等离子放电 实验
等离子体辉光放电特性测量
![等离子体辉光放电特性测量](https://img.taocdn.com/s3/m/0f1b4762312b3169a551a40e.png)
等离子体辉光放电特性测量一、实验目的1、了解等离子体特性2、通过对辉光发电中的等离子体的研究,利用朗缪尔单探针法和双探针法对等离子体电子温度、电子密度的测量。
二、实验原理1、辉光放电现象当放电管内的气压降低到几十个毫米汞柱以下,两极加以适当的电压时,管内气体开始辉光放电,辉光由细到宽,布满整个管子。
当压力再降低时,辉光便分为明暗相间的八个区域,而大多数的区域集中在阴集附近。
八个极分别是:I阿斯顿暗区,II阴极光层,III阴极暗区,IV负辉区,V 法拉第暗区,VI正辉区,VII阳极暗区和VIII阳极辉光。
这些区域的形成机构大致可以叙述如下:I阿斯顿暗区(Aston dark space):这是紧靠阴极的一个极薄的区域。
电子刚从阴极发出,能量很小,不能使气体分子电离和激发,因而就不能发光,所以是暗区。
长度约有1毫米。
II阴极光层(Cathode layer):在阿斯顿暗区之后,很微薄的发光层。
因为电子经过区域I被加速,具有了较大的能量,当这些电子遇到气体分子时,发生碰撞,电子的一部分能量使气体分子的价电子激发,当它们跳回到基态时,便辐射发光。
III阴极暗区(Cathode dark space):紧靠阴极光层,两者不易区分。
由于电子经过区域II时,绝大部分没有和气体分子碰撞,因此它所具有的能量是比较大的,但电子激发气体分子的能量又必须是在一定的范围内,能量超过这一范围则激发的儿率是很小的。
因此形成了一个暗区。
在这一区域中,电子和气体分子碰撞时,打掉它的价电子,产生很强的电离,使得这里具有很高的正离子浓度,形成了极强的正空间电荷,于是破坏了放电管内的电场分布,而引起了严重的畸变,结果绝大部分的管压都集中在这一区域和阴极之间。
在这样强的电场作用下,于是正离子以很大的速度打向阴极,因而从阴极又脱出电子,而这些电子又从阴极向阳极方向运动,再产生如上所述的激发和电离的过程。
实验已经确定,阴极暗区的长度d 与气体压强p 的乘积是一个常数,即:pd =常数。
等离子体放电实验
![等离子体放电实验](https://img.taocdn.com/s3/m/0b5c52217f21af45b307e87101f69e314332fa34.png)
等离子体放电实验等离子体放电实验是一种重要的物理实验,其通过在低温、气体或等离子体中施加电场来产生和研究等离子体的放电现象。
等离子体是一种由电离的气体分子、电子和正离子组成的第四态物质,具有高温、高能量和高电导性的特点,应用广泛,涉及到能源、材料、环境等多个领域。
在进行等离子体放电实验之前,我们首先需要了解与等离子体放电相关的物理定律。
其中,最基本的定律是库仑定律,它描述了两个电荷之间的相互作用力。
根据库仑定律,当两个电荷之间距离增大时,相互作用力减小;而当电荷之间电荷量增大时,相互作用力增大。
在等离子体放电实验中,库仑定律被用于描述气体分子与电子、正离子之间的相互作用力。
另一个重要的定律是欧姆定律,它描述了电流、电压和电阻之间的关系。
根据欧姆定律,电流等于电压除以电阻。
在等离子体放电实验中,电流是实验过程中的重要参数,可以通过测量电压和电阻来求得。
在进行等离子体放电实验之前,我们需要准备实验设备和材料。
首先, 我们需要一个真空室。
实验需要在低压环境中进行,因此需要一个密封良好的真空室。
其次, 我们需要一个电源,用于施加电场。
电源需要能够提供足够的电流和电压,以产生所需的放电现象。
另外, 我们还需要一些测量仪器,如电压表、电流表等,用于测量电压、电流和其他参数。
接下来,我们将详细介绍等离子体放电实验的过程。
首先,将气体注入真空室中并抽取空气,使真空室内部的压力降低到所需的范围。
然后,将电极引入真空室,并将其与电源相连接。
通过调节电源的电流和电压,可以改变电场强度和方向。
当电场强度达到一定程度时,气体分子将被电离,形成等离子体。
实验过程中,我们可以通过观察等离子体颜色、形态和发光现象等来研究等离子体的性质。
不同气体、不同电场条件下,等离子体的性质和行为都会发生变化。
例如,当气体分子被电离时,电子会向电极移动,产生电流。
我们可以通过测量电流的变化来研究等离子体的导电性质。
此外,等离子体还会发生辐射现象,通过观察辐射的光谱,我们可以分析等离子体中的元素成分和能级结构。
气体放电等离子体特性实验
![气体放电等离子体特性实验](https://img.taocdn.com/s3/m/b3c4400f2379168884868762caaedd3383c4b565.png)
实验七气体放电等离子体特性实验当温度在0ºC会变成水,而温度上升到100ºC时,水会沸腾变成水蒸气,这就是我们熟知的物质三态(固态、液态和气态)。
而当温度升到几千度时,气态物质由于分子热运动剧烈,物质分子相互间的碰撞会使气体分子发生电离,在电离过程中正离子和电子总是成对出现,这样气态物质就变成由相互作用的正离子和电子组成的物质的第四态-等离子体。
由于在等离子体中正离子和电子总数大致相等,因此等离子体在宏观上保持电中性。
所以等离子体实质上是密度大致相等的带正电荷的离子和带负电荷的电子组成的电离气体。
因为等离子体有着许多独特的性能,如温度高、粒子动能大,化学性质活泼等,因此广泛应用于能源、物质与材料和环境等领域中。
【实验目的】本实验的目的是观察气体放电现象,用探极法测量等离子体物理参量。
学习掌握真空溅射镀膜的知识、方法。
【实验原理】1.等离子区的产生气体原来是不导电的绝缘介质,当我们把它密封在一个长的圆柱形玻璃放电管中,在放电管的阴极和阳极间加上直流高压(管的气体压强几十帕),在所加高压达到某一个电压值时,放电管被明亮发光的等离子体充满,即放电管发生辉光放电,整个放电空间为明暗相间的八个光层所分割,如图1,其中⑥即为等离子区。
图1①阿斯屯暗区由于电子刚从阴极发出,能量很小,不能使气体分子产生电离和激发,因此不能发光,所以是暗区,这是一个极薄的区域。
②阴极辉区电子通过阿斯屯暗区的加速,具有较大的动能,当这些电子遇到气体分子发生碰撞时,使气体分子激发发光。
③阴极暗区电子经前二区域,绝大部分电子没有和气体分子碰撞,因此在这区域内的电子具有很大的能量,产生很强的电离。
而电子较轻,受电场力作用后跑掉,留下大量正离子,使得这里具有很高的正离子浓度,形成极强的正电荷空间,造成电场的严重畸变,结果绝大部分管压都集中在这一区域和阴极之间。
