无源三相PWM逆变器控制电路设计
无源三相PWM逆变器控制电路设计

无源三相PWM逆变器控制电路设计无源三相PWM逆变器的基本原理是通过将直流电源经过逆变器电路转换为交流电源。
逆变器电路通常由三相桥式整流器和逆变器两部分组成。
其中,桥式整流器将直流电源转换为三相交流电压,逆变器部分则通过PWM技术控制输出电压的大小和频率。
在PWM控制中,通过改变逆变器的开关状态和开关频率来控制输出电压的大小和频率。
通常采用三边交换桥输出电路结构,输出电压由六个IGBT(绝缘栅双极型晶体管)和和六个反并联二极管组成。
控制电路的设计可以分为信号获取和信号处理两个部分。
信号获取部分包括测量输入电流、电压信号以及逆变器输出电流等参数的传感器电路;信号处理部分包括功率电流控制、PWM信号产生等电路。
在无源三相PWM逆变器的控制电路设计中,首先需要进行电路参数的选择和计算。
电路参数包括逆变器电路元件的选型和电压、电流换算公式的推导等。
其次,需要设计适合的信号获取电路,以获取输入输出电流、电压的实时测量值。
常用的测量电路包括霍尔元件、电流互感器等。
然后,对得到的电流、电压信号进行滤波和放大处理,以适应控制系统的要求。
在信号处理部分,需要设计适合的控制算法,来实现对逆变器的控制。
常用的控制算法有电流控制和PWM生成控制。
电流控制包括PI控制、PID控制等,以控制逆变器输出电流的大小。
PWM生成控制则通过改变逆变器的开关状态和频率,来控制输出电压的大小和频率。
常见的PWM控制算法有SPWM(正弦PWM)、SCPWM(三角PWM)等。
此外,还需要进行保护电路的设计,以保证逆变器的安全运行。
常见的保护电路包括过电流保护、过压保护、过温保护等,以防止逆变器的故障和损坏。
综上所述,无源三相PWM逆变器控制电路的设计需要考虑到电路参数的选择和计算、信号获取电路的设计、信号处理和控制算法的选择和设计,以及保护电路的设计等方面。
通过合理的设计,可以实现对逆变器输出电流和电压的精确控制,提高逆变器的工作效率和稳定性。
三相PWM逆变电源控制系统PID参数设计

三相PWM逆变电源控制系统PID参数设计摘要:针对PWM电源控制系统中PID参数难以确定这一实际问题,提出了根据系统极点配置设计PID参数的方法。
给出了整个系统的结构,分析了采用极点配置方法设计PID控制回路的过程,保证了控制系统具有理想的动态品质。
通过对控制系统仿真验证了该方法的有效性。
关键词: PWM逆变电源;极点配置;PID参数PID控制是最早发展起来的控制策略之一,具有算法简单、易于实现、鲁棒性好且可靠性高等优点,是一种最通用的控制方法,在各种电源控制系统中得到了很好的应用。
对于PID 参数的确定,一般有经验的技术人员会根据以往的调试经验,直接设置控制系统的PID参数,最终通过不断调试来满足要求。
没有经验的多数人选择用仿真的方法预先试出一个较为合适的PID参数,然后在此基础上不断调试。
这两种方法都缺少一定的理论依据,工作量比较大,并且在系统参数变化的情况下,所选的PID参数对系统性能的影响无从得知。
虽然复杂的、非线性系统的数学模型难以确定,但是在前人所做工作的基础上,经过一定的分析和简化,最终可表示成传递函数的形式。
本文将PID控制应用于PWM电源系统中,该系统的传递函数可由零点、极点和增益因子完全确定。
零点和极点的含义是,当复频率取值在零点或极点上时,传递函数取零值或趋向无穷大。
因此,零极点必然和频率响应密切相关。
故通过零极点协调配置的方法,可以达到所期望的响应。
1 PWM逆变电源主电路结构及数学模型图1所示为三相PWM逆变器主电路原理图[1],Vdc为直流侧电源,C2、C3两个电容为负载提供地线,Rs为IGBT开关的等效电阻,R1和L为输出滤波电感的等效电阻和电感量,C为滤波电容,ik0表示负载电流。
图1粗线所示的一相回路中,采用的PID调节产生一相的调制波,再与三角载波比较产生PWM信号。
由于三相的控制方式与此相同,因此只对一相电路分析。
主电路中功率开关管工作于“开”和“关”两种状态,桥臂中点输出电压Vdc是以Vdc/2为幅值的脉冲电压,Vk(k=a,b,c)是不连续的。
三相PWM逆变电路

S1 D1 S3 D3 S5 D5
Ud/2 io uo
负载 W
U
V S6 D6 S2
W D2
Ud/2
S4
D4
负载 U
负载 V
O
