仅仅是两个质数的乘积.”通常都简称这个结果为大偶数.但目前没有任何人对哥德巴赫猜想作出过实质性的贡献.所有的证明都存在问题.一件事物之所以引起人们的兴趣,因为我们关心它,假如一个问题的解决丝毫不能引起人类的兴趣,我们就会闭上眼睛,假如这个问题对我们的知识毫无帮助,我们就会认为它没有价值.哥德巴赫猜想是数的一种表现次序,人们持久地喜欢它,是因为如果没有这种次序,人们就会丧失对更深刻问题的信念——因为无序是对美的致命伤,假如哥德巴赫猜想是错误的,它将限制我们的观察能力,使我们难以跨越一些问题并无法欣赏.一个问题把它无序的一面强加给我们的内心生活,就会使我们的感受趋向丑陋,引起自卑和伤感.哥德巴赫猜想实际是说,任何一个大于3的自然数n ,都有一个x ,使得n +x 与n -x 都是质数,因为,(n +x)+(n -x)=2n.这是一种质数对自然数形式的对称,代表一种秩序,它之所以意味深长,是因为质数这种似乎杂乱无章的东西被人们用自然数n 对称地串联起来,正如牧童一声口哨就把满山遍野乱跑的羊群唤在一起一样,它使人心旷神怡,又像生物基因DNA ,呈双螺旋结构绕自然数n转动,人们从玄虚的质数看到了纯朴而又充满青春的一面.对称不仅是视觉上的美学概念,它还意味着对象的统一.人类的精神威信建立在科学对迷信和无知的胜利之上,人类的精神健康依赖于一种自信,只有自信才能导入完美的信念使理想进入未来中,完美的信念使人生的辛劳和痛苦得以减轻,这样任何惊心动魄的灾难,荡气回肠的悲怆都难以摧毁人的信念,只有感到无能时,信念才会土崩瓦解,肉体在空虚的灵魂诱导之下融入畜类,人类在失败中引发自卑.哥德巴赫猜想的哲学意义正是如此.(设计者:赵海彬)。

人教版高中选修1-22.1合情推理与演绎推理教学设计

人教版高中选修1-22.1合情推理与演绎推理教学设计

人教版高中选修1-22.1合情推理与演绎推理教学设计教学目标1.了解合情推理与演绎推理的基本概念,以及它们在实际生活中的应用。

2.能够进行合情推理和演绎推理的简单分析和判断。

3.熟练掌握合情推理和演绎推理相关的常用词汇和表述方式。

教学内容1.合情推理和演绎推理的定义和特点。

2.合情推理和演绎推理的逻辑关系,以及两者的应用场景。

3.合情推理和演绎推理相关的常用词汇和表述方式。

教学重难点1.合情推理和演绎推理的逻辑关系,对两种推理方式进行充分比较和分析。

2.确定合情推理和演绎推理的应用场景,使学生能够对实际问题有更深入的理解。

教学方法1.教师讲授2.典型案例分析3.群体讨论4.课外练习教具与设备1.多媒体课件2.课本、教辅材料3.学生清华笔记本电脑4.黑板、白板、粉笔教学步骤步骤1:引入知识教师通过描绘实际场景告诉学生应用了哪些推理类型。