在这样强的电场作用下,正离子以很大的动能打向阴极产生显著的二次电子过程,而电子又以很大的加速度离开阳极,向前运动产生雪崩过程。
气体放电等离子体实验报告
![气体放电等离子体实验报告](https://img.taocdn.com/s3/m/0dfccc804128915f804d2b160b4e767f5bcf8058.png)
气体放电等离子体实验报告气体放电等离子体实验报告引言:气体放电等离子体实验是一项重要的物理实验,通过对气体放电现象的研究,可以深入了解等离子体的性质和行为。
本实验旨在通过观察和分析气体放电等离子体的特性,揭示等离子体的基本原理和应用。
实验目的:1. 研究气体放电的基本特性,如放电现象、放电形态等;2. 探索气体放电等离子体的性质,如等离子体的密度、温度等;3. 分析气体放电等离子体的应用领域,如等离子体在光谱分析、材料处理等方面的应用。
实验材料和装置:1. 气体放电实验装置:包括气体放电管、高压电源、电流表、电压表等;2. 气体:常见的气体有氢气、氦气、氮气等;3. 实验记录仪器:如摄像机、数据采集器等。
实验步骤:1. 准备实验装置,并确保安全;2. 连接高压电源和气体放电管,调节电压和电流;3. 打开电源,观察气体放电管内的放电现象;4. 记录放电的形态、颜色、亮度等特征;5. 测量放电管两端的电压和电流,并记录数据;6. 调节电压和电流,观察放电现象的变化;7. 使用摄像机或数据采集器记录实验过程;8. 分析实验数据,得出结论。
实验结果与分析:经过实验观察和数据分析,我们发现不同气体在不同电压和电流条件下,产生了不同的放电形态和颜色。
例如,在低压条件下,氢气放电呈现出红色的辐射,而在高压条件下,氢气放电呈现出紫色的辐射。
这是因为不同气体的原子结构和能级分布不同,导致其放电现象也不同。
通过实验数据的分析,我们还可以计算出等离子体的密度和温度。
根据普朗克公式和玻尔兹曼关系,我们可以利用放电管两端的电压和电流数据,推导出等离子体的密度和温度。
这对于等离子体物理学的研究具有重要意义。
实验应用:气体放电等离子体在许多领域都有广泛的应用。
例如,在光谱分析中,气体放电等离子体可以用于分析物质的成分和结构。
通过观察等离子体在不同波长下的辐射光谱,可以确定样品中的元素和化合物。
此外,气体放电等离子体还可以应用于材料处理。
气体放电中等离子体的研究实验报告-南京大学
![气体放电中等离子体的研究实验报告-南京大学](https://img.taocdn.com/s3/m/0ab36acec1c708a1284a44eb.png)
南京大学物理系实验报告题目实验2.3 气体放电中等离子体的研究姓名董佳婧学号 141120021一、引言等离子体作为物质的第四态在宇宙中普遍存在。
在实验室中对等离子体的研究是从气体放电开始的。
朗缪尔和汤克斯首先引入“等离子体”这个名称。
近年来等离子体物理学有了较快发展,并被应用于电力工业、电子工业、金属加工和广播通讯等部门,特别是等离子体的研究,为利用受控热核反应,解决能源问题提供了诱人的前景。
二、实验目的1、了解气体放电中等离子体的特性。
2、利用等离子体诊断技术测定等离子体的一些基本参量。
三、实验原理1、等离子体及其物理特性等离子体有一系列不同于普通气体的特性:(1)高度电离,是电和热的良导体,具有比普通气体大几百倍的比热容。
(2)带正电的和带负电的粒子密度几乎相等。
(3)宏观上是电中性的。
2、等离子体的主要参量描述等离子体的一些主要参量为:(1)电子温度Te。
它是等离子体的一个主要参量,因为在等离子体中电子碰撞电离是主要的,而电子碰撞电离与电子的能量有直接关系,即与电子温度相关联。
(2)带电粒子密度。
电子密度为ne ,正离子密度为ni,在等离子体中ne≈ni。
(3)轴向电场强度EL。
表征为维持等离子体的存在所需的能量。
(4)电子平均动能Ee 。
(5)空间电位分布。
3、稀薄气体产生的辉光放电本实验研究的是辉光放电等离子体。
辉光放电是气体导电的一种形态。
当放电管内的压强保持在10-102Pa时,在两电极上加高电压,就能观察到管内有放电现象。
辉光分为明暗相间的8个区域。
8个区域的名称为(1)阿斯顿区,(2)阴极辉区,(3)阴极暗区,(4)负辉区,(5)法拉第暗区,(6)正辉区(即正辉柱),(7)阳极暗区,(8)阴极辉区。
如图1所示,其中正辉区是我们感兴趣的等离子区。
其特征是:气体高度电离;电场强度很小,且沿轴向有恒定值。
这使得其中带电粒子的无规则热运动胜过它们的定向运动。
所以它们基本上遵从麦克斯韦速度分布律。
气体放电等离子体实验报告
![气体放电等离子体实验报告](https://img.taocdn.com/s3/m/6a536308c950ad02de80d4d8d15abe23492f0365.png)
气体放电等离子体实验报告气体放电等离子体实验报告引言:气体放电等离子体实验是一项重要的实验,通过在气体中施加电场,使气体分子电离并形成等离子体。
这一实验具有广泛的应用领域,如等离子体物理、光谱学、材料科学等。
本报告将详细介绍气体放电等离子体实验的过程、实验装置和实验结果。
实验过程:1. 实验准备首先,我们准备了实验所需的材料和设备,包括气体放电管、电源、电压表、电流表等。
然后,我们对实验装置进行了检查和调试,确保其正常工作。
2. 实验操作将气体放电管连接到电源上,并设置合适的电压和电流。
然后,通过调节电压和电流的大小,控制气体放电管中的等离子体形成和维持。
3. 数据记录在实验过程中,我们记录了气体放电管中的电压和电流变化情况,并观察了等离子体的形态和颜色变化。
同时,我们还测量了等离子体的温度、密度等参数。
实验装置:实验装置主要包括气体放电管、电源、电压表、电流表和数据记录设备。
1. 气体放电管气体放电管是实验中最关键的部分,它由玻璃管和两个电极组成。
玻璃管内充满了待研究的气体,如氢气、氮气等。
电极通过电源提供电场,使气体分子电离并形成等离子体。
2. 电源电源是为气体放电管提供电场的设备,它可以提供不同电压和电流的输出。
通过调节电源的输出参数,可以控制等离子体的形成和维持。
3. 电压表和电流表电压表和电流表用于测量气体放电管中的电压和电流。
通过监测电压和电流的变化,可以了解等离子体的形成和消失过程。
4. 数据记录设备数据记录设备用于记录实验过程中的各种参数,如电压、电流、等离子体的形态和颜色等。
通过对这些数据的分析,可以得出实验结果并进行进一步的研究。
实验结果:在实验过程中,我们观察到了气体放电管中的等离子体形态和颜色的变化。
随着电压和电流的增加,等离子体的亮度和密度逐渐增加。