分析假定如前,另外假定负载为星形连接,三相 输出点分别为U 、V、W,负载连接中点为O,三 相对称,以直流电位中点为电压参考点 选取星型负载接法的理由
id
S1 D1 S3 D3 S5 D5
t t t t t t t t t
负载 U
负载 V
iU i D1
S1 D1 S2 D2 S3 D3 S4 D4 S5 D5 S6 D6
iV
O
id
uU uV
Ud
ug4 ug5 ug6
ug1 t ug2 t ug3t
uU1
t t t t t t t
id
S1 D1 S3 D3 S5 D5
uUV
Ud
Ud/2 io uo
工作模式分析:
任一时刻都有且只有三个主开关导通,分别是两 个上管一个下管,或者一个上管两个下管 各工作状态的出现与电路控制方式和负载特性有 关,第四状态见于其它逆变模式
Ud/2 Ud/2 Ud/2 Ud/2
Ud/2
O
Ud/2
O
Ud/2
O
Ud/2
O
三个主 开关 载流 ,电流 从直 流母线 流向 逆变 器
Ud
ug4 ug5 ug6
ug1 t ug2 t ug3t
uU1
t t t t t t t
uUV
Ud
uUO uUO1 iW
uUV1
1/3Ud 1/3Ud
2/3Ud
uO i S1
单片机控制三相pwm产生器的逆变电源设计

单片机控制三相pwm产生器的逆变电源设计
单片机控制三相PWM产生器逆变电源设计的主要步骤如下:
1. 确定系统需求:确定逆变电源的输入电压、输出电压和输出功率等参数。
2. 选取逆变电路拓扑结构:根据系统需求和应用场景选择逆变电路的拓扑结构,常见的有全桥逆变电路、半桥逆变电路等。
3. 设计逆变器电路:根据所选拓扑结构设计逆变器电路,包括功率开关器件(如MOSFET、IGBT等)、滤波电路(如输出滤波电感、滤波电容等)以及保护电路等。
4. 设计PWM控制器电路:根据系统需求,选取适当的单片机作为PWM控制器,并设计相应的控制电路,如电源电压检测电路、电流传感器电路等。
5. 编写单片机程序:根据控制策略和PWM控制器的特性编写单片机程序,实现对逆变器的控制。
6. 调试和验证:完成硬件电路和软件程序的设计后进行调试和验证,确保逆变电源能按照设计要求正常工作。
需要注意的是,在设计过程中需要考虑电路的稳定性、效率、保护和可靠性等因素,并进行必要的电路仿真和实验验证。
三相pwm电压型逆变器毕业设计正文

摘要近年来,一些清洁高效的能源,如太阳能,风能,地热,核能等得到了较为广泛的应用和关注,其发电系统产生的是直流电流和电压,而许多负载都使用交流电,因此需要通过逆变器把直流电变成交流电。
随着这些新能源发电系统的日益推广,逆变器的使用也越来越多。
如何获得高质量的电流成为研究的焦点。
由于对高频谐波的抑制效果明显好于L型滤波器,因此LCL滤波器在并网逆变器中应用越来越广泛,与传统的L滤波器相比,LCL滤波器可以降低电感量,提高系统动态性能,降低成本,在中大功率应用场合,其优势更为明显。
文章首先对PWM 逆变器的工作原理做了详细的介绍,并对基于LCL的滤波器,在ABC 静止坐标系,αβ静止坐标系和dq 旋转坐标系中建立了数学模型。
其次,文章讨论了LCL 滤波器的参数设计方法,给出了系统LCL 滤波器参数的设计步骤。
最后,在详细阐述各元件的取值原则与计算步骤的基础上,给出了设计实例,并对所设计的逆变器进行了仿真验证,结果表明,根据该方案设计的控制器参数能够使三相并网逆变器安全、可靠运行且具有较快的动态响应速度。
关键词:并网逆变器LCL滤波器有源阻尼无源阻尼,双闭环控制AbstractIn recent years, clean and efficient energy sources, such as solar energy, wind energy, geothermal energy, nuclear energy has been widely used and has gained widespread attention .The power system produce the DC current and voltage, and many are using the AC load, it need inverter into alternating current to direct current. With the increasing promotion