这个起点应该能够吸引学生的注意力,并让他们能够理解两种推理类型之间的基本区别。

步骤2:讲解重难点通过多个实例分析合情推理和演绎推理的区别与联系,讲解两个推理的逻辑关系和相应的应用场景。

同时,让学生了解相关的常用词汇和表述方式,以便他们在实际问题中作出合理的判断和分析。

步骤3:巩固知识点教师组织群体讨论,使用实际案例帮助学生加深对合情推理和演绎推理的理解。

步骤4:拓展应用教师用实际情况扩展知识点,让学生更好地了解两种推理方式的应用。

让学生分组,应用合情推理和演绎推理每组分别处理不同类型的问题,并进行展示,分享他们的分析和解决方案。

步骤5:课堂作业教师让学生写下他们对合情推理和演绎推理的理解,以及他们的应用场景的总结。

根据理解程度梳理思路,并化思考出来的内容呈现出来。

教学评估1.考察学生对合情推理和演绎推理的理解程度;2.考察学生对合情推理和演绎推理的应用场景理解程度;3.考察学生对常用词汇和表述方式的掌握程度。

总结本次教学以合情推理和演绎推理作为指导,从基本概念开始,让学生学会了如何进行分析和判断,掌握相关的词汇和表述方式,并在实际生活中理性地运用两种推理方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大前提
小前提
结论
“三段论”是演绎推理的一般模式:第一段:大前提——已知的一般原理;第二段:小前提
——所研究的特殊情况;第三段:结论——根据一般原理,对特殊情况做出的判断. ④ 举例:举出一些用“三段论”推理的例子. 2. 教学例题:
① 出示例 1:证明函数 f (x) x2 2x 在 , 1 上是增函数.
推关系)
③ 练习:已知 f (1) 0, af (n) bf (n 1) 1, n 2,a 0,b 0,推测 f (n) 的表达式.
3. 小结:①归纳推理的药店:由部分到整体、由个别到一般;②典型例子:哥德巴赫猜想 的提出;数列通项公式的归纳.
三、巩固练习:
1. 练习:教材 P87 1、2 题. 2. 作业:教材 P93 习题 A 组 1、2、3 题.
3. 导入:① 所有的金属都能够导电,铜是金属,所以

② 太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此

③ 奇数都不能被 2 整除,2007 是奇数,所以
.
(填空→讨论:上述例子的推理形式与我们学过的合情推理一样吗?→课题:演绎推理)
二、讲授新课:
1. 教学概念: ① 概念:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推
打印版
选修 2-2 2.1 合情推理与演绎推理(3 课时)
第一课时 2.1.1 合情推理(一) 教学要求:结合已学过的数学实例,了解归纳推理的含义,能利用归纳进行简单的推理,体 会并认识归纳推理在数学发现中的作用. 教学重点:能利用归纳进行简单的推理. 教学难点:用归纳进行推理,作出猜想. 教学过程: 一、新课引入: 1. 哥德巴赫猜想:观察 4=2+2, 6=3+3, 8=5+3, 10=5+5, 12=5+7, 12=7+7, 16=13+3, 18=11+7, 20=13+7, ……, 50=13+37, ……, 100=3+97,猜测:任一偶数(除去 2,它本身 是一素数)可以表示成两个素数之和. 1742 年写信提出,欧拉及以后的数学家无人能解,成 为数学史上举世闻名的猜想. 1973 年,我国数学家陈景润,证明了充分大的偶数可表示为一 个素数与至多两个素数乘积之和,数学上把它称为“1+2”. 2. 费马猜想:法国业余数学家之王—费马(1601-1665)在 1640 年通过对 F0 220 1 3 , F1 221 1 5 , F2 222 1 17 , F3 223 1 257 , F4 224 1 65 537 的观察,发现其结 果都是素数,于是提出猜想:对所有的自然数 n ,任何形如 Fn 22n 1的数都是素数. 后来 瑞士数学家欧拉,发现 F5 225 1 4 294 967 297 641 6 700 417 不是素数,推翻费马猜 想. 3. 四色猜想:1852 年,毕业于英国伦敦大学的弗南西斯.格思里来到一家科研单位搞地图 着色工作时,发现了一种有趣的现象:“每幅地图都可以用四种颜色着色,使得有共同边界 的国家着上不同的颜色.”,四色猜想成了世界数学界关注的问题.1976 年,美国数学家阿佩 尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用 1200 个小时,作了 100 亿逻 辑判断,完成证明. 二、讲授新课: 1. 教学概念: ① 概念:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征 的推理,或者由个别事实概括出一般结论的推理,称为归纳推理. 简言之,归纳推理是由部 分到整体、由个别到一般的推理. ② 归纳练习:(i)由铜、铁、铝、金、银能导电,能归纳出什么结论?
, n)
,考察下列式子:(i)
a1
1 a1
1 ;(ii)
(a1
a2
)(
1 a1
1 a2
)
4;
(iii)
(a1
a2
a3
)(
1 a1
1 a2
1) a3
9.
我们可以归纳出,对 a1, a2 ,
, an 也成立的类似不等式
为.
2. 猜想数列 1 , 1 , 1 , 1 , 的通项公式是
.
13 35 57 79
3. 导入:鲁班由带齿的草发明锯;人类仿照鱼类外形及沉浮原理,发明潜水艇;地球上有
生命,火星与地球有许多相似点,如都是绕太阳运行、扰轴自转的行星,有大气层,也有季