同时,等离子体的颜色也发生了变化,从无色逐渐变为蓝色、紫色等。
我们还测量了等离子体的温度和密度,发现随着电压和电流的增加,等离子体的温度和密度也随之增加。
等离子体放电实验报告
![等离子体放电实验报告](https://img.taocdn.com/s3/m/126fefab846a561252d380eb6294dd88d0d23ddb.png)
等离子体放电实验报告等离子体放电实验报告引言:等离子体是一种由带正电荷的离子和带负电荷的电子组成的高度电离的气体。
等离子体放电实验是一种常见的物理实验,通过施加电场或电压,使气体中的原子或分子电离,形成等离子体,并观察等离子体的放电现象。
本实验旨在探究等离子体放电的特性和规律。
实验设备和方法:1. 实验设备:- 玻璃管:用于容纳气体和形成等离子体的容器;- 电源:用于提供电场或电压;- 气体:常用的气体有氩气、氢气等;- 电压表和电流表:用于测量电场强度和电流。
2. 实验方法:- 将玻璃管充满所选气体;- 将电源接入玻璃管两端,施加适当的电压;- 观察等离子体的放电现象,并记录电流和电场强度的变化;- 改变电压、气体种类或气体压强,重复实验并记录观察结果。
实验结果与分析:1. 放电现象:在实验中,我们观察到等离子体放电时,玻璃管内的气体会发出明亮的光芒,且电流表会显示出电流的变化。
放电现象的强弱和稳定性与电压的大小、气体种类和气体压强有关。
2. 放电规律:- 电压与放电强度的关系:实验中发现,随着电压的增加,放电强度也增加。
当电压达到一定值时,放电强度会迅速增加,形成较强的等离子体。
- 气体种类与放电强度的关系:不同气体的放电特性不同。
例如,氩气放电强度较大,而氢气放电强度较小。
这是因为气体中的原子或分子电离能不同,导致放电特性的差异。
- 气体压强与放电强度的关系:实验中发现,当气体压强较低时,放电强度较小;当气体压强较高时,放电强度较大。
这是因为气体压强的增加会增加原子或分子电离的机会,从而增强放电现象。
实验讨论与应用:1. 实验讨论:- 等离子体放电实验是研究等离子体物理性质的重要手段,通过实验可以深入了解等离子体的形成、结构和特性。
- 等离子体放电现象在自然界和工业中广泛存在。
例如,闪电就是大气中的等离子体放电现象,等离子体放电技术也被应用于气体放电灯、等离子体刻蚀等领域。
2. 应用展望:- 等离子体放电技术在材料加工、环境治理、能源研究等方面具有广阔的应用前景。
辉光放电等离子体诊断
![辉光放电等离子体诊断](https://img.taocdn.com/s3/m/60a6534069eae009581becb7.png)
(5)、探针表面没有热电子和次级电子的发射。
则:对于插入等离子体的单探针有:
随机电流: ,Байду номын сангаас
根据玻耳兹曼定理:
电子密度
式中:Vp为探针电位,Vs为等离子体电位
所以:探针电流
而对于插入等离子体的双探针有:
设探针的面积分别为A1,A2;电位为V1,V2;电压V=V1-V2≥0。
c:等离子体频率:表示等离子体对电中性破坏的反应快慢,是等离子体震荡这种集体效应的频率为。
粒子震荡频率:
电子震荡频率:
d:德拜长度:等离子体内电荷被屏蔽的半径,表示等离子体内能保持的最小尺度。当电荷正负电荷置于等离子体内部时就会在其周围形成一个异号电荷的“鞘层”。
德拜长度:
2、等离子体参数的静电探针诊断原理
流过探针1,2的离子和电子电流分别为:i1+,i1-,i2+,i2-。
对双探针整体为悬浮的故:
则从2流入1的电流为:
,
所以:
故:
大致I-V函数关系曲线见下图:
由此可知:电子温度:
等离子体密度:
注:
图11、理想双探针曲线
三、实验仪器:
DH2005直流辉光等离子体实验装置
1、总电源开关2、冷却水电源开关3、真空泵电源开关4、电阻真空计开关5、高压电源开关6、探针电源7、高压调节旋钮8、高真空微调阀9、隔膜阀调节旋钮10、工作选择开11、电流量程选择开关12、探针电压调节电位器(粗调) 13、探针电压调节电位器(细调)14、放电管电压测量表15、辉光电流测量表16、击穿电压测量表17、暗电流测量表18、探针电压表19、探针电流表20、电阻真空计21、转子流量计22、总电源指示灯
等离子体辉光放电 - 河南大学精品课程网
![等离子体辉光放电 - 河南大学精品课程网](https://img.taocdn.com/s3/m/ce5a5e5e767f5acfa1c7cd58.png)
等离子体辉光放电【实验目的】1.观察低压气体辉光放电现象。
2.用探针法测量等离子体中电子等效温度、电子浓度、正负离子的平均速度、平均动能。
3.验证等离子体区电子浓度服从麦克斯韦速度分布律。
【教学重点】1.观察气体辉光放电的现象;2.等离子体辉光放电的原理;3.探针法测量等离子体物理参数的方法;【教学难点】离子体物理参数的计算步骤【时间安排】3学时【教学内容】一、检查学生预习情况检查预习报告。
二、学生熟悉实验仪器设备机械泵、真空放电管、高压电压等。
三、讲述实验目的和要求1. 检查真空系统是否存在漏点;放电管内真空用机械泵抽至50Pa左右,并保持稳定;缓慢旋转高压电源旋钮,增加高压到1000V左右,应看到放电管被点亮;辨认各个放电区域.2. 调节高压和气压,使放电管内等离子区稳定,并且颜色均匀(无层状);缓慢降低探极电压,并且记录探极电压和探极电流;做lgeI V−特性曲线,进行数据处理,得到电子等效温度、电子平均速度、电子平均动能、电子浓度和正离子的浓度.四、实验原理一、辉光放电现象当放电管内的气压降低到几十帕时,两极加以适当的电压,管内气体开始放电,辉光由细到宽,布满整个管子。
当压力再降低时,辉光便分为明暗相间的八个区域.二、用试探电极法研究等离子区所谓试探电极就是在放电管里引入一个不太大的金属导体,导体的形状有圆柱形、平面形、球形等。
我们实验用的是圆柱形。
试探电极是研究等离子区的有力工具,利用探极的伏特——安培曲线,可以决定等离子区的各种参量。
测量线路如图2所示。
在测量时尽量保持管子的温度和管内气体的压强不变。
实验测得的探极电压和电流曲线如上图3。
对这一曲线作如下的解释:AB 段表示加在探极上的电压比探极所在那一点的空间电位负得多,在探极周围形成了正的空间电荷套层,套层的厚度一般小于等离子区中电子的自由路程。
这时探极因受正离子的包围,它的电力线都作用在正离子上,不能跑出层外,因此它的电场仅限于层内。
等离子体实验技术的放电参数优化方法