of photovoltaic power generation systems, the use of inverters is more and more. How to get a high quality of the current becomes the focus of research.Because of the inhibitory effect of high frequency harmonics is better than L-type filter, the LCL filter grid inverter is widely applied, compared with the traditional L-filter, LCL filter can reduce the inductance improve the system dynamic performance, reduce costs, in the high-power applications, its advantages more apparent.This paper analyzes the high frequency PWM inverter principle, and then presents a three-phase ABC coordinates and dq coordinate system on the mathematical model of LCL-filter configuration.Secondly, the article discusses the LCL filter design parameters; parameters of the system are given LCL filter design steps.Finally, each component in detail the principles and calculation steps of the value based on the design example is given, and the design of the LCL filter simulation results show that, according to the design of the controller parameters can make three-phase inverter with safe, reliable operation and has a fast dynamic response speed.Key words: Grid-connected inverter,LCL filter,Active damping, passive damping,Double closed loop control目录摘要................................................. . (I)Abstract .............................................. .. (II)目录................................................ .. (IV)1. 绪论.............................................. . (1)1.1微电网的提出和发展 (1)1.1.1微电网提出的背景和研究意义 (1)1.1.2微电网的定义 (2)1.1.3国内外应用研究现状 (2)1.2 逆变器的研究现状 (3)1.2.1三相电压型PWM逆变器的产生背景 (3)1.2.2 PWM逆变器的研究现状 (4)1.2.3基于LCL滤波的PWM逆变器的研究现状 (6)2. PWM逆变器的原理及数学模型...................... (11)2.1并网逆变器的分类及拓扑结构 (11)2.1.1逆变器的作用 (11)2.1.2逆变器的分类 (11)2.1.3并网逆变器的拓扑结构 (12)2.2 逆变器的工作原理 (14)2.3 基于LCL滤波器的PWM逆变器数学模型 (16)2.4 锁相环节的工作原理 (22)2.5 逆变器的SPWM调制方式分析 (23)3. LCL滤波器和控制系统的设计 (27)3.1 LCL滤波器的参数设计 (27)3.1.1 L,LC,LCL滤波器的比较 (27)3.1.2 LCL滤波器的选定 (29)3.1.3 LCL滤波器数学模型及波特图分析 (29)3.1.4 LCL滤波器的谐振抑制方法 (33)3.1.5 滤波器参数变化对滤波性能的影响 (33)3.1.6 滤波器参数设计的约束条件 (34)3.1.7 滤波器参数的设计步骤 (35)3.2并网逆变器控制方案的确定 (35)3.2.1 基于无源阻尼的单电流环控制方案的设计 (37)3.2.2 基于双环控制网侧电感电流外环控制器的设计 (39)3.2.3 基于双环控制电容电流内环控制器的设计 (39)4. 系统参数设计及仿真验证............................. (41)4.1 系统参数设计 (41)4.2 有源阻尼双闭环控制仿真分析 (32)4.3 无源阻尼单环控制仿真分析.......。
无源三相PWM逆变器控制电路设计

目录第一章:课程设计的目的及要求 (2)第二章整流电路 (5)第三章逆变电路 (9)第四章 PWM逆变电路的工作原理 (11)第五章三相正弦交流电源发生器 (14)第六章三角波发生器 (15)第七章比较电路 (16)第八章死区生成电路 (18)第九章驱动电路 (20)附录参考文献课程设计的心得体会第一章:课程设计的目的及要求一、课程设计的目的通过电力电子计术的课程设计达到以下几个目的:1、培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料。
2、培养学生综合分析问题、发现问题和解决问题的能力。
3、培养学生运用知识的能力和工程设计的能力。
4、培养学生运用仿真工具的能力和方法。
5、提高学生课程设计报告撰写水平。
二、课程设计的要求1. 自立题目题目:无源三相PWM逆变器控制电路设计注意事项:①学生也可以选择规定题目方向外的其它电力电子装置设计,如开关电源、镇流器、UPS电源等,②通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。
首先要明确自己课程设计的设计内容。
控制框图设计装置(或电路)的主要技术数据主要技术数据输入交流电源:三相380V,f=50Hz交直变换采用二极管整流桥电容滤波电路,无源逆变桥采用三相桥式电压型逆变主电路,控制方法为SPWM控制原理输出交流:电流为正弦交流波形,输出频率可调,输出负载为三相异步电动机,P=5kW等效为星形RL电路,R=10Ω,L=15mH 设计内容:整流电路的设计和参数选择滤波电容参数选择三相逆变主电路的设计和参数选择IGBT电流、电压额定的选择三相SPWM驱动电路的设计画出完整的主电路原理图和控制电路原理图2.在整个设计中要注意培养灵活运用所学的电力电子技术知识和创造性的思维方式以及创造能力要求具体电路方案的选择必须有论证说明,要说明其有哪些特点。
主电路具体电路元器件的选择应有计算和说明。
课程设计从确定方案到整个系统的设计,必须在检索、阅读及分析研究大量的相关文献的基础上,经过剖析、提炼,设计出所要求的电路(或装置)。
三相PWM逆变器的主电路设计

三相PWM逆变器的主电路设计
随着国民经济的高速发展和国内外能源供应的紧张,电能的开发和利用显得更为重要。
目前,国内外都在大力开发新能源,如太阳能发电、风力发电、潮汐发电等。
一般情况下,这些新型发电装置输出不稳定的直流电,不能直接提供给需要交流电的用户使用。
为此,需要将直流电变换成交流电,需要时可并入市电电网。
这种DC- AC 变换需要逆变技术来完成。
因此,逆
变技术在新能源的开发和利用领域有着重要的地位。
1 脉宽调制逆变技术
1. 1 PWM 的基本原理
1. 1. 1 PWM( Pulse Width Modulat ion) 脉宽调制型逆变电路定义:是靠改变
脉冲宽度来控制输出电压,通过改变调制周期来控制其输出频率的电路。
1. 1. 2 脉宽调制的分类:1、以调制脉冲的极性分,可分为单极性调制和双
极性调制两种;2、以载频信号与参考信号频率之间的关系分,可分为同步调制和异步调制两种。
1. 1. 3 ( PWM) 逆变电路的特点:可以得到相当接近正弦波的输出电压和电
流,所以也称为正弦波脉宽调制SPWM( Sinuso idal PWM) .
1. 1. 4 SPWM 控制方式:就是对逆变电路开关器件的通断进行控制,使输