打印版
打印版
节变更,温度也适合生物生存,科学家猜测:火星上有生命存在. 以上都是类比思维,即 类比推理. 二、讲授新课:
1. 教学概念: ① 概念:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象
板演:证明方法(定义法、导数法) → 指出:大前题、小前题、结论.
打印版
打印版
② 出示例 2:在锐角三角形 ABC 中, AD BC, BE AC ,D,E 是垂足. 求证:AB 的中 点 M 到 D,E 的距离相等.
分析:证明思路 →板演:证明过程 → 指出:大前题、小前题、结论. ③ 讨论:因为指数函数 y ax 是增函数, y (1)x 是指数函数,则结论是什么?
(ii)由直角三角形、等腰三角形、等边三角形内角和 180 度,能归纳出什么结论? (iii)观察等式: 1 3 4 22, 1 3 5 9 32, 1 3 5 7 9 16 42 ,能得出怎样的结 论?
打印版
打印版
③ 讨论:(i)统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理? (ii)归纳推理有何作用? (发现新事实,获得新结论,是做出科学发现的重要手段)
1. 练习: ① 对于任意正整数 n,猜想(2n-1)与(n+1)2 的大小关系? ②在平面内,若 a c,b c ,则 a // b . 类比到空间,你会得到什么结论?(结论:在空间
中,若 a c,b c ,则 a // b ;或在空间中,若 , ,则 // .
2. 讨论:以上推理属于什么推理,结论正确吗? 合情推理的结论不一定正确,有待进一步证明,有什么能使结论正确的推理形式呢?
第三课时 2.1.2 演绎推理
打印版
打印版
教学要求:结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理
的基本方法,并能运用它们进行一些简单的推理。. 教学重点:了解演绎推理的含义,能利用“三段论”进行简单的推理. 教学难点:分析证明过程中包含的“三段论”形式. 教学过程:
一、复习准备:
理。
要点:由一般到特殊的推理。
② 讨论:演绎推理与合情推理有什么区别?
合情推理
归纳推理:由特殊到一般 类比推理:由特殊到特殊
;演绎推理:由一般到特殊.
③ 提问:观察教材 P88 引例,它们都由几部分组成ቤተ መጻሕፍቲ ባይዱ各部分有什么特点?
所有的金属都导电
铜是金属
铜能导电
已知的一般原理
特殊情况
根据原理,对特殊情况做出的判断
abba (a b) c a (b c)
ab ba (ab)c a(bc)
逆运算
加法的逆运算是减法,使得方 程 a x 0 有唯一解 x a
乘法的逆运算是除法,使得 方程 ax 1有唯一解 x 1
a
单位元
a0 a
a 1 1
② 出示例 2:类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想.
打印版
小结:平面→空间,圆→球,线→面. ③ 讨论:以平面向量为基础学习空间向量,试举例其中的一些类比思维. 2. 教学例题: ① 出示例 1:类比实数的加法和乘法,列出它们相似的运算性质. (得到如下表格)
类比角度
实数的加法
实数的乘法
运算结果
若 a,b R, 则 a bR
若 a,b R, 则 abR
运算律
第二课时 2.1.1 合情推理(二) 教学要求:结合已学过的数学实例,了解合情推理的含义,能利用归纳和类比等进行简单的
推理,体会并认识合情推理在数学发现中的作用. 教学重点:了解合情推理的含义,能利用归纳和类比等进行简单的推理. 教学难点:用归纳和类比进行推理,作出猜想. 教学过程:
一、复习准备:
1. 练习:已知 ai 0 (i 1, 2,
2 (结论→指出:大前提、小前提 → 讨论:结论是否正确,为什么?) ④ 讨论:演绎推理怎样才结论正确?(只要前提和推理形式正确,结论必定正确) 3. 比较:合情推理与演绎推理的区别与联系?(从推理形式、结论正确性等角度比较;演 绎推理可以验证合情推理的结论,合情推理为演绎推理提供方向和思路.) 三、巩固练习:1. 练习:P91 2、3 题 2. 探究:P91 阅读与思考 3.作业:P93 6 题,B 组 1 题.
(iii)归纳推理的结果是否正确?(不一定)
2. 教学例题:

出示例题:已知数列 an
的第
1

a1
2
,且
an1
an 1 an
(n
1, 2,
) ,试归纳出通项公
式.
(分析思路:试值 n=1,2,3,4 → 猜想 an →如何证明:将递推公式变形,再构造新 数列)
② 思考:证得某命题在 n=n 0 时成立;又假设在 n=k 时命题成立,再证明 n=k+1 时命 题也成立. 由这两步,可以归纳出什么结论? (目的:渗透数学归纳法原理,即基础、递
思维:直角三角形中, C 900 ,3 条边的长度 a,b,c ,2 条直角边 a,b 和 1 条斜边 c ;
→3 个面两两垂直的四面体中, PDF PDE EDF 900 ,4 个面的面积 S1, S2 , S3 和 S 3 个“直角面” S1, S2 , S3 和 1 个“斜面” S . → 拓展:三角形到四面体的类比. 3. 小结:归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进 行归纳、类比,然后提出猜想的推理,统称为合情推理. 三、巩固练习:1. 练习:教材 P87 3 题. 2. 探究:教材 P84 例 4 3.作业:P93 4、 5 题.
相关文档
最新文档