![等离子体实验技术的放电参数优化方法](https://img.taocdn.com/s3/m/cbada81a2e60ddccda38376baf1ffc4fff47e267.png)
等离子体实验技术的放电参数优化方法等离子体是一种高能物理实验技术,广泛应用于物理实验、医疗诊断、材料加工等领域。
在等离子体实验中,放电参数的优化对于保证实验的稳定性和获得可靠的结果具有重要意义。
本文将探讨等离子体实验技术的放电参数优化方法。
首先,了解等离子体的基本概念对于放电参数的优化至关重要。
等离子体是由自由电子和离子组成的电中性气体。
放电是指电场作用下,气体中电子与离子发生相互耦合,从而形成电离态,电流得以传导的过程。
在等离子体实验中,放电过程的控制与调节对于实验的成功至关重要。
其次,放电参数的优化需要考虑多个因素。
首先是等离子体的浓度和温度。
等离子体浓度是指单位体积内的等离子体粒子数量,而等离子体的温度则反应了等离子体粒子的动能。
对于不同的实验需求,需要根据具体情况来选择合适的等离子体浓度和温度。
比如,在材料加工中,较高的等离子体浓度和温度可以提高加工效率;而在医疗诊断中,适当控制等离子体浓度和温度可以保证人体安全。
另外,等离子体的形状和尺寸也是放电参数优化的重要考虑因素。
不同形状和尺寸的等离子体具有不同的放电特性。
例如,球形等离子体放电时电压分布均匀,但容易发生不稳定的放电现象;而柱状等离子体则具有较高的稳定性,但电子和离子的能量损失较大。
因此,在实验中需要根据具体要求选择合适的等离子体形状和尺寸,以达到最佳的放电效果。
此外,放电参数的优化还需要考虑电场和电源的选择。
电场是指负责产生等离子体的电磁场,而电源则负责提供电能。
选择合适的电场和电源可以对放电效果进行优化。
例如,使用高频电源可以提高等离子体的稳定性和功率密度;而使用尖锐电极形状可以使电场更加集中,提高放电效果。
因此,根据实验需求和实验装置的特点,选择合适的电场和电源是放电参数优化的重要步骤。
最后,实验过程中的实时监测和反馈调节也是放电参数优化的关键环节。
通过实时监测等离子体的参数,如浓度、温度、电压等,并及时根据监测结果进行反馈调节,可以保证实验的稳定性和可靠性。
等离子体放电实验报告
![等离子体放电实验报告](https://img.taocdn.com/s3/m/4efda6a0534de518964bcf84b9d528ea81c72f3b.png)
等离子体放电实验报告《等离子体放电实验报告》摘要:本实验旨在探究等离子体放电的特性和规律。
通过在实验室中建立等离子体放电装置,观察等离子体放电的过程和现象,分析实验数据,得出了等离子体放电的规律和特性。
实验结果表明,等离子体放电是一种高能物质释放的现象,具有较强的热量和光谱特性,对于研究等离子体物理和应用具有一定的参考价值。
引言:等离子体是一种由带电粒子和中性粒子组成的物质状态,具有高能量和高温度的特性。
等离子体放电是指在一定条件下,等离子体发生放电现象,释放出能量和光谱。
本实验旨在通过建立等离子体放电装置,观察等离子体放电的过程和现象,探究其规律和特性。
实验装置和方法:本实验采用了等离子体放电装置,包括真空室、高压电源、等离子体激发源等。
首先,将真空室抽成一定的真空度,然后加入适量的气体,通过高压电源加电,形成等离子体放电。
在等离子体放电的过程中,使用光谱仪和热像仪对等离子体放电的光谱和热量进行观测和记录。
实验结果和分析:实验结果显示,等离子体放电过程中释放出大量的能量,产生强烈的光谱和热量。
通过光谱仪观测到了等离子体放电的光谱特性,发现了特定波长的光线,表明等离子体放电产生了特定的能级跃迁。
同时,热像仪观测到了等离子体放电的高温现象,显示出了等离子体放电的高能量特性。
结论:通过本实验,我们得出了等离子体放电的特性和规律。
等离子体放电是一种高能物质释放的现象,具有较强的热量和光谱特性。
这对于研究等离子体物理和应用具有一定的参考价值。
同时,本实验也为进一步研究等离子体放电提供了一定的实验基础和数据支持。
气体放电中等离子体的研究实验报告-南京大学
![气体放电中等离子体的研究实验报告-南京大学](https://img.taocdn.com/s3/m/1c53befa192e45361166f548.png)
南京大学物理系实验报告题目实验2・3气体放电中等离子体的研究姓名董佳殖学号141120021—、引言等离子体作为物质的第四态在宇宙中普遍存在。
在实验室中对等离子体的研究是从气体放电开始的。
朗缪尔和汤克斯首先引入“等离子体”这个名称。
近年來等离子体物理学有了较快发展,并被应用于电力工业、电子工业、金属加工和广播通讯等部门,特别是等离子体的研究,为利用受控热核反应,解决能源问题提供了诱人的前景。
二、实验目的1、了解气体放电中等离子体的特性。
2、利用等离子体诊断技术测定等离子体的一些基本参量。
实验原理1、等离子体及其物理特性等离子体有一系列不同于普通气体的特性:(1)岛度电离,是电和热的良导体,具有比普通气体大几白倍的比热容。
(2)带正电的和带负电的粒子密度几乎相等。
(3)宏观上是电中性的。
2、等离子体的主要参量描述等离子体的一些主要参量为:(1)电子温®Teo它是等离子体的一个主要参最,因为在等离子体中电子碰撞电离是主要的,而电子碰撞电离与电子的能最有直接关系,即与电子温度相关联。
(2)带电粒子密度。
电子密度为正离子密度为n,,在等离子休中①心①。
(3)轴向电场强度表征为维持等离子体的存在所需的能量。
(4)电子平均动能Ee。
(5)空间电位分布。
3、稀薄气体产生的辉光放电本实验研究的是辉光放电等离子体。
辉光放电是气体导电的一种形态。
当放电管内的压强保持在10-102Pa时,在两电极上加高电民就能观察到管内有放电现象。
辉光分为明暗相间的8个区域。
8个区域的名称为(1)阿斯顿区,(2)阴极辉区,(3)阴极暗区,(4)负辉区,(5)法拉第暗区,(6)正辉区(即正辉柱),(7)阳极暗区,(8)阴极辉区。
如图1所示,其中正辉区是我们感兴趣的等离子区。
其特征是:气体高度电离:电场强度很小,且沿轴向有恒定値。
这使得其中带电粒子的无规则热运动胜过它们的定向运动。
所以它们基本上遵从麦克斯韦速度分布律。
由其具体分布可得到一个相应的温度,即电子温度。
等离子体放电实验技术的高级应用与改进
![等离子体放电实验技术的高级应用与改进](https://img.taocdn.com/s3/m/ce3850742a160b4e767f5acfa1c7aa00b52a9df0.png)
等离子体放电实验技术的高级应用与改进等离子体放电实验技术是一种广泛应用于物理、化学、材料等领域的实验方法。