出端得到一系列幅值相等而宽度不等的脉冲,用这些脉冲来代替正弦波所需要的波形。
按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变输出频率。
1. 2 PWM 电路的调制控制方式
1. 2. 1 载波比的定义:在PWM 变频电路中,载波频率f c 与调制信号频率
f r 之比称为载波比,即N= f c/ ff .。
三相PWM电压型整流器无源控制算法的介绍

三相PWM电压型整流器⽆源控制算法的介绍引⾔⽆源控制理论(passivity-based control)是近⼏年发展起来的新兴控制理论,它由Ortega等于1989年提出。
⽆源控制理论从物理⾓度出发,根据系统的能量耗散特性,利⽤系统固有的物理特性设计控制器来实现系统的稳定或给定跟踪。
⽆源控制理论已成功地应⽤到开关电源、机器⼈系统、电机驱动以及其他⼯业领域。
近年来,PWM整流器及其控制策略的研究倍受学术界的关注。
其具有单位功率因数、输⼊电流接近正弦、控制回路简单等优点。
整流器控制设计主要分线性和⾮线性两类。
线性设计⼀般是基于局部线性化的系统模型或者加⼊补偿得到系统控制器,所以很难使系统得到良好的动态响应。
由于控制量与状态变量的耦合,PWM整流器为⾮线性系统,因⽽理论上⾮线性控制策略更容易使系统全局稳定和零稳态误差。
Lee提出的基于输⼊输出线性化的控制算法、Silva的滑模型控制器都能使系统具有很好的跟踪特性和鲁棒性,但这两种算法较为特殊,⽋缺⼀般性。
Malinowski、Komurcugil分别提出了直接功率控制算法和基于Lyapunov的设计⽅法能使系统全局稳定,但不能保证⼤负载扰动下系统的零稳态误差。
对于PWM整流器系统,由于⽆源控制策略不改变系统的结构和系统⾮线性,所以相对于常⽤的反馈控制策略,⽆源控制策略简化了系统的硬件实现,加强了系统的鲁棒性。
这种控制理论为实现整流器单位功率因数和直流输出电压的控制提供可⾏的控制策略。
本⽂推导了三相电压型PWM整流器系统在a-b-c和d-q坐标系中的EL模型,给出了⽆源控制器的⼀般设计⽅法和系统控制的约束条件,基于⽆源控制理论设计了系统的⽆源控制器。
改进的⽆源控制策略采⽤PI控制器与⽆源控制器串联以增强系统的鲁棒性,保证了系统跟踪给定恒值电压的零稳态误差并具有很好的动态响应特性。
最后,通过仿真实验对三种控制算法的控制效果进⾏了⽐较研究:⽂献[8]的双闭环PI控制算法、⽆源控制算法与改进的⽆源控制算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录第一章:课程设计的目的及要求 (2)第二章整流电路 (5)第三章逆变电路 (9)第四章 PWM逆变电路的工作原理 (11)第五章三相正弦交流电源发生器 (14)第六章三角波发生器 (15)第七章比较电路 (16)第八章死区生成电路 (18)第九章驱动电路 (20)附录参考文献课程设计的心得体会第一章:课程设计的目的及要求一、课程设计的目的通过电力电子计术的课程设计达到以下几个目的:1、培养学生文献检索的能力,特别是如何利用Internet检索需要的文献资料。
2、培养学生综合分析问题、发现问题和解决问题的能力。
3、培养学生运用知识的能力和工程设计的能力。
4、培养学生运用仿真工具的能力和方法。
5、提高学生课程设计报告撰写水平。
二、课程设计的要求1. 自立题目题目:无源三相PWM逆变器控制电路设计注意事项:①学生也可以选择规定题目方向外的其它电力电子装置设计,如开关电源、镇流器、UPS电源等,②通过图书馆和Internet广泛检索和阅读自己要设计的题目方向的文献资料,确定适应自己的课程设计方案。
首先要明确自己课程设计的设计内容。
C d1C d2三相交流电源逆变器三相正弦波P W M 驱动M 比较电路三角波发生器驱动电路死区生成电路控制框图设计装置(或电路)的主要技术数据主要技术数据输入交流电源:三相380V , f=50Hz交直变换采用二极管整流桥电容滤波电路,无源逆变桥采用三相桥式电压型逆变主电路,控制方法为SPWM 控制原理输出交流:电流为正弦交流波形,输出频率可调,输出负载为三相异步电动机,P=5kW 等效为星形RL 电路,R=10Ω,L=15mH设计内容:整流电路的设计和参数选择滤波电容参数选择三相逆变主电路的设计和参数选择IGBT 电流、电压额定的选择三相SPWM 驱动电路的设计画出完整的主电路原理图和控制电路原理图2. 在整个设计中要注意培养灵活运用所学的电力电子技术知识和创造性的思维方式以及创造能力要求具体电路方案的选择必须有论证说明,要说明其有哪些特点。
主电路具体电路元器件的选择应有计算和说明。
课程设计从确定方案到整个系统的设计,必须在检索、阅读及分析研究大量的相关文献的基础上,经过剖析、提炼,设计出所要求的电路(或装置)。
课程设计中要不断提出问题,并给出这些问题的解决方法和自己的研究体会。
设计报告最后给出设计中所查阅的参考文献最少不能少于5篇,且文中有引用说明,否则也不能得优)。
3.在整个设计中要注意培养独立分析和独立解决问题的能力要求学生在教师的指导下,独力完成所设计的系统主电路、控制电路等详细的设计(包括计算和器件选型)。
严禁抄袭,严禁两篇设计报告基本相同,甚至完全一样。
4.课题设计的主要内容是主电路的确定,主电路的分析说明,主电路元器件的计算和选型,以及控制电路设计。
报告最后给出所设计的主电路和控制电路标准电路图。
5.课程设计用纸和格式统一课程设计用纸在学校印刷厂统一购买和装订,封面为学校统一要求。
要求图表规范,文字通顺,逻辑性强。
设计报告不少于20页第二章 整流电路根据要求,整流电路采用二极管整流桥电容滤波电路, 其电路图如图所示:图 考虑电感时电容滤波的三相桥式整流电路及其波形a )电路原理图b )轻载时的交流侧电流波形c )重载时的交流侧电流波形1. 其工作原理如下所示:该电路中,当某一对二级管导通时,输入直流电压等于交流侧线电压中最大的一个,该线电压既向电容供电,也向负载供电。
当没有二级管导通时,由电容向负载放电,u d 按指数规律下降。
设二极管在局限电路电压过零点δ角处开始导通,并以二极管VD 6和VD 1开始同时导通的时刻为时间零点,则线电压为 u ab =6U 2sin (ωt+δ) 而相电压为a)b)c)+a b c i a R C u d i d i C i R 461352i i ωtωtu a =2U 2sin(ωt+δ-6π) 在ωt=0时,二极管VD 6和VD 1开始同时导通,直流侧电压等于u ab ;下一次同时导通的一对管子是VD 1和VD 2,直流侧电压等于u ab 。
这两段导通过程之间的交替有两种情况,一种是在VD 1和VD 2同时导通之前VD 6和VD 1是关断的,交流侧向直流侧的充电电源i d 是断续的;另一种是VD 1一直导通,交替时由VD 6导通换相至VD 2导通,i d 是连续的。
介于二者之间的情况是,VD 1和VD 6同时导通的阶段与VD 1和VD 2同时导通的阶段在 ωt+δ=32π出恰好连接起来,i d 恰好连续。
由 “电压下降速度相等”的原则,可以确定临界条件。
假设在wt +d =2p /3的时刻“速度相等”恰好发生,则有可得 wRC =这就是临界条件。
wRC > 和wRC < 分别使电流i d 断续和连续的条件。
对一个确定的装置来讲,通常只有R 是可变的,它的大小反映了负载的轻重。
因此可以说,在轻载时直32=+t )]-32(-t [RC 1m 32=+t m t)(32sin E )()]+t sin([E πθωθπωωπθωωπωθωd e d t d d ⎭⎬⎫⎩⎨⎧=-333流侧获得的充电电流是断续的,重载时是连续的,分界点就是R=/wC。
考虑实际电路中存在的交流侧电感以及为抑制冲击电流而串联的电感时的工作情况:电流波形的前沿平缓了许多,有利于电路的正常工作。
随着负载的加重,电流波形与电阻负载时的交流侧电流波形逐渐接近。
2.由电容滤波电路的原理分析可知,该电路的特点如下所示:(1)二极管的导电角θ<π,流过二极管的瞬时电流很大电流的有效值和平均值的关系与波形有关,在平均值相同的情况下,波形越尖,有效值越大。
在纯电阻负载时,变压器副边电流的有效值I2 = ,而有电容滤波时(2)负载平均电压V L升高,纹波(交流成分)减小,且R越大,电容放电速度越慢,则负载电压中的纹波成分越小,负载平均电压越高。
为了得到平滑的负载电压,一般取≥(3~5)式中T为电源交流电压的周期。
(3)负载直流电压随负载电流增加而减小。
V L随I L的变化关系称为输出特性或外特性,如图1所示。