它通过产生高能电子与气体分子相互碰撞,使气体分子发生电离,并产生等离子体。
在等离子体放电实验中,我们可以研究等离子体的特性、行为以及与外界的相互作用。
现如今,随着科技的进步,等离子体放电实验技术的应用得到了进一步的拓展和改进。
一、等离子体放电实验技术在材料科学中的应用在材料科学领域,等离子体放电实验技术被广泛应用于纳米材料的制备与改性。
通过等离子体放电,可以产生高能离子和激发态原子,这些粒子能够对材料表面进行局部加热和化学反应,从而实现材料的微观结构调控。
例如,等离子体放电技术可以用于制备纳米颗粒、超薄膜和纳米线,这些纳米结构具有许多出色的性能,如光电性、磁学性和力学性能等。
此外,等离子体放电实验技术还可以用于材料的表面改性。
等离子体放电过程中产生的高能粒子可以对材料表面进行加工和功能化。
例如,等离子体放电技术可以在材料表面形成类似植物叶片的纳米结构,从而提高材料的光吸收性能。
另外,通过控制等离子体放电条件,还可以在材料表面形成覆盖层,提高材料的耐腐蚀性和防污性能。
二、等离子体放电实验技术的改进与创新为了进一步拓展等离子体放电实验技术的应用,科研人员进行了一系列的改进与创新。
一方面,他们致力于提高等离子体放电的稳定性和可控性。
对于等离子体放电实验装置的改进是其中的重要方向之一。
科研人员设计了更加稳定、可控的等离子体放电装置,同时还提出了多种等离子体放电实验技术,如射频放电、微波等离子体放电和脉冲放电等。
这些技术的引入使得等离子体放电实验更加灵活,能够满足不同实验需求。
另一方面,科研人员还致力于改进等离子体放电实验的材料和工艺。
例如,通过改变气体组分和流速,可以调控等离子体放电过程中产生的粒子能量和密度,从而实现对材料表面的不同加工效果。
此外,在材料的选择上,科研人员也进行了大量的研究。
例如,选择具有高温稳定性和耐蚀性的材料作为等离子体装置的材料,能够延长装置的使用寿命并提高实验可靠性。
直流辉光等离子体气体放电实验
![直流辉光等离子体气体放电实验](https://img.taocdn.com/s3/m/f636e1fc988fcc22bcd126fff705cc1755275f7b.png)
直流辉光等离子体气体放电实验向小雨工物13指导老师:张慧云(2013年10月24日,星期四)摘要本实验通过测定辉光等离子体升压和降压的伏安曲线,探究辉光等离子体在不同气体压强和磁场条件下电学特性的变化,进行了唯象讨论和一定的定量分析。
此外,实验中还尝试利用朗缪尔双探针测量等离子体的电子温度和电子密度,并探究了误差成因。
关键词低温等离子体辉光放电双探针法一、前言电流通过气体的现象称为气体放电。
具有一定能量的电子与中性原子发生非弹性碰撞时,电子将一部分动能传给原子,使原子激发或者电离,即:e−+G0→G∗+e−e−+G0→G++2e−激发原子G∗会产生特定颜色的辉光;产生的气体离子G+成为等离子体的一部分。
等离子体是由电离的导电气体组成,其中包括六种典型的粒子,电子、正离子、负离子、激发态的原子或分子、基态的原子或分子以及光子。
事实上等离子体就是由上述大量正负带电粒子和中性粒子组成的,并表现出集体行为的一种准中性气体,也就是高度电离的气体。
无论是部分电离还是完全电离,其中的负电荷总数等于正电荷总数,所以叫等离子体1。
等离子体是继固体、液体、气体之后物质的第四种聚集状态。
等离子体有别于其它物态的主要特点是其中长程的电磁相互作用起支配作用,等离子体中粒子与电磁场耦合会产生丰富的集体现象。
本实验中研究的是低温等离子体。
其中各个粒子的温度并不相同,一般用双温模型来描述。
用Ti表示离子温度,Te表示电子温度,一般电子温度比离子温度高得多。
实验中制备等离子体的方式为气体低压放电,放电过程可分为三个阶段:暗放电、辉光放电和电弧放电。
其中各个阶段的放电在不同的应用领域由广泛的应用。
这三个阶段的划分从现象上来看是放电强度的不同,从内在因素看来是其放电电压和放电电流之间存在着显著差异,经典的直流低气压放电在正常的辉光放电区示意图如图1:图1直流低气压等离子体辉光放电区示意图从左至右,其唯像结构如下:1.阴极区:包括阴极,阿斯顿暗区,阴极辉区和克罗克斯暗区;2.负辉区:是整个放电管中最亮的区域。
低温气体放电等离子体实验研究
![低温气体放电等离子体实验研究](https://img.taocdn.com/s3/m/2a58da6c580102020740be1e650e52ea5518cebb.png)
低温气体放电等离子体实验研究一、引言低温等离子体作为一种新型物质状态,在生物医学、材料科学、新能源等领域中有着广泛应用。
其中,低温气体放电等离子体实验研究是探索其基本特性的关键。
二、气体放电等离子体的基本特性气体放电等离子体是指通过电场将气体分子激发到高能级,产生电离和激发,使之形成电离区域而产生的等离子体。
气体放电等离子体的基本特性在于其电子、离子和中性粒子之间的相互作用。
(一)电子和离子电子和离子是低温气体放电等离子体中最为重要的组成部分。
电子在气体中很容易受到分子和原子的碰撞,成为气体离子。
气体离子会与气体分子相互碰撞,再次产生电子和离子。
(二)放电性质气体放电等离子体的形成需要具备一定的电压梯度,所以其形态各异,种类繁多。
放电的形态与气体的种类、气压、电压、频率等因素有关。
在气体放电等离子体实验研究中,常见的有针-板放电、介质放电、微波放电、脉冲放电等多种形式。
(三)等离子体反应低温气体放电等离子体会在化学反应和金属表面的沉积和脱附等过程中发挥作用。
其反应过程包括氢氧化反应、自由基反应、电子转移反应和离子反应。
三、低温气体放电等离子体实验研究低温气体放电等离子体实验研究是探索其基本特性和应用效果的关键。
可以通过不同的实验方法和手段,研究气体放电等离子体的基本特性、放电性质和等离子体反应。
(一)实验方法通常通过介质、微波和脉冲等放电形式,产生低温气体放电等离子体。
实验方法包括原位观测、电子束分析、光谱和化学分析等多种手段。
(二)实验手段通常利用真空系统、分子束设备、快速光谱分析仪、热释光分析仪等手段,在实验中观测和记录气体放电等离子体的基本特性和反应过程。
数字照相技术、电子显微技术、光学干涉技术等也广泛应用于低温气体放电等离子体的探索和研究。
四、低温气体放电等离子体实验研究的应用低温气体放电等离子体在生物医学、材料科学、新能源等领域中有着广泛应用。
其中,生物医学应用主要包括医疗杀菌、肿瘤治疗等;材料科学应用主要包括表面改性、薄膜沉积等;新能源应用主要包括等离子体电池、等离子体发电等。
实验十气体放电中等离子体的研究.
![实验十气体放电中等离子体的研究.](https://img.taocdn.com/s3/m/8b8dc805a8114431b90dd8a4.png)
云南大学物理实验教学中心实验报告课程名称:普通物理实验实验项目:实验十气体放电中等离子体的研究学生姓名:马晓娇学号:20131050137 物理科学技术学院物理系 2013 级天文菁英班专业指导老师:何俊试验时间:2015 年 10 月 16 日 12 时 00 分至 2 时 00 分实验地点:物理科学技术学院实验类型:教学 (演示□验证□综合□设计□) 学生科研□课外开放□测试□其它□一、引言随着温度的不断升高,构成气体分子的原子将发生分裂,形成为独立的原子,如氮分子(2N )会分裂成两个氮原子(N),这种过程被称为气体分子的离解.如果再就能一步升高温度,原子中的电子就会从原子中剥离出来,成为带正电荷的原子核和带负电荷的电子,这个过程称为原子的电离.当这种电离过程频繁发生,使电子和离子的浓度达到一定的数值时,物质的状态也就起了根本变化,它的性质也就变得与气体完全不同.为区别于固体/液体和气体这三种状态,我们称物质的这种状态为物质的第四态,又起名等离子体.电离出的自由电子总的负电离与正离子总的正电量相等.等离子体宏观上称电中性.等离子体是由部分电子被剥夺后的原子及原子被电离后产生的正负离子组成的离子化气体状物质,它呈现出高度激发的不稳定态,其中包括离子/原子/电子和分子.等离子体是宇宙中常见的物质,在太阳/恒星/闪电中都存在等离子体,它占整个宇宙的99%.实验中对等离子体的研究是从放电开始的.朗缪尔和汤克斯首先引入”等离子体”这个名称.近年来等离子体物理的发展为材料/能源/信息/环境空间,物理空间/地球物理等科学的进一步发展提供了新的技术和工艺.二、实验目的1. 了解气体放电中等离子体的特性;2.用等离子体诊断技术测定等离子体的一些基本参量三、实验原理(一)等离子体及物理特性等离子体定义为包含大量正负带电粒子、而又不出现净空间电荷的电离气体;在等离子体中,带电粒子之间的库仑力是长程力,库仑力的作用效果远远超过带电粒子可能发生的局部短程碰撞效果,等离子体中的带电粒子运动时,能引起正电荷或负电荷局部集中,产生电场;电荷定向运动引起电流,产生磁场。
《放电等离子烧结粉体》实验指导
![《放电等离子烧结粉体》实验指导](https://img.taocdn.com/s3/m/f7d3653a854769eae009581b6bd97f192279bf66.png)
放电等离子烧结粉体实验一、实验目的通过利用放电等离子烧结样品,使学生系统了解和熟悉放电等离子产生的原理、制备的方式和方法,掌握等放电离子体设备的结构及使用方法,深入地理解所学理论知识,掌握粉体烧结的过程,提高学生的实验应用能力。
二、实验仪器及原料等离子烧结设备电子天平、WC-Co粉三、实验原理放电等离子烧结(SPS)是近年来发展起来的一种新型的快速烧结技术。
由于等离子活化烧结技术融等离子活化、热压、电阻加热为一体,因而具有升温速度快、烧结时间短、晶粒均匀、有利于控制烧结体的细微结构、获得的材料致密度高、性能好等特点。
该技术利用脉冲能、放电脉冲压力和焦耳热产生的瞬时高温场来实现烧结过程,对于实现优质高效、低耗低成本的材料制备具有重要意义,在纳米材料、复合材料等的制备中显示了极大的优越性,现已应用于金属、陶瓷、复合材料以及功能材料的制备。
目前国内外许多大学和科研机构利用SPS进行新材料的研究与开发,并对其烧结机理与特点进行深入研究与探索,尤其是其快速升温的特点,可作为制备纳米块体材料的有效手段,因而引起材料学界的特别关注。
目前使用的SPS系统主要是由3部分组成(图1):①产生单轴向压力的装置和烧结模,压力装置可根据烧结材料的不同施加不同的压力;②脉冲电流发生器,用来产生等离子体对材料进行活化处理;③电阻加热设备。
SPS与热压(HP)烧结有相似之处,但加热方式完全不同,它是利用直流脉冲电流直接通电烧结的加压烧结方法,通过调节脉冲直流电的大小控制升温速率和烧结温度。
整个烧结过程可在真空环境下进行,也可在保护气氛中进行,烧结过程中,电流直接通过上下压头和烧结粉体或石墨模具,因此加热系统的热容很小,升温和传热速度快,从而使快速升温烧结成为可能。
SPS系统可用于短时间、低温、高压(500-1000MPa)烧结,也可用于低压(20-30MPa)、高温(1000-2000℃)烧结,因此广泛应用于金属、陶瓷和各种复合材料的烧结,包括一些用通常方法难以烧结的材料,如表面容易生成硬的氧化层的金属钛和铝,用SPS技术可在短时间内烧结到90%-100%致密。
火花放电等离子体射流实验研究
![火花放电等离子体射流实验研究](https://img.taocdn.com/s3/m/1e7d540e366baf1ffc4ffe4733687e21af45ffb9.png)
火花放电等离子体射流实验研究摘要:本文介绍了一种研究火花放电等离子体射流的实验,以及它的理论原理以及获得的结果。
这项工作证明了火花放电是一种有效的方法来了解等离子体流动特性,以及影响其性能因素并分析它们对离子放电的影响。
关键词:火花放电,等离子体射流,离子放电,实验,流动特性正文:本文探讨了一种使用火花放电法研究等离子体射流的实验方法。
具体而言,我们采用激光放电点和激光横向扫描等不同技术,研究了电感减弱-等离子体放电火花的结构和特性。
在这项工作中,我们首先利用实验结果确定电晕形成的大小、位置和时间,然后确定其机械/热损伤中心,并通过基于数字图像处理的方法结合激光诱导发光技术确定离子流动的空间分布。
我们的研究结果表明,火花放电在等离子体射流的行为方面是一种有效的实验方法。
此外,火花放电还可以帮助我们了解不同离子放电参数如电晕大小、位置、时间和温度对等离子体射流性能的影响,以及它们之间的关系和机理。
此外,我们还可以分析不同火花放电参数对流体物理性质的影响,为后续研究提供参考。
火花放电等离子体射流的应用可以分为两个主要方面:一是它在冶金中的应用,二是它在能源工程中的应用。
首先来看它在冶金中的应用。
火花放电等离子体射流在冶金中可以用于焊接、合金制备、表面处理和加工等。
在焊接方面,等离子体射流可以用来焊接多种材料,包括低熔点金属、高强度钢、铝及其合金、不锈钢及其合金以及各种骨架结构等。
此外,还可以用于焊接厚度超过10mm的碳钢件及厚度超过5mm的不锈钢件。
同时,它也可以实现焊接金属、半金属和金属/非金属复合材料的功能。
此外,等离子体射流也可以用于合金制备。
等离子体射流可以在室温下将二元及多元金属/非金属材料合成为金属合金。
因此,它可以用于制备以镍、铂为主要成分的高熔点超合金和高性能金属合金。
此外,等离子体射流还可以用于热喷涂或表面处理。
它可以用于焊接前进行表面处理,以提高焊接部件的性能和寿命。
它也可以用于清除表面污垢、润滑油及化学物质等。
等离子体物理实验
![等离子体物理实验](https://img.taocdn.com/s3/m/0475c84253ea551810a6f524ccbff121dd36c5e9.png)