C值一定,当,即空载时当C=0,即无电容时在整流电路的内阻不太大(几欧)和放电时间常数满足式≥(3~5) 的关系时,电容滤波电路的负载电压V L V2的关系约为V L=~V2总之,电容滤波电路简单,负载直流电压V L较高,纹波也较小,它的缺点是输出特性较差,故适用于负载电压较高,负载变动不大的场合。
二极管的选择在选择整流二极管时,主要考虑两个参数,即最大整流电流和反向击穿电压。
在桥式整流电路中,二极管D1、D3和D2、D4是两两轮流导通的,所以流经每个二极管的平均电流为在选择整流管时应保证其最大整流电流I F > I D。
二极管在截止时管子两端承受的最大反向电压可以从桥式整流电路的工作原理中得出。
在v2正半周时,D1、D3导通,D2、D4截止。
此时D2、D4所承受的最大反向电压均为v2的最大值,即同理,在v2的负半周,D1、D3也承受到同样大小的反向电压。
所以,在选择整流管时应取其反向击穿电压V BR > V RM。
第三章逆变电路根据要求,逆变电路采用三相桥式电压型逆变电路,其电路图如图所示:图其工作原理如下:(1)该电路是采用双极性控制方式。
U,V,W三相的PWM 控制通常公用一个三角载波u c,三相的调制信号u rU,u Rv和u rW依次相差120°。
U,V和W各相功率开关器件的控制规律相同,现以U相为例来说明。
当u rU大于u c时,给上桥臂V1导通信号,给下桥臂V4以关断信号,则U相相对于直流电源假象中点N’的输出电压u Un’=U d/2。
当u rU小于u c时,给V4一导通信号,给V1上桥臂关断信号时,则u UN=2d U。
V1和V4的驱动信号始终是互补的。
当给V1(V4)以导通信号,也可能是二极管VD1(VD4)续流导通这要由阻感负载中电流方向来决定。
这是因为阻感负载中电流的方向来决定的。
V相及W相的控制方式都相同。
电路波形如图所示。
可以得出,的PWM波形都只有两种电平,当臂1臂6导通时u UV=U d,当臂3和臂4导通时u UV=-U d,当臂1和臂3或臂4和臂6导通时u UV=0。
因此,逆变器的输出线电压PWM波由 U d和0三种电平构成。
而且负载相电压PWM 波由(±2/3)Ud、(±1/3)Ud和0共5种电平组成,其波形图如图所示。
图(2)U相的控制规律当u rU>u c时,给V1导通信号,给V4关断信号,u UN’=U d/2 当u rU<u c时,给V4导通信号,给V1关断信号,u UN’=-U d/2 当给V1(V4)加导通信号时,可能是V1(V4)导通,也可能是VD1(VD4)导通(3)死区时间的防止:同一相上下两臂的驱动信号互补,为防止上下臂直通而造成短路,留一小段上下臂都施加关断信号的死区时间,死区时间的长短主要由开关器件的关断时间决定,死区时间会给输出的PWM波带来影响,使其稍稍偏离正弦波,所以必须在电路中设计死区生成电路。
2.IGBT的选择参数的选择一条原则是适当留有余地,这样才能确保长期、可靠、安全地运行。
工作电压≤50%-60%,结温≤70-80%在这条件下器件是最安全的。
制约因素如下:(1)在关断或过载条件下,IC要处于安全工作区,即小于2倍的额定电流值;IGBT峰值电流是根据200%的过载和120%的电流脉动率下来制定的;结温一定<150℃以下,指在任何情况下,包括过载时。
(2 )开通电压15V±10%的正栅极电压,可产生完全饱和,而且开关损耗最小,当<12V时通态损耗加大,>20V时难以实现过流及短路保护。
(3)关断偏压-5到-15V目的是出现噪声仍可有效关断,并可减小关断损耗最佳值约为-10V。
(4) IGBT不适用线性工作,只有极快开关工作时栅极才可加较低3—11V电压(5)饱和压降直接关系到通态损耗及结温大小,希望越小越好,但价格就要大。
所以根据IJBT的制约因素,主电路的电流电压值及设计要求,采用的IJBT管是GTl53101。
第四章 PWM逆变电路的工作原理PWM控制方式就是对逆变电路开关器件的通断进行控制,使输出端得到一系列幅值相等而宽度不等的脉冲。
按一定的规则对各脉冲的宽度进行调制,既可改变逆变电路输出电压的大小,也可改变逆变输出频率。
1.PWM控制的基本原理PWM控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)理论基础:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。
冲量指窄脉冲的面积。