等离子体(Plasma)是一种由自由电子和带电离子为 主要成分的物质形态,广泛存在于宇宙中,常被视为 是物质的第四态,被称为等离子态,或者“超气态”。 等离子体具有很高的电导率,与电磁场存在极强的耦 合作用。等离子体是由克鲁克斯在1879年发现的, 1928年美国科学家欧文·朗缪尔和汤克斯(Tonks)首 次将“等离子体(plasma)”一词引入物理学,用来 描述气体放电管里的物质形态。严格来说,等离子是 具有高位能动能的气体团,等离子的总带电量仍是中 性,借由电场或磁场的高动能将外层的电子击出,结 果电子已不再被束缚于原子核,而成为高位能高动能 的的自由电子。
P=40Pa U=338V I=2.5mA
Te 4.7 105 K
P=40Pa U=415v I=5.5mA
Te 1.4105 K
实验原理
低气压放电可分为三个阶段:暗放电、辉光放电和电 弧放电。经典直流低气压放电在正常辉光放电区有如 下区域:阿斯顿暗区、阴极辉光区、阴极暗区、阴极 区、负辉光区、法拉第暗区、正电柱、阳极辉光区和
阳极暗区。
二.实验内容
等离子的I—V特性测定 气体击穿电压与电极间距的关系研究 验证帕邢定律 探针法测电子温度 等离子体的发射光谱研究
三.实验步骤
抽真空:
A.检查仪器的完整性,连接好所有管路,安装好放电管部件 B.将高压输出电源线接至放电管两端的正负极板 C.检查水箱里有无冷却水,接通总电源 D.打开总电源开关 E.关闭电子流量计,打开隔膜阀,并依次接通冷却水电源,真空泵
电源,抽真空,接通电阻真空计电源 F.打开转子流量计,调节气体流量到一定值,调节隔膜阀,稳定工
作气压,开高压,将工作选择打到辉光放电测量 G.缓慢调节高压调节,记录辉光放电和电流的测量结果绘制I—V曲
气体放电中等离子体的研究
![气体放电中等离子体的研究](https://img.taocdn.com/s3/m/0650abe319e8b8f67c1cb9db.png)
云南大学物理实验教学中心实验报告课程名称:近代物理实验实验项目:气体放电中等离子体的研究学生姓名:朱江醒学号: 20051050148 物理科学技术学院物理系2005级数理基础科学专业指导教师:何俊实验时间: 2007年 9月 22 日 8 时 30 分至12时 30 分实验地点:四合院实验类型:教学(演示□验证□综合□设计□) 学生科研□课外开放□测试□其它□一.实验目的1、了解气体放电中等离子体的特性。
2、利用等离子体诊断技术测定等离子体的一些基本参量。
二.实验原理1、等离子体及其物理特性等离子体有一系列不同于普通气体的特性:(1)高度电离,是电和热的良导体,具有比普通气体大几百倍的比热容。
(2)带正电的和带负电的粒子密度几乎相等。
(3)宏观上是电中性的。
2、等离子体的主要参量描述等离子体的一些主要参量为:(1)电子温度T e 。
它是等离子体的一个主要参量,因为在等离子体中电子碰撞电离是主要的,而电子碰撞电离与电子的能量有直接关系,即与电子温度相关联。
(2)带电粒子密度。
电子密度为n e ,正离子密度为n i ,在等离子体中n e ≈n i 。
(3)轴向电场强度E L 。
表征为维持等离子体的存在所需的能量。
(4)电子平均动能e E 。
(5)空间电位分布。
3、稀薄气体产生的辉光放电 本实验研究的是辉光放电等离子体。
辉光放电是气体导电的一种形态。
当放电管内的压强保持在10-102Pa 时,在两电极上加高电压,就能观察到管内有放电现象。
辉光分为明暗相间的8个区域。
8个区域的名称为(1)阿斯顿区,(2)阴极辉区,(3)阴极暗区,(4)负辉区,(5)法拉第暗区,(6)正辉区(即正辉柱),(7)阳极暗区,(8)阴极辉区。
4、等离子体诊断测试等离子体的方法被称为诊断,它是等离子体物理实验的重要部分。
等离子体诊断有探针法、霍尔效应法、微波法、光谱法等。
介绍如下:(1)探针法。
探针法测定等离子体参量是朗缪尔提出的,又称朗缪尔探针法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
气体放电中等离子体的研究摘要:本文阐述了气体放电中等离子体的特性及其测试方法,分别使用单探针法和双探针法测量了等离子体参量,最后对本实验进行了讨论。
关键词:等离子体,等离子体诊断,单探针法,双探针法1. 引言等离子体作为物质的第四态在宇宙中普遍存在。
在实验室中对等离子体的研究是从气体放电开始的。
近年来等离子体物理学有了较快发展,并被应用于电力工业、电子工业、金属加工和广播通讯等部门,特别是等离子体的研究,为利用受控热核反应,解决能源问题提供了诱人的前景。
2实验目的1.了解气体放电中等离子体的特性,2.利用等离子体诊断技术测定等离子体中的一些基本参量。
3. 等离子体的物理特性1.等离子体定义为包含大量正负带电粒子、而又不出现净空间电荷的电离气体。
也就是说,等离子体中正负电荷的密度相等,整体上呈电中性。
等离子体有一系列不同于普通气体的特性:(1)高度电离,是电和热的良导体,具有比普通气体大几百倍的比热容。
(2)带正电的和带负电的粒子密度几乎相等。
(3)宏观上是电中性的。
2.描述等离子体的一些主要参量为:(1)电子温度Te。
它是等离子体的一个主要参量,因为在等离子体中电子碰撞电离是主要的,而电子碰撞电离与电子的能量有直接关系,即与电子温度相关联。
(2)带电粒子密度。
电子密度为ne,正离子密度为ni,在等离子体中ne≈ni。
(3)轴向电场强度EL。
表征为维持等离子体的存在所需的能量。
(4)电子平均动能Ee。
(5)空间电位分布。
此外,由于等离子体中带电粒子之间的相互作用力是长程的库伦力,使他们在无规则运动的热运动之外,能产生某些类型的集体运动,如等离子震荡,其震荡频率称为朗缪尔频率或等离子体频率。
电子震荡时辐射的电磁波称为等离子体电磁辐射。
3.稀薄气体产生的辉光放电本实验研究的是辉光放电等离子体。
辉光放电是气体导电的一种形态。
当放电管内的压强保持在10~102Pa时,在两电极上加高电压,就能观察到管内有放电现象。
辉光分为明暗相间的8个区域,在管内两个电极间的光强、电位和场强分布如图1所示。
8个区域的名称为(1)阿斯顿区,(2)阴极辉区,(3)阴极暗区,(4)负辉区,(5)法拉第暗区,(6)正辉区,(7)阳极暗区,(8)阳极辉区。
其中正辉区是等离子区。
图1正辉区的特性是:气体高度电离;电场强度较小,且沿轴向有恒定值,这使得带电粒子的无规则运动胜过定向运动,所以他们基本上遵从麦克斯韦分布。
4. 等离子体诊断测试等离子体的方法被称为诊断。
等离子体诊断有探针法,霍尔效应法,微波法,光谱法等。
本次实验中采用探针法。
探针法分单探针法和双探针法。
(1)单探针法。
探针是封入等离子体中的一个小的金属电极(其形状可以是平板形、圆柱形、球形)。
其接法如图二所示。
以放电管的阳极或阴极作为参考点,改变探针电位,测出相应的探针电流,得到探针电流与其电位之间的关系,即探针伏安特性曲线,如图三所示。
图二,单探针接法图三,单探针伏安特性对伏安特征曲线的解释为:在AB段,探针的负电位很大,电子受负电位的排斥,而速度很慢的正离子被吸向探针,在探针周围形成正离子构成的空间电荷层,它把探针电场屏蔽起来。
等离子区中的正离子只能靠热运动穿过鞘层抵达探针,形成探针电流,所以AB段为正离子流,这个电流很小。
过了B点,随着探针负电位减小,电场对电子的拒斥作用减弱,使一些快速电子能够克服电场拒斥作用,抵达探极,这些电子形成的电流抵消了部分正离子流,使探针电流逐渐下降,所以BC段为正离子流加电子流。
到了C点,电子流刚好等于正离子流,互相抵消,使探针电流为零。
此时探针电位就是悬浮电位UF。
继续减小探极电位绝对值,到达探极电子数比正离子数多得多,探极电流转为正向,并且迅速增大,所以CD段为电子流加离子流,以电子流为主。
当探极电位UP和等离子体的空间电位US相等时,正离子鞘消失,全部电子都能到达探极,这对应于曲线上的D点。
此后电流达到饱和。
如果UP进一步升高,探极周围的气体也被电离,使探极电流又迅速增大,甚至烧毁探针。
由单探针法得到的伏安特性曲线,可求得等离子体的一些主要参量。
对于曲线的CD段,由于电子受到减速电位(UP-US)的作用,只有能量比e(UP-US)大的那部分电子能够到达探针。
假定等离子区内电子的速度服从麦克斯韦分布,则减速电场中靠近探针表面处的电子密度ne,按玻耳兹曼分布应为⎥⎦⎤⎢⎣⎡-=e s p e kT U U e n n )(exp 0 式中no 为等离子区中的电子密度,Te 为等离子区中的电子温度,k为玻耳兹曼常数。
在电子平均速度为v e 时,在单位时间内落到表面积为S的探针上电子数为:将(1)式代入(2)式得探针上的电子电流:其中对(3)式取对数其中常数=-eso kT eU I ln所以常数+=ep kT eU I ln可见电子电流的对数和探针电位呈线性关系。
图四。
单探针的半对数曲线作半对数曲线,如图四所示,由直线部分的斜率tg φ,可决定电子温度T e :()若取以10为底的对数,则常数11600应改为5040。
电子平均动能Ee 和平均速度v e 分别为:kT E e 23=e ee m kT v π8=式中me 为电子质量。
由(4)式可求得等离子区中的电子密度:e eoe o e kT m eSIv eS I n π24==式中I 0为UP =Us时的电子电流,S为探针裸露在等离子区中的表面面积。
(2)双探针法。
双探针法是在放电管中装两根探针,相隔一段距离L 。
双探针法的伏安特性曲线如图五所示。
在坐标原点,如果两根探针之间没有电位差,它们各自得到的电流相等,所以外电流为零。
然而,一般说来,由于两个探针所在的等离子体电位稍有不同,所以外加电压为零时,电流不是零。
随着外加电压逐步增加,电流趋于饱和。
最大电流是饱和离子电流I s1、I s2。
图五,双探针的伏安特性双探针法有一个重要的优点,即流到系统的总电流决不可能大于饱和离子电流。
这是因为流到系统的电子电流总是与相等的离子电流平衡。
从而探针对等离子体的干扰大为减小。
由双探针特性曲线,通过下式可求得电子温度Te :2121=⋅+⋅=U i i i i e dIdUI I I I k e T 式中e为电子电荷,k为玻耳兹曼常数,I i1、I i2为流到探针1和2的正离子电流。
它们由饱和离子流确定。
U dU dI=是U=0附近伏安特性曲线斜率。
电子密度n e 为:es e kT M eSI n 2=式中M是放电管所充气体的离子质量,S是两根探针的平均表面面积。
I s 是正离子饱和电流。
5.实验仪器本实验用的是等离子体实验组合仪,接线板和等离子体放电管。
放电管的阳极和阴极由不锈钢制成,霍尔电极由不锈钢或镍钢制成。
管内充满汞或氩。
6. 用单探针法测量等离子体参量仪器联线如图六所示。
图六 单探针实验接线图测量时采样电阻设定为1000Ω,放电电流设定为90mA 。
计算机自动生成的测量结果如下。
实验参数:探针直径(mm): 0.45 探针轴向间距(mm): 30.00 放电管内径(mm): 6.00平行板面积(mm^2): 8.00 平行板间距(mm): 4.00 亥姆霍兹线圈直径(mm):200.00 亥姆霍兹线圈间距(mm):100.00 亥姆霍兹线圈匝数: 400 放电电流(mA): 90 单探针序号: 1 取样电阻值(Ω): 1000实验结果:U0 = 32.82 VI0 =4397.59 uAtgΦ= 0.82Te = 1.41E+004 KVe = 7.38E+005 m/sNe = 9.36E+017 n/m^3Ee = 2.92E-019 J图6现依据公式计算如下:在实验数据中选择两点(30.16 809.923)和(45.711 7774.758)计算tg =与计算机计算出的结果基本相等。
7. 用双探针法测量等离子体参量仪器联线如图7所示。
图八,双探针实验接线图测量时采样电阻设定为1000 ,放电电流设定为90mA。
计算机自动生成的测量结果如下。
其中实验参数与单探针法相同,参见上页。
作半对数曲线如图8所示。
实验参数:探针直径(mm): 0.45探针轴向间距(mm): 30.00放电管内径(mm): 6.00平行板面积(mm^2): 8.00平行板间距(mm): 4.00亥姆霍兹线圈直径(mm):200.00亥姆霍兹线圈间距(mm):100.00亥姆霍兹线圈匝数: 400放电电流(mA): 90取样电阻值(Ω): 1000实验结果:I1 = 223.40 uAI2 = 164.55 uAtgΦ= 1.2E-004Te = 8.85E+003 KNe = 1.12E+017 n/m^3图8同样可以取出两点数据进行手动计算比较,发现和计算机计算的结果相近。
可见单探针法与双探针法测出的数据在数量级上是一致的。
8. 对实验的讨论双探针法与单探针法相比的优点是:流到探针的总电流决不可能大于饱和离子电流。
这是因为流到系统的电子电流总是与相等的离子电流平衡。
从而探针对等离子体的干扰大为减小。
另外双探针法不需要参考电位,受放电系统接地情况的影响较小。
单探针法与双探针法相比的优点是:单探针法可以通过I-U曲线得到悬浮电位UF及空间电位US,而双探针法不能。
从实验数据来看,单探针法与双探针法的测量结果存在一定差异。
单探针法电流不能达到饱和,电压增大时会出现电离现象,随着电压的增大,电流会持续增加。
这样就很难准确求出tgΦ。
其原因是离子鞘层的厚度随UP增大而改变,造成探针等效表面积改变,从而使到达探针表面的电子数偏离理论值。
另外当探极电位UP接近等离子体的空间电位US时,由于探针的边缘效应,事实上离子鞘层的厚度随UP增大而增大,其结果是探针等效表面积增大,探针电流也持续增大,在本实验条件下不能达到饱和。
对于双探针法,由于探针为平行板,离子鞘层的厚度对探针等效表面积的影响不大,因此离子鞘层的厚度改变对实验结果的影响也不明显。
综上,双探针法的测量结果比较而言更为准确。
对于单探针法,可作如下改进:适当选取探针的表面积,同时减小离子和电子的浓度,增大其平均自由程。
9. 实验思考(1)等离子体有什么特性?1.高度电离,是电和热的良导体,具有比普通气体大几百倍的比热容。
2.带正电的和带负电的粒子密度几乎相等。
3.宏观上是电中性的。
(2)描述等离子体的主要参量有哪些?1.电子温度Te。
它是等离子体的一个主要参量,因为在等离子体中电子碰撞电离是主要的,而电子碰撞电离与电子的能量有直接关系,即与电子温度相关联。
2.带电粒子密度。
电子密度为ne,正离子密度为ni,在等离子体中ne≈ni。
3.轴向电场强度EL。
表征为维持等离子体的存在所需的能量。
4.电子平均动能Ee。